
EA—————— ete. Merent. —— ere eee. -
.

~D-AL19 439 TA nl UNIV LR DEPT OF COMPUTER SCIENCE +76 9/2. UP TIVAL FONT CACHING,(UD

| MAR #82 D HR FUCHSY UE KNUTH NOOODL4=A)~-K=-028Y
UNCLASSIFIED STAN-CS-R2-901 : NL

| + —! r -

N |

|

Waa

larch 1982 (70 Report. No. STAN-CS-82-901

R— Optimal Font Caching }

a by
| David R. Fuchs

Donald F. Knuth

1 Department of Computer Science 3

q- Stanford, CA 94305 2

z > /ROVED FOR PUBLIC RELEASE; DISTRIBUTION UALIMITED iB

ll E & wars

82 09 21 066

— | | CaaTEI: an: Sear |

| Optimal Font Caching

j |
by David R. Fuchs and Donald E. Knuth

]

(.

| Computer Science Department
Stanford University |

Stanford, California 94305 |

Abstract. An efficient algorithm is presented for communicating lctter-shape information from

a high-speed computer with a large memory to a typesetting device that has a limited memory.

The encoding is optimum, in the sense that the total time for typesetting is minimized, using a

model that generalizes well-known “demand paging” strategies to the case where changes to the 3

cache are allowed before the associated information is actually needed. Extensive empirical data

shows that good results are obtained even when difficult technical material is being typeset on a

machine that can store information concerning only 100 characters. The methods of this paper 1

are also applicable to other hardware and software caching applications with restricted lookahead. 3

Keywords: Cache memory, data structures, lookahead, optimum allocation, prepaging,]
typesetting, data reduction,

. Cots CRRA |

INSPESTED BAe —
2 ee, n® a0, OF

This research was supported in part by National Science Foundation grant IST-7921977, by National Lo
. Science Foundation grant MCS-77-23728, by Office of Naval Rescarch contract N0O0014-81-K-0289, and by |

| the IBM Corporation. Reproduction in whole or in part is permiticd for any purpose of the United States Co

government. _

I SE Eat | oT oC oo Somer) NB | LTA RSRETRS) 4

-,e,—————eeeeee ———————————————— |

| 1. Introduction. | . | |

1 | The purpose of this paper is to study a data-reduction problem that arises when computers |
3 are applied to phototypesetting. A page that is printed with modern typeselting equipment may

: | be regarded as a gigantic matrix of 0's and 1's, where 0 represents a blank space and 1 represents
g . ink. For example, the parlicular machine used in our experiments has approximately 19,000,000 |
§ such bits per square inch; therefore a typical page of technical text from a book like [4], which was

! printed on that machine, is essentially a matrix of more than 727 million bits. This data must be
reduced by more than three orders of magnitude in order to be transmitted from the host computer

A to the typesctter at a rate of 9600 bits per second, if the page is to be finished in less than two
: minutes. Typical methods of data compression are considered excellent if they achicve a reduction

factor of only 50 per cent, so it is clear that special techniques are necded if high-resolution digital

3 printing is to be efficient.
‘3 The main factor accounting for this thousand-fold reduction in the number of information |

bits is, of course, the fact that pages are composed from letters that have comparatively simple

: . shapes. For cxample, a typical character that measures 5 X 10 printer's points, where there are
: 2 72.27 prinler’s points per inch, has a digital pattern occupying about 182,000 bits on the machine
i mentioned above, but this pattern can be specified salisfactorily with about 250 bytes = 2000 :

3 bits. | 5
dé Even with this reduction, however, there remain about 2500 characters per page, so about
y 2 5,000,000 bits still nced to be transmitted. The problem would be simple if the typesetter knew 3
8 all of the digital patterns for all of the letters, since we would merely have to transmit letter 3

N codes. But typical technical texts involve a variety of different fonts and special symbols, and -
i many typesetting machines have only a limited local memory for the storage of character patterns. f

V. Therefore the character shapes must be transmitted from the host computer to the typesetlter, and 2
: Fe the only way we can compress Lhis data is by using the fact that most characters are used again 1
i and again. :

| For example, suppose that the typesetter has cncugh memory to record the shapes of 60 :

. 3 characters. This is just barely enough for the leiters a to 2 and A to Z, but we also need to deal :
) : with numerals and punctuation marks, together with italic and bold variations, and with changes 4

| - in size and style. The standard industrial practice has been to solve the sise-change problem {i
bi by doing simple scaling operations, so that “8-point type” is obtained as an 80% reduction of]
By “10-point type”; but typographers are very unhappy about this compromise, because the results F
4% were much better on the old hot-lead machines when every point sise was designed separately. ;
os " Fortunately it turns out that individual lines of text hardly ever need a great variety of characters
a even wilhout the compromise; therefore the Lypesctier can use its memory as a “cache” for 60)
. characters, including the 30 or so Lhatl it needs on the current line. !

The typesetter might also be able to accept a few more character descriptions that will be g

§ needed on subsequent lines, at the same time as it is setting type on the current line; these new 8
x characters can replace “dead” ones in the cache, and with luck the cache will be up to date at all
k times. For example, if there is ime to make five adjustments to the cache on each line, 30 new |
I. characters can be brought in when a new font is desired, iT the changes begin six lines in advance.

By looking ahead to sce which characters need to be sent in the future, the host computer can |

, eee

BE sy TR EE RAY MBO oo WF EO A753 mirArbabiB. © AA rE OO El ete ent e+ Pett. ree rt BA Fa

control the typesetter’s cache contents in an cfficient way. The purpose of this paper is to examine

| suitable algorithms by which the host computer can exhibit such clairvoyant behavior, and to
| study how much is gained by such techniques.Section 2 presents a theoretical model of a general cache allocation problem, and Scction 3

derives an optimal allocation strategy for that model. Data structures and algorithms by which the
optimum strategy can be computed with rcasonable cfficiency are described in Sections 4 and 5.

The concluding section presents empirical results that illustrate what can be achieved.

