May 1982 Report No. STAN-CS-82-912

The Implication and Finite implication Problems
for Typed Template Dependencies

by

Moshe Y. Varde

Department of Computer Science

Stanford University
Stanford, CA 94305

THE IMPLICATION AND FINITE IMPLICATION PROBLEMS FOR TYPED TEMPLATE DEPENDENCIES

Moshe Y. Vardi

Department of Computer Science
Stanford University

Stanford, California 94305
May 1982

ABSTRACT

The class of typed template dependencies is a class of data dependencies that includes
embedded multivalued and join dependencies. We show that the implication and the finite
implication problems for this class are unsolvable. An immediate corollary is that this class has
no formal system for finite implication. We also show how to construct a finite set of typed

template dependencies whose implication and finite implication problems arc unsolvable.

The class of projected join dcpendencics is a proper subclass of the above class, and it
generalizes slightly embedded join dependencics. It is shown that the implication and the finite
implication problems for this class are also unsolvable. An immediate corollary is that this

class has no universe-bounded formal system for either implication or finite implication.

T Rescarch supported by a Weizmann Post-doctoral Fellowship, TFullbright Award, and NSF grant MCS-80-
12907.

1. Introduction

In the relational model one views the database as a collection of relations, each of which
being a set of tuples over some domain of values [Coddl]. One notable featurc of this model is
its being almost devoid of semantics. A tuple in a relation represents a relationship between
certain values, but from the mere syntactic definition of the relation onc knows nothing about

the nature of this relationship, not even if it is a one-to-one or one-to-many relationship.

Two approaches have been taken to remecdy this deficiency. The first approach is to
extend the relational model to capture more semantics [Codd3]. The second approach, which is
the basis for this paper, is to devise means to specify the missing semantics. These semantic
specifications arc often called semantic or integrity constraints, since they specify which data-
bases are meaningful for the application and which are mcaninglcss. Thus, the database

schema is conceived as a syntactic specification accompanied by a semantic specification.

Several approaches have becn taken with regard to integrity constraints. Of particular
interest are the constraints called data dependencies, or depcndencics for short. Essentially,
dependencies are sentences in first-order logic stating that if some tuples, fulfilling certain
equalities, exist in the database then either some other hiples must also exist in the database or
some values in the given tuples must be equal. The study of depcndencics began with the
Sunctional dependencies of [Codd2]. After the introduction of multivalued dependencies by
[Fagl, Zan] the field became chaotic for a few years in which rescarchers introduced many new
classes of dependencies. Recently, two unifying formalisms have been suggested and turned
out to becquivalent. The class of tuple and equality generating dependencies [BV2, FagZT],
which is equivalent to the class of algebraic dependencies [YP}, scems to contain most cases of

interest.

Most of the papers in dcpendency theory deal exclusively with various aspects of the

implication problem, i.e., the problem of dcciding for a givensct of clependencics 2 and a

T These dependencies arc called embedded implicational dependencies in [Fag2].

dependency o whether X logically implies o. The reason for the prominence of this problem
is that an algorithm for deciding implication of dependencies enables us to decide whether two
given sets of dependencies are equivalent or whether a given set of dependencies is redundant.
A solution for the last two problems seems a significant step towards automated database
schema design [Bern, BMSU,BR], which some researchers sce as the ultimate goal for rescarch
in dependency theory [BBG]. Real life databases are inherently finite. When we restrict our
attention to finite databases we face the jinire implication problem, which is independent of the

implication problem.

The class of tuple and equality generating dependencies is quite expressive, in fact,
expressive cnough to render the implication and the finite implication problems for this class
unsolvable [BV2, CLM2, Val]. A proper subclass is the class of template dependencies [SU],
which is general enough to contain embedded multivalued dependencies[Fagl), embedded join

dependencies [MMS], and projected join dependencies [YP].

Usually, we require that no valuc appears in two diffcrent columns of a relation. Such
relations are called ryped relations, and dcpcndencies dealing with such relations arc called
typed depcndencies. If we give up this restriction then we get untyped relations and dependen-
cies. Untyped template dependencies are much more cxpressive then typed template dcpen-
dencies, and their implication and finite implication problems arc unsolvable [BV1, CLM1].
However, the status of the implication and finite implication problem for typed template dcpen-

dencies was left open by the above mentioned papers.

A possible way to prove solvability is to show that implication is equivalent to finite
implication. The refutation of this possibility for typed template dependencies in [FMUY]

indicated that the problems are more likely to be unsolvable.

Our ultimate result in the paper is that the implication and the finitc implication prob-
lems for projected join dcpendencies are unsolvable. The proof goes in two essential steps.

First, wc reduce the problems for untyped template dependencics to the corresponding prob-

lems for typed template dependencies, and then we reduce them further to the corresponding

problems for projected join dependencies.

The outline of the paper is as follows. In Section 2 we give the basic definitions. In Sec-
tion 3 we show how to translate untyped tuples and relations to typed ones. This translation is
used in Section 4 to reduce the problems for untyped td’s to the corresponding problems for
typed td’s in a very elegant way. Since we view a template dependency as a pair consisting of
a tuple and a relation, we use the translation to translate untyped dependencies to typed ones,
and we also use it to translate untyped countcrexamplc relations to typed ones. In Section 5 we
show some consequences of the results in Section 4. Mainly, wc show that there is a finite set
of typed template dependencies whose implication and finite implication problems in the class
of typed template dependencies are unsolvable. Finally, in Section 6 we Usc the reduction
technique of [YP] to reduce the problems for typed template dependencies to the correspond-
ing problems for projected join dependencies. Wc end that section with a discussion of formal
systems for projected join dependencies. We distinguish between systems that are universe-
bounded and those that are not, and show that the class of projected join dependencies can not
have a sound and completc formal system of the first kind, but it does have such a system of
the second kind. Wc conclude in Section 7 with some remark on the implication problem for

embedded multivalued dcpcndencies.

A preliminary version of this paper appeared in [Va3]. Unsolvability of the implication
and the finite implication problem for projected join dependencies was shown independently by
Gurevich and Lewis [GL1]. However, our results for template dependencies are stronger, since

wc show a specific sct of dependencics for which the problems arc unsolvable.

2. Basic Definitions

2.1. Attributes, Tuples and Relations

Attributes are symbols taken from a given finite set called the universe. All sets of attri-
butes are subset of thc universe. We use the letters A ,B,C,.. . to denote attributes and
X.,Y,- -+ to denote sets of attributes. We do not distinguish between the attribute 4 and the
set {A). The union of X and Y is denoted by XY, and the complement of X is in the

universe is denoted by X.

Let U be a universe. With each attribute A is associated an infinite set called its domain,

derioted DOM(A). The domain of a set of attributes X is DOM (X)=|J DOM(A). An X-
AEX

value is a mapping w:X = DOM (X), such that w(A)EDOM (A) for all A €X. An X-relation
is a nonempty set (not necessarily finite) of X-values. If X =U then we may omit it for simpli-
city. A tuple is a U-value. We use a,b,c,... to denote elements of the domains, s, /,u, . ..

to denote tuples, and I,J, .. . to "denote relations.

For a tuple w and a set YC U we denote the restriction of w to Y by w[Y]. We do not
distinguish betweenw[A], which is an A -value, and w(A), which is an clement of DOM(A).
Let /7 bc an X-relation, and let Y CX. Then the projection of I on Y, denoted I[Y], is a Y-
relation I[Y]={w[Y] : w€[I}. The sct of all attribute values in an X-relation [is

VAL(I):&)I[A]. For an X-value w,VAL(w) stands for VAL({w}).
€x

2.2. Mappings and Valuations

We often use mappings whose domain is a subsct of DOM (U).Let w be an X-value,
and let @ bc a mapping defined on VAL (w). Then we define a(w) as aow (i.e., @ composed
with w). Thus, a(w) is a mapping from the domain of w to the range of a. A valuation is a
partial mapping a:DOM (U)—>DOM (U) such that if ala) is defined then a(a)€ DOM (A) for
all A €U and a € DOM(A). Wc say that a is a valuation on a tuple w (a relation /) if a is
dcfincd cxactly on VAL (w) (VAL(I)). Let a be a valuation on a relation I, and let w bc a

tuple. An extension of «tow is a valuation on /U{w} that agrees with a on VAL ().

