May 1982 Report No. STAN-CS-82-914

Using String Matching to Compress
Chinese Characters

by

Gu Guoan and John Hobby

Department of Computer Science

Stanford University
Stanford, CA 94305

Using String Matching to Compress Chinese Characters
John Hobby and Gu Guoan

Abstract

A new method for font compression is introduced and compared to existing methods. A
very compact representation is achieved by using a variant of McCreight’s string matching
algorithm to compress the bounding contour. Results from an actual implementation are
given showing the improvement over other methods and how this varies with resolution and
character complexity. Compressionratios of up to 150 are achieved for Chinese characters.

This research was supported in part by National Science Foundation grants MCS-
77-23738 and IST-7921977 and by Office of Naval Research contract N00014-81-K-0330.

Reproduction in whole or in part is permitted for any purpose of the United States
government.

O. Introduction

With the development of computer typesetting it has become important to find effi-
cient ways to represent fonts in computers. We can achieve good results at a reasonable cost
by adapting ideas from [6] to improve upon existing font compacting schemes. We compare
an actual implementation of this new scheme with an implementation of the existing idea
of contour coding. Data from Chinese characters has been given special attention in our
experiments because such characters are particularly challenging; the new scheme can of
course be applied to Western alphabets, where its performance is even better.

Storing and manipulating thousands of high resolution Chinese characters can be quite
expensive. For example, the L3Rl , a large dictionary of words and phrases, contains 14,782
characters. The %ﬁﬁ?ﬁl, a dictionary for daily use, contains about 11,100 chars rters
including some modified and simplified characters. There are about 8,000 commonly used
characters. A sample of 21,629,372 characters [1] from writings on political theory, science,
literature and the arts, and in newspapers has shown that 100 characters are used 40% of
the time, 250 characters are used 60% of the time, 500 characters SO%, 1,000 characters
90%, 2,000 characters 98%, and 3,000 characters more than 99%. A Chinese computer
typesetting system needs hundreds of thousands of characters including all the different
sizes in four different styles.

In the first section we give a brief overview of the various methods for encoding
fonts. We describe in detail a method of contour coding. This is particularly important
because the new string matched scheme is based on it and the contour coding method
is used for comparison. Finally, we explain the format for string matched compression.
String matched compression depends on being able to represent variable length numbers
efficiently. The second section describes a rather interesting approach to this problem.
Next, we present a fast algorithm based on [6] for actually doing string matched font
compression. We then give results including the performance of the method on a variety of
characters, its dependence on the size and complexity of the characters, and a comparison
with other methods. These results look promising but there is room for improvement. In
the final section we deal with these and present empirical results.

1. Methods for Character Encoding
Bitmap encoding

The bitmap is a simple method for encoding characters where one bit is used to
specify the contents of each pixel. The advantages of this method are that decoding speed
is maximal and only a small buffer is needed. Since the size of the code grows as the
square of the linear resolution, bitmap encoding is best suited to low resolution. Using this
method, experimental Chinese computer systems have been set up that print characters of
16 X 16 and 24 X 24 pixels.

Run length encoding

Run length encoding uses rectangular areas one bit thick called runs. It is shown
in [2] that if n is the size of the matrix, run length encoding produces output of length
O(kn log n), where kis the number of runs per a scan line. The factor k is really a measure
of the complexity of the character pattern. For Roman fonts, kis approximately 4, while
it is more than 10 for most Chinese characters. I'or 10.5 point Chinese characters of size

2

n = /28, the compression ratio over bitmap encoding is about klnzl_g_i: }l—'é; ~ 1.8. We
can see that run length encoding is not particularly effective for typical Chinese character
typesetting. However, run length encoding has the advantage that it is almost as fast as
bitmap encoding and it also requires very little buffer space.
Differential run length encoding

This method differs from run length encoding in that we represent the positions of
a stroke boundary on a scan line by the displacement from the boundary points on the
adjacent scan line. This method uses only O(kn) space for n X n bitmaps since the
displacement from adjacent scan lines is usually small.
Contour coding

The basic idea behind the type of contour coding we use here is that the black pixels
are surrounded by a bounding contour. The contour can be restricted to an orthogonal
grid as illustrated below.