Although this paper is oriented towards a particular application to typesetting, the reader

is encouraged to speculate about how the same methods could be ap; lied to the design of ultra- :
high-speed computers. One can imagine a pipelined arithmetic unit, playing a role analogous to :
that of the typesetter, taking orders from another computer, whose function is to preload a cache 2

memory with numeric data, based on the knowledge of a particular algorithm's control structure. ;
Instead of relying on the conventional architecture of a general purpose computer, one could apply ¢

the methods of this paper to a large class of important computation-intensive algorithms whose i |
control structure is predictable. | i

2. A cache-allocation model.
Consider an alphabet of m possible characters that might be kept in a cache that can hold at 1

| most s characters at once. We wish to implement a sequence of commands of the following three ;3 L(s) Lock character ¢ in the cache, where 1 <1 < m. i

| U(s) Unlock character s. |
14 G Get any character and place it into the cache. F

: Such a sequence is called a “job.” Character § is said to be “wedged” at a certain point of a job

: if more L(i) commands than U(s) commands have occurred before that point. We assume that 3
) the U(s) command appears only when character ¢ is wedged, so at any point in reading through a ; k

| job, we will ncver have scen more L(t) commands than U(t) commands for any ¢. Furthermore we X |
i assume that there are never more than # different characters wedged at any one time; a job that |
3 does not meet this requirement needs a larger cache. |
i Initially the cache has s empty slots. When an L(s) command occurs and character § is not { |
a present in the cache, we say that there is a “fault.” In the case of a fault, the typesctter comes

to a halt while character 1 is brought into the cache, cither going into an empty slot or replacing
| some unwedged character. Similarly, at the time of a G command, any character not present in | .

the cache can be brought into a cache slot thal is nol occupied by a wedged characler. In this]
B case, we do not consider that a fault has occurred since the typesetier is still busy doing a previous

line. Thus, G commands allow us lo anticipate L commands so that future faults are avoided. It
. is also possible to “pass” a G command, leaving the cache unchanged, if this seems more desirable

than bringing in a new character. |

BE Note that a character must be in the cache whencver it is wedged, because an L(s). command. co
guarantees that character § is present, and because no character can be replaced until it has become Ls

1 uawedged.
I 3 |

i : a PRI ag 4: 2071 iat Vos<TR =Sh.a I

EEE ——————————————————p~ge

This modcl is more general than the “page reference” model that is usually used to study
$ cache behavior in a virtual memory system. The page reference model is the special case in which

: there are no G commands, and where each L(t) command is immediately followed by U(s). Our
| model also assumes that we know the entire sequence of commands in a job before the job is begun. |

! | In our application, the typesctting of a full line must operate in real time with no waiting |
for faults. Thus, a line of type containing the characters §133...¢, might be represented by the |

; command sequence

] L(s1) L(ss)...L(s,) G* U(8,) U(33) . . . U(5,),
if there is time to bring into the cache as many as k characters for future lines while the line is being :

typeset. The actual typesetting of the line starts after the command L(s,) has been completed. i
This sequence of commands ensures that all characters nceded on the line will be present in the 3
cache before typesetting takes place. The L instructions for line (fs + 1) are not begun until the ;

T typesetter has completed line t, so that no characters needed on the line will get over-written ;
] before the typesetter is done with them. :
: The model does not specify what character is replaced at the time of a fault or of a G :

command. A “caching strategy” is a sel of rules that govern what happens to the cache at such 3

3 times. A “strategy trace” is the output of a strategy when it is fed a job; in other words, it is a
1 list that records, at each G and L command, which character, if any, is to be brought into which
£ cache slot.

J 3. An optimum caching strategy. ~~
J In this section we shall see that an intuitively plausible strategy for cache allocation actually
, minimizes the total number of faults, among all possible strategics for a given command sequence. |
1 . (This generalizes Belady’s well known “MIN” method in the page reference model {L,2,5).)
i The strategy is simply this: |

] A 1) Whenever a character is brought into the cache, place it in an empty slot, if’ possible;
FA otherwise let it replace an unwedged character i that never appears in a subsequent L(t) A.
3 command, if possible; otherwise let it replace the unwedged character ¢ in the cache whose i.

1 next appearance in an L(s) command is as late as possible. Since at most s characters ,
3 can be wedged at once, onc of those three cases must always hold. :

1 2) Whenever a G command appears, bring in the charactor 4 not currently in the cache, X
| whose next appearance in an I(t) command is as soon as possible, unicss all unwedged :

E characters currently in the cache will be locked by L commands that occur between the]
+ current G command and this L(i) command, or unless no such character i exists. 4

o When a character is brought into the cache by rule (3), its cache slot Is selected by to rule (1). : B
H The case in rule (3) whore no such § exists occurs when all the chacters needed by the rest of the 3
; Job are already in the cache. | |

| |

—_ te te ie es SS a a

4

1 | To prove that this strategy S is oplimum, we shall compare its trace on any job to any other
3 possible trace for the same job, and show that S's trace leads to no more faults. More precisely,
¥ | let S; be S's trace for any job J. If X; is different from S;, we shall construct a trace X/; |
; : that has no more faults than X; at any lime, and X’; agrees with S; longer than X; does. In |
3 other words, if X; agrees with S; on the first { — 1 commands but differs from it at command |
] number ¢, then X'; will agree with S; for at least the first commands. Repeated application of

this argument will show that S leads to the smallest possible accumulated number of faults at all |

3 The construction we shall define makes use of a “trace completion subroutine”. The input to |
the trace completion subroutine consists of a job J, a trace W; that implements J, anda partial

trace Y; that is only defined through the (p — 1)th command of J. The subroutine will complete
4 the definition of Yj, such that it is at least as good as Wy. The [ollowing conditions must hold |

| just after command (p — 1) for both Wj and Y; (omitting the implied subscript ‘J’):

a i) There are characters w and y such that the cache for W has the form {w} UC and the cache
3 for Y has the form {y} UC, for some set of characters C, wherc w ¢ C and y ¢ C. In other ;

words, the caches are identical except for at most one element.

3 ii) Trace W has had at least as many faults as trace Y. |

3 iii) If the sequence of future commands causes w to be lacked belore y, where w and y are the |
3 characters mentioned in condition (i), then W has alrcady had more faults than Y.

E The second condition says that Y is no worse than W. The third condition says in effect that
gr character w cannot be a “better” thing to have in the cache than y, unless Y can alford one more {
3 fault without falling behind W.

3 | If these three conditions are satisfied, we shall say that “relation (w,y) holds for (W,Y,J)” at 3
3 the current position in the job. The trace subroutine is called only when relation (w,y) holds for |
1 (W,Y,J) at command p — 1. The subroutine procceds by figuring out what Y should do for the
3 pth command in order to preserve these invariant conditions. In other words, if relation (w,y) N
E holds before the pth command of J, the subroutine shall define the next step of Y so that }
3 relation (w’,y’) holds after the pth command, for some w’ and 3’. The subroutine can now do :
. the (p + 1)th command, and so on, until Y has been defined for all of J. Since the invariants still :

E " hold, we know by (it) that Y is no worse than W, so the subroutine docs what was claimed. -
IE Now to define Y on the pth command. We know that relation (w, y) holds. If w = y, so that 3
| 4 both traces currently have the same cache contents according to condition (i), we simply let Y be |

: the same as W on command p. Relation (w,y) still holds. (In this case, the next iteration of the =.
1 & subroutine will have w == y, so the (p + 1)th action of Y will again be defined to be the same as i
4 that of W by this rule, and 50 on, so from this time henceforth Y is the same as W.) |

E On the other hand if w o£ y, note that both w and y must currently be unwedged, since w 1
{3 does not occur in Y's eache and y does not appear in W's. The following subcases arisc in defining