2.3. Dependencies and Implication

For any given.application only a subset of all possible relations is of interest. This subset
is defined by constraints that are to be satisfied by the relations of interest. A class of con-

straints that was intensively studied is the class of the so called data dependencies.

A template dependency (abbr. td) [SU] says that if some tuples, fulfilling certain cqualities,
exist in the relation, then necessarily another tuple (possibly with some components
unspecified) exists in the relation. Formally, a td is a pair <w,I> of a tuple w and a finite rela-
tion 1. It is satisfied by a relation J, denoted J [=<w,I>, if every valuation a on/ such that
a(I)CJ can be extended to w so that a(w)€J. Let ¥ be the maximal set such that

VAL(W[V)CVAL(I).<w,I> is called V-total.

A functional dependency (abbr. fd) [Codd2] says that if two tuples agree on some of their
attributes, then necessarily they agree also on other attributes. Formally, an fd is a statement
X— Y for some scts of attributes X and Y. It is satisfied by a rclation J, denoted J X — Y,

if for any two tuples u,v €J, if u[X]=v[X]thenu[Y] = v[Y].

From now on let 2 dcnotc a finite sct of dependencies and let o and § dcnotc individual
dependencies. When we want to specify explicitly the universe U we’ll talk about U-
dependencies. Wc say that X implies o, denoted Z o, if I 2 entails I |z o for every rela-

tion 1. Z finitely implies o, denoted 2| 0, if I | 2 entails / |= o for every finite relation L

Let ¥ be a class of depcndencics. The implication problem for W is to decide, given
ZCV¥ and ¢ €V, whether 2 = 6. The finite implication problem for ¥ is to decide, given TCW
and g€¥, whether 3 0. The two problems arc indcpendent cach of the other, because one
can have Z|= 0 but % 0. In fact, if 2,0 entails 2= o then not only arc the two prob-

lems equivalent but they arc also solvable.

2.4. Untyped and Typed Dependencies

Until now we have not said anything about the relationship between domains of different
attributes. We now present the two extremes. If we assume that all attributes have the same

domain, i.e., if the universe is U= A ;-.. A, and

DOM(U)=DOM(A)=-..= DOM(A,),
then the universe, tuples, relations and dependencies arc called untyped. If, on the other hand,
we assume that different attributes have disjoint domains, i.e., A #B entails

DOM(A)NDOM(B)=@, then the universe, tuples, relations and dependencies are called

typed.
Let us now fix a universe U'=A "B ‘C’ for the untyped case, and let
DOM'=DOM(U")=DOM(A")=DOM(B")=DOM(C").

Wc denote an untyped tuple w by <w[A l,w[B'],w [C]D. Becri and Vardi [BV1] have shown
that the implication and the finite implication problems for untyped td’s arc unsolvable. In fact

their result is even stronger.

Theorem 1.[BV1] ‘The implication and the finite implication problems for untyped td’s arc

unsolvable even for those £ and o that satisfy the following conditions:
(1) o is U'-total.

(2) Alltd’sinZare A 'B “-total.

(3) If Z¥)o then ZU{A'B' = } 0.

Furthermore, there is cven a fixed o that satisfics the above conditions, for which the problems

are still unsolvable. Q

3. Translating Untyped Tuples and Relations to Typed Ones

W c usc a typed universe U = ABCDIF. ‘Po every clement a €DOM ' there correspond

threc distinct clements a'€ DOM(A), a?€DOM(B) and a*€DOM(C). DOM(A), DOM (B)

and DOM (C) have also special elements a 0, b0 and ¢ 0, correspondingly. Thus

DOM(A)={a0}U{a" : a €EDOM'}, DOM (B)={b0}U{b? : bEDOM'}, and
DOM(C)={c0}U{c3 : cEDOM'}. The other domains are:
DOM(D)={d0}U{w : w is an untyped tuple), DOM(E)={e0}UDOM' and

DOMUIN={f0,f1,... }.

We denote a typed tuple w by <w[A}, ..., w[F]D.

We use mappings between DOM ' and DOM = DOM(A)U.--UDOM(F). Three such
mappings are the one-to-one mappings 1,2 and 3 defined earlier. The inverse mapping is
¢ : plaV=p(a®)=¢p(d®)=a.

The basic idea is to represent an untyped tuple w = <a ,b,c> by a typed tuple
T(w)=<al,b%c3 w,e0,f1>. Note that o(T(w)[ABC])=w. To represent an untyped relation
by a typed one we have to convey the message that a', a?, and a® are just three names for the
same element. For this wc use the typed tuple N (a)=<a},at,a’,d0,a, S 1>. We also use a typed
tuple s =<a0,b0,c0,d0,e0,£0>. Now we represent an untyped relation / by replacing every

tuple w€ I by T(w), by adding N(a) for every a €VAL(I) and by adding s, that is,

T(I)-—[U T(w)]U[U N(a)]'u{s}

w€l a€vAL({)

Example 1.

Let I be the untyped relation:

Wy b a c

T(I) is the typed relation:

A B C D E F

s: a0 b0 c0O d0O e0 fO

T(w 1): d ¥ S w ; e S

T(WZ)" o 23 wy e fl

N(a): a1 02 03 do a fl
N(b): R)

N(c): .

We now make a few observations on T. First, 7 is a monotone operator on relations,
i.e., ICJ entails T(/)CT(J). Secondly, T preserve finiteness, i.e., if I is finite then T(I) is
also finite. Furthermore, if wc restrict our attention to finitc relations, then 7 can bc viewed as
an effective translation. Finally, 7(Z) has a very specific structure. In particular, it satisfies cer-

tain functional dependencies.

Lemmal. Let 7 be an untyped relation. Then

T(HE{AD—U,BD—>U,CD—U,ABCE—U}.
Proof. Let us show that 7(I) | AD — U (the proof for BD —> U and CD — U is analogous.)
Letuv€T(I) and u[AdD]=v[4AD). If u#v then u[D]=v[D]=d0. If u=s then v=s
because a0+ ¢! for all @« €DOM ', and if u = N(a) for some a €VAL (I) then v = N(a) because
Lis one-to-one. So u[AD]=v[AD]implies u = v.
Let us now show that T({)E ABCE—U.Letu,y€T(I) and u[ABCE]=v[ABCE).1f

u#y then u[l']=v[E]=e0. If u=sthen v =5 and vice versa, because a0#a! for all

a€DOM'. 1t follows that u =T(p) and v =T(g) for some p,g€I. But u[ABC]=v[4BC]

1

entails p = q,because!,2, and 3 arc one-to-one. Necessarily, u = v. O

4. The Reduction

Our goal is to reduce the (finite) implication problem for untyped td’s to the (finite)
implication problem for typed td’s via a many-to-one reduction. So far we have shown how to
translate untyped tuples and relations to typed ones. To translate an untyped td ¢ =<w,J>toa

typed td, we translate both the antecedent / and the consequent w, i.c., T(0)=<T(w),T(I).

Fxample 2.

Let o be the untyped td <w,I>, Z=(u):

T(a) is the typed td <T'(w),T(I)>:
A B C D E F

T(w): ' w e i
a0 b0 0 d0o e O
o b2 03 u e fl
T(): aI a2 a3 a a fl
ol ¥ w s on

c1 c2 03 do c fl

We'll also dcfine later the translation function T on sets of untyped td’s so that given
untyped = and o, 2 o iff T(2)ET(o) and Sk oiff T(Z)I’—‘IT(O'). Thus, given an
untyped relation I such that IEZ but [o T we’ll show that 7(/) = 7(C) but T(I)ET (o).
We'll also definc 77! the "inverse" of T that translates typed rclations into untyped ones, so

that given a typed relation I such that /| T(C) but I T (), we'll show that T~X/) = but

1 Such arclationis ealled a counterexample relation for the implication X |= (/0.

10

T-W1 JEoe. Both T and T"l. preserve finiteness, which makes the reduction conservative.
That means that both the finite implication problem and the implication problem arc reduced

simultaneously.

