
October 1981 Report. No. STAN-CS-81-898 _

Also numbered:

CSL TR-222

Separability As A Physical
Database Design Methodology

by

K. Whang

G. Wicdcrhold

D. Sagalowicz

Department of Computer Science

Stanford University

Stanford, CA 94305

Separability As

A Physical Database Design Methodology

17 January 1982

i by

Kyu-Young Whang
Gio Wiederhold

Computer Systems Laboratory

Electrical Engineering Department,

Computer Science Department,
Stanford University,

Stanford, California 94305

and

Daniel Sagalowicz

Artificial Intelligence Center,
SRI international,

. Menlo Park, California 94025

Cees

TABLE OF CONTENTS

Table of Contents

: 1. Separability = An Approach to Physical Database Design 3

1.1 Introduction 3

: 1.2 Approaches and Assumptions 4
1.3 Query Evaluation 6
1.4 Cost Model of the Storage Structure 8
1.5 Design Theory 10

1.5.1 Cases without coupling effects 10
1.5.2 Cases with coupling effects . 15
1.5.3 Cases when restriction indexes are absent on one relation 19

1.5.4 Formalization 21

1.5.5 Update Cost 25
1.6 Design Algorithm | 25

1.6.1 Design Step 1 25
1.6.2 Design Step 2: Index Selection 217
1.6.3 Separability in Design Step 2 30

1.7 Extensions and Further Study 31
1.8 Conclusion 32

2. Estimating Block Accesses in Database Organizations ~- A Closed. Noniterative 33
Formula

2.1 Introduction 33

2.2 A Noniterative Formula 34

2.3 Error Analysis 35
2.4 Computational Error due to Limited Precision 37
2.5 Comments on Related Work 37

2.6 Application 42
2.7 Conclusion 42

Appendix A. Relationships between Relations 43

Appendix B. Equivalent Restriction Frequency of a Partial-Join 47

Appendix C. Computational Errors 33

- C.1 Comparison of Computational Errors 53
C.2 Computational Error in an Extended Range 57

References 59

SEPARABILITY-AN APPROACII TO PHYSICAL DATABASE DESIGN

1. Separability -— An Approach to Physical

Database Design

1.1 introduction

Problems of access path selection in large integrated databases can be approached from two standpoints.

Query optimization secks the optimal selection of access paths for a specific query being processed -given a

certain structure of the underlying physical database [SMI 75][PEC 75] [GOT 75] [BLA 76][YAO 79] [SEL

79]. On the other hand, design of a physical database is concerned with the optimal configuration of physical

file and access structures-given the logical access paths that represent the interconnections among objects in

the data model; the usage patterns of those paths; the organizational characteristics of the data stored in the

files; the various features of the particular DBMS such as available access structures (indexes, links, hashed

organization, clustering of records, etc.) [HSI 70] [CAR 75] [SCH 75] [SEV 75] [HAM 76][YAO 77] [BAT 80].

Throughout this paper we use the term access configuration to mean the aggregate of access structures

assigned to a relation or to the whole database.

Most past research directed toward optimal design of physical databases has concentrated on single-file

cases. This research must be extended to the design of the access configuration of multifile databases.

Although some efforts have been devoted to multifile cases [GAM 77] [BAT 80] [KAT 80], the approaches

employed fall far short of accomplishing automatic design of optimal physical databases.

In this paper we discuss the issues involved in designing the access configuration of a physical database so

as to minimize the number of disk accesses for queries and updates. Our approach is somewhat formal and

mathematical, deliberately avoiding cxcessive reliance on heuristics. Our purpose is to render the whole

design phase manageable andto facilitate understanding of the underlying mechanisms.

By analyzing an important set of join methods possessing the property we call separability, we shall prove

that optimal design of the access configuration of a multifile database can be reduced to the collective optimal

designs of individual relations. In this paper wc restrict the available join methods to this sct to make the

— 3 =

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

whole approach formally manageable. Extensions to other join methods will be mentioned briefly. The main

idea is to set up a basic design methodology in accordance with a formal method that includes a large subset of

practically important join methods, and then, using some straightforward heuristics, extend this basic design

methodology to include other join methods as well.

Section 1.2 introduces several key assumptions, while Section 1.3 describes applicable join methods of

interest. In Section 1.5, the design theory will be developed by using the simple cost model introduced for the

examples in Section 1.4. A design algorithm based on the theory will be introduced in Section 1.6.

Extensions of our approach are mentioned, briefly in Section 1.7.

1.2 Approaches and Assumptions

The design of an optimal physical database is complex for a number of reasons- two of which we shall

discuss here. First, we may have several types of access structures available as options. Although some

generalized formulas for determining access cost have been devised for certain kinds of file structures [HSI 70]

[SEV 75][YAO 77] [BAT 80], it is generally difficult to use them for the selection of optimal file structures

without an exhaustive search among all possible alternatives. It therefore becomes necessary to accomplish a

judicious separation of design steps and to develop interfaces that will minimize interactions among those

steps.

The second source of complexity addressed is the interaction among the access structures assigned to

different relations. There are various techniques available, especially join methods, for processing a query—

and the choice frequently depends on the access structures available on more than one relation. Therefore,

the processing cost of a query associated with onc relation depends upon other interacting relations. It is the

purpose of this paper to provide a mechanism for coping with these interactions during the design phase.

We choose a relational DBMS and start with the indexes and the clustering property of a single relation as

the initially available access structures. The link structure [BLA 76] will be included as an extension of the

basic result by using heuristics. Clustering of two or more relations, as in many hierarchical organizations, is

_ 4 —

SEPARABILITY -AN APPROACH TO PHYSICAL DATABASE DESIGN

not considered. We also assume that all TID (tuple identifier) manipulations can be performed in the main

memory without any need to perform I/O accesses.

