
May 1982 Hcport No. STAN-CS-82-915

Verification of Concurrent Programs: Proving

Eventualities by Weli-Founded Ranking

by

Zohar Manna and A. Pnueli

Department of Computer Science

Stanford University

Stanford, CA 94305

VERIFICATION OF CONCURRENT PROGRAMS:

PROVING EVENTUALITIES BY WELL-FOUNDED RANKING

by

ZOHAR MANNA AMIR PNUELI

Computer Science Department Applied Mathematics Department

Stanford University The Wcizmann Institute

Stanford, C A Rehovot, Israel

and

Applied Mathematics Department
The Wcizmann Institute

Rchovot, Israel

ABSTRACT

In this paper, one of a series on verification of concurrent programs, we present proof methods

for establishing eventuality and until properties. The methods are based on well-founded ranking
and arc applicable to both “just” and “fair” computalions. Thcsc methods do not assume a

decrcase of the rank at cach computation step. It is suflicient that there exists one process which

decreases the rank when activated. Fairness then ensures that the program will eventually attain

1ts goal.

In the finite state case the proofs can be represented by diagrams. Several examples are given.

This research was supported in part by the National Science Foundationunder Grants MCS79-094195 and MCS80-

06930, by DARPA under Contract N00039-82-C-0250, by the United States Air l'orce Office of Scientific Research

under Grant AI'OSR-81-0014, and by the Basic Research Foundation of the Isracli Academy of Sciences.

1 .

INTRODUCTION

In a previous report [MP1] we introduced the temporal framework for reasoning about pro-
grams. We described a model of concurrent programs which is based on interaction via shared

variables and defined the concept of fair execution of such programs. Wc then demonstrated the

application of temporal logic formalism for expressing properties of concurrent programs. Program

properties can be classified according to the syntactic form of the temporal formula expressing

them; we studied three classes of properties: invariance properties, eventuality properties and

precedence (“until”) properties. Most program properties that have been previously considered or
studied for sequential and concurrent programs fall into one of these three categories.

In a second report MP2], we developed proof principles based on temporal logic for establishing
that concurrent programs possess properties of these classes. We presented a proof method for

each class of properties.

e A single invariance principle is adequate for establishing invariance properties.

e For proving eventuality properties, we recommended a chain reasoning approach, in

which we follow the possible chains of events until the desired goal 1s realized. Several

proof principles were introduced for establishing the basic steps in the chain. A similar

approach 1s presented in [OL].

oe Simple precedence properties may be proved by a combination of invariance proofs an d

eventuality proofs. A forthcoming report ([MP3]) will discuss proof methods for general
precedence properties.

In this paper, we present an alternative method for proving eventuality and “until” properties

based on convergence functions (well-founded rankings).

In our exposition, we assume that the reader is familiar with the basic concepts and definitions

introduced in [MP1] and [MP2].

THE CONVERGENCE FUNCTION APPROACH

Unlike the chain reasoning approach, which displays a variety of strategies and rules, the

convergence function approach provides a single uniform principle for proving eventualities of the

form:

E oD OY,

(i.e., if © ever arises it must be followed by ®)}, as well as “until” properties of the form

E oD (xUd)

, (i.e. if © ever arises it must bc followed by an instant at which % is realized and between the
occurrences of ¢ and ¥,x must hold continuously).

. With respect to uniformity, the convcrgence function approach resembles the invariance

principle for proving invariance properties. Another common feature is that establishing the

premises to the proof rule requires only static (non-temporal) reasoning.

2

Convergence functions have been used successfully in proofs of termination of sequential

| prograrns and of rewriting systems (e.g., [M],[PM]). Their usc is based on a mapping from
the execution states of a program into a well-founded set, such that states which appear later

in a computation correspond to lower values in the set. Conscqucntly, a complete computation

will correspond tc a descending sequence, and an infinite computation would correspond to an
infinitely descending scqucnce of well-founded elements, which is impossible. Such a mapping is

called a convergence function or a ranking function.

A well-founded structure (W, >) consists of a set W and a partial order > on W such that
any decreasing sequence wgwy>wg > ..., where w;,& W 1s finite. A typical and frequently

used well-founded structure is (N, >}, where N is the set of all nonnegative integers, and > is
the usual “greater than” ordering. Obviously we cannot have an infinitely decreasing sequence of

nonnegative integers, and therefore (N, >) is indeed a well-founded structure.

A general method for deriving composite well-founded structures from simpler ones is the

formation of lexicographical orderings. Let (Wi,>1) and (Wa,> 2) be two well-founded structures.

Then the structure given by (Wi X Wa, > lex) where the lexicographic ordering > iez is defined by

(my, ma) > lex (ny, ng) A= (my > 71) or (my = ny an d mg > 9 ng)

1s also well-founded.

Let us consider the application of the classical convergence function approach to the following
concurrent program:

Example A (Program DGCD — distributed gcd computation)

(y1,¥2) y= (z1, 2)

ly: whileyi£ ys do mo: whiley; #4 ys do

f Y1>Y2 then Yr := Y1— Y2 if y1< yg then Y2 := Y2— Yi
8: halt my: halt

— Py — — Py —

This program performs the distributed computation of the gcd (greatest common divisor)

of two positive integers inputs Ti,Zg. In the execution of this program, we assume each of the

labelled instructions to be atomic in the sense that testing and modification of the variables by one

process, say I’ at £g, arc completed before the other process may access them. Note that when

P; is aclivated in a stale in which yy < yg it does not modify any of the variables and returns

lo £y, thus replicating exactly the original state. Conscqucntly, the termination, and hence the

corrcclncss of this program, depends very strongly on the basic assumption of fairness that we

assume throughout this work. Only under fairness would each of I’; and Py bc activated as often

as needed until convergence is achieved.