Our first candidate for T(C) is (T(8) : §€ Z}. Indeed, as the next lemma shows, that
works fine in one direction, from /X and I o to T(I) ET(Z) and T(I) ¥ T (o). Because
of Theorem 1, we don’t have to deal with arbitrary untyped td’s but only with A ‘B’-total

untyped td’s, i.e., untyped td’s <w,I> where VAL(w[A'B'NCVAL(I).

Lemma 2. Let / be an untyped relation and let 8 be an A 'B'-total untyped td. Then I =8 if
and only if (1) T(0).

Proof. Let @ be <w,J>, w=<a,b,c>.

If: Suppose that T(I) k= T(8). Let a be a valuation on J such that a(J)C/.Define a valuation
B on T(J) as follows: B is the identity on {a0,60,c0,d0,e0,/0,f1}, B(d’)= a(d) and
P(d) =al(d) for all d€EVAL(I), and B(t)=alt) for all t€J. Let t =<d,e,f>€J. Then

T(1)=<d"e? f3,1,e0,£1> and
BT () =<a(d),ale)’,a(fP,alt),e0,f 1>=T(alr)).
Let d €EVAL (J). Then N(d) =<d",d*d*d0,d f1> and
BN (@) =<a(d),a(d),a(d),d0,a(d).f 1>= N(a(d)).

Also, B(s) = 5,50 we get B(T(J))=T(a(/))C T(I). By assumption, B can be extended to T'(w)
so that B(T(w)ET(I).But B(a’)=ala)'#a0, so B(T(w))#s. That is, there is a tuple u €71

such that B(T(w))=T(u),because S(e0)=e0. If c €VAL(J) then

a(w)=<ala),alb),alc)>=p(Ba"),B(b?) B(c3D) =
=@(B(TWHABC) = p(T(W)ABC)=u€l

Otherwise, wc define alc)=@(B(cY) and get a(w)=u.
Only if: Suppose that /= 6. Let a bc a valuation on T(J) such that a«(T(NCT(I). If

la(TUD] =1 nen a(TW))= {.u} for some u ET(I). It is easy to sce that a can be cxtended

11

to T(w) so that a(T(w))=u€T(I), so we can assume that |a(7(J))|>1. What we’ll now

show is that a maps T(J) to T({}in a chy specific way.

Claim 1. «(T(J)— {sDCTI)~{s}.

Assume to the contrary that there is a tuple u ET(J)-(s) such that a{u)=s. Then
a(f1)=/0. But f0 has a unique occurrence in T(Z), so it follows that a(T(/)—{sPD={s}.
Thus, a(d0)=d0 and a(e0)=¢0. But for every u€7T(/)—{s} either u[D]#d0 or u[E]+#e0,

so necessarily a(s) =s and | (T(J)) | =1 - contradiction.

Claim 2. a(s)=s.

Assume to the contrary that there is a tuple u €/ such that a(s)= T(x). Then a(d0) =¥ . But u
has a unique occurrence in T(I), so it follows that for all d €VAL(J), a(N(d))= T(u). Let
y=<e,f.g>€J. Then aN(E)=aN(/N=aN(g)=Tw). le, ale)=Tw)A],
afH) =Tw)[B] and a(g)=TwW)C}]. Also, a(e0)=e0=T(u)E], and consequently,
a(T(W)[ABCED=T(u)ABCE). By Lemma 1, T(I) E ABCE—=U, so ao(T(v))= T(u). 1t fol-

lows that |a(T(J))|=1- contradiction.

If a(s)# s, then the only other possibility is that there is a value d €VAL(I) such that
a(s) = N(d). Then a(e0) = 4. But d has a unique occurrence in 7'(I), so it follows that for all
u€J,a(TW))=N(d). If e€EVAL(J), then there is a tuplc v€J such that citherv[4]=e, or
v[B’]=e, or v[C']=e; so either T(W)[A]=el, or TM[B]=¢% or TM)[C]=¢€>. But
a(T(v)= N(d), so either ale})=N(@)[A4], or a(e?)= N(d)[B], or ale’)= N(D[C]. a1so,
a(d0)=d0= N(d)[D], so either a{N(e)[AD]= N(d)AD], or a(N(e)[BD]=N(d)[BD], or
a(NeNCD]=N([CD).By Lemma 1, T()E{AD—>U,BD—U,CD—>U}, so in cither

casc a(N(e))=N(d). It follows that |a(T(J))| = 1 - contradiction.

Claim 3. For every tuplc u €J there is a tuple v€ 7 such that a(T(u))= T(v).
Assume to the contrary that a(7'(«))= N(d) for somec d€VAL(I). Then, a(e0)=d. But d

has a unique occurrence in 7(I), so a(s)= N(d) - contradicting Claim 2.

12

Claim 4. For each value d€VAL(J) there is a value e€ VAL (I') such that a(N(d))= N(e).
Assume to the contrary that a(N(d))= T(u) for some u€/. Then a(d0)=u. But « has a

unique occurrence in T(I), so afs)= T(u) - contradicting Claim 2.

Claim 5. a can be extended to T(w) so that a(T(w))ET(I).
Define a valuation 8 on J by B(d)=¢(a(d)). B is well-defined, because, by Claim 4,
a(d)=e' for some e€VAL(I). Let u=<d,e,f>€J. Then, by Claim 3, a(T(u))=T(v) for

some v €7. But now

Bu) = pald,ale?),a(f*)>) = p(a(T(u)[ABC) =

=p(TW)ABC)=vEL
That is, B(J)CI. It follows that B8 can be extended to w so that B(w)€[. Either c € VAL (I)

and a(c?)=p(c)? or wc can define alc?) to be B(c)®. Also, we can define at(w) to be B(w) ,

and get a(T(w)=T(BW)ET(I). « I

Things arc more complicated when, given a counterexample relation to the implication
T(C) k()T (o), we try to find a countcrexample relation to the implication 2 |=(s)o. The rea-
son for that is that the counterexample relation I, I'ET(Z) and I' ¥T(0), is not necessarily a
translation T(I) of some untyped relation /. Thus, it is not sufficient to define 77! in the
obvious way on the collection (7(J): J is an untyped relation}. On the other hand, it is not

clear how to define 771 on the collection (I’ : I’is a typed relation}.

The solution is to ensurc that the typed countercxample relations have some structure to
them. For example, we require that they satisfy the fd’s that are satisfied by 7(/) as in Lemma
1. But that is not enough. T(I) also has the property that if 7(Ka,b,¢>)€T (/) then also
N(a),N(b),N(c)ET(I).Unfortunatcly, we can not express this property by a td, so we’ll have
to do with a weaker statcment, saying that if 7(<a,b,c>)ET(I) and also N(a),N(b)ET(I),
then also N(c)ET(I). The rcason that this weaker statement suffices is that wc are dealing
with 4'B’-total dcpendencics. The weaker statement can be expressed by a typed td

oo=<wq,lp>, To={s,w1,wy,w3}:

13

A B C D E F
s: a0 bo co do e0 JO
Wy al b2 c3 dl e0 /1
wy! al a? a3 do el f1
w3’ bl b2 b3 do e2 f
wo! cl c2 c3 do e3 j2

Let Zg be the set {6g,AD—=U,BD—=>U,CD—>U,ABCE—U}. Wc are now in position to
define our inversc mapping 7 1.

Lemma 3. Let ¢ bc a U'-total untyped td, and let /' be a typed relation such that I'HT (o)
and I’ 2 Then we can construct an untyped relation 7~ (I') = I such that I ¥ o, and for
every A'B’-total untyped td @ such that I' | T(8) we have [6.

Proof.

Let o be <w,J>w=<a,b,c>,{a.b,c}YCVALU).I'ELT(w), T(JP, i.e., therc is a valua-
tion* a such that a(7'(J))CI' but a can not be extended to 7'(w) so that a(T(w))€I". Assume,
without loss of gencrality, that a(s)=s (we can always rename values to assure that), in partic-
ular a(d0)=d0, and a(e0)=e0. Wc define an cquivalence relation = on VAL(I') as follows:
d=e if d = e or if there is a tuplc u€I' such that u[D]='d0 and {d,e}YC VAL u[ABC)).
Clearly, = is reflexive and symmetric. To show that it is transitive, suppose that d=e,e=f,
d#*e, and e*xf. Le., there are tuplcs u,v€Erl' such that
u[D1=v[D]1=d0{d,e}CVALu[ABC)) and {e.f}CVAL([ABCY. Since 1 is typed, either
ul[dl=v[A]l=e, u[Bl=v[B]=e, or u[C]=v[C]=e; that is, either u[AD]=v[4AD],
u[BD1=v{BD] or u[CD]=v[CD]. But I'{AD—U.BD—U,CD— U}, so in cither case
u =v and d=f.Note that, since I’ is typed, for all u,v €1, u[d]=v[A] iff u[d]=v[4],

u[Bl=v[B]iff u[B]=v[B], and u[C]=v|[C]iff u[C]=V][C].