The database is assumed to reside on disklike devices. Physical storage space for the database is divided

into units of fixed size called blocks [WIE 77}. The block is not only the unit of disk allocation, but is also the

unit of transfer between main memory and disk. We assume that a block that contains tuples of a relation

contains only the tuples of that relation. Furthermore, we assume that the blocks containing tuples of a

relation, which comprises a file, can be accessed serially. However, the blocks do not have to be contiguous

on the disk.’

In principle, we assume that a relation is mapped into a single file. Accordingly, from now on, we shall use

the terms file and relation interchangably. This does not mean, however, that we exclude the possibility of

storing prejoined forms of relations directly in the physical database. We believe this can be considered in a

separate refining phase after the basic design has been obtained.

We shall develop a simple cost model of the storage structure in Section 1.4, and shall use various cost

formulas based on this model. For convenience, we assume that the size of the available buffer is one block.

However, the theory we develop is not dependent on the buffer size, if we ignore the contention among many

transactions in the buffer pool at query-processing time. Not encorporated in our theory are either the effect

of the contention in the buffer pool and the scheduling algorithm.

We consider only one-to-many (including one-to-one) relationships between relations. It is argued in

Appendix A that many-to-many relationships between relations are less important for the optimization. Note

that here we arc dealing with relationships in relational rcprescntations, so that a relationship among distinct

entity sets at the conceptual level is often structured with an additional intermediate relation.

Finally, we are considering only one-variable or two-variable queries in this paper. For a query of more

For example, blocks of a file can be spread all over the disk while they are connected as a linked list or linked implicitly by a file map.

—-5 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

than two variables, a heuristic approach can be employed to decompose it into a sequence of two-variable

queries (These correspond to one-overlapping queries in [WON 76]).

1.3 Query Evaluation

The class of queries we shall be considering is shown in Figure 1-1. The conceptual meaning of this class of

queries is as follows. Tuples in relation R; are restricted by restriction predicate P,. Likewise tuples in

relation R, are restricted by predicate P,, The resulting tuples from each relation are joined according to the

join predicate R.A = R,.B, and the result projected over the columns a,...a.We shall call the columns that

are involved in the restriction predicates restriction columns, and those in the join predicate join columns. The

actual implementation of this class of queries does not have to follow the order specified above as long as it

produces the same result.

| restriction | restriction

| predicate Py | predicate P,
| | |

R, JOLN R,
| | R;-A = R,.B | |

| |

|

a;,a,.. .a,

Figure 1-1: General Class of Queries to be Considered.

Query evaluation algorithms, especially for two-variable queries, have been studied in [BLA 76] and [YAO

79]. The algorithms for evaluating queries differ significantly in the way they use join methods. Before

discussingthe various join methods, let us define some terminology.

Given a query, an index is called a join index if it is defined for the join column of a relation. Likewise, an

index is called a restriction index if it is defined for a restriction column. We shall use the terrn subtuple for a

tuple that has been projected over some columns. The restriction predicate in a query for each relation is

decomposed into the form Q1 A Q2, where Ql is a predicate that can be processed by using indexes while Q2

—6 —

SEPARABILITY -AN APPROACH TO PHYSICAL DATABASE DESIGN

cannot. Q2 must then be resolved by accessing individual records. We shall call Ql the index-processible

predicate and Q2 the residual predicate.

Some algorithms of interest for processing joins are summarized briefly hereunder (see also [BLLA 76] [SEL

9):

e Join Index Method: This method presupposes the existence of join indexes. For each relation, the

TIDs of tuples that satisfy the index processible predicates are obtained by manipulating the TIDs
from each index involved; the resultant TIDs are stored in temporary relations R,” and R,*. TID

pairs with the same join column values are found by scanning the join column indexes according

to the order of the join column values. As they are found, each TID pair (TID,, TID,) 1s checked
to determine whether TID, is present in R,” and TID, in R,". If they arc, the corresponding tuple
in one relation, say R,, is retrieved: When this tuple satisfies the residual predicate for R,, the

corresponding tuple in the other relation R, is retrieved and the residual predicate for R, is
checked. If qualified, the tuples are concatenated and the subtuple of interest is constructed.

o Sort-Merge Method: The relations R, and R,, are scanned- either by using restriction indexes, if
there is an index-processible predicate in the query, or by scanning the relation directly- and

temporary relations T, and 1, are created. Restrictions, partial projections, and the initial step of
sorting are performed while the relations are being initially scanned and stored in T, and T,,. T,
and T, are sorted by the join column values. The resulting relations are scanned in parallel and
the join is completed by merging matching tuples.

o Combination of the Join Index Method and the Sort-Merge Method: One relation, say Rl, is

sorted as in the sort-merge method and stored in T,. Relation R, is processed as in the join index
method, storing the TIDs of the tuples that satisfy the index processible predicates in R,. T and
the join column index of R, are scanned according to the join column values. As matching join
column values arc found, each T1D from the join index of R, is checked against Ry. Ifitis in Ry)
the corresponding tuple in R, is retrieved and the residual predicate for R, is checked. If
qualified, the tuples are concatenated and the subtuple is constructed.’

o Inner/Quter-Loop Join Method: In the two join methods described above, the join is performed
. by scanning relations in the order of the join column values. In the inner/outer-loop join, one of

the relations, say R,, is scanned without regard to order, either by using restriction indexes or by

scanning the relation directly, and, for each tuple of R; that satisfies predicate P,, the tuples of
relation R, that satisfy predicate P, and the join predicate are retrieved and concatenated with the
tuple of R,. The subtuples of interest are then projected upon the result.?

3n actual implementation, the combinations of join methods can be either coded separately or programmed to be dynamically
synthesized at query-processing time. A specific combination of join methods will be selected or synthesized according to the result of

the query optimization which, given a fixed structure of the physical database, will find the best evaluation method for a query.