(0 0)¢
In this example, we give the coordinates of all the black pixels and also of certain points
on the bounding contour. If a point on the boundary has coordinates (%,7), then the pixel
at its upper right also has coordinates (z,7) but the pixel at its lower left has coordinates
(i-1, 7— 1). This means that the maximum possible coordinates for points on the bounding
contour are always one more than the coordinates of the upper right hand pixel. Contour
coded files begin with a header giving the number of contours, N, the size of the character
box, and the position of the contours within the character box. The specification of the
actual contours follows. The file is thought of as a bit string with word boundaries ignored,
and it can be diagrammed as follows.

<N><xm:1x)<ymax>xlyldl cee xNyNdNUOUI .o On—1 (1)
The character box contains pixels with x coordinates ranging from 0 to Zmax and y
coordinates ranging from 0 to Ymax. The bounding contour for the gth boundary starts
at (x;, y;) in direction d;. Quantities in angle brackets represent variable length numbers.
(See below.) The variables z;,y;, and d; are fixed length numbers and each o; represents
either “left” , “right”, or “straight”. The character in the above figure could be represented
with N = 1,Zpax = 1, Ymax = 2, T1 = 2, ¥y = 3, di = west, and 0pg...011 =
SLSSLSLLRRLL. we can tell when a boundary ends by when it closes on itself. If N > 1
the string 0g ... 0,1 can be broken N pieces, each of which form a closed path. The
starting coordinates z; and ¥y; each require 1 + [Ig(wmax + 1)_| bits and 1 + [lg(ymax + l)_l
respectively and the initial directions d; will Et in 2 bits. The boundary turns o; are
encoded into 1 or 2 bits as follows.

R — 00, Lw— 01, S—1

This header information is not encoded in a particularly efficient manner. One could
envision ways of encoding z;,y;, and d; more efficiently by picking starting points with
special properties. For Chinese characters where there can be many boundaries some
differential scheme might be tried. All these methods are awkward and have little effect
because the header is much smaller than the rest of the file anyway.

3

String matched contour coding

String matched contour coding is a slight modification of the above scheme where
0p...0n—1 are encoded differently. A string matched contour coded file is

(N>(zmax)(y‘ma.x>$ly1 dp.. -kINyNdNTl(kl)plrl7'2(k2)p27;2 cee Tm("’m)pmrm (2)

where

Sq) =g-1+ k,

i<q
Tq = Ug(q) and
Oj 4145 if r = 0, A
Opg+i = ’ @ . 0< 7 < ke
v rev(o; 1 145(q)) ifr=1;

The function rev just switches left and right (i.e., rev(L) = R, rev(R) = L, and rev(S) =
S). The 2*"4-tuple 7;{k;)p;r; means “The next character in the string og...0Op—_1is 7.
Now start at 0p, and copy the next k; characters. If r; = 1 then switch left and right as
you do the copying.” The 7; could be encoded just as the o; for contour coded files but
this would be inefficient because we can assume that Tq?éa)_)(q). (Otherwise we could use
a larger value for kq_l.) The first turn 7y is therefore encoded as the o; above, while the
subsequent T7; require only 1 bit. The numbers k; are variable length while the p; can be
fixed length numbers because we require that 0 <p; <X(z). Finally, the 7; are only 1 bit
long.

2. Encoding Variable Length Numbers

In the above encodings we need some way of encoding arbitrarily large integers
efficiently. All encodings must have unique prefixes so that we can tell where they end.
This clearly requires longer codes for larger integers. Simple schemes for doing this are
suggested in [5] and [9]. These schemes are asymptotically optimal, however they behave
poorly for numbers of the size that our k; are likely to be. To combat this we look at the
probability distribution we get for the k; in a typical character. A capital “S” 537 pixels
high had the distribution on the next page. The column labeled “occurrences” gives the
total number of different ¢ for which k; was in the specified range. In the column labeled
“normalized occurrences” this is divided by the size of the range.