Trying to prove the convergence of this program by well-founded ranking immediately runs

into diflicullics when we fail to find a mapping into a well-founded set that will decrease at every

step of the computation. No such function can exist for the above program since, as observed

earlier, some steps may preserve the state and leave the value of a state-dependent convergence

3

-

function constant. This points out emphatically that any well-founded argument may succeed only
if it takes fairness into ‘account.

PROGRAMS AND COMPUTATIONS

For completeness we repeat some of the dclinitions of [MP1] and introduce some additional
notation required here. Let P be a program consisting of m parallel processes:

P: 3:= fo(Z); [Pill - - . || Pm) |

Each process FP; may be represented as a transition graph with locations (nodes) labclled by elements
of Li= {&, Co. , 0. }. The edges in the graph are labclled by guarded commands of the form
c(y) = [§ : = f(F)] whose meaning is that if ¢(g) is true the edge may bc traversed while replacing
g by (7).

Let £,0%, . ..,€%€L; bc locations in process Pj:

al) = = 1)

| °

)

®

ck(7) = [7 = fil(7)] (©
We define Eo(7) = c1(¥)V . .. Vck(F) to be the exit condition at node £. Locations in the

program can bc classified according to their ¢xit conditions.

e A location is regular if E¢= true. This is the case with locations such that the sct of

conditions labeling their outgoing transitions is exhaustive in the sense that for every

possible value of ¥ at least one transition is enabled. The only irregular locations are

terminal locations and semaphore locations discussed next.

| e A location is terminal if Ig= false. This is the case with locations labeling halt

instructions which have no outgoing transitions. In our model wc usually label these
locations by Ze.

e Any location £ such that the exit condition I7¢(y) is nontrivial is called a semaphore loca-
tion. [&xamples of such locations arc those corresponding to the instruction request(y,)
whose transition diagram is:

4

Note that (7) = (y» > 0). The request instruction is used in order to reserve a
resource, where 4, may be considered as counting the number of units of this resource

currently available. Its symmetric counterpart, the release(y,) instruction, is used to
release a reserved resource. Its transition diagram is:

(true — [yr = yr+1] (e
The release instruction has as its exit condition [p= true. Consequently its location

1s a regular location.

A state of the program P is a tuple of the form 8s = (¢;7) with £ELX ...X Lm -and
71 € D™, where D is the domain over which the program variables ¥i,..., Yn range. The vector£

1s the set of current locations which are next to be executed in each of the processes. The vector

7 is the set of current values assumed by the program variables J at state s.

With each process F; we associate a state transition function g; that represents the possible

outcomes of the activation of the process I on the slates. If we denote by S the set of all possible

program states, g; is a function ¢; : S — 25,

Nolc that this definition allows for the possibility that FP; is nondeterministic, since it is possible

that |g;(s)] > 1, i.e., there is more than one successor to 8. Let 8 = (§; 7). If 4; is a terminal
location, or a semaphore location with Ee. (7) = false, then FP; cannot bc activated on 8. In such
a case g;(s) = ¢ and we say that FP; is disabled on s. If £; is a regular location, or a semaphore

location with Eg, (7) = true then g;(s) % ¢ and wc say that Ps is enabled on 8.

A state 8&€ S such that all processes are disabled on 8 is called terminal. A terminal state

corresponds either to a situation in which all processes have terrninated or to a deadlock in which

all the nonterminated processes wait in a semaphore location with a false exit condition.

e An admissible computation is a labelled (possibly infinite) sequence:

PF; FP; P;,
(4 2 80 - S81 —> 82 - a8 : Lo

such that every s; € S and for every j > 0, w c have $;+1€ Gi. (55) Thus, such a
computation could arise by an exccution of the program starling from the initial state 8g.

The computation will be finite only if it terminates in a terminal state s,. We can think

of such a computation as generated under the guidance of an imaginary scheduler which

at each step selects one of the processes (called the activated or scheduled process) and lets

it execute a single instruction.

eo A -initialized com 1SS1 i i = (4} 5s £putation is an admissible computation in which sg =(£g, ..., CT;*; fo(£))-
Here £f is the initial location in process [% and fp is the initial assignmentlo lhc program
variables.

oe A ‘j-computation is a E-initialized computation or a suffix of a -initialized computation.
Allowing sullixes of initialized computations enables us to study program behavior which

may becorne observable only later in the computation.

oe A p-computation is a ‘j-computation for any input values € satisfying a precondition ¢.

The next definition embodies the basic assumption of fairness:

| 5

An admissible computation o is fair if Lhere is no process F; such that I’; is enabled an infinite

number of times in 0, and F; is activated only finitely many times. Thus, fairness requires the

imaginary scheduler to monitor the number of times a process becomes enabled, and to ensure that

repeatedly enabled ones are not neglected forever. Any finite computation is necessarily fair.

In the absence of semaphore instructions, cach process FP; is initially enabled and can become

disabled only by terminating. Hence we can define the weaker notion of just computation, which

replaces the requirement of being enabled an infinite number of times by the rcquircment of being

continuously enabled.

A computation @ is just if there is no process FP; such that Fj is continuously enabled beyond
a certain state s in o, and I% is activated only finitely many times. Any finite computation is by

definition just.

We denote the classes of all fair and just computations of a program P with precondition ©

by F(e, P), J(v, P) respectively, or F(P), JP) when the precondition ¢ is implicitly understood.

For an arbitrary program P we have in gencral

F(P) C J(P),

1.e., every fair computation 1s also just, but there may exist just computations which are unfair.

To see that the first claim holds, let 0 be a fair computation. Let FP; be any process that is

continuously enabled beyond a certain state in o. Thus, I% is certainly enabled an infinite number

of times, and by fairness must be activated an infinite number of times. Hence 0 is just.