*One of the advantages of this join is that it does not require scanning a relation in a sorted order. Furthermore, this method is often
better than the join index method if the number of qualified tuples retrieved from R, is small, making it unnecessary to scan the entire
join index for R,. On the other hand, if a large portion of relation R.,, satisfies the predicates, this method will cause repeated accesses of

the index tree-which will be more costly than a single scan of the index

—~ 7 —-

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

o Multiple-Pass Method: One of the relations participating in the join, say R,, is scanned, the tuples

are obtained, restricted, projected, and inserted into a data structure T,, whose size is constrained

to fit in the available main store. If space in main store is available to insert the resulting subtuple,
1, this is done. If space is not available, but the join column value in r is less than the current

highest join column value in T,, the subtuples with thc highest join column value in T, are then
deleted and r 1s inserted. Otherwise r is not inserted at all. After T, has been formed, R, 1S -
scanned by using an appropriate access path, and every tuple of R, that satisfies the predicate is
concatenated (if possible) with the appropriate subtuples in T, and the result projected. If there
are more qualified tuples in R, than can fit in the main store for T,, another scan of R, is done to
form a new T, consisting of subtuples with join column values greater than the current highest.
R, is also scanned again and the whole process repeated. This method is very fast if only one pass
is needed. But processing time increases rapidly when more passes are performed.

e Link- Based Join Method: This 1s conceptually similar to the inner/outer-loop join method, but it

takes advantage of existing links [BLA 76] between the two relations. The use of links will be
mentioned briefly as an extension of our basic methodology.

Let us note that, in the combination of the join index method and the sort-merge method, the operation

performed on either relation is identical to that performed on one relation-whether in the join index method

or the sort-merge method. We call the operations performed on each relation join index method (partial) or

sort-merge method (partial), respectively; whenever no confusion arises, we call these operations simply join

index method or sort merge method. According to these definitions, the join index method actually consists of

two join index methods (partial) and similarly the sort-merge method consists of two sort-merge methods

(partial).

1.4 Cost Model of the Storage Structure

To calculate the cost of evaluating a query, we need a proper model of the underlying storage structure and

its corresponding cost formula. Although the theory does not depend on the specifics of cost models, it is

helpful to have a simple cost model for illustrative purposes.

Wc assume that a B-tree index [BAY 72] can be defined for a column or for a set of columns of a relation.

The leaf-level of the index consists of pairs (key and TID) for every tuple in that relation. The leaf-level

blocks are chained according to the order of indexed column values, so that the index can be scanned without

traversing the index tree. Entries having the same key value are ordered by TID.

—~ 8 —

SEPARABILITY-AN APPROACH TO PHYSICAL DATABASE DESIGN

An index is called a clustering index if the relation for which this index is defined is physically clustered

according to the index column values. With a clustering index, we assume that no block is fetched more than

once when tuples with consecutive values of the indexed column are retrieved.. Except for this ordering

property, no other difference in the structure is assumed between a clustering and a nonclustering index. The

clustering property can greatly reduce the access cost, especially when a join column has a clustering index.

Unfortunately, only one column of a relation can have the clustering property, since clustering requires a

specific order of records in the physical file. One of the objectives of designing optimal physical databases is

to determine which column will be assigned the clustering property.

The access cost will be measured in terms of the number of I/O accesses. The following notation will be

used throughout this paper:

n, : Number of tuples in relation R (cardinality)

Pg : Blocking factor of a block containing tuples of relation R.

L; : Blocking factor of an index block containing index I.

F : Selectivity of the column used or the index thereof.

my, : Number of blocks in relation R, which is equal to ng/pp.

By using the simplified model above, the cost of various operations can be obtained as follows:

e Relation Scan Cost - Cost for serially accessing all the blocks containing the tuples of a relation:

RS(R) = n,/Pp = mp

e Index Scan Cost - Cost for serially accessing the leaf- level blocks of an entire index:

IS(ALR) = np/L,

e Index Access Cost - Cost for one access of the index tree from the root:

IA(LR) = log; (ng/L) + F; X np/L;
|

- o Sorting Cost - Cost for sorting a relation, or a part thereof, according to the values of the columns
of interest:

SORT(NB) =2 X NB X log, NB

Here we assume that a z-way sort-merge is used for the external sort [KNU-b 73]. NB is the

number of blocks in the temporary relation containing the subtuples to be sorted after restriction

and projection have becn resolved. It will be noted that SORT(NB) does not include the initial

scanning time to bring in the original relation, while it does include the time to scan the temporary

relation for the actual join after sorting (sce [BLA 76}).

— 9 —

SEPARABILITY AS A PIIYSICAL DATABASE DESIGN METHODOLOGY

1.5 Design Theory

In this section we develop a theory for the design of optimal physical da&bases. We shall seek to facilitate

comprehension through a series of examples and by case analysis, using the cost model developed in Section

1.4. Observations resulting from this procedure arc formalized and proved in Section 1.5.4.

Our approach to physical database design is based on the premise that at execution time the query

processor will choose the best processing method for a given query. We call this processor an optimizer.

Since the behavior of the optimizer at execution time affects the physical database design critically, we

investigate this issue and discuss how it is related to the design.

Since the set of join methods consisting of the join index method, the sort-merge method, and the

combination of the two posscsses the special property, called separability which we shall define later, we

regard only those methods as being available for the design theory (the inner/outer-loop join method, the

multiple-pass method, and the link-based method are nonseparablc join methods with respect to this

separable set).

Wc define the influence of the restriction on one relation to the number of tuples to be retrieved in the

other relation the coupling effect (which is similar in concept to the feedback mentioned in [YAO 79).

Starting with a casc in which coupling effects between relations arc not considered, we then proceed to those

cases in which they are included.