Let p:VAL(I")—DOM ' be a mapping such that p(d)= p(e) iff d=e. Wc definc I by:

14

1={pu[ABCY) : u€l' u[E]=e0uf{Fl=a(f1)
and there are tuples u,usu3;€1 v such that
ui[D]1=uy[D]= us[D]=d0, us[F]=uy[Fl=us[F]= a(f1),
urA1=ulA], up[B1=u[B), and u3[Cl=u[C]}

(The intuition is that u looks like 7'(Ke,f ,g>) and uy, u,, and u3 look like N(a), N(b), and

N(c), respectively.) Observe that if 7’ is finite then so is I

Claim 1. IHo

We want to define a valuation B such that B(J)CI but B(w)€l. If dEVAL(J), then
a(N(@)EI' and a(N(d)[DP))=a(d0)=d0, It follows that a(d)=a(d®)=a(d?®). We define a
valuation B on J by: j2(d)= p(a(d?))= plald?)) =p(a(d®)). Letv =<def >EJ. Then it is easy
to verify that a(7'(v}), a{N(d)), a(N(e)), and a(N(f)) satisfy the conditions for u,uy, u,, and

u3 in the definition of I'. It follows that

BO)=<p(ald),plale?),p(al(fH)> = p(al TN ABCDEL
Consequently, 8(/)C 1.

Suppose now that B(w)=<B(a),B(b).B(c)EI. Le., there is a tuple u €/ such that
u[E]=e0, u[F]l=a(f1) and Bw)=pu[ABC]). Now a€VAL(J), so a(N(a))EI'. Conse-
quently, B(a)=pla(aD)=p(a(N@)AD=pu[A]),s0 a(N(a)[A]=u[4], and consequently
ala)=ulA]. Similarly, a(b*)=u[B]and alc®)=u[C]; that is a(T(w)[ABCEF])=u[ABCEF).

Defining a(w)=u [D] wc get a{T(w))=u €' - contradiction.

Claim 2. I'[ET(8) entails [|=0.

Let 6 be <u,K>, and let B be a valuation on K such that 8(K)C /. We want to define a valua-
tion y such. that y(T7(K))C 1’ Then y can bc cxtended to T(u) so that y(7'(u))€1’, and from
this we’ll beable to cxtended B to u so that B(u)E]. Let v =<d,e,f €K, then B(v)ET. That

is, there arc tuples £,01,05,.3€1" such that ([I'|= (;[F]= [F]= 6:[F]=a(f D), ([L]= €0,

15

1[D]=6[D]=13[D]=d0, ([A]= t;]A), {[B]= [B), {[C]= t5[C] and B(v)=p(t[ABCY]). Furth-

ermore, we claim that 1, £}, #,, and {3 arc unique.

Suppose that x satisfies the same condition as (. In particular,
B(v)=p({[ABCD=p(x[ABCY)), that is, {[A]=x[A4], t{[A]=x[B], and ([C]=x[C], and there-
forc {[ABC}=x[ABC]. But also ([E]=x[E]=e0 and I'E ABCE—U, so x = 1.

Suppose that x; satisfies the same conditions as ¢,. In particular, x,[4]=,/A]=1,{A] and
x1{D]=4[D]=d0. But I'EAD—U, so xy=1{,. Similarly, because I’ | /BD = U,CD—U},
[, and (3 are unique.

We define now a valuation y on T(v), N(d), N(e) and N(f) by: y(T(v))=¢,
y(N(d@)= 11, Y(N(e))= 15, and y(N(f))=13. Obscrvc that y(d0)=d 0, y(e0)=e0, and
y(f1)=a(f1). We have to show that in a similar manner we can define y on all tuples in K.
Thus, suppose for example that x = <d,g,h >€ K, then there exist tuplcs y,y1,y2,y3€1" satisfying
conditions analogous to the conditions above for 1,¢, ¢, and {3 But then,
B@)=p([AD=pW[4D 5o yildAl=y[A]l=1[A]=0[A]. Also, y[D]=0,[D]=d0, s0
n[AD]=yi[4AD] and, since ['EAD—=U, yy=1. It follows that defining y(7(x))=y and
Y(N(d))=y, is consistent with the definition y(7'(v))=t and y(N(d))= (. Defining y(s)=s
we get that y(T(K)CI'. Letu=<d,e,f>. Since I'=<T(u),T(K)> wc can cxtend y to T(u)

so that y(T'(u))=z€I'.

Our aim is now to show that p(z[ABC]EI. Recall that {d,e}CVAL(K), so let
z21=y(N(d))EI' and z;=y(N(e))€EI'. We want to have some zj that looks like y(N(f)), but
if fE&VAL(K)then we don’t know whether y(N(f))ET’. Now we have to usc the fact that
I' = og. Define a valuation & on I so that 8(s)=s, 8(w)) =z, 8(wy)=2z, and 8(w3)=2,.8 is
well-defined because 8(al)=z[A]=z1[A4], §(b2)=z[B]=2z,[B], 6(d0)=d0, §(e0)=e0 a n d
8(fD=a(f1). Since I'Eag we can cxtend 8 to wg so that zy = 8(wg)€ I'. (Clearly, if

S EVAL(K)then zy is just Y(N(f)). In particular, z3[C]=z[C1=8(c3), so p(z[4BC)EI.

16

To complete the proof of the claim we show how to get that B(u) is p(z[ABC]). Now

d€EVAL(K), so v=y(N(d))EI'. But
p([AD=p(v[BD=p(v[CD=B(d),

and v[4]=y(d)=z[A4], so p(z[4A]D=B(d). Similarly, p(z[BD=B(e). If f EVAL(K) then
p(z[CD=B(f). Otherwise, wc can define B(f)=p(z[C)). In either case, B(u)=p(z[ABC]). O
Following Lemma 3, we are inclined to define 7(C) as {T(B): € Z}U Z. But now we
see that Lemma 2 does not yet prove the correctness of the first direction of the reduction.
That is, given an untyped relation / such that /| Z and / ¥ o, Lemma 2 ensurcs that
T() BET(o) and T(I) E{T(0):8€Z}. Also, Lemma 1 ensures that 7(I) satisfies the fd’s in
%o But does T(I) satisfysy? Let a be a valuation such that a(/g)C T(I) and | a(/g)|>0. If
a(s) = s, then, as in the proof of Lemma 2, we can show that for some <d,e,f >€I we have
that a(w))=T(d,e,f), a(wy)= N(d), and a(w3)=N(e). So we can extend a to wq to get
a(wg) = N(f)€ T(I). But, unlike in the proof of Lemma 2, -we can not show that necessarily
a(s)=s, so we can not prove that 7(/) |=og. However, given an additional constraint on 7,

specifically, /[EA B '— C’, wc can prove that T(I) [oy.

Lemma 4. Let I be an untyped relation. If /A B ‘= C' then T(I) [=oy.
Proof. Preliminary to showing that T(/)| og, let us show that T(I) E ABE-W. Let
u,vET(I) and u[ABE]=v[ABL]. If ufv then u[L]}=v[E]=¢e0.If u=s then v =5 and vice
versa, because a0#a! for all « €DOM’ . 1t follows that u = T(p) and v = T(q) for some p,g€I.
But u[AB]=v[AB] entails p[A'B']|=q[A'B'], becausc ! and ? arc one-to-one, and
plA'B' 1= q[A'B'] entails p = q because I | A'B'—C". Ncecssarily, u = v.