To show that the inclusion between the sets 3(P) and J(P) may be strict consider the following

program which is the simplest program modclling mutual exclusion:

y:=1

bo: request(y) mo: request(y)

8, : release(y) my: release(y)

la: goto fy mg: go to My

—P — —Py —

The following computation:

Py Py Py
o: (Lo, mo; 1) —> (£1, mg; 0) —> (£2, mo; 1) >

Py Py
(Lo, mo; 1) 2 (£¢, mo; 0) 2 (£3, mg;1) >...

is just. The process Py is activated infinitely many times. O n the other hand I’ is never

continuously enabled since it is disabled in the infinitely recurring state (£1, mo; 0), therefore justice
does not require it to be activated at all. Obviously @ is unfair since I’ is also enabled infinitely

many times on all recurrences of (¢o, mo; 1), but is never activated.

However when PP contains no semaphore instructions wc may use the above observation that

a process is continuously enabled if and only if it is enabled infinitely many times, to conclude:

For a program without semaphores: 3(P) = J(P).

6

|

Thus, in order to study programs without scmaphorcs, wc need only consider properties that hold

for the class of all just computations;

PROGRAMS WITIIOUT SEMAPHORIES— JUST COMPUTATIONS

In this section we present a proof principle enabling us to prove eventuality properties that

hold for the class of just computations J(P).

The basic idea of the proof principle is to assign a convergence function u : S = W mapping

the program states into a well-founded structure W. However, as shown in examples such as the

D GCD program above, we should not require the function to decrease at every step. Instead we

require that the function never increases and that for each slate there is always a process F%, culled

the helpful process for this state, such that the activation of this process guarantees a decrease

in the value of the function. By justice this helpful process will eventually bc scheduled, so that

any infinite j ust computation will necessarily generate an infinitely decreasing subsequence of well-

founded elements — a contradiction. In the general case, the identity of the helpful process may

vary from state to state. We therefore introduce a helpfulness function h : S —{1, ...,m} that
identifies one helpful process Ps) for each state s € S.

Wc suggest the following proof method for proving precedence and eventuality properties of

just computations.

Proof Method J:

For proving eventualities of the form ¢ DO 0 1, under all just computations of a

program I, find a state predicate Q = Q(s), a well-founded structure (W, >), a
convergence function u : S = W and a helpfulness function 2 : S — {1, coo, mf
such that:

Ji. Ep D2 (WVQ)

J2. EB Q(s) DO (gns)(s) # 9)

73. EQS) a ¢ € gi(s)] 2 [¥(s) Vv (Qs) A (us) = u(s")))]
fore =1,...,m

JA. E [Q(s) A 8" € gris) 2 [B(s) V (us) > u(s'))]

J5. E[O(s) A s €gis) A (u(s) = u(s)]D[(s') V (h(s) = h(s))]
for 2 =1,...,m.

Then we may conclude that:

JP)E © OD Op.

IlereBE w means that w is true for all computations of FP. The statement J(I?) Fw means that w
is truce for all just computations of PF.

7

In these, Q{s)is an invariant which is expected to remain true from the timebecomes true
until 9 is realized, Rcquircmcnt J 1states that if ¢ holds for a state then either? or Q must hold

in this slate. J2 requires that the process that is helpful for a state s bc enabled ons. JJ states

that cach step in the computation either realizes % or prcscrves Q and produces a value of u that

is not higher than the value before the step. J4 states that taking a helpful step actually decreases

the value of u. Jb stales that a step which docs not decrease the value of w must preserve the

identity of lhc helpful process. The last condition is necessary in order to avoid an infinite sequence

with constant value of u and continuously changing Ah. Such a sequence may be just but yet avoid

realizing 1.

Proof:

Let us justify this proof method by showing that if we succeed in finding Q, W, u and % as

described above then indeed every just computation must satisfy @ 2 <P.

Let us consider a just computation:

FP; Pi,
Og. 8 — 8 —> 8g —> ...,

such that @(sg) is true and % is nowhere realized. By J1 and J3,Q(s:) must be true for every s;
in the sequence. 13y J2 thesequence must be infinite since, for every 8;, Pp(s;) is enabled. Again
by J3 the sequence of u values u(sg)> u(sy)> ... must bc a non-increasing sequence. By the
well-foundedness of W there must be a k such that

u(sk) = w(8k+1) =. .

By J5, h also remains constant from 8g on, that is

h(sk) = h(sk41) =. . . .

Let its constant value bc r = h(sk). In view of J4, P, was never activated beyond sx because
its activation would have causcd u to decrease. In view of J2,P, is continuously cnabled beyond

sk since everywhere h{8;) = for ¢ > k. This is obviously a blatant case of injustice — FP, being
continuously enabled and never activated. Thus, just sequences failing to realize % cannot exist,

and any just sequence initialized with ¢ must eventually realize. |}

By looking at the proof for eventualities we observe that it guaranlccs the eventual realization

of ¥ and, by J1 and J3, as long as ¥ is not realized, Q holds. This is exactly the definition of the
until expression Q { ¥. We thercfore have:

Corollary: The proof method J also proves

J(P) FE © (QU 9).

The treatment in [LPS] implies that this method is also complete, namely that if ¢ D0 9 is
true for all just computations of F then there always exist some Q, W, u, and h satisfying J1— J5.

Related work dealing with similar methods for establishing fair termination, which is a special

case of eventuality, is contained in [GFFMR}, [AO] and [Pa]. Earlier work on the termination of
concurrent programs is described in [K], [In].

We will now proceed to illustrate the application of this mclhotl to proofs of eventuality

propcrlics of programs without semaphores.

8

Example A (Program DGCD --- distributed gcd computation):

Consider again the DGCD program. Let

p: atly A atmo A (y1,y2) = (1,22) A 21 > 0 A 29 > 0

and

Pv: atly A atmg A yi = y2 = ged(zy,z2).

We wish to prove

Ep D2 Ot,

i.e.

J(P) E [atly A atm A (v1, ye) = (1,22) A zy > 0 A z9 > 0]
DO Olatly A atmo A y1 = ye = ged(xy, 2).