The “ideal” way to encode k; would be to use Huffman’s minimum weighted path
length algorithm to find the encoding that minimizes the expected average length of the
k;. We must modify this approach if we want the encoding to be efficient for all the
distributions of k; we are likely to encounter. We would also like there to be a simple
pattern that would allow us to compute the encoding for arbitrary integers. For these
reasons, we abstract the frequency information in the table and pretend that the actual
normalized occurences are constant up to a certain value (say about 20) and then they fall
off as 1/z*. This assumption could be modified without too much difficulty. We will see
below that it is very convenient to deal with probabilities falling off as 1/z*.In -addition,
this provides a reasonable fit with the above data for large k;, with = 2.75. We can
adjust this parameter to obtain somewhat more reasonable behavior for large numbers.

4

k; occurrences normalized occurrences

-3 1 1.0
4-5 2 1.0
6-7 2 1.0
8-10 14 4.7
. 11-15 30 6.0
16-22 41 5.9
23-31 25 2.8
32-44 15 1.14
45-63 6 0.32
64-90 4 0.15
91-127 1 0.03
128-180 1 0.02
181-255 0 0
256-361 1 0.01

We can derive the following encoding procedure from these assumptions.

function encode(n);
begin
I «7g;
€ +—é€p;
ifn <t
then if n <c
then return the lower e — 1 bits of n
else return the lower e bits of n + ¢
else begin
X +—f;
d do;
while n>x +d
do begin
e+— e+ 1,
T+ T+ d;
r+2(r— d);
d«— |rb+.5];
end;
return the lower e bits of (2°—r +n —x)
end;
end;

For the above function we assume the following initialization has taken place.

integer 7g,€o,C;

real b;

b (1 — s/2);

ro + |t(s —1)/b + 0.5];
eo+—[lg(r0 + t—l)J + 1;
c+—2°—rg— t;

do +|brg + 0.5};

The process is controlled by the constants t and s. All numbers less than t are given nearly
equal length encodings. Beyond ¢, encodings get one bit longer each time the number
increases by a factor of s. We require that ts/(2—s) be at most ¢ less than a power of two
so that ¢ < t. The variable e is the length of the encoding. We Usc encodings that appear
in numerical order when viewed as binary fractions. As numbers get bigger their encodings
acquire more and more leading ones. The variable r gives the number of codes of length
e that could be used without interfering with the encodings for smaller numbers. We can
achieve the constant factor s by using up a fixed fraction, b, of the available encodings at
each step. At the end of each iteration of the while loop, x is the smallest number whose
encoding is e bits long and there will be exactly d different numbers with encodings e bits
long. We can see that for large n,

z+d r—d
= 2 _
X r

is stable. This holds when b =1 — s/2 as set in the initialization block. A minimum
weighted path length encoding for a probability distribution proportional to 1/z* would
exhibit this kind of behavior if r/2¢ is proportional to f:o 1/t* dt. This holds when %s:
si=% e, s =2l

Consider the case where t = 10 and s = 1.7. This gives b =.15,r9= 47, eg = 6,
and ¢ = 7. We get the encodings

0 00000
00110

7 001110

16 010111

17 0110000

28 0111011

29 01111000

48 10001011
49 100011000

If we run the encoding algorithm on n = 314, for example, we get

£
6
7
8

9
10
11
12

which makes the encoding of 314 equal to the lower 12 bits of 212 _ 1138 + 314 — 244 or

101111010100.

Decoding variable length numbers

The process of decoding variable length numbers in the above format is quite straight
forward. Since speed is important in the decoding process, it may be desirable to use
tables to find the values of kand x obtained below. Here we give a version of the decoding
algorithm that uses no such tables. This is more instructive and still quite fast.

function decode;
begin

X

10
17
29
49
84
143
244

read ep— 1 bits into m;

if m < ¢ then return(m);
m +2m + (read in the next bit)

n+— m —c;

if n <t then return(n);

e + eg;
X & t;
r T,
d + do;
k«2°—7r —uz;
do begin

ife > ep

)

r

47
80
136
232
394
670
1138

d

7
12
20
35
59

101
171

thenm < 2m + (read in the next bit);

n+—m—k;
e+—e+1;
T« z+d;
r+2(r— d);
d «+|rb + .5];

k+—2%-r-x;

end
until n <x;
return(n);
end;

(z+d)/z
1700
1706
1.690
1714
1702
1706
1701

All the variables in the decoding algorithm are analogous to the identically named variables
in the encoding algorithm. The variable k keeps track of the quantity that would have
been subtracted from n if the encoding algorithm had ended on the current step. The
variables m and n are the number read from the input so far and how it would be decoded
if we had read the correct number of bits from the input. When x surpasses this number
it tells us we have read enough bits.

