
May 1982 Report No. STAN-CS-82-914

Using String Matching to Compress
Chinese Characters

by

Gu Guoan and John Hobby

Department of Computer Science

Stanford University
Stanford, CA 94305

Using String Matching to Compress Chinese Characters

John Hobby and Gu Guoan

Abstract

A new method for font compression is introduced and compared to existing methods. A

very compact representation is achieved by using a variant of McCreight’s string matching

algorithm to compress the bounding contour. Results from an actual implementation are

given showing the improvement over other methods and how this varies with resolution and

character complexity. Compressionratios of up to 150 are achieved for Chinese characters.

This research was supported in part by National Science Foundation grants MCS-

77-23738 and IST-7921977 and by Office of Naval Research contract N00014-81-K-0330.

Reproduction in whole or in part is permitted for any purpose of the United States

government.

I

0. Introduction

With the development of computer typesetting it has become important to find effi-

cient ways to represent fonts in computers. We can achieve good results at a reasonable cost

by adapting ideas from [6] to improve upon existing font compacting schemes. We compare
an actual implementation of this new scheme with an implementation of the existing idea

of contour coding. Data from Chinese characters has been given special attention in our

experiments because such characters are particularly challenging; the new scheme can of

course be applied to Western alphabets, where its performance is even better.

Storing and manipulating thousands of high resolution Chinese characters can be quite

expensive. For example, the #8 a large dictionary of words and phrases, contains 14,782
characters. The ¥f 3 FM a dictionary for daily use, contains about 11,100 chars rters

including some modified and simplified characters. There are about 8,000 commonly used

characters. A sample of 21,629,372 characters [1] from writings on political theory, science,
literature and the arts, and in newspapers has shown that 100 characters are used 40% of

the time, 250 characters are used 60% of the time, 500 characters SO%, 1,000 characters

90%, 2,000 characters 98%, and 3,000 characters more than 99%. A Chinese computer
typesetting system needs hundreds of thousands of characters including all the different

sizes in four different styles.

In the first section we give a brief overview of the various methods for encoding

fonts. We describe in detail a method of contour coding. This is particularly important

because the new string matched scheme is based on it and the contour coding method

is used for comparison. Finally, we explain the format for string matched compression.

String matched compression depends on being able to represent variable length numbers

efficiently. The second section describes a rather interesting approach to this problem.

Next, we present a fast algorithm based on [6] for actually doing string matched font
compression. We then give results including the performance of the method on a variety of

characters, its dependence on the size and complexity of the characters, and a comparison

with other methods. These results look promising but there is room for improvement. In

the final section we deal with these and present empirical results.

1. Methods for Character Encoding

Bitmap encoding

The bitmap is a simple method for encoding characters where one bit is used to

specify the contents of each pixel. The advantages of this method are that decoding speed

is maximal and only a small buffer is needed. Since the size of the code grows as the

square of the linear resolution, bitmap encoding is best suited to low resolution. Using this

method, experimental Chinese computer systems have been set up that print characters of

16 X 16 and 24 X 24 pixels.

Run length encoding

Run length encoding uses rectangular areas one bit thick called runs. It is shown

in 2] that if n is the size of the matrix, run length encoding produces output of length
O(kn log n), where kis the number of runs per a scan line. The factor kis really a measure
of the complexity of the character pattern. For Roman fonts, kis approximately 4, while

it is more than 10 for most Chinese characters. I'or 10.5 point Chinese characters of size

2

n = [28, the compression ratio over bitmap encoding is about Dn = Flen ~ 1.8. We
can see that run length encoding is not particularly effective for typical Chinese character

typesetting. However, run length encoding has the advantage that it is almost as fast as

bitmap encoding and it also requires very little buffer space.

Differential run length encoding

This method differs from run length encoding in that we represent the positions of

a stroke boundary on a scan line by the displacement from the boundary points on the

adjacent scan line. This method uses only O(kn) space for n X n bitmaps since the

displacement from adjacent scan lines is usually small.

Contour coding

The basic idea behind the type of contour coding we use here is that the black pixels

are surrounded by a bounding contour. The contour can be restricted to an orthogonal

grid as illustrated below.