That is, being at the starting point of the program with (y1,y2) = (x1, 22) and positive inputs
ty > 0, x9 > 0, we are guaranteed to eventually gel back to that point with y; being the greatest

common divisor of Ty, Zs.

We choose @,W,u, and h as follows:

Qs): atly A atmo A y1>0 A y2>0 A ged{yi,y2) = ged(zi, 22) A y1 7 yz

WwW: (NN, >) - thenonnegative integers with the “greater than” relation

u(y, ye): y1 +92

h(y1,y2) 1 if y1 > ya then Py else Py

Wc have intentionally displayed 4 as a function into {Py, Py} rather than {1,2} to stress Lhc fact
that it selects processes. It is not dillicult to verify that requirements J1 to J 5 hold for this choice

of Q,W, u, and h. In particular, we note that implies that when y, > yg,1 is helpful in

decreasing yi + yo while for y1<yg (by Q : w1 < y2) Pz is helpful. Note that once we arc at
(C,, mg) with yy = yo the program will immediately proceed to the termination state at (£1, my).

AN INDEXING METHOD FOR JUST COMPUTATIONS

A variant of the convergence function approach uses elements of wel I-founded scls as indices to

predicates. As wc will show below the two variants arc essentially cquivalenl, but certain problems

may admit, proofs that are easier to present in the indexed form than in the convergence function

forrn. As before, the method is based on finding a well-founded set (V, >). Wc then consider
predicates f2,(s) with v € V, 8€S which are state predicates indexed by clements of V. States
appearing later in the computation will satisfy I2, with lower values of v. Convergence is thercfore

assured by the impossibility of having a sequence of I2,, with an infinitely decreasing values of vi.
[lowever, as before we cannot, guarantee a strict decrease on every step. We therefore specify a

decrease function 6 :V —{1,.,., m} which, similarly to the helpfulness function h, identifies the

9

helpful process Psy Chat corresponds Lo any states satisfying R2,(8). Note that the identity of the
| helpful or decreasing process depends only on the index v and not on the state.

| With this notation we now formulate the indexing method for just computations.

| Proof Method LJ:

| For proving eventualities of the form ¢ 2 0 %, under all just computations of a
: program P, find a well-founded structure (V, >), an indexed family of predicates

R, =R,(Y),v EV, and a decrease function: Vv —{1,..., m} such that:

IJ1. E op DO v (Fv € V.R,)

IJ2. BE Ru(s) O (g5m)(s) # ¢)

13. BE [R(s) A § € gs) D[¥(s) v Fu(u =X v).Ry(s) fori=1,.. .m

IJ4. E[Ry,(s) 4 ¢ € 95(v)(8)] D [¥(s') V Fu(u < v).1R,(8')]

Then we may conclude that

J(P)E © DO ©.

! A stronger conclusion is:

JP) E po DO (3v.R,) U 9.

Requirements IJ1-1J4 resemble very closely JI-J4 and fulfill similar roles. There is no need

: for a counterpart to Jb since if s satisfies I2,(8), s° €g:(s) and also I2,(8') then the decreasing
process for s, being determined by v alone, is also the decreasing process for s’. The proof method

1J appeared first in a structured form, applied to nondcterministic programs ([GFMRY]).

The similarity between the methods suggest that they are in fact equivalent. Indeed we make

| the following claim:

Method J is applicable if and only if method IJ is applicable.

Proof:

Assume first that method Jis applicable. This means that we have found @, (W, >), u and

] h satisfying requirements J1 to Jb. To show that this implies the applicability of IJ wc choose as
follows:

: The well-founded structure (V, vy) is given by V = W x [1,...,m], where

(wy,3) >v (ws,5) & wi >w wa or (wy - wand i> j)

; Thus, an clement of V is a pair (w,2) with w EW and 1<4< m, and the ordering> vy is the
| lexicographic ordering induced by thcordering on W and on the natural numbers.

Rip ,i)(8) is defined by Q(s) A [u(s) = w/ A [h(s)=1]

10

and

6(w, 1) =1.

It is an easy matter to verify the fulfilment of requirements IJ1 to IJ4. Consider for example
the verification of condition 1J3.

Let s, s° be two states such that Ry, ;)(8) holds and s* €gi(s). By the definition of R we know
that Q(s) is true and wu(8) = w, h(s) = j. By J3 either 9(s’') is true which immediately satisfies
1J3, or Q(s') holds and w = u(s)> u(s’) = w’. Thus, by the definition of R, Ry n(s))(s') is
true. It rernains to show that (w, i) = (w, h(s)) >= (W’, h(s’)). If w >w' then this is certainly- the
case. Consider therefore the possibility that w = w’. But then by J5 also h(s) = h(s’) leading to

(w, h(s)) = (W’, h(s’)) as required.

To go in the other direction assume that (V, >),R, and § as required for method IJ have
been found. We will show how to select Q, (W, >), u and h that will satisfy the requirements of
method J.

For simplicity wc assume that the order > is a total (linear) order. We may then take the

well-founded structure (V, >) to be (W, >). Q(s) is defined by Jv.RR,(8) and u(s) is given by
min{v|l%,(s)} for an s which satisfies Q and arbitrarily otherwise. If W is a total well-founded
order every non empty subset of W has a minimal element which is smaller than any other element

of the set. The helpful function A(s) is defined as &(u(s)).

It is an easy matter to verify that Q, u, and h satisfy requirements Jl to J5. HN

DIAGRAM REPRESENTATION OF THE INDEXING METHOD

In the case that the indexing set V is finite there is a convenient graph representation of the

indexing method. This is certainly the case when the program I? has only finitely many possible
states.

In the graph or diagram representation there is a noden, for each IZ,,v€ V. Without loss of

generality we may assume V to be an initial segment of the natural numbers V = {1,2,..., kJ.
Thus we have nodes n;,t =1,..., k. A special node no, represents 3. For every s €R;, s’ € IR;

(i.e. Ri(s) = R;(s') = trug such that s' €ge(s), we draw an edgee from n,; to n;. The edge ¢ is
labelled by Pp, the process effecting the transition. Similarly, for every s € I2;, s° €% such that

s” €¢e(s) we draw an edge from n, to ng and label it by Pk.