3. Data Compression Algorithms

We will concentrate mainly on the method for creating string matched contour coded
files given the contour information. We can easily find the contour information by using
the fact that the contour contains a line between (X, y) and (x, ¥y + 1) if and only if the pixel
at (x, y) differs from that at (x — 1, y) and similarly we look at pixels (x, y) and (x, - 1)
to see if the contour contains the line between (X, y) and (x + 1, y). We can therefore use
shifting and masking instructions to avoid looking at the pixels individually.

For the final step of the data compression process, we will assume that the contour,

0g,...,0n_1, has been put into an array and that our goal is to find 7;,k;, p;, and r; for
1=1,...,m. For convenience we will refer to the values of o;as L, R, or S, and the values
of r; as “true” or “false”. Let 0;; be the substring 0;0;41...0; with the understanding that

o;j denotes the empty string when z > j. Recall that ¥(2)is the number of characters
matched by 7y{k1)pi7i. .. Tici{ki—1)Pi—17i—1. We will use the function rev(a) described

above and define rev(o;;) =rev(o;). . . rev(o;). In order to find the shortest encoding (2)
we must successively find the position p; where 0p,0p,41.. . matches as much as possible
of ox(i)+105@)+2-.- for 1 =1,...,m. A straight forward implementation would be O(n?)

but [6] gives a linear time algorithm that can be adapted to this problem. We will show
how to use this algorithm to produce the 4-tuples in (2).

It will be convenient to adopt some of the notation used in [6] Let suf; be Oin—1
and let head; be the longest prefix of suf; that also occurs starting at position 7,j < z.
(In other words, head; = 0; 4k =0} j+k, Where kis maximal and j < 2.) Note that
the starting position j of the maximal string might not be unique. The algorithm in [6]
proceeds by constructing a. suffix tree using McCreight’s algorithm [7]. In our case we will
need two suffix trees, one containing all strings suf; for 0 <2< n — 1 and the other
containing rev(suf;) for 0 <z<n — 1. The algorithm in [6] starts with an empty tree and
inserts successively sufg,sufy, ..., suf,_1 . It determines k; and p; from the location where
sufg(;) is inserted in the tree. The algorithm in [6] does not deal with anything equivalent
to our ;.

We can run two copies of this algorithm in parallel inserting sufy, sufy,. .., suf,_jinto
suffix tree A and rev(suf()),rev(sufl),. .., rev(suf,,_y) into suffix tree B. We can then set
k; and p; either according to where suf; is inserted in tree A or where rev(suf;)is inserted
in tree B. We choose the option that results in the largest value of k;. If we use the first
option then r; is false and otherwise r; is true. Using this method the algorithm on the
next page produces the 4-tuples 7y (k1)pi71. .. Tm{km)PmTm from (2).

The algorithm presented in [6] finds p; and k; before 7;. This has the effect of making
p1 and k; automatically 0 and complicates the termination conditions. It is necessary to
treat the last triple differently in this case to make sure that k,, is not too large to allow
Tm a mecaningful value. In [6] (to simplify the presentation) it is assumed that 0,,-1740_,'

8

begin
J 1+ 0;
while 1< n
do begin
T +— 0
if7 = n — 1 then output(r,0,0)
else begin
while 7 <z+ 1
do begin
insert suf; in suffix tree A;.
insert rev(suf;) in suffix tree B;

13 +1
end;
output(r, kit 1, Pit1,Tit1);
end;
1—1+k+1;
end;

end;

for any j < n — 1. This ensures that no head; = suf;. In our case this assumption is’not
necessary because if head; = suf; then 7 = ¥(m) and we are done.