1.5.1 Cases without coupling effects

Example 1: Figure 1-2 describes two relations R| and R, with their access configurations. Dashed lines (/)

reprcsont clustering indcxcs, the dotted lines (;) nonclustcring indexes. Columns without cither type of line

have no indexes dcfined for them. Wc would like to find the best method of evaluation-which the optimizer

would choose at query-processing time, for the following query:

-

SEPARABILITY -AN APPROACH TO PHYSICAL DATABASE DESIGN

SELECT A,, A,, B,

FROM R,, R,

WHERE R,.A,="a,” AND -

R,.B, = ‘b,” AND

R.A, = R,.B,

Aa fe A Pi Be By

I / : / . I
/ : | JOIN | 7 |

| / : | | / : |

Ry | R,

Figure 1-2: Relations R; and R,

For this example only, it is also assumed that all the tuples in each relation participate in the join.

Given these assumptions, the optimizer could try all the possible combinations of the join methods,

evaluate the cost of each, and then select the one that costs the least. We have here the following

combinations:

Ry R,
1. Join index method (partial) Join index method (partial)

2. Sort-merge method (partial) Sort-merge method (partial)

3. Join index method (partial) Sort-merge method (partial)

4. Sort-merge method (partial) Join index method (partial)

Using the cost model developed in Section 1.4, the following formulas give the cost (number of block

accesses) for each of the four cases above. In each formula the first and second bracketed expressions

represent the cost of accessing relation R,, and R, respectively. Bracketed expressions in the formulas are

given arbitrary values for illustrative purposes. Those expressions whose form is identical are given the same

value.

| Cost = [IA(IAY R) + IS, R)) + F,, X Np, + : 100 + (1.1)

—-11 -

N

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

cost = [IA(I,,. R)) , F,, Xm, +SORT(F,, X Hp, X mp + : 60 + (1.2)
[IA(Ig,, R,) + bmg, prop, X 0gy) + SORT(Fg, X Hp, X mp ,)] : 50

Cost = [TA(I,,,R)+IS(,;,R) + Fy X npJ + : 100 + (1.3)

[TA(T,, R,) + bmp, ppoFpy X ng,) + SORT(Fg, X Hp, X mp,)] : 50

Cost = [JA(L,,,R)) + F,, X mp, + SORT(F,, X Hp, X mp,)] + : 60 + (1.4)

[IA(I,. Ry) + IS(I5,, Ry) + bmg, Pry Fp X Np) : 20

Here b(m,p,k) is a function that provides the number of block accesses, where k is the number of tuples to be

retrieved in TID order. An exact form of this function and various approximation formulas are summarized

in Chapter 2. The function is approximately linear in k when k <n, and approaches m as k becomes large. A

familiar approximation suggested by Cardenas [CAR 75] is b(m,p,k) = m [1 — (1- 1/p)¥]. FAp and Fp, are

the selectivities of the columns R.A, and R,.B,, respectively. In Equation (1.1),F,, X ng, and

b(mp,.Ppo Fp, X ng,) represent the numbers of blocks accessed that contain data tuples of relation R, and

R,, respectively. Since retrieving tuples by scanning a nonclustering join index will access the tuples

randomly, the same block will be accessed repeatedly if it contains more than one tuple. Therefore it is very

likely that one block access is needed to retrieve each tuple. Hence we get F,, X Np, for the number of data

blocks fetched from relation R,. Note that in this case the tuples cannot be accessed in TID order. For

relation R,, however, the join index is clustering and thus the tuples will be retrieved in TID order, even

though they are selected randomly by the restriction. Therefore, even though a block contains more than one

tuple, in all likelihood each block will be fetched only once. We thus get b(mg,,pp,.Fp, X np,) for the

number of data blocks fetched from R,, where Fg, X Np, 18 the number of tuples selected by the restriction.

In Equation (1.2), FAy X Mpg, and b(mg,.Pp-Fay X Nps) represent the numbers of blocks accessed during

the initial scan of the relation prior to sorting. Since the restriction index is clustering in relation R,, the

initial scan through this restriction index will access F,, X my, blocks. In relation R,, a nonclustering

restriction index is used to access the relation initially. This restriction results in random distribution of TIDs

of the qualified tuples over the blocks. Since these tuples are then accessed in TID order, the access cost is

b(MpyPr2Fpy X Ny):

SEPARABILITY-AN APPROACH TO PHY SICAT DATA BASE DESIGN

The factor Hy, used in the Equation (1.3) represents the projection effect upon relation R,. Since the

projection selects only part of the attributes from the relations, the tuple is usually smaller after projection.

The time required to write the final result is not included, since it is the same regardless of the join method

used.

With the specific values of the access cost given, Equation (1.4) gives the minimum access cost. We note

that the access costs for each relation do not depend on any parameter of any other relation, and that each

part of the cost of Equation (1.4) becomes the local minimum. That is, the first part of the cost incurred by

accessing relation R, is the minimum of the costs of the join methods used for R,, while the second part is the

minimum of those for R,. This implies that the optimizer can determine the optimal join method on one

relation without regard to any properties of other relations. [1

The foregoing observation is extremely important because, if we can determine the optimal join method for

one relation without regard to other relations, we can also use the following method to determine the optimal

access configuration for the relation without regard to other relations:

1. try every possible access configuration for a relation in turn.

2. for a given access configuration, find the best evaluation method- which the optimizer would

choose at query-processing time — for each given query (this corresponds to the query

optimization problem).

3. then calculate the total cost for processing the queries, using their expected frequency of
occurrence.

4. repeat this procedure for all other possible access configurations, finally selecting the one that

yields the minimal total cost.