In order for a diagram to represent a valid proof by method IJ the following conditions must
hold:

A. For every cdge connecting m; to mn; we must have 7 > j.

13. For every n;, 1 > 0, there must exist some Pp (the helpful process) such that all
edges labclled by Pp lead from m; to somen; with ¢ > j and such that Py is
enabled on all states s € R..

In the diagram we represent edges corresponding to Lhe helpful process by double arrows =».

We illustrate diagram proofs by two additional examples.

11

Example B (The Peterson-Fischer Algorithm (PF) -- a distributed solution of the mutual exclusion
problem):

Yr = ty i= Yo .— 12) = |

fo : noncritical section 1 - ™Mp : noncritical section 2

£, : ty: =1tf yo =F then F else T my: ta:= ify, =T then F else T

ly : y1:= 1 mg: yg i= lg

€3: ifyL then ty := yo m3: fy17FL then tg :=

by :y1 = U4 my : Yo = tg

ls: loop while yy = ya ms © loop while “Yg = Y1

critical section 1 critical section 2

(y1,t1) = (L, 1) ye, t2) = 4, L |
7: goto ly my: go to my

—Py — — Py —

This program provides a distributed solution for achieving mutual exclusion without sema-
phores; the boxed segments are the critical sections to which we wish to provide exclusive access.

It 1s assumed that both critical and noncritical sections do not modify the variables ¥; and va.

Also, it 1s mandatory that the critical section itself must terminate. The program 1s distributed in

the sensc that each process FP; has its-own memory y; which is readable by the other but writable

only by itself.

The basic idea of the protection mechanism of this program is that when competing for the

access rights to their critical sections, P; attempts to make ¥1 = y2 by the statements &; to 4

while Po attempts to make yg = yy in statements my to mg. The synchronization variables yi

and Yo range over the set {I, F, T}, where L signifies no interest in entering the critical section.

The partial operator — 1s defined by

1 =F, -F = T, =_1 is undefined.

Hence in writing ~y2 = ¥1 We also imply that y1 7 L and yz 1. Protection is assured
essentially by the exclusion of the entry conditions yi 7% yg and —y2 7% y1 when both 3; and yy
are different from -L, since yi 7 1 when Fj is waiting to enter its critical section.

A point unique to this algorithm is that although P; attempts to establish the condition yy =
y2 in £; to £4, the condition for P; actually entering the critical section is the complementary

condition ¥; 7 y2. Thus, if both processes actively compete for entry, P;sctsy, equal to yg
and then waits for the other process to set yo to a value different from yy. If Py is not currently

interested in gaining access to the critical section, then yg = L which will cause the statements

in 1 to £4 to set yy to 1’; testing at €s,P; will find that indeed y3 = T ys = L and enter
immediately.

By simple application of the invariance principle it is possible to derive the following invariants:

E (¢ a 1) = allyg

E (v1 F 1) = at ls ¢

12

ol

Ps

1 J 10 1s ,Mg to=y, -
: 2 9 : 1s MG, Y2=Y|
Fo | moe,

rarrl i

- _J
Pe COP P

"2p P
4 1g my

Ca— CI| lg, Mg, Y= TY,

Figure |.

Diogrom Proof for PF

13

| E (tg 5% 1) = atma.g

E (y2 # 1) = atmg_ gs,

where atl,g stands for atly V atl3 V ...V atlg, etc.

The eventuality property we wish to show for this program is

E atl; DO Oatlg.

In Figure 1 we present a diagram proof for this property. In constructing the diagram we have

freely used the four invariants derived above. Observe in particular node number 6

6: 4&5, mp .

in which the helpful process (indicated by a double arrow =%)is Pj since we know that yg = L.
In this diagram we abbreviate atfsA ar mg to €5, mp.

To illustrate the application of method IJ to the proof of ur:til properties, consider the following

precedence property:

E [atls A ~ atmyg] DO [(~ atmg) U (atlg)].

It states that if Py, arrived at €5 before Pp arrived at any location in {m4, ms, mg} then Py will
be admitted first to its critical section. To prove this we only have to consider the subdiagram

consisting of nodes 0 to 7. Certainly,

[atls A ~ atmy4.6] DO [R7V Rs V RsV Ry V Rj].

Therefore this is an admissible diagram in the sense that condition IJ1 is satisfied. It establishes

| that at fg will eventually be realized and all the intermediate states are covered by Vi_, It; which
implies ~ atmg.|i

Example C (The Dekker program (DK)- a shared variable solution of the mutual exclusion
problem):

t:=1, yi = yg =F

£0: noncritical section 1 mg: noncritical section 2

by :yn = T my : yg :i=T

oy: ifys = F then go to lq mo: fyy = F then go to mq

| 3: ft = 1 then go to sy mg: ft = 2 then go to ma

by: y1:=F My:Yg i= F

bs: loop untilt = 1 msg: loop until t = 2

| lg: gotoly mg: gq tom

| ¢7: critical section 1 my : = section 2f= 2 wy C1

| lg: yi: =F mg: Yg:i=F

fg: goto ly mg: go to my

| —Py — oy -

14

P2 P,
26 2p ,t=2 = — 1S 14 ren’

: Fa Pi Pa
Pi Al P. a AN 4C= 25 La 2 ———] [4 2g —L

18 —Pt Pzms LY [13 ig TW
P — IPPP | Pi 2 } 2 |

1 23 RTT Pz | 12 2 Te Po
P | >i

22 Tomait=2 P | R | |] Lp 3.Mp t= |
) P2 Py } Po Oh

20 tome P Pi | 9 lp5,Mg,t=| 52
P P

= ‘Py P2 : Lt
| —»l 1 9 :l5,m| ,t= : 8 :13 ,mg ,t=I

ak | In on
|

17 :25,mo ory — 6 lp 3.m rer |
 P2 Pt | [PHP |

| 4q 22,3 ,M3,t=1

| P2 2 HP
J — 3 22 3,mg,t=|

| Pa Pe
2 3 Mg, t=l

{Py 2 Pz
=m | lo ,mg, t=]

Figure 2.