1 |

~ - | I ie gE ae Cen han enggni Be dy - g

|
! a) If the command is L(y), so that a fault occurs with trace W, suppose W replaces z by y.

| Trace Y has no fault, so it can’t bring a character into the cache; but after the command
| L(y), it is easy to check that relation (w, 2) holds, because condition (ii) implies that W has

now had more faults than Y.

| b) If the command is L{w),so that a fault occurs with ¥ but not W, then Y replaces y in
its cache by w. This replacement is legitimate, because y is currently unwedged. Afterwards

| relation (w,w) holds, since condition (iii) implies that this case can arise only if Y could afford
at least one fault. :

| c) If the command is L(s) where ¢ 7 w, § 3 y, and § € C, a fault occurs in both traces. If W { 8
replaces w by 1, then Y replaces y by 1; relation (5,1) holds. Otherwise, if w replaces z by 4 | B
for some z € C, then Y also replaces z by 1, and relation (w,y) still holds. | B

d) If the command is L(s), where 1 € C, or if it is U(s), no fault occurs for cither W or Y, and

: relation (w,y) rcmains true. :

i e) Il the command is G and il W replaces w by v, then Y replaces y by v, and relation (v, v)

| holds. oo | ;
; f) Finally, if the command is G and if W replaces z by v for some z € C, or if W does nothing,
1 then Y likewise replaces z by v or does nothing. Relation (w,y) still holds. 1

3 This completes the definition of Y from W, except in one degenerate case: Suppose that the 3
3 command is L{y) and that W brings character y into an empty position in its cache. This is a |
b variation on case (a), where Y cannot braing in a character because no fault has occurred. We can

avoid this situation by assuming that the set C in condition (i) always contains s — 1 elcments,
i i.e., that there are no empty positions. For we can [ill each empty position with distinct dummy i |

characters that do not appear in any cornmands; Lhis convenlion makes the proof go through.

] Now that the trace subroutine has been specified, we shall use it to prove the optimality of

strategy S. Suppose Xs is any trace dillerent from S; for some job J. The first difference occurs

: at the tth command in the traces. We will create a trace X’, to be the same as S; up to and |
including the {th command, such that relation (z, y) holds for (Xs, X’;, J), for some z and y. We

ean then call the trace subroutine to complete X’; such that it is at least as good as X;. Then | |
we will be asie to repeat the process with Sy and X/,, getting X%, which is like S; through the i
(2 + 1)th command and atl least as good as X’, (and therefore at least as good as X 7), and =o on. |

- The Bnal result is that S; is the same as X(=) for some n < length(J), and S; is no worse than |
| Xs. Since J and X are arbitrary, this will prove that S is optimal. (Once again, we will drop

| the J when it is understood.) |
So the only task left is to show that if X’ is defined to be the same as S through command ¢, |

| then relation (3,2’) holds for (X, X’,J) for some = and 2’. Just before command ¢, both X and.
X' have had the same number of faults, and both their caches have the same contents. The th oo

command must either be an L command that canscs a fault, or a GC command on which S$ and X |

|

BE PERRET PRA TE SS SNR LT Erpape AR SX pep sn |

i 8 |

! 3 didn’t both pass. Suppose first that command # is L(z), where i is not in cither cache at time ¢, and
q X replaces character j by i while S replaces character k by i. Relation (k, 5) holds for (X,X’,J) |
a because rule (1) guarantees that character k is not locked before character j.
3 Similarly, if the tth command is G, and if X passes while S replaces k by z, relation (k, 2)
| holds for (X,X’, J) since rules (1) and (2) imply that k is not locked before z. And if X replaces

3 7 by w when implementing a G command, while S passes on that G, relation (w, 5) holds, since
i rule (2) ensures that w is not locked before j.
3 The only remaining case is that the {th command is G, and that trace X replaces 5 by 2
E while S replaces k by w. If 5 = k, relation (2, w) holds for (X, X’, J) because of rule (2). On the
y other hand, if § #£ k, we have to invoke the trace subroutine twice before obtaining a trace that

| dominates X and agrees with S on commands 1 through ¢: we first let Z be a trace that replaces k
i! i by 2, so that Z is a mixture of X and S. At this point, relation (k, 5) holds for (S, Z, J), because

of rule (1). Completing Z with the trace subroutine, we now have a trace that is still different

fr from §S in the tth command. This command, however, is a G command where Z replaces k by 2,
4 while X’ replaces k by w, and so relation (2, w) holds for (Z, X’, J).
: We have now shown that it is always possible to set up X’; to obey the invariant conditions,

£ : and this finally completes the proof that § is optimum.

% 4. Implementing the optimum strategy.
d Let m be the-total number of possible characters, let 8 be the size of the cache, and let n be ;
E the number of commands in job J. Our goal is to have an algorithm that computes the optimal }
B® trace Sy. Job J's commands are in arrays op and char before the algorithm begins. If the jth ;
i command is L(s), U(s), or G, then . | |
4 opljl="L, char[j] =31,

| A. or oplj] =U’, char[j] =1, | |
3 or oplj]='G, char [j] = undefined,

4 respectively, for 1 < j < n. For the present we shall pretend that we have enough memory to :
3 store all n of the commands at once. Co
of The algorithm records the resulting trace in the cache and char arrays. If cache[j] > 0,

4 - step j of the trace says to bring character char[j] into cache slot cache[s]; and when cachelj] = 0, |
© then no character is to be brought into the cache during step 5. Thus, if a fault occurs at the PL

§ jth command, the algorithm should set cache[j] to the cache position that S allocates to char [jl], |
3 where 1 < cache[j] < »o. If op(j] = ‘G’ and if strategy S replaces cache position k by character ¢,
A the algorithm should set cache[j] — k and cher[j] « c. In other cases the algorithm should set

J cache|[j] — 0. Note that the char array is altered by this algorithm, but only in G commands. |
3 Our algorithm works with two pointers p and q, where 1 < p < ¢ €£ n+ 1. Pointer p
y represents the current position where we are defining the trace; we shall say that the trace has been :

defined “up to time p,” thinking of a ciock thai advances when p increases. Pointer ¢ looks ahead :

i to the first L command that locks a character nol in the cache at time p; if no such commands |

. i

exist, we have ¢ = n + 1. For cach character 1 there are two values

Se lots} {5 if 1 is not present in the cache at time p;slots] =

| the cache position of s, otherwise.

usagei] = the number of Ll] instructions before command gq minus the

number of U|¢] instructions before command p.

For cach cache position k < s we will have

, if slots] = k;

contents [k] = {7) oo 1] ’0, if position k is empty.

| Suppose that character 1 appears in r; different “lock” commands, numbered j;; < 7:52 <

| +++ & Jir;. A preliminary pass over the char array suffices to fill two auxiliary arrays first{i] and
next]j], for 1 <i <m and 1 <j < n, so that |

first[s) = jar, neztl[i] = ja, ..., nestfji] =n +1.