Let us show that 7(Z) = 0. Suppose that a is a valuation on 7y such that a{lg)CT(1).If
a maps either wy, wy, or wy to s then a(f1)=£0 so a(/g)= {s), and a can be extended to wy
so that a(wg) = s. Consequently, we can assume that a(/q—{s}C T(I) — {s). Suppose that

al(s)=s. Then a(e0)=€0, 50 alw)=T(1) for some (=<d,e f>El. Also a{d0)=d0, so

17

a(wy)= N(d) and a(w3)=N(e). Wc can extend a to wy so that a(wg)=N()ET(I).

Suppose that a(s)= T(r) for some ¢ €1. Then a(d0)=1¢, so a(wy)=a(ws)= T(r). Thus,
a(wi[AD)=a(w[4D)=T()4], a(wi[B]D = a(w;3[BD=T)[B] and
a(m[ED=a(e0)=e0=T()[E]; that is, a(w)[ABE] =T () ABL). But T(I) E ABE = U, so
a(w))=T(1). We have shown that a(/g)={T(¢)}, consequently, a can be extended to wg so
that a(wg)= T(r).

Finally, suppose that a(s)= N(a) for some a€VAL(I). Then a(e0)=a, so

a(w))= N(a). Now a(wo[DD)=a(w3[D)=d0= N(a)[D], a(w[A])=a(w,[4])=N(a)[A4] and
a(w;3[BY = a(wi[B])= N(a)[B]; that is a(w)[4D]=N(a)[AD] and a(w;3)[BD]= N(a)[BD].
But T(I)E{AD = U,BD = U}, so a(wy)=a(w3)=N(a). Wc have shown that a(/o)={N(a)},

consequently, a can be extended to wg so that a(wg)= N(a). * I

There is another problem with our proposed 7(Z). It is not a set of td’s! Fortunately,
we know how to replace fd’s by td’s. First, observe that an fd X — Y is equivalent to the set of
fd’s {X—>A4:A €Y —X}. Thus, wc can assume that all fd’s in 2 arc of the form X —> A with

A€X. We now dcefine @y, as a U-total td <u,{uy,uzu3}>, where
(1) ug[X]=uyfX] and u [B]+#u,[B} for B €X,

() us[A]=uy[4] and u[A]Fus[B]Fus[A] for BEA, and

3) u[A]l=u[A] and u[4]= us[A].

Example 3.

0 4p —p is <u,{uy,uzus}:

A B C D I F

u: a3 bl ¢3 d3 e3 f3

u; al bl ¢ dl el (]

Uy al b2 ¢2 di e2 j2

ug: _a3 b2 c3 d3 e3 f3

18

Lemma 5. [BV3]T Let .2 be a set of typed td’s and fd’s. Let 2’ be the set obtained by replac-
ing each fd X— A in £ by x-4. Then 2= C, and for all typed td’s 0,2 o if and only if

2'Eoand 2o if and only if 2’ ;0. oI

Thus, we define T(Z) as ({T(B): §€ZYU), with * defined as in the lemma. We are

now in position to prove the main result.

Theorem 2. The implication and the finite implication problem for typed td’s are unsolvable.
Proof. Let Z and o be as in Theorem 1. We claim that 2 (o iff T(2) k= ()T (o). Since T

is an effective translation, the claim follows.

Supposc first that 2 F (o, then by condition (3) of Theorem 1, ZU{4'B'=C"} K (0.
Thus, there is an untyped (finite) relation / such that 72,7 A 'B'—=C" and I ¥ o. By
Lemmas 1 and 4, T(I) k= Zg, and by Lemma 2, 7(I) E{T(8) : 6€X} and T(I)¥T (o). It fol-

lows by Lemma 5 that T(1) |= T(E), so T(C) F (5T (o).

Suppose now thatT(Z)HT(e). B y Lemma 5, we have that
{T(8): € Z}YUZH (/)T (0). Thus, there is a typed (finite) relation ', such that
I'E{T(0):6€3}, I'E 2y, and I'ET (o). Note that by condition (1) in Theorem 1 we can
assume that o is U'-total. Let / = T~Y(I’) as in Lemma 3. By that lemma we know that

[EZand I Fo, so ZFHo.0

Let us make two observations. First, by Theorem 1, there is a fixed untyped ¢ such that
deciding whether 2 |=(,)T(0) is unsolvable. Secondly, it is easy to see that the set
{(Z,0) : ZF 0} is recursively enumcrablc. It follows that the finite implication problem for
typed td’s is not even partially solvable. Thus, there is no sound and complete formal system
for finite implication of typed td’s. In contrast, see [BV4, SU] for sound and complete systems

for implication of typed td’s.

T The same result was also shown in [SU] for unrestricted implication.

13

5. Some Consequences

Let ¥ be a class of dependencies and ZC¥. The (finite) implication problem for 2 in

¥ is to decide, given o€ ¥, whether = I:(f)a Note that the unsolvability results of Theorems 1
and 2 does not say anything about the solvability of the (finite) implication problem for specific
C’s. For example, it is known that the (finite) implication problem for & in the class of
(typed) td’s is solvable [BVI, SU]. Also, in [FMUY] it is shown there is a typed td o that
implies all typed td’s. Thus, the (finite) implication problem for {o} in the class of typed td’s
is trivially solvable. It is conceivable that for every fixed 2 its (finite) implication problem in
the class of (typed) td’s is solvable, yet there is no effective way to find, when given a specific
%, the decision procedure for that 2. In [BV1] a fixed set Z; of untyped td’s is presented,
whose implication problem in the class of untyped td’s is unsolvable. Using a result from
[GL2] wc can get a much stronger result involving recursive inscparability. Recall ([Ro]) that
two sets X and Y are recursively inseparable if there is no recursive set containing X and dis-

joint from Y.

Theorem 3. There is a set =, of untyped A ‘B ‘-total td’s such that the set

(a:oisalU’'— total untyped td and 2, a)
and the set

{o:0isalU’— total untyped td and Z,U{A'B'=C'} ¥/}
arc recursively inseparable.
Proof. An equational implication for semigroups (abbr. ei) is a sentence of the form
iy Iysi=0/\ s N\sg = Sk =l 1),
where k,n>0 and the s;’s and ¢;’sarc terms built from the y;’s by means of the semigroup mul-
tiplication symbol. In [GL2] it is shown that the sct

{p: @ is an ei that holds in all scmigroups)

and the set

20

{9 : @ is an ei that fails in some finite semigroup)

are rtecursively inseparable. Using the technique of [BV1] to reduce questions about ei’s in
groupoids to implication of untyped td’s, we can prove the claim, where 2, expresses the
axioms for semigroups. O

Corollary 1. The implication and the finite implication problem for X, in the class of untyped
td’s are unsolvable.

Proof. Observe first that the theorem entails that the set

{0 : 0 is an untyped td and 2, = a)
and the set

(a: o is an untyped td and 2, 0}
are also recursively inseparable. The claim then follows because by definition a set that is

recursively inseparable from some other set can not be recursive. I

We now note that the td’s in the statement of Theorem 3 satisfy the conditions of
Theorem 1, so by applying the reduction of the previous section we get inseparability results

for typed td’s.

Theorem 4. There is a set Z3 of typed td’s such that the set

{a:0isatyped td and 230}
and the set

{o:0isatyped td and 23 0}
are recursively inseparable. O
Corollary 2. The implication and the finite implication problem for Z3 in the class of typed

td’s are unsolvable. O

An interesting question is whether wc can decide, given a set £ of (typed) td’s, if its
(finite) implication problem in the class of (typed) td’s is solvable or not. In{Va2] it is shown
that for set 2 of untyped td’s and equality generating dependencics this problem is unsolvable,

By techniques similar to thosc employed in proving [.emma 5, it can be shown that the prob-

21

lem is unsolvable also for sets % of untyped td’s. However, the proof method does not extend

to the typed case.

Corollary 2 has an interesting consequcncc. Let ¥ be a class of dependencics and 2C .
A finite relation I such that for all €W, we have that / | if and only if 2 soiscalled a

finite Armstrong relation for X in ¥ [Fag2].

Theorem 5. =3 does not have a finite Armstrong relation in the class of typed td’s.

Proof. Supposc to the contrary that 7 is a finitc Armstrong relation for 25 in the class of typed
td’s. Let o be a typed td. Now 23} 0 iff /= 0. But the sct {o : / |z a) is rccursive, which
means that the finite implication problem for 23 in the class typed td’s is solvable - contradic-

tion. CI

We mention that in [FMUY] a set of two typed td’s is defined, which does not have a

finite Armstrong relation in the class of typed td’s.