The decoding algorithm

The decoding problem is how to get from one of the compressed formats (1) or (2) back
to the raw bitmap. Decoding the contour coded files (1) is essentially a process of marching
around the boundary flipping certain bits in the bitmap. Decoding string matched files
(2) coinbines this with decoding variable length numbers and copying parts of a buffer.
We can conceptually break these problems into two pieces: reading (2) and filling a buffer
array with og...0,—1, and combining the information in such a buffer with that in the
preamble to obtain a raw bitmap. (Actually these problems are not entirely separate
because when solving the first subproblem the information in the preamble does not tell
us when to stop without tracing the contours to see when they close on themselves.)

In going from the string matched format to the pure contour format we will take as
given the ability to get fixed format and variable length numbers from the input file. The
algorithm is then very simple. (See next page.) We refer to the entries of the buffer we
are generating as 0g...0p—1p.

The next subproblem is going from the buffer containing the bounding contours to the
raw bitmap. It is easy enough to follow the contour keeping track of the current position
and direction. One has to study the formats described above to avoid “off by one errors”.
For each vertical edge in the contour between (2:0, y) and (:L‘o, y + 1) we have to flip all the
bits in locations (x, y) where x > zg. We can do this quickly by having another bitmap
with one bit for each word in the original. We then flip the right had a part of the word
containing the pixel (:Eo, y) and the right hand part of the word in the auxiliary table
corresponding to the y row. (We assume a two level hierarchy is sufficient.) After all
the bounding contours have been traced we need one additional pass to flip all the words
whose bits in the auxiliary are still on.

begin
1 0;] « I;
repeat
O; +— T,
1+—1+1;
for k0 thru k;— 1
do oy + (if rj then rev(op, 1)
else 0, 1);
14— 1+ k;
jei+l
until done;
end;

Decoding speed

The above algorithm was implemented on a DEC-10 computer at Stanford. Some
attention was paid to the speed of the code but more use of assembly language and a few
other improvements could probably achieve significant gains. The program started from
the string matched format, created a buffer containing the bounding contours, and used
this to regenerated the bitmap. There are two stages to the compution: first the buffer is
created and used to scan the bitmap, and then the auxiliary table is used to regenerate
the rest of the bitmap. The complexity of the first stage is linear in the length of the input
(actually O(n 1g n) in general), while the second stage takes O('n.z).

character stage 1 stage 2 total
at 25 ms. 4 ms. 29 ms.
B 30 ms. 4 ms. 34 ms.
{z 40 ms. 4 ms. 44 ms.
& 43 ms. 4 ms. 47 ms.
=] 26 ms. 4 ms. 30 ms.
K 24 ms. 4 ms 28 ms.
H 23 ms. 5 ms. 28 ms.
i 37 ms. 5 ms. 42 ms.
¥ 46 ms. 5 ms. 51 ms.
X 22 ms. 3 ms. 25 ms.

We can see that the quadratic term is still quite small at this resolution. Even at
four times this resolution about 60% the time is still spent in stage 1. The above results
are good considering the amount of data being handled, but in many applications faster
decoding may be required. The process is probably simple enough to put into hardware if
necessary.

Compression Results for Chinese Characters

The following table gives compression figures for a wide variety of Chinese characters.
These characters were designed with Tung Yun Mei’s LCCD system [8] All the results
given here were checked with the decoding algorithm to verify that the original bitmap