If »; = 6, we can set first[t] = n + 1, although this value won’t be looked at so it really doesn’t

| matter. :
| Initially p = q = 1, usage] = slot[s] = 0 for 1 < i < m, and contents[k] = 0, for :
| 1 < k < s. The initial value of first[i] will be j;, as stated above; but as the algorithm progresses, :

| firat[i] will be updated so that it is the smallest element > g of the set {j;1,7¢2,...,7ir,}. For ;| convenience, we also set first [0] = n+ 1 and usage[0] = 0, so that 0 is essentially a character that :
| never appears. ;1 One more thing completes this family of data structurcs: There is a priority queue Q of all

cache positions k such that usage[contents[k]] =0; these positions are ordered by first|contents[k]].
Initially Q contains all positions {1,..., 8} in arbitrary order. Any suitable scheme for implement-

| ing a priority queue can be used for Q; if s is small, a sorted linear list will be adequate, while if

8 is large a method that requires at most O(log s) steps per operation might be most appropriate. :

Note that Q contains all cache positions whose contents will be unwedged at all times between p

and q inclusive, sorted in order of the first time they will be locked after time gq. Lo

The algorithm proceeds by advancing p one step at a time, first moving ¢ as far as it can

ahead of p:

) : while p < n do |
} begin integer i; comment bring this character into the cache next; !

‘ {move q forward until reaching L{s) with s not present);

: (process command p, attempting to bring in ¢); |
; pe—p+1; a

r end. | |
The subalgorithm that moves g forward will set ¢ to the character that should be brought into the

f cache next; this is the character not present at time p that is going to be needed soonest. If no
! such characters exist, we will have g =n + 1 aad ¢ = 0:

: (move ¢ forward until reaching L(f) with ¢ not present) =

begin i + 0; |
| while ¢ < n and i = 0 do

if oplq) # ‘L’ then q — q+ 1

I else begin i « charg);
1 if slot[s] > 0 then

| begin first[i] «— nezt|q); |
1 -if usage[i] = 0 then delete slot[i] from Q;

usage] = usagefi] + 1;
q+ q+ 1; 1 «0;

end; |

] end;

3 When deleting slot [i] from @, it may help to know that slot[i] is at the rear of Q; ¢ is the character
| that would currently be chosen last for replacement in the cache on the basis of priority since it

has the minimal value of first[contents|i]]. |

The processing of command p has two main components, depending on whether the command
| is for unlocking or bringing in a character:

1 (process command p, attempting to bring in t) =
| begin cacke[p] + 0; comment this value may be changed later;
: if opp] = ‘U’ then (unlock char|p])

else if 1 > 0 and (op[p].= ‘G’ or p = gq) then (try to bring in ¢ and advance q)

| The first of these is a simple update to the data structures: |
(unlock char(p]) =

begin integer j; comment unlock this character;

j + char|[p];

| usages] + usage[j] — 1;

if usage(;] = O then insert slot|j] into Q with key first[];
8 end. |

The other operation is the most interesting:

(try to bring in § and advance gq) =
if Q is empty then

begin if p = q then report overflow error;

end

else begin integer k; comment change this cache position; Co
delete k from Q with maximum first[contents([k]]; |
cache[p] — k; charp| + i; |

siot{contents[k]] — 0; slot[i] — k; contents|k) + i; : |
first[s] «— nest|q]; weagel] — 1; gq~q +1; |
end;

| SE 9 |

; Note that if p = ¢, we have opp] = ‘L’ and a fault has occurred. An overflow error is detected if
i p=gqand Q is emply, since this means that the pth command is trying to lock some character
; not in the cache, while 8 other characters are already wedged.
) It is straightforward to verify that the operations preserve the invariant relations we have
B stated for the data structures, and therefore that an optimum strategy § is being found.

: Note that the running time of this implementation is of order m + nlogs. If a lot of G
commands are present, the pointer ¢ tends to be quite far ahead of p so that comparatively few

¥ characters in the cache will have zero usage; thus @ will not contain many entries, and t’ running
time will be essentially linear. Thus, additional G commands will make the algorithm - er, even

though they cause it to find the optimum over a larger space of possible strategies.

: 5. Refinements to the implementation.

i] The algorithm of Section 4 can be modified in various ways to improve its efficier.., and to
take account of practical constraints.

’ In the first place, the running time will be improved if we realize that p usually incrcases
£ several times before g moves. If ¢ > 0, so that op[q] = ‘L’ and char|gq] = 1 necds to be brought
| in, pointer q will stand still until the code (try to bring in ¢ and advance gq) is actually executed.

. Therefore the main loop of the program can be reorganized with a loop on q followed by a loop
x on p followed by an operation that increases both p and gq.
j In the second place, the fact that n is large means that it is undesirable to have a separate
. array nezt[j] for 1 < j < n; this additional array limits thc number of commands that can be

accommodated. By looking at the way this algorithin uses next, we can sec that the nezt and |

char arrays can be overlapped at the expense of a (shorter) array second(s] for 1 < 7 < m. ;
The new conventions arc as follows, if the “lock” commands following time ¢ for character ¢ are :

Ja < ooo< Jas

If rg =0: firsts} =n +1, second[s] = undefined. | |
fr;=1: first[t] = ja, second[i) =n +1, char[ju]=1.
Hri=2: firstfs] = jiu, second(s] = jis, char{js1) =1, char{jia]=n+1. |

fr; 23: firstli] = ja, second [i] = ji, char(ji1] = 3, char[jia] = jis,

cies char[iy,1) = Jer, charfji]=n+1.

The operation ‘first|i] + next[q]’, which appears twice in the algorithm of Section 4 at times when
vr; > 0, is now changed to the following code:

begin integer j;

j + second[i); firotli] ~ j;
if 5 < nn then |

begin seconds] + char(j]; cher(j] « s;
end;

end,

In the third place, we must face the fact Lhat jobs generally have more commands than could

possibly be held in our computer's memory. Rather than having the algorithin read in an entire

El |

a .

|

job, figure out the cache trace and put it into the cache array, we will instead regard the cache |
allocation algorithm as a corouline that does the caching “on line” as it reads the commands. In |

| other words, if we can store only ng commands in memory at once, we would like to have an |
| algorithm that will have read no commands ahead of the one it is aclually implementing at any |
| given time. Thus, when the coroutine is called on to provide the value of cachelz], it has elements
: z through (z+ng —1) of the char and op arrays in cyclic bulfers in memory. The coroutine figures

| out what to do for step z, and then it reads in command (z + ng), over-writing op[z] and char[z].
When lookahead is limited to ng future commands, we might not discover a truly optimum

trace. But the only errors we make would be to remove certain items from the cache in a different

order when those items are not used at all during the next ng steps. If ng is large enough compared |
to the cache size, it is highly likely that all such items will leave the cache anyway, even in an
optimal trace; so a limited-lookahead method will usually be no worse than the optimum. Indeed,
our proof of optimality in Scction 3 shows Lhat a variety of strategies will usually perform no worse

| than strategy S.