6. Projected Join Dependencies

In this section we are dealing exclusively with the typed casc. Let U be a universe, and

k
let R=(Ry, ..., Ry) be a sequence without repetition of subsets of U, with | JR; =R CU.

i=1

The project-join mapping my maps U-relations to R -relations as follows:

mg(I)={¢:tis an R —valucs.t.7[R;JEI[R;] for i =1, ..., k).

Let XCR . A projected join dependency (abbr. pjd) [YP] is a statement *[R]y. It is
satisfied by a relation [if (mp(I))[X]=I[X]. The interest in pjd’s comes from the question

whether we can compute /[X] when given the projections /[Ry], . .., I[Rg].

Several special cases of pjd’s have been investigated in the literature. If X =R, then we
drop the subscript X and call *[R] a join dependency [ABU, Ri]. If R = U, then *[R] is called
total otherwisce it is called embedded [MMS]. If we have above R=(R},R; thenthe join

dependency s also called a multivalued dependency (abbr. mvd) [IFagl]. A total mvd *[R ,R ;]

22

is also denoted by R{MR,;=**R;—R,. According the definition of satisfaction for pjd’s,
IEX—>Y exactly when, 4.r all u,v€l, if u[X]=v[X], then there is a w€Il with

wlXY]=u[XY] and w[XY]=wfXY]. Clearly, if I EX—Y, then also EX—>7.

Even though pjd’s and s look on the surface completely different, we can in fact view
pjd’s as special td’s. A td <w,I> is called shallow [YP], if whenever uand v are two distinct
tuples in / and u [A] = v [4], then
(1) if s and ¢ are two distinct tuples in / and s[A]=1{[A] then s[d]=([A]=ul[A]=v[A4],

and

(2) either wld]=u[A)=v[A] or w[A]|EVAL(I).

Lemma 6. For every shallow td o there exist a pjd 8, and for every pjd @ there exists a shal-
low td o, such that for all rclations I, I |= o if and only if 7 £ 4.
Proof. The claim follows from the conncction between relational expressions and tableaux as

described in [ASU]. O

Thus, instead of talking about pjd’s we can talk about shallow td’s. Our aim in this sec-
tion is to show that the implication and the finitc implication problem for td’s are reducible to
the corresponding problems for shallow td’s. The rcduction is essentially duc to Yannakakis
and Papadimitriou [YP]. However, they have dealt only with the implication problem, and
their proof-theoretic technique does not extend to finite implication. In contrast, our proof,
which is model-theoretic, shows that the reduction is conservative (i.e., preserve finiteness of
relations), and therefore proves simultaneously the correctness of the reduction for both impli-

cation and finite implication.

We note that for a fixed universe U there are only finitely many U-pjd’s, so the (finite)
implication problem is solvable. Thus, unlike the casc with arbitrary td’s, we have to deal here
with arbitrary universes. In fact, the basic idea of the reduction is that given 2, o over a

universe U/, wc translate them to shallow Z, ¢ over a bigger universe U/, whose size depends

23

on the size of the td’s in EU{&}.
More specifically, let
m=max{k :<w,I>€XU{o} and | I | =k},
and letn =m (m —1)/2. Then we take
U={4;: A€V and 0<i<n}.

The intended interpretation is that the Ag-.. A,,-values in the new universe encode the A -
values in the old universe. For domain we take DOM (4;)={4;} X N (N is the sct of natural
numbers). However, when describing A;-values we'll usually omit the first component of the
pair; i.e., we write w[A;]= 1 instead of the more precise w[4;]=<4;,1>. We assume without

loss of generality that DOM(U)CN.

A U-td 8 is translated to a shallow U-td 8 as follows. Let 8 be <w,I>. We can assume
without loss of generality that I = {wy,...,w,}. Let us fix some cnumeration of the set
{{i.j}:1<i,j<m and i Sj). By 4;; we mean Ay, where k is the ordinal number of {/,/} in
that enumeration. 8 is <u,I>,I = {uy, .. ., u,,,}.f is constructed so that 1;[4; ;]=u;[4; ;] iff
wi[A] =w;[4], so that the cqualitics between A -values in I arc spread over Ay, .. ., 4, in I,
which makes 8 shallow.

More precisely, I is defined as follows.

(1) For A€U,1<k<m:u[Agl=k.
(2) For A€U,1<i,j,k<m,i#j: For k different from i and j, let u[A4;;]=k. If
wi[A1#u [Athenw[A; j)=i and uj[A; j]=j. Otherwisc, w;[A; j1=u;[A; j]=min{i,j}.

u is defined as follows.

(1) For A €U: 1f w[dJEVAL(I) then w[d]=w]A]f orsome 1<k<m, s o

ulAgl=k = u,[Ag). Otherwise, u[Ag)l=m -I-1.

24

(2) For AEI, 1<i<n: Let u[4;]=m+1.
We leave it to the reader to show that @ is indeed shallow.
Example 4. Let U = ABC, and let 8 bc a td over U, § =<w,I>, I = {w1,wy,w3}:

B C
w: a b 3

Wa bl ¢l
W al b cl

W3-' al bl C2

Now 02/‘0" A3By- .. B3Cy- .. Cs Let A=Ay, Ay 3= Ay, and A2,3= A3.9

is <u,I>, I ={uyuqus}:

Ag A, A4y Ay By B, B, By C, C; C, G
w1 4 2 4 4 4 4 4 4 4
we 11 11 1 1 1 1 1 1 1 1

The following lemma describes the relationship between U-relations and {J relations on
one hand and @ and 8 on the other hand. We use Uy -to denote the set{ Ag : A €U}.

Lemma 7. Let I be a U-rclation, and let/ be a c-relation such that

(1) There is a one-to-one mapping y : DOM (U)—>DOM (U,) such that y(I)=I[Uy).

() iizzli—>Aj for all A €U and 0<i,j<n.

Then for all td’s 8 over U. I |z if and only if] | 8.

Proof. Wc first show that for every s €7 there is a unique ¢ € I such that y(s)= [Ug]. Clearly,
there is at lcast one such ¢ because y(s)€7[Uyl. Suppose that y(s)= t[Ug] =v[Ug]. Now for
all A €Uana 1<i<n w chavet[dg]=v[d,] and I'f Ag=4;, s o t[A;]=v[4;}. 1 follows

that 1 = v. Wc say that ¢ comes from s. Obscrve that if ¢;,/, come from s,s, respectively, then

25

forallA €U and 0<i <n, we have sy[A] = s5] AJiff (1] 4;] = 5 4]

Let §=<w,J>, J={wy, ..., w,}, and é=<u,J~>,.7={u1, e Ut

If: Suppose that I = 8. Let B be a valuation on J such that B()CI. Let ty, . . .,y €] come
from B(wy), ..., B(w,), respectively. N ow if u;[A; ;}=u;[4;;], then w;[4]=w;[4], and
B(w)[A]=pB(w))[4]. Consequently 4[4;;]=1¢[4;;]. Thus, we can define a valuation a on J
so that a(uy)=1;. Since we assumed that fI: a, a can be extended to u so that a(u)€ I. Let
alu) come froms€l. We extend B tow so that B(w)=s.If w[A]€VAL(I), then we define
B(w[A])=s[A4]. Otherwise, w[A]=wi[A] for some I <k <m. But in that case,
ulAol= ug[Agl, so alu)[Aol=t[A4o) and Bw[AD=B(w)[A]=s[A4]. So we have that B(w)=s

as desired.