Diagram Proof of the Program DK
15

The variable y; in process I’; (and yg in I% respectively) is sel to T at £; to signal the intention

of P; to enter its critical section at £7. Next Pp tests at £5 whether PP has any interest in entering

its own critical section. This is tested by checking if ye = T. If yg = I’;Py proceeds immediately
to its critical section. If yg = T we have a competition between the two processes on the access

right to their critical sections. This competition is resolved by using tho variable ¢ (turn) that has
the value 1 if in case of conflict Py has the higher priority and the value 2 if Po has the higher

priority. If PP; finds that ¢ = 1 it knows it is its turn to insist and it leaves yi on and just loops

between fo and £3 waiting for yg to drop to F. If it finds that ¢ = 2 it realizes it should yield to
Py and consequently it turns yj; off and centers a waiting loop at fs, waiting for £ to change to 1.

As soon as Pq exits its critical section it will reset to 1 so Py will not be waiting forever. Once

has been detected to be 1, Pj sets y; to T and returns to the active competition at fg.

For the DK program we wish to show:

E atly DO atl.

In Figure 2 we present a diagram proof of this property. In constructing the proof we made use of

some invariants that arc easily derivable, namely:

E (yi= T) = (atle.qa v atlrs)

E (y2=T)= (atmz2.4 V atmqg)

E (at ls. 6 A t= 2) DO atmy...7.

For example, we used the last invariant in order to decide that at node 23 the Pj; successors

to states in which at €44 (t+ = 2) may be anywhere but at mg, mg or mg.

| Again wc may use the extension of the method in order to prove some precedence properties

| of this program. First we can show:

Efatlos A(t =1)A~ atmg] 'D [(~ atmq) U (atly)].

This is established by considering the subdiagram formed out of nodes ng to myo. It ensures that

once P) is in €2,3 with ¢ = 1, it will precede I’ in getting to the critical section. An almost trivial
observation is that

E atmgD [(t = 1) U (at ¢7)].

In analyzing the amount of overtaking by which I’ can precede I) in entering the critical

section we find the following:

Once Pj is in ¢; it will eventually get to £2. If currently t+ = 1, then the next process to enter

its critical section is Pj. Otherwise, in the worst case I’1 proceeds from fg to €5.0% cannot enter

its critical section more than once without setting r to 1. Once ¢t = 1, P; returns to £2 ensuring

ils priority on the entrance rights to the critical section. A certain amount of overtaking, i.e., Pz
entering its critical section several times before 2), may take place during the transition of £4 from

ls to ls. B

16

|

: PROG RAMS W ITIHHSEMAPIHORIS -- FAIR COMPUTATIONS

Next we will consider programs with semaphore instructions. For such programs the classes

of just and fair computations do not coincide and wc have to go back to consider the more general

concept of fair computations. Since always F(P)C J(P), any property that has been proved
correct by method J certainly holds for all fair computations. Iowever, the complctcness of

method J breaks down in the case of programs with semaphores; we are not always guaranteed

that method J is applicable.

Hence, we propose a more general method for establishing eventuality properties under fair

computations:

Proof Method F :

Ifor proving eventualities of the form ¢ D ©, under all fair computations of a

program P, find a state predicate Q, a well-founded structure (W, >), a convergence
; function u : S —W and a helpfulness function 2: S — (1, . . . , m} such that:

: F2. 7(P = {Pe}) EB [Q(s) A h(s) = kJ 2 Op V (gkls) 7# ¢)]
3 for k=1,. . ..m

F3.6 [0(s) 28 € gs) 2) V (QE) a (uls) = us)
fort: =1,...,m

: Fa. B [Q(s) A 8" € gniy(s)] 2 [¥(s) Vv (u(s) > wu(s'))]

LFS. E[Q(s) A s'€gi(s) A (us) = uls))I2[(s) Vv (h(s) = h(s))]
: for: =1,.. .m.

Then we may conclude that

] A stronger conclusion is:

FP) kp 2 (QU ¥).

i The requirement imposed by [72 is that under all fair computations of P— {Px}, i.c., the
1 program consisting of all processes excluding Pk, if Q(s) holds and the helpful process is k then

eventually cither 1 will bc realized or gx becomes cnabled.

The difference between me t h o d I" and method J is in the second requirement I°2. While

J 2 requires that Lhe helpful process is enabled now, F'2 only assures that it will bc eventually

| enabled. The apparent disadvantage of [2 in comparison with J 2 is that while J2 (and all the
other requirements) are static, requiring only classical reasoning for their cstablishmcent, I'2 is a

temporal requirement, having the same form as the conclusion wc set out to prove: ©¢ D0. Two

| obvious questions arise: how do wc prove 2, and is there a danger of circular reasoning?

The answer to both questions lies in the prefix to the F sign. Since our goal predicate in I'2 is

gr(s) 7 dw lic hexporesses the fact that Py is enabled, we may omit from our considerations any

action of I’, because such an action may bc taken only when FP’ is enabled, i.e., from a goal state.

Thus we can consider fair computations in which all the processes but [% participate and show

that they eventually get to a state in which Pg is enabled. Consequently, we can study a simpler

program with one process less. The answer to the question of how to verily clause I'2 is therefore

recursively by method F, but applied to a simpler program in which Pg is omitted.