0,2) I,21% 3)
0,1

In this example, we give the coordinates of all the black pixels and also of certain points

on the bounding contour. If a point on the boundary has coordinates (z,7), then the pixel
at its upper right also has coordinates (z,7) but the pixel at its lower left has coordinates
(i-1, 7— 1). This means that the maximum possible coordinates for points on the bounding

contour are always one more than the coordinates of the upper right hand pixel. Contour

coded files begin with a header giving the number of contours, N, the size of the character

box, and the position of the contours within the character box. The specification of the

actual contours follows. The file is thought of as a bit string with word boundaries ignored,

and it can be diagrammed as follows.

(NN Tmax) {Ymax) T1181... TNYNANOQOY ... Op_1 (1)

The character box contains pixels with x coordinates ranging from 0 to Tmax and y

coordinates ranging from 0 to Ymax. The bounding contour for the 2th boundary starts
at (x;, y;) in direction d;. Quantities in angle brackets represent variable length numbers.

(See below.) The variables z;,¥y;, and d; are fixed length numbers and each 0; represents

either “left” , “right”, or “straight”. The character in the above figure could be represented

with N = 1, Zax = 1, Ymax = 2, T1 = 2, y1 = 3, di = west, and 0g...011f =

SLSSLSLLRRLL. we can tell when a boundary ends by when it closes on itself. If N > 1

the string 0g... 0,1 can be broken N pieces, each of which form a closed path. The

starting coordinates z; and y; each require 1 + |lg(Zmax + 1)] bits and 1 + |lg(ymax + 1)]
respectively and the initial directions d; will Et in 2 bits. The boundary turns o; are
encoded into 1 or 2 bits as follows.

R — 00, L+— 01, St1

This header information is not encoded in a particularly efficient manner. One could

envision ways of encoding z;,y;, and d; more efficiently by picking starting points with

special properties. For Chinese characters where there can be many boundaries some

differential scheme might be tried. All these methods are awkward and have little effect

because the header is much smaller than the rest of the file anyway.

3

String matched contour coding

String matched contour coding is a slight modification of the above scheme where

0p...0n—1 are encoded differently. A string matched contour coded file is

(NXZ max {¥max)ZT1Y1d1 veo rNyNANTI{k1)p171T2(k2)P2r2 EI Ten km)PmTm (2)

where

2g) =q¢—1+)ki
1<q

Tq = 0v(q) and
0; if r = 0,

_—{ i+1+5(q) » Tre ci ckrev(0; +14+5(q)); if r = 1;

The function rev just switches left and right (.e., rev(L) = R, rev(R) = L, and rev(S) =

S). The 2th 4-tuple Ti\ki)DiTs means “The next character in the string 0g... 0np—11s T;.
Now start at 0p, and copy the next k; characters. If r; = 1 then switch left and right as
you do the copying.” The 7; could be encoded just as the o; for contour coded files but

this would be inefficient because we can assume that Tq 7 03(q)- (Otherwise we could use
a larger value for kq—1.) The first turn 7; is therefore encoded as the o; above, while the
subsequent 7; require only 1 bit. The numbers k; are variable length while the p; can be

fixed length numbers because we require that 0 <p; <3(z). Finally, the 7; are only 1 bit
long.

2. Encoding Variable Length Numbers

In the above encodings we need some way of encoding arbitrarily large integers

efficiently. All encodings must have unique prefixes so that we can tell where they end.

This clearly requires longer codes for larger integers. Simple schemes for doing this are

suggested in [5] and [9]. These schemes are asymptotically optimal, however they behave
poorly for numbers of the size that our k; are likely to be. To combat this we look at the

probability distribution we get for the k; in a typical character. A capital “S” 537 pixels

high had the distribution on the next page. The column labeled “occurrences” gives the

total number of different ¢ for which k; was in the specified range. In the column labeled

“normalized occurrences” this is divided by the size of the range.