Only if: Suppose that /| 8. Let a be a valuation on J’such that a(/)CI'. The tuples
aluy),. .. . alu,) come from some tuples sy, . .., s, €], respectively. We claim that if
wil4]=w;[A4], then 5[A]=5;[4]. Indeed, if wi[A4]=w;[4]then u;[4; ;]=u;[4; ;], so neces-
sarily a(u;)[4; ;1= a(u;)[4; ;], and consequently s;{A4]=s;[A]. “Thus, we can define a valuation
B on J so that B(wy)=s; for 1<k <m. Since wc assume that /=4, B can be cxtended to w
so that B(w)El. Let (€/' come from B(w). W e extend a to u so that a(u)=1t. If
ulA;)8VAL(I"), then we define a(u[4;])=1[4;]. Otherwise, u[Adg]=u [4g] for some
1<k<m. But in that case w[d]l=w[4], so Bw)A]=s[4] and

au[AoD)=alu)[Agl=t[Ag]. So we have a(u)=1 as desired. CI
By means of Lemma 7 wc can show that the (finitc) implication problem for td’s is redu-
cible to the (finitc) implication problem for fd’s and pjd’s. I.ct E be
{8:0€3YU{4, = A;: A€U and 0<Li,j<n}.

Lemma 8. o if and only if S} & and 2k so if and only if) E/o.
Proof. As is Section 4, wc show that Z H ,yo iff) F (r)0 by constructing countercxample rela-

t ions.

26

Suppose that ZH (0. Then there is a (finite) U-relation 7 such that /=2 and / H o.

We construct a e-relation 7 by duplicating I » + 1 times. That is,
I={s:sisa U —value and there is 1€/ s.t. for all A€U and 0<i<n,s[A4;]=<4;,1[AP}

Observe that of Iis finite then so is 7. Also, it is easy to verify that for all A €U and
0<i,j<n,wchave 7}:A,-—>Aj. By Lemma 7, IS and T H# 6. It follows that ih!(f)&.
Suppose that ihf(f)&. Then there is a (finite) U-relation 7 such that 7S and T ¥ 5.
Let / be a U-relation that is isomorphic to ITUq). That is, there is a one-to-one mapping
y : DOM(U)—>DOM(Up) such that y(I) = I[Ugl. Clearly, if I is finite then so is I. By

Lemma 7, /=% and I ¥ o. It follows that 2} o.0

It seems now that wc only need to apply Lemma 5 to get rid of the fd’s in 3. Alas! A
brief inspection reveals that 8 4,4, is not shallow. Fortunately, in our case it suffices to
replace A;—>A; by A4, A4;.

Lemma 9. Assume 3<n,0<i,j,k<n,i#j,j#k, and i #k. Then

Proof. Let us describe a o-value w as (w[4;],w[A4;]w[A,]w[4; A; Ac]). Then aA,-M, is

< {u,v,wp:

A A A A A A

L a2 l bl ¢3 x3
u: al bl cl X1
v: al b2 ¢2 x2
we a2 b2 3 x3

Suppose that
TE{A,~>4,:p,q€{i,j.k}}.

leta be a valuation such that .a(u),a(v),a{w)ET. a(u), afy), and a(w) ook like 1, v and

27

w, except that we have additional equalities like a(a1)=a(a2). Since additional equalities do
not bother us we can assume that u ,v,w € I. We now use the fact that I satisfies the mvd’s
above to infer that / must contain certain tuples. E.g., from v and w we can infer by

A;j=> Ay that (al,62,¢3,x 2)€1. The following figure shows a chain of such inferences.

A A A AiAi A
u: al bl cl x1

ve al b2 ¢2 x2

w: a2 b2 3 x3

51 a2 b2 c2 x3 (From w and v by A; —>> A)
s al b2 c2 x3 (From sy and v by Ay =>4;)
s3 al bl c2 x3 (From s, and u by A; = Ay)
s4 a2 bl c2 x3 (From s3 and s, by A =>4;)
t a2 bl .c3 x3 (From s4 and w by 4;—>4;)

Thus, (€1 and [}=6 4 »Aj.(Essentially, what we have done here is proving the implication by

the chase proof procedure of [ABU, BV3, MMS, SU].) I

Corollary. Assuming 3 <n,
Proof. The lemma gives us one direction of the implication. The second direction follows
from Lemma 5 together with the fact that Y = A X —==>4.0

Since there is no loss of generality in assuming that 3< n, wc get the desired reduction.
Theorem 6. The implication and finite implication problems for pjd’s arc unsolvable.

Proof. Let Z,0 over U be given. By Lemma 8, Z |= ()0 iff
{0:0€3YU{4 = 4;: 0<i,j <} (6.

By Lemma 5, the last implication holds iff

28

{6:0€23U{0, -4 :0<i,j<n}E (8.
By Lemma 9, this implication holds iff
{6:0€23U{A4; >4, : 0<ij<nt (e

Since {0: 6€ 2pU{4;,—>4;:0<i,j<n}is a set of shallow td’s and pjd’s, and it can be con-

structed effectively, the claim follows. O

Analogously to the observation in Section 4, unsolvability of the finite implication prob-
lecm for pjd’s entails that the problem is not cven partially solvable, and consequently there is
no sound and complete formal system for finite implication of pjd’s. In this observation, the
only thing we assume about formal systems is that having a formal system for a problem

renders it partially solvable.

We now make our notion of a formal system more precise. Most generally, what we
mean by having a formal system for implication is that having an effective way of checking
proofs. There is however a subtle point here. Unlike the case with td’s where the universe is

clear from the syntax, this is not the casc with pjd’s. In fact, pjd’s are oblivious to the universe

k
in a much stronger way. Let 8 be the pjd *[Ry, . . ., Rily. We define attr(6)={J R;, and

i=1

for a set 2 of pjd’s we definc attr(Z)=1J aur(§). Now given asct = of pjd’s and a pjd o,
gex

the only thing we know about the universe is that it contains atur(ZU{a}). It follows that we
can have different notions of implication, depending on the universe. That is, = (finitely) U -
implies o, denoted 2(U)o, if for all (finite) U-relations I wc have that /=% entails
I Eo. Fortunately, all these “different” notions of implication turn out to be the same. We

leave the casy proof of the following lemma to the rcadcr.

Lemma 10. Let XU {o} be a set of pjd’s. Then for all U such that attr(Z U {6})C U we have
that Z(U) E (5o iff Z(aur(SU{e}))E(Ho. O

29

Thus, we can go on using the notation X |= ¢ without specifying the universe. However,
when it comes to formal system the question pops up again. Do we want our formal system to
handle proofs within fixed universes or not? We call a formal system of the first kind

universe- bounded.

More precisely, a formal system for implication of pjd’s is a recursive set IT whose ele-
ments are pairs (2.<oy, . . ., 6,>), where X is a set of pjd’s, and o}, ..., 0k is a sequence
without repetition of pjd’s. The intended interpretation for IT is that (£<oy, . . ., 0x2)EIT
when oy,...,0, is a proof that Z}=ox. Thus, we say that ITis sound if
(£ <0y, 0x>)EN entails that 2oy, and we say that ITis complete if whenever Z is a set
of pjd’s and o is a pjd such that 2 = ¢ then therc is a pair (2,<oy, . . ., 0,>)€EIT with o4 = o.
If the formal system IT is universe-bounded then instead of pairs it consists of triples
(U,2L0y, ..., 04>), where U is a universe, 2is a sec of U-pjd’s, and oy,..., 0, is a
sequence without repctition of U-pjd’s. We say that IT is sound if (U,2L0y, ..., 04 D)ETT
entails that =0y, and we say that IT is complete if whenever X is a set of U-pjd’s and o is a

U-pjd such that 2= ¢ then there is a triple (U,2 <oy, . . ., 04,2)€IT with o4 = 0.

Theorem 7. There is no sound and complete universe-bounded formal system for pjd’s.

Proof. The argument is essentially that of [BV3]. Suppose that IT is a sound and complete for-
mal system for implication of pjd’s. Let X be a set of pjd’s, and let ¢ be a pjd. Take
U = atr(2U{co}). There arc only finitely many U-pjd’s, and therefore there arc only finitely
many triples (U,2X0y,. .., 04>), where oy, . . ., 0 is a sequence without repetition of U-
pid’s with 6y =06. Wc can cnumerate all these triples, and 2 = o iff onc of them is in IT. It

follows that the implication problem for pjd’s is solvable - contradiction. O

The crucial point in the proof, and the only propcrty of pjd’s used, is that there are only
finitcly many U-pjd’s for any fixed U. Thus, thcareument applies as well to any class of

dcpendencics with that property.

30

Let 8 =<w,I> bc a U-td. For any A€U, we define REP(8,4) is the set of repeating

A -values in 8. That is,
REP(A)={u[A]:u€l and either u[A]=w[Ad] or u[A]=v[A] for some vEIv #u}.