- The result of this will be to reduce designing an optimal access configuration of a database to that of a

single relation. Local optimal solutions for individual relations constitute an optimal solution for the entire

database. However, the foregoing procedure of making an exhaustive search of all the possible access

configurations could yet prove too costly. Therefore, in Section 1.6 we divide the design procedure into two

parts: choice of the clustering column and index selection. We shall provide a clean interface between the

two steps and discuss deviations from the true optimum.

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

It should be pointed out here that, despite our assumption that there is no coupling effect between the two

relations and despite the fact that the above argument appears to follow directly from that assumption, .it will

be shown, in the following discussion, that the problem is similarly reduced even when coupling effects are

actually present.. Before furtherdiscussion, we need the following definition and example.

Definition 1: Thejoin selectivity J(R,JP) of a relation R with respect to a join path JP is the’ ratio of the

number of distinct join column values of the tuples participating in the unconditional join to the total number

of the distinct join column values of R. A join path is a set (R{,R;.A,R,,R,.B), where R, and R, are relations

participating in the join and R.A and R,,.B are the join columns of R, and R,, respectively. An unconditional

join is a join in which the restrictions on either relation are not considered. [J

Join selectivity is the same as the ratio of the number of tuples participating in the unconditional join to the

total number of tuples in the relation (cardinality of the relation). Join selectivity is generally different in R,

and R,, with respect to a join path, as shown in the following example:

Example 2: Let us assume that the two relations in Figure 1-3 have a I-to-N partial-dependency

relationship. Partial dependency means that every tuple in the relation R, that is on the N-side of the

relationship has a corresponding tuple in R,, but not vice versa [ELM 80]. Let us assume that 50% of the

employees have at least one child each so that the tuples representing those. employees participate in the

unconditional join. Every tuple in the children relation R, is assumed to have only one corresponding tuple

in R, and all of them participate in the unconditional join according to the partial dependency. The join

selectivity of the employees relation is then 0.5, while that of the children relation 1s 1.0 OO

R,: Employees(E#, Job, Age, Salary)
R,: Children(E# , Name, Hair-color, Sex)

Figure 1-3: Employees and Children relations.

— 14 —

SEPARABILITY-AN APPROACH TO PHYSICAL DATABASE DESIGN

1.52 Cases with coupling effects

Let us investigate the four cases shown in Example l-using the same query, join methods, and access

configuration defined as in Figure 1-2, but now with coupling effects. In fact, we shall consider coupling

effects throughout our subsequent discussions. We shall also assume that R; and R, have a l-to-N

relationship (1 for R, and N for R,).

Case 1: The join index method is applied to both relations R, and R,. With coupling effect, the join will

be performed as follows: If a tuple of relation R, does not satisty the restriction predicate for R,, the

corresponding tuples of R, that have the same join column values are not accessed. Hence, we have the

coupling effect from R, to R,. If there are only index-proccssible predicates in the query to be evaluated, the

situation is then symmetric-in the sense that, for the tuples in relation R, that do not satisfy the restriction

predicate for R,, the corresponding tuples of R, are not accessed either. We have this symmetry because we

can resolve all index-processible predicates by using TIDs only, without any need to access the data tuples

themselves.

Since both R.A, and R,,.B, have indexes defined for them, the restriction predicates in the WHERE clause

are index-processible. Therefore, the cost of evaluating this query, including the coupling effect, will be as

follows:

Cost = [IA(I,,,R) + IS(I, ,R)) + {<J; X b(1/Fy Fg, X np,

Fp, X np,)/(1/F5> XF,, X np4 +

[IA(I;,.R,) + IS(I5.R,) + b(mpg,.pgyi<I, X Fap? X Fy X Np,

Here J, and J, represent the join selectivity of relations R, and R,, respectively, for the join path considered.

Expressions in the braces represent the numbers of data tuples accessed in relations R, and R,, respectively.

In the first part of the formula, the expression in the braces simultaneously represents the number of blocks

accessed in relation R,. This follows the argument shown in Example 1.

Fg, 1s the selectivity of column R,.B, and 1/F, represents the number of groups’ of tuples that have the

same join column values in relation R, -which is essentially the same as the number of distinct join column

values.

3 Group here is very close in concept to set occurrence in CODASYL-type databases.

— 15 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

The expression b(1/F Fg, Xnps Foy X Nps) represents the number of groups selected by restriction

Fy,. Although the b function estimates the number of block accesses in which a certain number of tuples are

randomly selected, the same function is used for estimating the number of logical groups selected- if the

latter are assumed to be of uniform size. Note that the clustering or nonclustering of tuples in a group is

irrelevant. Fy, X ng ,, the number of tuples in one logical group, plays a role similar to that of the blocking

factor.

The expression b(1/Fy,, Fg X Nps, Fg, X Np) (1/F;)) represents the ratio of the number of groups

selected by restriction Fy, to the total number of groups in relation R,. Since every tuple participating in the

unconditional join in R, has a unique join column value and, accordingly, exactly one corresponding group in

R, (let us recall that R, is on the l-side of the I-to-N relationship), this ratio correctly represents a special

restriction upon R, caused by the coupling effect originating in R,°

In the second part of the cost formula, we simply use FA to represent the coupling effect directed from R,

to'R,. Since in R, every tuple has a unique join column value, if a tuple is selected according to the

restriction, the corresponding group in R, that has the same join column value (if it exists) will be selected on

the basis of this special restriction resulting from the coupling effect. Hence, F, , represents the ratio of the

number of groups selected as a consequence of the coupling effect to the total number of groups in R,

participating in the unconditional join. That ratio, in turn, has the same value as the ratio of tuples, selected

according to the coupling effect, to the total number of tuples participating in the unconditional join in R,,. 0

The coupling effect is formally defined as follows:

Definition 2: The coupling effect from relation R, to relation R,, with respect to a type of query, is the ratio

of the number of distinct join column values of the records of R,, selected according to the restriction

predicate for R,, to the total number of distinct join column values in R,. U

“Note that this ratio could bc very different from and is always larger than Fi , cxpecially when a group is large. The reason is that, if
at least one tuplc in a group is selected, the corresponding join column value andthe corresponding tuple in R, arc sclected according to
this special restriction resulting from the coupling effect.