The “ideal” way to encode k; would be to use Huffman’s minimum weighted path

length algorithm to find the encoding that minimizes the expected average length of the

k;. We must modify this approach if we want the encoding to be eflicient for all the

distributions of k; we are likely to encounter. We would also like there to be a simple

pattern that would allow us to compute the encoding for arbitrary integers. For these

reasons, we abstract the frequency information in the table and pretend that the actual

normalized occurences are constant up to a certain value (say about 20) and then they fall

off as 1/2®. This assumption could be modified without too much difficulty. We will see
below that it is very convenient to deal with probabilities falling off as 1/z*. In -addition,
this provides a reasonable fit with the above data for large k;, with a= 2.75. We can

adjust this parameter to obtain somewhat more reasonable behavior for large numbers.

4

ki occurrences normalized occurrences
3 I 1.0

4-5) 1.0

6-7 2 1.0

8-10 14 4.7

11-15 30 6.0

16-22 41 5.9

23-31 25 2.8 ‘

32-44 15 1.14 |
45-63 6 0.32 |

64-90 4 0.15

01-127 1 0.03

128-180 I 0.02

181-255 0 0

256-361 I 0.01

We can derive the following encoding procedure from these assumptions.

function encode(n);

begin

I + Tg;

C += €p;

ifn <t

then if n <c

then return the lower e — 1 bits of n

else return the lower e bits of n + ¢

else begin

X «— 1;

d «— do;
while n> x +d

do begin

e — e+ 1;

T + I + d;

r+ 2(r— d);
d + |rb+ 5];

end;

return the lower e bits of (2° —r +n — x)
end;

end;

For the above function we assume the following initialization has taken place.

integer 7o,€0,C;

real b;

b— (1 —s/2);

ro — |t(s —1)/b + 0.5];
eo — |lg(ro +t —1)] + 1;
C+—2°0 —rg— t;

do + |brg + 0.5};

The process is controlled by the constants t and s. All numbers less than t are given nearly

equal length encodings. Beyond t, encodings get one bit longer each time the number

increases by a factor of s. We require that ts/(2— s) be at most ¢ less than a power of two
so that ¢ < t. The variable e is the length of the encoding. We usc encodings that appear

in numerical order when viewed as binary fractions. As numbers get bigger their encodings

acquire more and more leading ones. The variable r gives the number of codes of length

e that could be used without interfering with the encodings for smaller numbers. We can

achieve the constant factor s by using up a fixed fraction, b, of the available encodings at

each step. At the end of each iteration of the while loop, x is the smallest number whose

encoding is e bits long and there will be exactly d different numbers with encodings e bits

long. We can see that for large n,

z +d r—d
§ — — =? -

X r

is stable. This holds when b =1 — s/2 as set in the initialization block. A minimum

weighted path length encoding for a probability distribution proportional to 1/z® would
exhibit this kind of behavior if r/2¢ is proportional to f° 1/t® dr. This holds when 5s =
sl=% je, s=2Ve

Consider the case where t = 10 and s= 1.7. This gives b =.13,r9g== 47, eg = 6,

and ¢ = 7. We get the encodings

0 00000

6 00110

I 001110

16 010111

17 0110000

28 0111011

29 01111000

48 10001011

49 100011000

If we run the encoding algorithm on n = 314, for example, we get

. X rr 4d (z +d)/z
6 10 47 7 1.700

T 17 - 80 12 1.706

8 29 136 20 1.690

9 49 232 35 1.714

10 84 394 59 1.702

11 143 670 101 1.706

12 244 | 1138 171 1.701

which makes the encoding of 314 equal to the lower 12 bits of 212 _ 1138 + 314 — 244 or
101111010100.

Decoding variable length numbers

The process of decoding variable length numbers in the above format is quite straight

forward. Since speed is important in the decoding process, it may be desirable to use

tables to find the values of kand x obtained below. Here we give a version of the decoding

algorithm that uses no such tables. This is more instructive and still quite fast.

function decode;

begin

read ep— 1 bits into m;

if m < ¢ then return(m);
m «2m + (read in the next bit);

n — m — ¢;

if n <t then return(n);

e +— €,

x & t;

r = To,

k «— 2° —r — x;

do begin

ife > ep

thenm «2m + (read in the next bit);

n+—m—k;

e +— e+ 1;

T «— x + d;

r«2(r— d;
d «|rb + .5];
k «—2°-r-x;

end

until n < x;

return(n);

end;

All the variables in the decoding algorithm are analogous to the identically named variables

in the encoding algorithm. The variable k keeps track of the quantity that would have

been subtracted from n if the encoding algorithm had ended on the current step. The

variables m and n are the number read from the input so far and how it would be decoded

if we had read the correct number of bits from the input. When Xx surpasses this number

it tells us we have read enough bits.