To justify method F' consider a fair computation:

Fy, F;,
oo. So —> 81 —>82 . . . ,

such that o(so) is true and v¥ is never realized. By F'l and F3, Q(85) must be true for every s; 1:1 the
sequence. By ['2 the sequence must be infinite, since it implies that either already gx(s;)7¢ and

the sequence cannot stop there, or that there exists a future state s,; for which VY V (gk(s;) # 6).
Consequently 8; cannot be terminal. By [*3 the sequence of values u(sq), u(s2), . . . satisfies
u(s1) > u(s2) > . . . and by being well-founded it must eveniually stabilize, let us say at s,, i.e.

u(s,) = u(8y41) =. . ..

From F5 this implies a constant value of the Ah function as well, i.e.

h(s,) = h(sy 41) =... =k.

Since the u value is constant beyond 8,, Px by FF'4 could not have been activated. Thus the

suffix sequence

Sry Sr41y «oo

is a fair computation of P — {Px}. By IF'2, Pr must be enabled somewhere in it. By considering
higher suffixes wc can establish that gx is enabled an infinite number of times but never activated.
Thus 0 must be unfair. §

In [LPS] it is proved that methodI" is complete for proving eventuality properties for the class
of all fair computations of a program.

AN INDEXING METHOD FOR FAIR COMPUTATIONS

Similarly to the casc of just computations we can present a well-founded indexing variation of

the pri nciplc proposed above.

18

: Proof Method IF:

| For proving eventualities of the form © OD <4, under all fair computations of a
prograrn P, find a well-founded structure (V, >), an indexed family of predicates

: R, = R,(s), vEV, and a decrease function 6 : V — (1, . . . m} such that

IF1. E ¢ DO [pp Vv vv € V).R,]

| 1F3.[Ry(8) As €gls))D(s) Vv Ju(u = v).Ryu(s) fort=1,...,m

IFA. [R. (5) A & € gs) 2 [B(s) V Fulu < v).Ru(s)]

Then we may conclude that

A stronger conclusion is:

2(P) E © 2 (3v.R,) Up.

Sirnilarly to the previous case we can establish the equivalence between this method and the

! one based on convergence functions. This variation lends itself easily to a diagram representation
in the finite state case.

We will proceed to illustrate the application of method F to proofs of eventuality properties

of programs with sernaphores.

Example D (Program CP — consumer-producer):

b= A, 8 =1l,¢f:= 0, ce = N

lo : compute Yi mo request(cf)

ly : request(ce) my: request(s)

£5 : request(s) ~~ |mg: yo := head(d)

{3 . tq i= b - U1 mg © 2) — tatl(b)

ly: b= t my . b:= to

ls: release(s) ms: release(s)

lg : release(cf) me: release(ce)

ly: go tod mq: compute using Ya

mg : go to mg

—Py: Producer — —Py : Consumer —

| The producer F’jcomputes at yp a value into y¥; without modifying any other shared program
| variables. It then adds yi to Lhe end of the buffer 5. The consumer Py removes the first clement

of the buffer into yg and then uses this value for its own purposes (at mg) without modifying any
other shared program variable The maximal capacity of thebufler bis N > 0.

| 19

B

: In order to ensure the correct synchronization between the processes we usc three semaphore
; variables: The variable scnsures that the accesses to the bufler are protected and provides exclusion

: between the critical sections £35 and msg. 5. The variable ce (“count of empties”) counts the number

of free available slots in the buffer b. It protects b from overflowing. The variable ¢f (“count of

fulls”) counts how many items the buller currently holds. It ensures that the consumer does not
attempt to remove an item from an empty buffer.

Here we wish to show that

| E atly DO 0 atly.

| We start by presenting a top-level diagram proof:

NN? N°

| Figure 3.

: This diagram proof is certainly trivial. Everywhere, Pp is the helpful process and leads
: immediately to the next step. However, we now have to establish clause IF2 in method IF. This

calls for the consideration of fair computations ofP — {1} = F’2. Wc thus have to conduct two
. su bproofs:

F(P2) E atly OD Ofce > 0)

F(P)Eatla DOs > 0) .

The first statement ensures that if Py is at £;,Py will eventually cause ce to become positive which

: is the enabling condition for Pj to be activated at Cr. Similarly, in the second statement Pp will
eventually cause 8 to become positive, making Pj enabled at £3. [or both statements wc will

present diagram proofs.

Consider first the diagram proof for the ar £1 case:

20

8. m,,cf>0 7: mg,cf>0 (6: Mg.Cf>0 L_,|5:'m, , $>0 x

Em |: ma 1: ms —» o: meg —e |Yr.ce>0
Figure 4.

In the construction of this diagram we use some invariants which are easy to derive. For

example, we used

atl35 + atmyg +8 = 1

in order to derive that being at £; and at mj; implies s > 0. In an expression such as the above

we arithmetize propositions by interpreting false as 0 and frue as 1. As another invariant we use

cf +ce+atly g+atm g=N

in order to deduce that being at £; and at my go implies that either ce > 0 or ¢f > 0.

The diagram proof for £9 is even simpler:

Figure 5.

u

Example E (Program BC - a distributed computation of the binomial coellicicnt):

| yp =n, y2 = 0, y3 = 1, Yq :=1

| bo: ify {= (n — k) then go to £. mq: tfys = k then go to me.

£y : request(y,y) my: Yo :=1ys +1

ly fy i= U3 * Yi mo: loop until Yy1+y2<n

ly: ys i= t m3: reques (ys)

ba: release(ys) _ | ma: by i= s/ve
bs: yp i= yp —1 mg: yg i=l

lg: goody mg: velease(ys)
L.: halt mq: go to Mg

m.: halt

_P, — —Pp —

This program computes the binomial coefficient (3) for integersn and k such that 0 < k < n.
Based on the formula

n __m.m—-D....-n—k+1)"
ok BEEN

process I’isuccessively multiplies yg by n, (n- I), ..., while Pp successively divides y3by1,2,....
In order for the division at m4 to come out evenly, wc divide y3 by y2 only when at least yo factors
have been multiplied into y3 by Ij. The waiting loop at mg ensures this.