—- 16 —

SEPARABILITY-AN APPROACH TO PI IYSICAL DATABASE DESIGN

If we assume that the join column values are randomly selected, the coupling effect from R, to R, is the

same as the ratio of the number of distinct join column values of R, selected by the effect of the restriction

predicate for R, to the number of distinct join column values in R, participating in the unconditional join.

Definition 3: A coupling factor Cf, from relation R, to relation R,, with respect to a type of query, is the

ratio of the number of distinct join column values of R,, selected by both the coupling effect from R,

(through the restriction predicate for R,) and the join selectivity of R,, to the total number of distinct join

column values in R,. OJ

According to the definition, a coupling factor can be obtained by multiplying the coupling effect from R,

to R, by the join selectivity of R,. This coupling factor contains all the consequences of the interactions of

relations in the join operation, since it includes both coupling and joining filtering effects. Let us note that,

although the coupling factor can be obtained in any case, it does not always contribute to the reduction of the

tuples to be retrieved. We will see an example of this in Case 2 below. A coupling factor is said to be effective

if the coupling effect actually contributes to the reduction of the tuples to be retrieved. In Case 1, the

expressions in angle brackets represent the coupling factors from R, to R, and from R; to R,, respectively, for

the type of query considered. By definition, different queries are of the same type if they are identical except

for their literal values. The same applies to update transactions. For example, INSERT INTO R, <a,b> is of

the same type as INSERT INTO R, <c,d>). Hence,

Ct, = J, XF,,,

Ct, = 1; X b(l/Fy,, Fg, X np, Fy X Np, (1/Fg,).

One important observation here is that the coupling factors do not depend on the specific access structures

present in either relation, nor on the specific join method selected, but rather (and solely) depend on the

restriction and the data characteristics. Such characteristics include the side the relation is on in the 1-to-N

relationship, the average number of tuples in one group, and the join selectivity — which will be known before

we start the design phase.

Note that the coupling factors differ according to the specific type of query being considered. Different

—- 17 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

types of queries have different join paths and different combinations of columns in the restriction

predicate — with consequently different selectivities for the calculation of coupling factors.

Now let us investigate the remaining cases in which coupling effects are present between relations.

Case 2: The sort-merge join method is applied to both relations, in the same situation as in Figure 1-2. The

cost formula is then as follows:

Cost = [F,, X mp, + SORT(F,, X Hp, X mp ,)]

+ TA(I5,.R,) + b(mg Pr Fp, X Np) + SORT(Fp, X Hp, X mp ,)]

It will be noted that the coupling factors do not appear in the cost formula. This is because, when the sort-

merge join method is used, an initial scan and the sort are performed before the join is resolved; indexes are

not used any more while the join is being actually resolved, since the relation scan is performed upon the

sorted temporary relations. The coupling effect can arise only when the join is being actually resolved and

only when the join index is used. Thus, the coupling factor is not effective in this case.

Case 3: The sort-merge join method is used for R,, the join index method for R,—in the same situation as

in Figure 1-2. The join will be performed as described in Section 1.3, under the heading: Combination of the

Join Index Method and Sort-Merge Method. Note that the coupling factor is effective from R, to R,. Thus,

we obtain the following cost formula:

Cost = [F,, X my, + SORT(F,, X He X my ,)]
+ [IA(L5,.R,) + IS(I5.R,) + bmp pp, Cf X Fy Xing)

Case 4: The join index method is used on R,, the sort-merge method on R,—in the same situation as in

Figure 1-2. We obtain the following cost formula:

Cost = [IA(L,,.R)) + IS(I, .R)) + Cf, X Fi, X np]

+ [IA(I4,.R,) + b(mp,.PryFpy x Np) + SORT(Fg, X Hg, X Mp ,)]

—~ 18 —

SEPARABILITY-AN APPROACH TO PHYSICAL DATABASE DESIGN

1.5.3 Cases when restriction indexes are absent on one relation

All four cases that have been discussed so far assume the same situation as in Example l-except for

inclusion of the coupling effect. We still have to consider more general cases in which restriction indexes are

absent for the columns specified in the predicate of the query for one relation. The case in which the

restriction indexes are absent in both relations will be treated in Section 1.5.4. For clarity of presentation, let,

us define a shorthand notation for the cost formula.

Definition 4: Cost(R, Cle type-of-join) is the cost of a join operation associated with relation R, when R

has a coupling factor Cty from R, to R,, with respect to the query of interest, and the type-of- join is the join

method used between R, and R;. 0]

Although costs differ for different access configurations, this shorthand notation for the cost function does

not show that difference explicitly, because it is irrelevant to our subsequent discussions. Using this

definition, cost formulas for the previous cases can be restated as

Case 1: Cost(R,,Cf,,;,Join-index) + Cost(R,,Cf ,,Join-index) (1.5)

Case 2: Cost(R,,Cf, Sort-merge) + Cost(R,,Cf|, Sort-merge) (1.6)

Case 3: Cost(R .Cf, ,Sort-merge) + Cost(R,,Cf] ,,Join-index) (1.7)

Case 4: Cost(R,,Cf,,,Join-index) + Cost(R,,Cf, ,,Sort-merge) (1.8)

If there is no coupling effect between the two relations, as in the case of a query that does not impose a

restriction on a relation, say R,, then the coupling factor Cf,, simply becomes the join selectivity, J, — if the

° join index method is used for R,. The cost, in this case, will be Cost(R,,]ptype-of-join). When the sort- .

merge join method is used for relation R, the cost becomes Cost(R,,1,sort-merge). But it is identical to

Cost(R, Cf, ;sort-merge), because, as we observed in Case 2, the coupling factor is not used in the cost

formula. According to the same argument, we conclude that the cost of the sort-merge join method can

always be written as Cost(R, CF, sort-merge).