3. Data Compression Algorithms

We will concentrate mainly on the method for creating string matched contour coded

files given the contour information. We can easily find the contour information by using

the fact that the contour contains a line between (X, y) and (x, ¥y + 1) if and only if the pixel
at (Xx, Y) differs from that at (x — 1, y) and similarly we look at pixels (x, ¥) and (x, -- 1)
to see if the contour contains the line between (x, y) and (x + 1, y). We can therefore use
shifting and masking instructions to avoid looking at the pixels individually.

For the final step of the data compression process, we will assume that the contour,

0g,..-,0n—1, has been put into an array and that our goal is to find 7;,k;, p;, and r; for

1=1, ...,m. For convenience we will refer to the values of 0; as L,R, or S, and the values

of r; as “true” or “false”. Let o;; be the substring ;0;41... 0; with the understanding that

0;; denotes the empty string when 2 > j. Recall that ¥(z)is the number of characters
matched by 7i{k1)pi71... Ti—1{ki—1)Pi—17i—1. We will use the function rev(a) described
above and define rev(o;;)=rev(o;)... rev(c;). In order to find the shortest encoding (2)
we must successively find the position p; where 0p, 05,41... matches as much as possible

of ox(i)+10x53) +2... for ¢ =1,...,m. A straight forward implementation would be O(n?)
but [6] gives a linear time algorithm that can be adapted to this problem. We will show
how to use this algorithm to produce the 4-tuples in (2).

It will be convenient to adopt some of the notation used in 6]. Let suf; be Oin—1
and let head; be the longest prefix of suf; that also occurs starting at position 7,]j < z.

(In other words, head; =0; ;+x = 0; +k, Where kis maximal and j < 2.) Note that
the starting position j of the maximal string might not be unique. The algorithm in [6]
proceeds by constructing a. suffix tree using McCreight’s algorithm [7]. In our case we will
need two suffix trees, one containing all strings suf; for 0 <2<n — 1 and the other

containing rev(suf;) for 0 <7<n — 1. The algorithm in [6] starts with an empty tree and
inserts successively sufg,sufy, ..., suf,_1 . It determines k; and p; from the location where

suf (i) is inserted in the tree. The algorithm in 6] does not deal with anything equivalent
to our rj.

We can run two copies of this algorithm in parallel inserting sufy, sufy,..., suf,_1into

suffix tree A and rev(sufy), rev(suf,),..., rev(suf,_;) into suffix tree B. We can then set
k; and p; either according to where suf; is inserted in tree A or where rev(suf;) is inserted
in tree B. We choose the option that results in the largest value of k;. If we use the first

option then 7; is false and otherwise 7; is true. Using this method the algorithm on the

next page produces the 4-tuples7i{(k)pi71. ..Tm{km)PmTm from (2).
The algorithm presented in 6] finds p; and k; before 7;. This has the effect of making

p1 and ky automatically 0 and complicates the termination conditions. It is necessary to

treat the last triple differently in this case to make sure that k,, is not too large to allow

Tm a meaningful value. In [6] (to simplify the presentation) it is assumed that 0,70;

8

begin

J +— 1+0;

while 1 <n

do begin

T + 04;

if =n — 1 then output(r,0, 0)
else begin

while 7 <2 + 1

do begin

insert suf; in suffix tree A; .
insert rev(suf;) in suffix tree B;
J++1

end;

output(r,kiyy, Pivr1,7i+1);
end;

1+— 1+ k +1;

end;

end;

for anyj < n — 1. This ensures that no head; = suf;. In our case this assumption is’not

necessary because if head; = suf; then z= X(m) and we are done.