Implementation of the coroutine philosophy means that we need to update the first, second,
: and char arrays on-line instead of assuming that they have been initialized by a preliminary pass
| over all the commands. For this purpose we need another array last[i] for 1 < i < m, containing
| the value of j,,,, if r; > 0; we leave last[:] undefined if 7; == 0. Furthermore some other sentinel

value must be used instead of n + 1 in the first and second arrays, since we don’t know what n

is. We shall use 0; the test ‘5 < n’ above should therefore be changed to ‘5 > 0°.
The algorithm now starts by filling up the op and char arrays with the first ng commands in

the job, the first, second and last arrays are set up to reflect these commands, and p and q are
set to 1. The entire data structure must be kept up to date as p and q change. For instance, as

p is incremented to 2, the algorithm should put command number ng + 1 into op[1] and char|l],
and update the first, second, and last arrays to reflect this new command. Thus, the statement
‘p+— p+ 1’ is replaced by:

| (advance p) =

begin (op [p], char|p]) — next command in the job;
if op{p] = ‘L’ then

begin integer 1; i + char[p];
if first{i] = 0 then

= begin first[i] « p; second |i] + 0; |
| | (if slot[i] € Q then change its key);
+ end |

gE else begin char(p] « 0;

if second[i] = 0 then second|i] — p
else char|lastfs]] — p;
end;

last[t] + p;

| if p==1ng then p«~ 1 else p — p+ 1;

Re eterene ———eewee TON,

rf ———— rr——————————————————o_o

|.

| 4 The statements ‘q « ¢ + 1’ are changed. to:
ifg=nygthenge«— lelseq+—gqg+1;

| A few other changes to the code are required to keep q from incrementing when it gets ng commands

| ahead of p.
A “dead” character is onc that, as far a we can tell from our limited lookahead, will never

again be used in the job. Thus, character 1 is dead if and only il usage{s] = 0 and first[t] = 0.
It is convenient to split @ into two separatc parts: @q, which is simply an unordered set of all

cache positions which are empty or contain dead characters, and the remaining part Q;, which
is a priority queuc ordered by the nonzero key values first[contents[k]]. These key values are to
be “circularly ordercd” in the scnse that we regard 2 > y if 2 < p < q < y, since z is one lap

ahead of y in such a case. Note that the operation (if slot[i] € Q then change its key) simply

removes slots] from Qp and enters it into @; with key p, which will be higher than any other key

currently in @;. The elements of Qg are all regarded as having higher keys than those of Q;.

It is a simple matter to fill in all the remaining details: to take care of shutting down the

. input operations when all commands have been read and to terminate the coroutine when all of
l the cache commands have been implemented.

” 6. Empirical tests. |
. The authors have used these procedures to drive an Alphatype CRS phototypesetter, producing

: such technical books as [4). In this application the characters in the cache have variable size, so
; the actual cache storage is allocated dynamically. When a new character is brought into the cache, |
. there might already be room, but on the other hand, it might be necessary to remove several |

x other characters before a hole appears that is large enough to accommodate an especially large ’
k newcomer. The number of G commands at the end of a line is not fixed, because it depends on
1 the sizes of characters that are actually brought in.

) In other words, the theoretical model studied earlier in this paper was a rather drastic

- simplification of the actual problem that had arisen in practice. As usual. But (as usual) the
‘| theoretical considerations provided valuable guidelines for a practical implementation, and by using

. an algorithm that is optimal or near-optimal under the simplifying assumptions, the authors were
4 able to achieve quite satisfactory results even though those assumptions were violated.
% ‘Indeed, it would almost surely be unfeasible to develop an optimum strategy that takes account

of all the details of the actual application, since the problem of optimum dynamic storage allocation

i is already NP-complete before we add the extra complexities of cache management. (See [3],
b problem SR2.) Instead of worrying about special schemes for dynamic allocation, the authors
A found that it was sufficient to replace unwedged characters sitnply on the basis of their priority,
x without regard to their size or to the prioritics or sizes of their neighbors. :

1 4 Figure 1 shows a sample text that was subjected to a variety of experiments discussed below.
| - This text had been used to debug the TEX typesciling system in 1978, and it also provided the
: 3 style pages in the design of [4]; thus iv represents a wide varicty of different things that happen in.
| : a 700-page book, compressed into about four pages. It involves the typesclling of 5211 characters, |
) E of which 578 arc distinct when size variations are taken into account.
i 12 |

CrA YA AEM TS £71 Smeg A AP patstA ra om AA AAS oAYB en +e mt 4 me erm ee. | Co

|

| The task of driving the authors’ typesctting equipment can be described in terms of the :
abstract model of Section 2 as the problem of implementing a sequence of commands having the

" following general form:
:

| Lock all characters used on line k;Tell the typesetter to start setting line k;
If time permits, issue G commands to bring in future characters; |

| Unlock all characters used on line (k — 1). |

We do this for & = 1,2,..., except that the pattern changes in special cases. The term “line” |

means a sequence of characters that are to be typeset at the same baseline; thus, a complex :

mathematical formula might actually occupy many lines. There is usually time to preload future
characters into the cache, because the time to transmit the information about what to set on line & |

is usually less than the time for the actual typesetting of that line.

Note that there are generally two consecutive lines wedged in the cache at once, since line (k—1) :
i isn't unlocked until after line & has been locked; this is duc to bullcring inside the typesetting

machine. In emergency situations, when the ordinary policy would overload the cache, line (k — 1)
N will be unwedged sooner and the controlling process will pause to make sure that the buffer is clear; :

1 the cache will also be repacked at such times in order to make all of the available memory appear in §
consecutive locations. Also, if the typesctter is still busy doing line k when the controlling process i |
begins to tell it ahout typesetting line (k + 1), the typesetter will stop taking commands until it }

4 is through with line k. Note that this allows characters from line (k + 1)’s G commands to be {
{ brought in while line k is still being typeset. 4.ine (k + 1)’s L commands that cause faults will not hy

entirely overlap, since the GC commands should account for most of the time that the typesetter
| spends on line k. |

Special actions occur at the beginning of a page: If the §lm has to move comparatively ¢
far in order to be in the proper position to start the new page, there is extra time to preload }
font information, hence the controlling process issues additional G commands. In particular, the :

| characters for the first lines of the first page will gencrally have been brought into the cache by
§ the time the typesctter is positioned at the top baseline.

y 3 Several dosen experiments were performed on Figure 1 in order to get some idea as to how |