Case 1-A: Let us assume that the join index method is used for both R; and R,, in the same situation as in

Figure 1-2, except that the restriction index for column R.A, is missing. The join will be performed as

follows. First the TID set R,” of the tuplcs that satisfy the restriction on R, is obtained by using the restriction

—~ 19 —

i

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

on column R,.B,. TID pairs that have the same join column values are found by scanning the join column

indexes according to the order of join column values. As it is found, each TID pair (TID, TID,) 1s checked to

see if TID, is present in R,*. If it is, the corresponding tuple in relation R, is retrieved. If this tuple satisfies

the restriction upon R,, the corresponding tuple in R, 1s also retrieved and concatenated, and the result

projected. Note that the coupling factors are effective in both directions. Thus, the cost of evaluating the

query will be

Cost = [IS(IAarRY + Cf, X Np,
+ [TA(I5,.R,) + IS(I5,.R,) + bmg ,,pp,.Cf 5 X Fg, X Np)
= Cost(R,Cf,, ,join-index) + Cost(R,,Cf| ,.join-index).

Note that, since the restriction index on column R,.A, is missing, the first part of the cost formula is

different from that of Case 1, but the coupling factors remain the same. The case in which R,.B, is absent

instead of R.A, is treated similarly and will result in the same formula in the shorthand notation.

Case 2-A: The sort-merge method is used for both R, and R, in the same situation as in Figure 1-2, except

that the restriction index on the column R.A, is missing. The cost formula becomes

Cost = [mp + SORT(F,, X Hp, X mg,)]

+ [TA(Ig).R,) + bmp, ppylpy X ng,) + SORT(Fp, X Hy Xmp,)l

= Cost(R Cf, sort-merge) + Cost(R,,Cf, ,,s0rt-merge)

The case in which the index on R,.B, is missing (rather than R|.A,) is treated similarly and will result in the

same formula in the shorthand notation.

Cases 3-A and 4-A: The sort-merge method is used for R, and the join index method for R,, in the same

situation as in Figure 1-2, except that the restriction index for the column R,.B, is missing. In this case, the

join is performed as in Case 3. The only difference is that, since indexes are now absent for the restriction

columns of R,, the restriction predicate for R, can be resolved only after the tuples’ are retrieved. The cost of
evaluating the query becomes

Cost = [IA(I,,R) + F,, Xmp, + Sort(F,, X Hp, X mp)
+ HS, 1.Ry) + Bmp, ppy.Chy Xnp))l

= Cost(R,,Cf,, ;sort-merge) + Cost(R,,Cf},join-index)

— 20 —

SEPARABILITY-AN APPROACH TO PHYSICAL DATABASE DESIGN

In the case in which R.A, 1s missing (rather than R,.B,), it will change the first part of the cost formula we

obtained in Case 3, but will result in the same shorthand form. The case in which the join index method is

used on R, and the sort-merge method on R,, as in Case 4, is treated similarly. :

1.5.4 Formalization

In all the cost formulas so far, the coupling factors have been used in both directions, — i.e., both bracketed

expressions in a formula were of the form Cost(R, Cf, .type-of-join). We shall call the form of these formulas

symmetric.

Join costs can be written in this form only when the coupling factors are known to be effective for the join

method used (as when the join index method was used in the previous cases), or when the cost can be

determined regardless of the coupling factors (as when the sort-merge method is used). The reason is that the

only ambiguity in determining the cost of a join is whether or not the coupling factor will be included in the

calculation — since all other information needed is local and is not affected by interaction with other relations.

If we know at design phase that coupling factors are effective or that the cost is independent of the coupling

factor, we can determine at design phase the costs of various possible joins on each relation and, using only

local information and the coupling factors without ambiguity, accordingly determine the best join method

and its cost. There are, however, some cases in which we cannot determine whether the coupling factors are

effective at design phase. These will be introduced in Example 3.

If the best join method can be determined with only the local information (the access configuration of the

relation and the type of join method used) and coupling factors, without any regard to other relations, the

clear implication is that we can design an optimal access configuration of a relation by using only local

information and the coupling factors, independently of the other relations. The design could be performed

by the following procedure:

1. Consider each possible access configuration of a relation in turn

2. Find the best join method and its cost for the particular configuration

3. Repeat this procedure for other access configurations

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

4. Find the one that gives the minimum join cost

The only nonlocal information used here is furnished by coupling factors. Lumped within them are all the

interactions from other relations. B havet we already observed that the coupling factors do not depend on

access configurations of the other relations, nor do they depend on the join methods chosen; they depend

exclusively on the properties of given queries and the data characteristics of the relation. Furthermore, these

properties can be determined before we start designing any access configuration in the database.

We conclude here that we can design the access configuration of the entire database optimally by designing

the optimal access configurations of individual relations one by one, regardless of the remaining

relations- when all the information needed is known at design time. The local optimum configurations will

collectively comprise the global optimum configuration.

To formalize the foregoing observation, we need the following definitions and theorems.

Definition 5: A partial-join cost is that part of the join cost that represents the accessing of only one

relation, as well as the auxiliary access structures defined for that relation. [J

In the examples above, each expression in square brackets represents a partial-join cost.