The decoding algorithm

The decoding problem is how to get from one of the compressed formats (1) or (2) back

to the raw bitmap. Decoding the contour coded files (1) is essentially a process of marching

around the boundary flipping certain bits in the bitmap. Decoding string matched files

(2) coinbines this with decoding variable length numbers and copying parts of a buffer.

We can conceptually break these problems into two pieces: reading (2) and filling a buffer

array with og...0,_1, and combining the information in such a buffer with that in the

preamble to obtain a raw bitmap. (Actually these problems are not entirely separate

because when solving the first subproblem the information in the preamble does not tell

us when to stop without tracing the contours to see when they close on themselves.)

In going from the string matched format to the pure contour format we will take as

given the ability to get fixed format and variable length numbers from the input file. The

algorithm is then very simple. (See next page.) We refer to the entries of the buffer we

are generating as 0g...0p—1.

The next subproblem is going from the buffer containing the bounding contours to the

raw bitmap. It is easy enough to follow the contour keeping track of the current position

and direction. One has to study the formats described above to avoid “off by one errors”.

For each vertical edge in the contour between (zo, y) and (zo, y + 1) we have to lip all the
bits in locations (x, y) where x > xg. We can do this quickly by having another bitmap

with one bit for each word in the original. We then flip the right had a part of the word

containing the pixel (zg, y) and the right hand part of the word in the auxiliary table
corresponding to the y row. (We assume a two level hierarchy is sufficient.) After all
the bounding contours have been traced we need one additional pass to flip all the words

whose bits in the auxiliary are still on.

9

begin

14 0;] + 1;

repeat

0; & 75,

1 +— 1+ 1; :

for k + 0 thru kj— 1

do 04k + (if rj then rev{op, tk)
else 0p. 1k);

1 +— 1+ k;

Je+
until done;

end;

Decoding speed

The above algorithm was implemented on a DEC-10 computer at Stanford. Some

attention was paid to the speed of the code but more use of assembly language and a few

other improvements could probably achieve significant gains. The program started from

the string matched format, created a buffer containing the bounding contours, and used

this to regenerated the bitmap. There are two stages to the compution: first the buffer is

created and used to scan the bitmap, and then the auxiliary table is used to regenerate

the rest of the bitmap. The complexity of the first stage is linear in the length of the input

(actually O(n Ig n) in general), while the second stage takes O(n?).

character stage 1 stage 2 total

at 25 ms. 4 ms. 29 ms.

BA 30 ms. 4 ms. 34 ms.

{7 40 ms. 4 ms. 44 ms.

1& 43 ms. 4 ms. 47 ms.

= 26 ms. 4 ms. 30 ms.

HR 24 ms. 4 ms. 28 ms.

H 23 ms. 5 ms. 28 ms.

’R 37 ms. J ms. 42 ms.

1 46 ms. J ms. 51 ms.

X 22 ms. 3 ms. 25 ms.

We can see that the quadratic term is still quite small at this resolution. Even at

four times this resolution about 60% the time is still spent in stage 1. The above results

are good considering the amount of data being handled, but in many applications faster

decoding may be required. The process is probably simple enough to put into hardware if

necessary.

Compression Results for Chinese Characters

The following table gives compression figures for a wide variety of Chinese characters.

These characters were designed with Tung Yun Mei’s LCCD system [8]. All the results
given here were checked with the decoding algorithm to verify that the original bitmap