Without loss of generality we can relabel the instructions in the program, as follows:

Program BC¥- A relabelled version of the Binomial Coefficient Program;

Yi := mn, y2 = 0, yz :=1, yq4 :=1

ly. ifyi=(n — k) then go to £4 may: fyg = k then go to my

lg: request(y,) mg: ya i= Y2 +1

bs: t= 1y3-Y1 - mg: loop until y1+y2< n

ly: y3:=1 mg: request(ya)

| €3: release(yy) mq: tg 1==y3/ye

| ly: yy: =y —1 mg: Y3 i= lg

| ly : halt my: go to ma

my: halt

Pp; — —Py —

Here we wish to prove:

| Fe lat{t7, m3} A (y1, v2, Ys, Ya) = (2,0, lL, 1)] 2 at{fy,m}.
22

W c apply methodF withthe following:

Q:atls.5 + atms.7 + ya - 1]

A [((n ~k) atly g)< v1 < nj

A [0L ys <(k—atmg)]

A [at £4 2 (v1 = Nn — k)|

the lexicographically ordered domain of pairs of nonnegative integers

u(¥;, my, Yi, Ya): (y1 + k — Ya, + 7)

h(7,Y) if atly then Pg else Py

Obviously the label sequence was designed in such a way that every step that moves to the next

instruction will necessarily decrement u. This is so because the label sequence is always decreasing

except for the instructions which decrement yi and increment y2. Changes in the y’s have been

given the highest priority in the lexicographical ordering.

There arc only two situations to be checked. First, when Pq is at £; and Ps is at mg we have

to show that the next step indeed decrements u. This 1s so because in such a situation we arc

assured by) that both ye < k and y; = n— k hold, leading to ¥1 + y2 <n, which means that the

next step leads to mg. Another point is to show that being at fg guarantees that eventually y4 will

become positive, by the actions of Py alone. This is easily established by the following diagram,

supported by Q.

Figure ©.
3

CONCLUDING REMARKS

When compared with the chain reasoning approach, the convergence function approach ap-

pears to provide a more concise representalionol a finished prool of an eventuality property.

However it may at limes reveal less intuitive insight into the reasons the prograrn is correct and

certainly offers vory little guidance for the design of correct programs. According to whether one

1s interested in a post analysis or a proof-guided synthesis of programs, one approach should be

preferred to the other.

The methods described here extend and elaborate the methods for proving convergence sug-

gested in [L.I’S].It is possible to prove completeness of the methods proposed here by an appropriate
extension of Lhe completeness proof presented in [LPS].

23

Closcly related approaches but concentrating on nondctcrministic rather than concurrent

F programs are described in [RO] and [GIFMR].

| ACKNOWLEDGEMENT

| We wish to thank I£d Ashcroft, Andrei Broder, Chris Goad, Gabi Kuper, Yoni Malachi, Yoram
Moscs, Ben Moszkowski, Tmima Olshanski-Koren, Itivi Sherman, Pierre Wolper, and I'rank Yellin

for careful and critical reading of the manuscript.

| REFERENCES

[AO] Apt, K. R., and E. R. Oldcrog, “Proof rules dealing with fairness,” in Logics of Programs

(D. Kozen, cd.), Lecture Notes in Computer Science 131, Springer Verlag, 1982, pp. 1-8.

[DM] Dcrshowitz, N., and Z. Manna, “Proving termination with multisct orderings,” CACM,
Vol. 22, No. 8 (August 1979), pp. 465-476.

[GFMR| Grumberg, O., N. Francez, J. A. Makowsky, and W. P. deRocver, “A proof rule
| for fair termination of guarded commands,” Computer Science Report, Technion, Haifa,

| 1981.

[K] Keller, R. M., “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July

1976), pp. 371-384.

j [LPS] L.ehmann, D., A. Pnueli, and J. Stavi, “Impartiality, justice and fairness: the ethics
of concurrent termination,” in Automata Languages and Programming, Lecture Notes in

Computer Science 110, Springer Vcrlag, 1981, pp. 264-277.

[M] Manna, Z., Mathematical Theory of Computation, McGraw Fill, 1974.

IMP1] Manna, Z. and A. Pnucli, “Verification of concurrent programs: The temporal framc-
3 work,” in The Correctness Problem in Computer Science (R. S. Boyer and J S. Moore,

eds.), International Lecture Series in Computer Science, Academic Press, London, 1982,

{ pp. 215-273. Also, Computer Science Report, Stanford University, Stanford, CA (June

1981).

[MP2] Manna, Z. and A. Pnueli, “Verification of concurrent programs: Temporal proof
i principles,” in Logic of Programs, (D. Kozcn, ed.), Lecture Notes in Cornputcr Science 131,

{ Springer Verlag, 1982, pp. 200-252. Also, Computer Science Report, Stanford University,
i Stanford, CA (Scptember 1981).

[MP3] Manna, Z. and A. Pnucli, “Verification of concurrcn t programs: Precedence proper ties,”
Computer Science Report, Stanford University, Stanford, CA (forthcoming).

[OG] Owicki, S. and D. Gries, “An axiomatic proof technique for parallel programs,” Acta

Informatica, Vol. 6, No. 4 (1976), pp. 319--340.

[OL] Owicki, S. and 1,. Lamport, “Proving liveness properties of concurrent programs,” SRI
1 Intcrnational, unpublished report (October 1980).

24

[Pa] Park, D., “On the scrnnntics of fair parallelism,” in Abstract Software Specifications (D.
Bjorner, cd.), Lecture Notes in Computer Science 806, Springer Verlag, 1980, pp. 504-526.

[Pn] Pnueli, A., “The temporal logic of programs,” Proc. 18th Syrnposium on Foundations

of Computer Science, I’rovidencc, RI (November 1977), pp. 46-57.

25