(the algorithm performs under various conditions. The cache size was varied so that it would be
3 able to hold approximalely 50, 75, 100, 125, or 150 characters; we shall refer to these sizes as :

3 C50, C75, ..., C150, respectively. The speed at which font information could be transmitted was | |
: 3 varied so therc was free time to send cither an average of six new characters per line (i.c., about A.
g six G instructions after each line), or about 4.5 new characters per line, or no such characters; |

EK. in the latter case, no G commands are given, so the algorithm must minimise the total number |

| 4 of characters transmitted. We shall refer to these transmission speeds as G8, G4.5, and GO. The |
E | algorithm was also run in four modes: (i) with full lookahead; (ii) with internal memory cut back |
3 so that only about 12 lines of data could be accommodated at once; (iil) with internal memory | |
4 cut back to only about 6 lines; and (iv) with lull lookahead but with the priority queue decisions oo
3 reversed so that the worst possible cache replacements were made whenever the algorithm had to 3

~ rerreer mreeee

|

| take something from the cache. These four lookahead modes will be called Loo, L12, L6, and 1.0,
: respectively. Five cache sizes, three speeds, and four lookahead modes make for sixty combinations,

ha | and so sixty experiments were performed and the resulting numbers of Taults are shown in Table A. :

i Table A
FAULTS THAT OCCUR WIIEN TYPESETTING FIGURE 1

£

| GO G4.5 G6

C50 | 1881 1060 1040 1037 [572 268 268 254 [378 198+ 204 197.| C50 |

C75 1863 960 856 "834 | 389 91 76 69 | 146 35 31+ 32 | C75
C100 {1854 954 789 752 [353« 79+ 30 27 | 110 20+ 0* 3 | C100

C125 | 1821 941 786 699 | 381 83 26 12 | 22 22 0 0] C125 :

C150 | 1819 917 779 614 | 356 66 26 9 0s 22 0 0 | C150

(Asterisks denote “anomalous” values that are surpringly low.)

These results are quite cncouraging. Consider first the GO case, when no “frecloading” is :
| done: At least 576 faults must occur, since each distinct character must be brought in at least i

once, and the table shows that a caching strategy with lookahead is able to make sure that only a ;
few characters necd to be brought in twice. The number of faults under GA.5 is substantially less, ;
even for the unusually complicated text of Figure 1; and with G6 and a moderately large cache

the faults disappear entirely. | |
The starred entries.in Table A show interesting anomalies where a lucky combination of

circumstances led to fewer faults than would be expected. Consider, for example, the cases with

G4.5 and L8 or LO, where the cache size C100 turned out to be slightly better than C125. The

| reason was that these inherently nonoptimal strategies made better gucsses in the C100 case.

Another interesting cxample is the case G6 and C150, where the supposedly pessimal strategy "

LO actually did better than L.6. The reason here is that LO only pessimizes the choice of cache i
replacements. The other part of our algorithm, which looks ahead to find the next candidate for i

| G bringing in, remains optimum; and when there are enough G's, this part of the algorithm is
: strong enough to make the replacement strategy immaterial. On the other hand the L6 restriction [

B curtails the effectivencss of the G lookahead as well as the replacement lookahead, so L8 can come
| out worse. The 22 faults occurred at the beginning of Figure 1's page 3, where a conversion from

bo ~ nine-point to ten-point type takes place; L8 wasn’t prepared for so many changes all at once. | |

"4 The most interesting anomaly arose in the case C100 and G8, when the suboptimal strategy |
1 L12 actually turned out to be better than the supposedly optimal Loo! A careful examination of

what happened shows that this was a case of good luck for 1,12 and bad luck for Loo. It all started oo
when the typesctiing was going along routinely, about ten lines from the bottom of page 1; both |
Loo and L12 were doing approximately the same thing, but with minor variations so that their |

dynamic storage allocation patlerns in the font cache were quite different. Both strategies had |
succeeded in looking rather far ahead, and they were beginning to bring in the cighl-point upper- i

k case letters needed for the caption al the top of page 2. But when the “oplimal® Loo strategy had | |

i 14

|} successfully brought int the cight-point ‘OQ’ and ‘L’, its cache had no frec blocks big enough to bring
| | in the ‘S’. The restricted 1.12 strategy, on the other hand, had a fortuitous memory configuration

that allowed it to bring in not only the ‘S’ but also the ‘I' and ‘N’. This put L12 three characters

| ahead of Loo, and it retained a three-character advantage all the way through page 2 and the
beginning of page 3, where comparatively rapid font changes caused the lookahead to evaporate.

| Finally L12’s lead manifested itself on the line before (1) on page 3; three faults occurred when

| Loo had to bring in ‘W’ and the two pairs of quotation marks.

Note that L12 was almost never a great deal worse than Loo, in any of the cases, so it appears
that a restricted lookahead still makes a satisfactory approximation to optimal behavior. In the

authors’ application it turns out that there is enough core memory to look about 2500 lines ahead;

experiments show, however, that L.50 is essentially equivalent to Loo, thus the storage requirements |

| can be reduced greatly from what we originally thought would be necessary. |

Figure 2 shows a detailed trace of what went on in the experiment for case (G4.5, Loo, C125). |

The horizontal axis separates the 834 characters that were brought in during the time Figure 1 was

| being typeset; all but 12 of these were brought in during G commands, while the remaining 12 were

faults. The vertical axis represents the 314 lines in Figure 1. The graph shows two zig-zag paths,

where the upper one represents each character’s first use. Thus, the upper path is far above the ;

| lower path when characters are being preloaded inany lines ahead, while the two paths touch each :
| other when a fault has occurred. The lower path has a somewhat crratic behavior: occasionally we i

| find a horizontal segment on that path, representing a line that introduces many new characters. :
FE - (The worst cases are the line following ‘EXERCISES —Special set’ and the line beginning ‘3.3.3.3. ;
| This subsection doesn’t exist’, both of which required 31 new characters to be preloaded in order i

| to avoid faults.) The upper path, on the other hand, is more regular, because there is roughly the
same amount of time for preloading characters on each line. Variations in the upper path occur

i when the characters to be brought in arc especially large or small, or when the line being typeset f
is short (as at the ond of a paragraph), or when the baselines are far apart; but these changes are Co
comparatively minor.

f Sometimes the cache is full, so that the lookahead procedure stops and the current G com- |

i mands are not used. This is indicated in Figure 2 by the symbol ‘|’ on the upper path; the first 0
{ such incidents occur near the bottom of page 2 in Figure 1, and a more significant stoppage occurs |

during the big displayed equations near the bottom of page 3. |
| ‘Before developing the algorithms described above, the authors did a hand simulation on

5 some sample text using the assumptions (C100, Loo, G8), since these parameters appeared to |
j be appropriate for the typesetting equipment that Stanford planned to acquire. The success of
i caching with these parameters, in spile of the multiplicity of fouls needed to typeset difficult
4 technical material, encouraged us to proceed further. Two years later, after the hardware and |
- software were put into production, we found that G4.5 was more appropriate than G6, because
| time-sharing interfered with transmissions to the typosetter; however, this was compensated by

3 saving space in the typesetier software so that C125 was more representative of the actual cache |
bo sise. In fact, the new Alphatype model 400 arrived with additional cache memory, so that our Co
| current software corresponds to C156 and faults hardly ever occur.