10

resolution 203 X 2751
Chinese differential coritour string contour string

character | run length coded matched coded matched
7184 1819 1291 3477 1965

2326 1736 4340 2528

5504 1411 1243 2823 1856
18 6416 1301 1031 2353 1315

ia 9792 2026 1453 3580 1911

KR 6144 1227 991 2431 1448

| A 1577 1508 3091 2107
it 1472 011 2412 1028

| i 1710 1211 2866 1592

| iil 11888 1615 1363 3143 2144
8336 2005 1652 3779 2557

H 13584 2019 1962 4171 2983

15 12240 2365 2116 4540 3208

ht 7360 1633 1201 3064 1475

4h 13744 2333 2208 4459 3199

i 13664 2314 2093 3980 2876

FE 2236 1992 4410 2896

£7) 2245 2084 4550 2967
fi 10808 1637 1466 3059 2038

| Jf 3128 1441 1299 2881 1936

te 16928 2485 2264 5022 3574

R 1989 1741 3979 2599

is 14464 2424 2512 4930 3728

§ 1835 1512 3409 2001

5 7312 1503 1377 2704 1944

Eh 1883 1542 3719 2057

R 2152 1710 3972 2534

i& 13552 2275 2185 4553 3381

tA 6736 1601 1161 3059 1550

3 2083 1791 4013 2549

i 13728 2105 1795 4021 2706

bp 2257 1963 4544 2889

{% 12800 2355 1991 4597 2902

BEY 8224 1613 1327 3077 1993

id 10096 1636 1380 3040 1954

J 13040 2265 1989 4590 3013

4 9520 1870 1581 3726 2327

£2 2427 2122 4828 3328

1 10896 1497 1210 3171 1909

2 11520 2413 1937 4594 2987

tMaximum size of bounding box over all characters

$9 point Sung Dynasty style characters with 144 X 144 typeface

11

could actually be regenerated. The table entries give the number of bits needed to represent
each of the characters below at two different resolutions and in three different formats.

The data on the right side of the table are for the same characters at about twice the size.

For comparison a bitmap encoding would require at least 105 X 141 or 14,805 bits for the

lower resolution and 203 X 275 or 55,825 for the higher. The column labeled “differential

run length” gives actual data from an ideographic image digitizer. It refers to 9 point Sung

Dynasty style Chinese characters from [4]. The type face for these characters is 144 X 144
pixels, but the type body is probably about the same size for the other characters. The

resolutions stated below are merely for the minimum size bitmap that could contain all

these characters (i.e. type body). We can see that the string matched format represents

these characters most efficiently. The compression ratio relative to bitmap encoding ranges

from 5.9 to 16.2 at the lower resolution and from 16.5 to 54.3 at the higher one. The

compression ratio relative to simple contour coding ranges from .965 to 1.615 at the lower

resolution and from 1.32 to 2.35 at the higher one. There was only one case where contour

coding outperformed the string matched format. String matched encoding compares very

favorably with the differential run length format that achieved compression ratios relative

to the bitmap ranging from .87 to 2.03.

The string matched compression format is particularly well suited to high resolution

characters. The relative gain from the string matching procedure over the contour coded

format increases with resolution. In addition to this, the relative overhead in terms of

decoding time decreases. The table below also refers to the characters we designed with

the LCCD system. Resolutions are measured as before. Magnification factors of 1,2, 3,

and 4 were used to achieve the different size bitmaps refered to below.

contour coded bits vs. string matched bits at different resolutions

96 X 131

Chinese | contour | string | contour | string | contour | string | contour | string
character | coded |matched | coded |matched coded matched | coded |matched

it 1472 991 2412 1028 3418 1224 4384 1220

1g 1301 1031 23353 1315 3409 1483 4421 1733
t= 1633 1201 3064 1475 4466 1842 5866 1998
HA 1601 1161 3059 1550 4517 1904 6089 2358

gS 1883 1452 3719 2057 5625 2799 7417 3027
i 1835 1512 3409 2001 5129 2506 6635 2701

iy) 2257 1963 4544 2889 6598 3586 8694 4204
{x 2355 1991 4597 2902 6764 3454 9008 4146

Ha 2005 1652 3779 2557 5593 3291 7302 3990

i) 2275 2185 4553 3381 6629 3853 8855 4269

Note that in the first line of the table, string matching actually produced a more compact

encoding at the highest resolution than at the second highest. It is interesting to compare

the string matched compression figures in the above table with other methods for com-

pressing the contour coded format. Recall that the contour coded format used a simple

Huffman code with R, L, and S encoded 00, 01, and 1 respectively. This scheme averages

about 1.58 bits per turn. A more complicated encoding using all strings of length six over

12

the alphabet {L, RE, S} achieves at best .86 bit per turn for a saving of about a factor of
1.8. We can see that the string matched method easily surpasses this at high resolutions.

Furthermore the string matched format has much more potential for improvement.