10

resolution 105 X141t

resolution 203 X275t

Chinese differential l coritour string contour string
character | run lengthf coded matched coded matched
ES 7184 1819 1291 3477 1965
2326 1736 4340 2528
[d 5504 1411 1243 2823 1856
18 6416 1301 1031 2353 1315
i 9792 2026 1453 3580 1911
X 6144 1227 991 2431 1448
4 1577 1508 3091 2107
: 1472 911 2412 1028
i 1710 1211 2866 1592
i 11888 1615 1363 3143 2144
% 8336 2005 1652 3779 2557
H 13584 2019 1962 4171 2983
% 12240 2365 2116 4540 3208
& 7360 1633 1201 3064 1475
i 13744 2333 2208 4459 3199
* 13664 2314 2093 3980 2876
¢ 2236 1992 4410 2896
4 2245 2084 4550 2967
f 10808 1637 1466 3059 2038
¥ 8128 1441 1299 2881 1936
73 16928 2485 2264 5022 3574
i 1989 1741 3979 2599
i 14464 2424 2512 4930 3728
i 1835 1512 3409 2001
& 7312 1503 1377 2704 1944
B 1883 1542 3719 2057
R 2152 1710 3972 2534
f& 13552 2275 2185 4553 3381
oA 6736 1601 1161 3059 1550
¥ 2083 1791 4013 2549
i 13728 2105 1795 4021 2706
B 2257 1963 4544 2889
g 12800 2355 1991 4597 2902
1 8224 1613 1327 3077 1993
i 10096 1636 1380 3040 1954
i 13040 2265 1989 4590 3013
LY 9520 1870 1581 3726 2327
S 2427 2122 4828 3328
f1 10896 1497 1210 3171 1909
2 11520 2413 1937 4594 2987

fMaximum size of bounding box over all characters
$9 point Sung Dynasty style characters with 144 X 144 typeface

11

could actually be regenerated. The table entries give the number of bits needed to represent
each of the characters below at two different resolutions and in three different formats.
The data on the right side of the table are for the same characters at about twice the size.
For comparison a bitmap encoding would require at least 105 X 141 or 14,805 bits for the
lower resolution and 203 X 275 or 55,825 for the higher. The column labeled “differential
run length” gives actual data from an ideographic image digitizer. It refers to 9 point Sung
Dynasty style Chinese characters from [4]. The type face for these characters is 144 X 144
pixels, but the type body is probably about the same size for the other characters. The
resolutions stated below are merely for the minimum size bitmap that could contain all
these characters (i.e. type body). We can see that the string matched format represents
these characters most efficiently. The compression ratio relative to bitmap encoding ranges
from 5.9 to 16.2 at the lower resolution and from 16.5 to 54.3 at the higher one. The
compression ratio relative to simple contour coding ranges from .965 to 1.615 at the lower
resolution and from 1.32 to 2.35 at the higher one. There was only one case where contour
coding outperformed the string matched format. String matched encoding compares very
favorably with the differential run length format that achieved compression ratios relative
to the bitmap ranging from .87 to 2.03.

The string matched compression format is particularly well suited to high resolution
characters. The relative gain from the string matching procedure over the contour coded
format increases with resolution. In addition to this, the relative overhead in terms of
decoding time decreases. The table below also refers to the characters we designed with
the LCCD system. Resolutions are measured as before. Magnification factors of 1,2, 3,
and 4 were used to achieve the different size bitmaps refered to below.

contour coded bits vs. string matched bits at different resolutions

96 X 131 186 X 255 277 X 376 368 X 499
Chinese | contour string | contour string | contour string | contour string
character | coded |matched | coded |matched coded matched | coded |matched
it 1472 991 2412 1028 3418 1224 4384 1220
18 1301 1031 2353 1315 3409 1483 4421 1733
& 1633 1201 3064 1475 4466 1842 5866 1998
il 1601 1161 3059 1550 4517 1904 6089 2358
B 1883 1452 3719 2057 5625 2799 7417 3027
13 1835 1512 3409 2001 5129 2506 6635 2701
b 2257 1963 4544 2889 6598 3586 8694 4204
{% 2355 1991 4597 2902 6764 3454 9008 4146
% 2005 1652 3779 2557 5593 3291 7302 3990
fé 2275 2185 4553 3381 6629 3853 8855 4269

Note that in the first line of the table, string matching actually produced a more compact
encoding at the highest resolution than at the second highest. It is interesting to compare
the string matched compression figures in the above table with other methods for com-
pressing the contour coded format. Recall that the contour coded format used a simple
Huffman code with R, L, and S encoded 00, 01, and 1 respectively. This scheme averages
about 1.58 bits per turn. A more complicated encoding using all strings of length six over

12

the alphabet {L, R, S} achieves at best .86 bit per turn for a saving of about a factor of
1.8. We can see that the string matched method easily surpasses this at high resolutions.
Furthermore the string matched format has much more potential for improvement.