3 Note that the strategy of Section 3 does not minimise the number of times a character Is |

ro he oo CenTE _ "a Inrrow———ailiadhSl = assis

ne i oh ———————————————

'. brought into the cache; it only minimizes the number of faults. For example, consider a cache of |
: size 2 and the job |

Co L{1) L(2) U(1) G U(2) G L(3) L(1) U(1) U(3). :

Strategy S will bring in 3 at the first G, then bring in 1 at the second; the alternative of passing |
| on the first G and bringing in 3 on the second would be preferable if we were trying to minimize |

| the number of brings.
Each time a character is brought into the cache and does not cause a fault, typesetting is not

| slowed down, but the amount of information that must be sent to the typesctter does increase, so

| it is desirable to try to minimize the number of times characters are brought into the cache. The
| algorithm of Sections 4 and 5 can be modified to “pass” a G if there are no dead characters in the j
| cache (i.e., if Qo is empty), provided that the lookahead pointer q is sufficiently far from p that it ;

| is reasonably safle to assume we will be able to avoid faults by acting on future G's. {
i For example, suppose lookahead stops whenever it would require the replacement of a non-

| dead character, provided that the algorithm has looked ahcad so far that the next character to be
1 brought in is 18 or more lines away from the current line being typeset. Let us call this variant

? U186. Then the algorithm may well be able to avoid rashly replacing characters that are not dead, :
1 by holding back until a character becomes dead, without seriously risking future faults. Figure 2 :
A shows 834 characters brought in when the parameters are (Loo, G4.5, C125); but if the distance }

3 between the upper path and lower path were constrained to be no more than about 18 or so, it is :
F. plausible to believe that we would end up bringing in characters fewer times, and we might even

3 be able to approach the optimum of 699 achicved in the case GO. The following data show what

happens for Loo, G4.5, and C125: -
3 Uco -U24 U6 US UO

i faults 12 24 24 26 105

A brings 834 831 796 761 725 |

5 With U18, there arc 39 fewer characters brought into the cache, at a cost of 12 faults.
N But Figure 1 is not a typical example. Therefore further tests were made on “real” data. The
i text of Section 3.5 of [4] is representative of the difl..ulties of a normal mathematical paper, so4 x it serves as a good indication what we can usually expect. This second test case, which amounts |
i A to 28 typeset pages, involves the sctting of 57912 characters, 660 of which are distinct. When
RB the algorithm was applied with parameters (Loo, G4.5, C125, Uoo) there were only 17 faults, and |
E these all occurred near the very beginning. The total number of characters brought in to do the |
| 3 whole job was 2745; and with the U168 heuristic, this dropped to 2131, while the number of faults
a remained at 17.

B 3 Several other experiments were made in the 3.5 file, holding all but one of the settings (1.00, |
3 G4.5, C128) fixed. When Loo was changed to L132, there still were only 17 faults; restricting further

y to L8 increased them slightly to 44. And when Loo was changed to the "pessimizing” LO, the result
| 3 was 17 again! Thus, the lookahead process appears to be powerful enough to achicve optimality |
ff without the refinement of the priority queue, when we consider typical data, provided that the G |

4 speed and the cache sise arc suitably large.

: u IEGPe i. ai SW 7 AR | eh eyee ge

eeemererrreee

| 3 As expected, the 17 faults vanished at speed G6. Reducing the speed to G3 increased the :
| number of faults to 85; these occurred only at the beginning and at Lhe switch to ninc-point type

for the excrcises. With speed G1.5 there were 248 faults, and with speed GO.1 there were 1144;

1 speed GO gave 1569. (This compares with

| G6 G45 G3 G15 GO.1 GO |

| 0 12 112 333 613 699

in the case of Figure 1.)
Increasing the cache size to C150 did not reduce the number of faults below 17. With a setting

| of size C100 there were 26 faults, while C75 gave 201. Size C50 was not quite large enough to hold

; all of the characters wedged in one of the nine-point lines; C52 gave 1406 faults.

We can summarize these requirements by saying that typical technical text can be typcset :
| with negligibly few faults provided that the algorithm of this paper is used in connection with the

following resources:

| i) A cache in the typesetter capable of holding about 125 character shape descriptions; |
ii) Time to preload about 4 characters per line without slowing down the typesetting process;

iii) Enough memory in the host computer to look ahead about 12 lines (i.e., about 750 characters)

i in the text to be typeset. }

1 [1] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,” IBM J
Systems Journal 5 (19686), 78-101. i

[2] L.A. Belady and F. P. Palermo, “On-line measurcment of paging behavior by the multivalued

: MIN algorithm,” IBM Journal of Research and Development 18 (1974), 2-19. :
[3] Michael R. Garey and David S. Johnson, Computers and Intractability, San Francisco: W. H.

Frceman, 1979. |

(4) Donald E. Knuth, The Art of Computer Programming Vol. 2: Seminumerical Algorithms,

| Reading, Mass.: Addison-Wesley, second edition, 1981. oo
| [5] R.L. Mattson, J. Geesei, D. R. Sluts, and I. L. Traiger, “Evaluation techniques for storage _

hierarchies,” IBM Systems Journal 9 (1970), 78-117 oo

}

2 | THY UISERTRNT FLY 31 i

fran Nt HAF WET TH Nt AT Myre dg

CrAPTER Tad Nr yAir !
Sep X reer ey X 1n'ae H

RANDOM NUMBERS “wets he war
hip AMEE Yel Ni? nae dab i

Agony whe FOREIrE SrENONEs! —— I
MORO Bf SPBPuUEg FONE Sugita

0, 9° Cowes, Mm & Up 87 BR EXERCISES
: = Ji vO NERA(1981)

i ® |. I Sophge Thi vin, art fv alliin 8 Porm Sg’ 3° fanfon, av wang&

There wonadd eame mpwisy Sulinfto osrrme Ht Jory a tunrtow suet vr DS 2p em
; 'o bunts maar 2 te arorrt 3 vert Bascotirs Soeony imple§ £ flr.)© = Tie vipsare n comiturisgs I meeting No a2 \| oti

Varih. ead Vier. Inttuyg
= SP Pu (YAY)

| New: ww PN, Noa” re >b

y What @ 1h» axitham, persed foncenahd prissabls in this aser®
2.1. WTRODUC TION IT. (0 Goametalit® the *Runint. mw (he ror due exelvoroc that Nau: Sohengsov