It is interesting to see how the string matched compression method responds to
the different kinds of strokes used in Chinese characters. There are five fundamental

strokes: dots (.), horizontal strokes (—), vertical strokes (|), “Pie” strokes (-), and

“Na” strokes (\)- Ch inese characters can be divided into two classes: those that consist
mainly of horizontal and vertical strokes, and’ those that consist mainly of dot, “Pie”,

and “Na” strokes. The former class is more common occurring at a frequency of about

60%. Characters that consist mostly of horizontal and vertical strokes arc in general

easier to compress, but the string matched method appears to respond particularly well to

them. The method responds reasonably well to straight lines at constant slope because any

such line will become a repeating pattern of letters from the alphabet {L, RR, S}. Curved
boundaries present more problems. Compare the following compression results for isolated

strokes. (To facilitate a more direct comparison the bit counts given do not include the

preambles.)

kind of stroke bounding box contour coded string matched
horizontal 94 X 13 284 160

vertical 11 X 105 248 128

Pie 45 X 64 433 296

The following table shows how this relates to full characters. The characters on the left

consist entirely of horizontal and vertical strokes; those on the right have mostly Pie and

Na strokes. These characters are all at the same resolution’we have been using: maximal

bitmap size 105 X 141.

Chinese contour string Chinese contour string
character coded matched character coded matched

i 854 361 A 919 659

= Xoo, 1415 1025

¥ ul. 09 $40 Kk 1335 1115
H 1243 607 IN 1395 1105
= 1497 707 5 1413 182

he)

It is clear that the complexity of a character has a great effect on the number of

bits needed to represent it. To see how the characters above compare to other Chinese

characters wc give the following table of the stroke count distribution of 6,763 frequently

used characters from [4].

13

stroke count number of characters percentage

1-3 93 1.4%

4-6 753 11.1%

7-9 2014 29.8%

10-12 2037 30.2%

13-15 1183 17.5%

16-18 499 7.4%

19-21 145 2.1%

22-24 35 0.5%

25-27 4 0.1% .

Potential Improvements

There are several ways the compression figures for Chinese characters might be im-

proved. First of all, since the characters are composed of simple strokes it would be better

to represent characters as a union of strokes instead of just giving the overall outline. This

would avoid many discontinuities in the bounding contours. Secondly, we should take into

account the distribution of p;. They are most likely to refer to positions near the current

position (i.e., 2(z)) and possibly tend to cluster in other places as well. This would be
particularly important if the characters were being expressed as the union of their strokes.

Some kind of escape sequence or simple paging scheme could probably do this without

much additional overhead. The preambles in the existing format are blatantly inefficient.

It would be particularly important to improve this if we had separate boundaries for each

stroke. Finally, if we relax our standards for perfect replication we could probably achieve

significant gains through a kind of smoothing process. In the string matching procedure

we could look for ways to lengthen the matches by changing a few boundary pixels. This

could be made not to damage the appearance of the characters and would achieve better

compression without increased decoding time.

Acknowledgement

We would like to thank Donald E. Knuth for his support.

References

1. (Table of Chinese Character Frequency) Lt R¥ EER 1975.
2. P. H. Couegnoux, Character Generation by Computer, Computer Graphics and Image

Processing 16 (1981) 240-289.

3. (internal report) Shanghai Printing Technology Institute (1981)

4. (The Fundamental Collection of Chinese Character Codes for Information Interchange

of P.R.C.) GB-2312-80 (1981)

5. Even, S., and Rodeh, M. Economical Encodings of Commas Between Strings, Commun.

ACM 21 (April 1978), 315-317.
6. Even, S., Pratt, V., and Rodeh, M. Linear Algorithm for Data Compression via String

Matching, J. ACM 28,1 (January 1981), 16-24.
7. McCreight, E. M., A Space Economical Suffix Tree Construction Algorithm, J. ACM

23, 2 (April, 1976), 262-272.

14

8. Tung Yun Mci, LCCD, A Language for Chinese Character Design, Software 11 (De-

cember 1981), 1273-1292.
9. Knuth, D. E., Supernatural Numbers, The Mathematical Gardner, Wadsworth Inter-

national, Belmont, Ca., 1981, 312-325.

15