We say that @ is k-simple if for all A €U we have that |[REP(8, A)|<k . Thus, the class of
shallow td’s is exactly the class of 1-simple td’s. The generalized join dependencies of [Sc] are

equivalent to 2-simple td’s.

Sciore [Sc] has argued heuristically that one can not prove implication of k-simple td’s
without using & + 1-simple td’s, and conjectured that this is really the case. Since for every
fixed U and k there are only finitely many k-simple U-td’s, the argument in the proof of
Theorem 7 shows that Sciore is right and there can be no sound and complete universe-

bounded formal system for k-simple td’s.

Two qualifications should be made. First, the proof of Theorem 7 relics on the unsolva-
bility of the implication problem, and thercfore does not apply to classes of dependencies for
which the implication problem is solvable. Indeed, Sciore’s conjecture that no class of td’s that
contain the class of total join dependencies but is properly contained in the class of td’s has a
sound and complctc formal system is false. In[BVS] a universe-bounded formal system for
total join dependencics is shown to be sound and complctc. Secondly, the proof of Theorem 7
applies only to universe-bounded formal systems. Furthermore, since the reduction in this sec-
tion shows us how to transform arbitrary td’s to pjd’s, it is not difficult to take a formal system
for td’s (see [BV4, SU]) and to transform it to a formal system for pjd’s. The rcsulting system

is of course not universe-bounded.
Theorem 8. There is a sound and complcte formal system for pjd’s. Q

Question. Is therc a sound and complete formal systcin for embedded join dependencies? For

embedded multivalued dependencics?

31

7. Concluding Remarks

The solvability of the (finite) implication problem for embedded multivalued dependen-
cies is one of the outstanding open question in dependency theory. One of the motivation to
studying larger and larger classes of dependencies was the hope the the regularity of the more
general classes, which in some senscs are more natural then the narrower classes, would enable

us to discover the elusive algorithm for deciding implication.

Unfortunately, a series of negative results shattered, morc or less, that hope. First, in
[BV1,CI.M1] it was shown that the (finite) implication problem for untyped td’s is unsolvable.
Then in [BV2, CI.M2, Val] unsolvability was shown also for typed tuplc generating dependen-
cies. Finally, herc and in [G1.2] unsolvability was extended to projected join dcpendencies.
Projected join dependencies secm to be a very slight generalization of embedded join depen-
dencies, and wc believe that the unsolvability screw can be tightened that further. What about

embedded multivalued dependencies? That question still haunts and baffles us.

REFERENCES

[ABU] Aho, A.V., Becri, C., Ullman, J.D.;: The theory of joins in relational databases. ACM

Trans. on Databasc Systemns 4(1979), pp. 297-314.

[ASU} Aho, A.V., Sagiv, Y., Ullman, J.D.: Equivalence among relational expressions.

STAM J. on Computing 8(1979), pp. 2 18-246.

[Bern] Bernstein, P.A.: Synthesizing third normal form relations from functional dependen-

cics. ACM Trans. on Database Systems 1(1976), pp. 277-298.

[BMSU] Beeri, C., Mcndclzon, A.O., Sagiv, Y, Ullman, J.D.: Equivalence of relational data-

basc schemes. SIAM J. on Comput. 10(1981), pp. 647-656.

[BR] Beeri, C., Rissancn, J.: Faithful rcpresentation of relational databasc shcemes. IBM

Research Report, San Jose, 1980.

[BBG]

[BV1]

[BV2]

[BV3]

[BV4]

[BVS]

32

Beeri, C., Bernstein, P.A., Goodman, N.: A sophisticates’ introduction to database

normalization thcory. Proc. Int’l Conf. on VLDB, Berlin, 1978, pp.113-124.

Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. Proc. XP1
Workshop on Relational Database Theory, Stony Brook, June 1980. Also, Technical
Report, Department of Computer Science, The Hebrew University of Jerusalem, May

1980.

Beeri, C., Vardi, M.Y.: The implication problem for data dcpendcncies. Proc. 8th
ICALP, Acre, Israel, 1981, in Lecture Notes in Computer Science 115, Springer-

Verlag, 1981, pp. 73-85.

Beeri, C., Vardi, M.Y.: A proof procedure for data dependcncics. Technical Report,

Department of Computer Scicncc, The Hebrew University of Jerusalem, Dec. 1980.

Beeri, C., Vardi, M.Y.: Formal systems for tuple and equality generating dcpenden-
cies. Technical Report, Department of Computer Science, The Hebrew University of

Jerusalem, April 1981.

Beeri, C., Vardi, M.Y.: Formal systems for join dependencies. Technical Report,

Department of Computer Scicncc, The Hebrew University of Jerusalem, April 1981.

[CLM1] Chandra, A K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependencies

and their inference problem. Proc. XP1 Workshop on Relational Database Theory,

Stony Brook, June 1980.

[CLM2] Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embcdded implicational dcpendencies

and their infcrence problem. Proc. 13th ACM Ann. Symp. on Theory of Computing,

1981, pp. 342-354.

[Coddl] Codd, E.F.: A relational model for large shared data bases. Comm. of ACM

13(1970), pp. 377-387.

33

[Codd2] Codd, E.F.: Further normalization of the database relational model. In Data Base

Systems (R. Rustin, ed.), Prentice-Hall, 1972, pp. 33-64.

[Codd3] Codd, E.F.: Extending the database relational model to capture more meaning. ACM

[Fagl]

[Fag2]

Trans. on Database Systems 48(1980), pp. 397-434.

Fagin, R.: Multivalued dependencies and a new normal form for relational databases.

ACM Trans. on Database Systems 2(1977), pp. 262-278.

Fagin, R.: Horn clauses and database depcndencics. Proc. 12th ACM Ann. Symp. on

Theory of Computing, 1980, pp. 123-134. To appear in JACM.

[FMUY] Fagin, R., Maier, D., Ullman, J.D., Yannakakis, M.: Tools for template dependencies.

[GL1]

[GL2]

[MMS]

[Ri]

[Ro]

[Sc]

(SU]

IBM Research Report RJ3033, May 1981. To appear in SIAM J. on Computing.

Gurcvich, Y., Lewis, H.R.: The inference problem for template dcpendencics. Proc.

ACM Symp. on Principles of Database Systems, Los Angeles, 1982, pp. 221-229.

Gurcvich, Y., Lewis, H.R.: The word problem for cancellation scmigroups with zcro.

Technical Report TR-08-82, Aiken Computation Lab, Harvard University, 1982.

Maier, D., Mendclzon, A.O., Sagiv, Y.: Testing implications of data dcpcndcncies.

ACM Trans. on Database Systems 2(1977), pp. 201-222.

Rissanen, J.: Theory of relations for databases - a tutorial survey. Proc. 7th Symp. on

Math. Found. of Computer Science, 1978, pp. 537-551.

Rogers, H.: Theory of recursive functions and effective computability. McGraw-Hill,

1967.

Sciorc, E.: A complete axiomatization for full join dcpendcncics. J. of ACM

29(1982), pp. 373-393.

Sadri, F., Ullman, J.D.: Template Depcndcncies - A large class of dependencies in
relational databases and its complete axiomatization. J. of ACM 29(1982), pp. 363-

372.

[Val]

[Va2]

[Va3]

[YP]

[Zan]

34

Vardi, M.Y.: The implication problem for data dependencies in relational databases.

Ph.D. Thesis (in Hebrew), The Hebrew University of Jerusalem, Scp. 1981.
Vardi, M.Y.: Global decision problems for relational databases. Proc. 22nd IEEE

Symp. on Foundation of Computer Science, Nashville, 1981, pp. 198-202.

Vardi, M.Y.: The implication and the finite implication problems for typed template
dependencies. Proc. ACM Symp. on Principles of Database Systems, Los Angeles,

1982, pp. 230-238.

Yannakakis, M., Papadimitriou, C.: algebraic dcpendencies. 21st IEEE Ann. Symp.

on Found. of Computer Scicncc, 1980, pp. 328-332. To appear in JCSS.

Zaniolo, C.: Analysis and design of relational schemata for database systems. Techni-

cal Report UCLA-ENG-7769, UCLA, 1976.