It is interesting to see how the string matched compression method responds to
the different kinds of strokes used in Chinese characters. There are five fundamental
strokes: dots (+), horizontal strokes (—), vertical strokes (|),“Pie” strokes (/), and

“Na” strokes (\). Ch inese characters can be divided into two classes: those that consist
mainly of horizontal and vertical strokes, and’ those that consist mainly of dot, ‘“Pie”,
and “Na” strokes. The former class is more common occurring at a frequency of about
60%. Characters that consist mostly of horizontal and vertical strokes arc in general
easier to compress, but the string matched method appears to respond particularly well to
them. The method responds reasonably well to straight lines at constant slope because any
such line will become a repeating pattern of letters from the alphabet {L,R, S} Curved
boundaries present more problems. Compare the following compression results for isolated
strokes.

preambles.)

(To facilitate a more direct comparison the bit counts given do not include the

kind of stroke bounding box contour coded string matched

horizontal 94 X 13 284 160
vertical 11 X105 248 128
Pie 45 X 64 433 296

The following table shows how this relates to full characters. The characters on the left
consist entirely of horizontal and vertical strokes; those on the right have mostly Pie and
Na strokes. These characters are all at the same resolution’we have been using: maximal
bitmap size 105 X 141.

Chinese contour string Chinese contour string
character coded matched character coded matched
il 854 361 A 919 659
= % . 1415 1025
¥ L. 338 K 1335 1115
f 1243 607 k 1395 1105
=] 1497 707 % 1413 1.182

N

It is clear that the complexity of a character has a great effect on the number of
bits needed to represent it. To see how the characters above compare to other Chinese
characters wc give the following table of the stroke count distribution of 6,763 frequently
used characters from [4]

13

stroke count number of characters percentage

1-3 93 1.4%
4-6 753 11.1%
7-9 2014 29.8%
10-12 2037 30.2%
13-15 1183 17.5%
16-18 499 7.4%
19-21 145 2.1%
22-24 35 0.5%
25-27 4 0.1%

Potential Improvements

There are several ways the compression figures for Chinese characters might be im-
proved. First of all, since the characters are composed of simple strokes it would be better
to represent characters as a union of strokes instead of just giving the overall outline. This
would avoid many discontinuities in the bounding contours. Secondly, we should take into
account the distribution of p;. They are most likely to refer to positions near the current
position (i.e., Z(i)) and possibly tend to cluster in other places as well. This would be
particularly important if the characters were being expressed as the union of their strokes.
Some kind of escape sequence or simple paging scheme could probably do this without
much additional overhead. The preambles in the existing format are blatantly inefficient.
It would be particularly important to improve this if we had separate boundaries for each
stroke. Finally, if we relax our standards for perfect replication we could probably achieve
significant gains through a kind of smoothing process. In the string matching procedure
we could look for ways to lengthen the matches by changing a few boundary pixels. This
could be made not to damage the appearance of the characters and would achieve better
compression without increased decoding time.

Acknowledgement
We would like to thank Donald E. Knuth for his support.

References

1. (Table of Chinese Character Frequency) Xt ®#f £ R/~ 1975,

2. P. H. Couegnoux, Character Generation by Computer, Computer Graphics and Image
Processing 16 (1981) 240-289.

3. (internal report) Shanghai Printing Technology Institute (1981)

4. (The Fundamental Collection of Chinese Character Codes for Information Interchange
of P.R.C.) GB-2312-80 (1981)

5. Even, S., and Rodeh, M. Economical Encodings of Commas Between Strings, Commun.
ACM 21 (April 1978), 315-317.

6. Even, S., Pratt, V., and Rodeh, M. Linear Algorithm for Data Compression via String
Matching, J. ACM 28,1 (January 1981), 16-24.

7. McCreight, E. M., A Space Economical Suffix Tree Construction Algorithm, J. ACM
23, 2 (April, 1976), 262-272.

14

. Tung Yun Mci, LCCD, A Language for Chinese Character Design, Software 11 (De-
cember 1981), 1273-1292.

. Knuth, D. E., Supernatural Numbers, The Mathematical Gardner, Wadsworth Inter-
national, Belmont, Ca., 1981, 312-325.