NUMBERS (20: are “chown 3: random” soe welyl m many $iflovoms hinds of Toe prevvait § vB of the wns :
sppheatom For enamipie .

a Suite. Wien a romputer i bring vard 10 sitters aot pral phenamens. 13) THE LINEAR CONGRLE TIAL METHOL 3 A
rengnm Bumbers ar tegquited 16 Make things rislimic. Simylsiten rover many Y
Soin, from 10 sug) of Acie? Pines Inher JUriclE sre selysct to rondony 3.3. GENERATING UNIFORM RANDOM NUMBERS) ;
collmofr so Operative. rerarch (where prople come int. my. oa sitpan IN THIS SECTION Weg shall ronsider vtvhads lar generating § wGurneeof random :
ARO Mera Tramingg. 35. vanbem real ausshers £. shdorndy Cinrihes betweenJere and :
be Samphag. h » shen impracuonl 0 examine all poasible case. Pm 4 Tendon ane Sinre0 vamos ar roprnomt3 19a] butier with Gh! SRE BrELILY we po

elipir ul prone eight 1S whet eas “IvPeral” Mebane, shell rr1anin: be generatingintegers XN, Ituwrty goreated Ame Luthier my. Le

ht # sot ram 10 vent » focipreel random-wember generar. This fun was traction oo :
FOMVAIngls Mpreveg GEN the Autier ween) Sens ago. when Ie svangred Fam X, m 3
10 treats o [aMamraliy gout privrsaer wang the following perulia? approach: will then lit hetweon pore and toe }

3 sate? X, thie gloomWey betweedbo change X10 the pamber should . i
b Che PNY 18 8 Suppieedly Tandem Arquinee. $2.1. Tow Linsor Compprunntiol Method i
'E Ki. Chup mumior of norstions; Sn 3° = 'X/10°. the mom sigaifionm Wy far Abe mast Bapuis? ralforn-humint graersion i we 10007 a1 special L
i 3 daisof X' Vo will everere sep KT shrough A 12. which our X so bo eneit of the falloving heme. wrteaneed In DH. Lohent? in 1940 vo Progr 3

E (rnirformwd wt vanous weivd gad wonderful vars. manly 1 «= § tin: Vat ond Symp. an LatpeSeaie Dngitel Colrulatim Machinery “Camtndps. Harvard 1
». we wil: apph randomizing transformationsos 7andem sumber of Lites. Universiny Pees. 1981: 141-186" We chose lowe “Tat” Sumter”:

] KIX Aeont® WY > 0. docromse by 190d return mop K3. #1 Y a 8. the o. he adver: m0
1 : 2itarvthin termites with A's Ue dived vandom® value § a. she multigher: 0am i" ;
KE The mara! of the wan @ thet ransom aitberr SHOU sot be gomroied £ he mereme: 6gecm E

snr. & Srna chowa of tondem. Same (heary should be wed. Xp. ww naning value. $< Ngam
; ! The dosirvd wqurnce of random rushers (Xo is then stained bn wii ne

: . . Xow: = igX, «c'madm. x20 12
LY-

: This a called 3 Foapr rengrumivia’seguriey.

Js ‘ a aad 324 lv w be the compuser’s word wie. Tie following pregraty ree.tuster the
wm ¥ 1 < kg p thw bingmial confirms (2) is divisible by 3 (Nose.A peeerahis- quaniny (8X = cimed v 10 seewrthmg sumilar:

2 110m of thee rest appears 1 sverioe 3.2.3-11is)} By Evier's thearem ouerene & LX Ane =X. x
| 4 134-25, 07" m1 imaduis =) boner) #0 viens of € ¥5 a AX =A8

att . \ as tA ow PA = FX "wr.
: OREhd ad & hed APY F
, Ton ; rithm mn IX i singly the foligwing: n ME sys tAmtbega]) (Cf open). [|

3 194 V.5 AL Ad Peal. We hove wm | = of" Jor aime Segrr g that in at & muitiphe of 3. Bh

i ADD Y.5 1; a Y, (verfiow passibie: the imamin! formley BJ PLY 3 Al dvhagey. 3 ==} r ’r

3 DTM Niobhwmi=~N § vote{lwre (0 Jvc$ That was on pase 20.1 we chip 0 page 8, 3; = =X, willsql# wih

; LE A. = * i ropratd spplieniion of Lemna P. ve bed thy
] ly " amps pr .%.! alae1:9 0 1edels pF.Ec -dumeasions! istegral "” The © war. ard 10 sxprost In wim of 0 = 1110 = 1100 0 nedule 7°

¥ Lol one LoJ oy = mnlj-1.0t (NM:

Tiwi Wigethr with 1254 npliem thas. far oll ¢ 2 6. wr have

: * waht 31 a EN. VATEIY (RPL 3 :
a ’ 3" S-. : & ape? ;

: TE TL ENE me. S502. This suboortiondosen't oniss. Finally. lui 5° 11s nom werem {
VE (Becase * * 3.24. whtr show 300 same mites. Oho wgr 8 p91 thet irpt 10 6 <A 3

: EXERCISES Souci! St) =P We TT : many WI =eITN 1
RY " ") vel -aemai an ame | :17. NMS Lt 0 Ao hast rend nomior. Fr 0S 8S 4 In wi =a «lp wife Kink -s

Puaro of aus [anf dr Sf - FR rx lie poli typ inside 150 Suitores 16 mupks Viwtn shading. *L 3 LTS LL -

| Stney bo write the decked Shbouth | 0oh 1 ww tn wy fed. © ro(-mm =e) a cr —— twas) »n. . tows ys 3 ol «tM, Ene ~INET oF
aI oid Sate be * rhe wm dora. AvunawisTN warbng Boe. 4

By 199 is egal ¢ .
= * Vu. Vole,

;)

| I.
|

y |

n- . . relAm ant a inl ge, pe pli ET ee
EE atbd * TE sea mgr Momma eres are oo . } ’ na ht ~ nil ee ; " <x RWI oo - . 4

vl Bp . , a .. . } - . Lam v "i gt hens ja pa Ww Ke - : FREE . | IF CL a ’ ") ’ k l |

theaee ceSS — I —— SE, - -

| PS ET PAA i rary rtm mri eee mb oreo mer comet ——— a : :

!
§
i
|

3

2.1. ISTRODUCTION : 1

NON :

® 12 =~
hh

Wy wormed | |
. Bich) Vay

- ~ '

Th gigerihm Ny

\

| - The© ant hard AY
| LL

| Tour tagebr wih - 35 .. ~.
3 N ~N

: hernr 16WWE ™

. \.
| 85.0.5 Tho swbmsrtion™er

't rm melp fume ~_

ae. .
v’ :

il 2 ’

2»
Go
»

»
Vv

so» .
D 1]

oe SN

Figure 2

13