Definition 6: A partial-join algorithm is a conceptual division of the algorithm of a join method whose

processing cost is a partial- join cost. O

Definition 7: A join method is symmetric under certain constraints if, under these, both partial-join costs

can be determined with only local information of the pertinent relation and the coupling factor, regardless of

the partial-join algorithm used and the access configuration defined for the relation on the other side of the

join. OI

Definition 8: A set of join methods is separable under certain constraints, if under these constraints

o Any partial-join algorithm of a join in the set can be combined with any partial-join algorithm of

any join mcthod in the set, and

2) —

SEPARABILITY -AN APPROACH TO PHYSICAL, DATABASE DESIGN

e Any combination of partial-join algorithms of the join methods in the set produces a symmetric

join method. Cl

From the discussion at the beginning of Section 1.5.4, we have the following lemma.

Lemma 1: A join method is symmetric if and only if its cost has a symmetric form. Cl

Theorem 2: The problem of designing the optimal access configuration of a database can be decomposed

into the tasks of designing the optimal access configurations of individual relations independently of one

another, if the set of join methods used by the optimizer is separable with respect to the constraints imposed

upon the database system.

Proof: Since the set of join algorithms used is separable, we can choose an arbitrary combination of partial-

join algorithms within the set. Thus, we can choose any partial-join algorithm to be used for onc relation

without regard to the partial-join algorithm used for the other relation. Furthermore, since a join method

consisting of any combination of partial-join algorithms is symmetric, the partial-join cost of a partial-join

algorithm can be evaluated independently of the partial-join algorithm used and the access configuration

defined on the other side of the join. As a result, the specific access methods assigned to and the partial-join

algorithm used for one relation cannot affect any design paramcters for the other relations. It is therefore

guaranteed that there will be no interference among the designs of individual relations. Q.E.D.

Theorem 2 is a generalization of the observation made from Example 1, except that it now includes the

. coupling effects between relations.

Theorem 3: The set of join algorithms consisting of the join index method and the sort-merge method is

separable under the constraint that every column in every relation in the database must have an index defined

for it. N

Proof: Part 1 of Definition 8 is obvious from previous examples and cases. When the join index method is

used for both relations, all predicates are index-processible since every column has an index. Hence, all

predicates are resolved with TIDs before the relations themselves are accessed; coupling factors are effective

in both directions; and the cost formula has symmetric forms. When the sort-merge method is used for one

— 23 —~

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

relation and the join index method for the other, then, by the same reasoning as in Case 3, the cost formula

has symmetric forms. If only the sort-merge method is used, the cost formula is always symmetric. Therefore,

from Lemma 1, the theorem holds. Q.E.D.

Only symmetric joins have been used in the example and cases presented so far. There are, however,

instances of nonsymmetric joins.

Example 3: Let us assume that the join index method is used for both R, and R,, in the same situation as in

Figure 1-2, but that now restriction indexes for both R; and R, are missing. In this situation, since there are

no restriction indexes, there is no way of resolving the restriction predicate without accessing the tuples

themselves. Therefore, if we access relation R, first, the access cost would be

Cost] = [IS(I,,R)) + J; X np, + [IS(I5;.R,) + blng,,pe,.Cf5 X np.)

= Cost(R,.J,,join-index) + Cost(R,,Cf,,,join-index)

On the other hand, if we access relation R, first, the access cost would then be

cost? = [IS(IapRp + Cf X Np,l + [1S(1;,.R,) + b(mg,.ppyJ, X ng,)l
= Cost(R,,Cf,, ,join-index) + Cost(R,,J,Jjoin-index)

Therefore, we have two expressions each for the partial-join cost of each relation and we cannot determine

at the design stage which of them is cheaper. Hence, this join method is not symmetric. The coupling factor

is ineffective in one direction in each formula, since the join selectivity is used in its place. The cost formula is

now also asymmetric relative to the coupling factors. [J

We can still determine which of the two expressions is cheaper at query-processing time, but we do not

have this knowledge when the physical database is being designed. If we want to ascertain the cheaper

expression at design time, we have to analyze simultancously the relation on the other side of the join- but

this violates the definition of symmetry. The design of access configuration for one relation is no longer

independent of the other relations. The theory presented in this paper depends entirely on the property of

separability, which in turn depends on that of symmetry. The situation depicted in Example 3 is an apparent

exception to our theory. However, in our discussion of the index selection problem in Section 1.6, the

justification on the validity of our approach will be amply reinforced.

— 24 —

SEPARABILITY -AN APPROACH TO PHYSICAL DATABASE DESIGN

Theorem 4: The set of join methods consisting of the join index method and the sort-merge method is

separable under the constraint that, whenever the join index method is used for both relations, at least one

relation must have indexes for all restriction columns.

Proof: When both relations have indexes on all restriction columns, this theorem reduces to Theorem 3. As

before when the sort-merge method is used for both relations, the cost formulas are always symmetric. When

the join index method is used for one relation and the sort-merge method for the other, then, by a reasoning

similar to Case 3-A, we obtain symmetric cost formulas. If only the join index method is used and one of the

relations, say R,, has incomplete restriction indexes, the join is performed as in Case 1-A except that the

restriction on R, is now partially resolved by using TIDs before accessing the tuples in R,. We thus get

symmetric cost formulas. By Lemma 1, we prove this theorem. Q.E.D.

1.5.5 Update Cost

We assume here that the updates are performed only on individual relations, although the qualification

part (WHERE clause) may involve more than one relation. Thus, updates are not performed on the join of

two or more relations. Hence, if we segregate the qualification part (this will be treated as a query), the

remaining part of an update transaction becomes separable (the update operation on one relation does not

depend on the access configuration of the other relations). Note that we have assumed throughout that a

block containing tuples of a relation contains only the tuples of that relation.

1.6 Design Algorithm

In this section, an algorithm for the design of optimal access configuration of the database will be

presented.

1.6.1 Design Step 1

Based mainly on the result of Theorems 2 and 3, the first step of our algorithm is as follows:

Inputs:

o Usage information: A set of various types of querics and update transactions with thelr respective
frequencies.

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

e Data characteristics (for every relation in the database): Size, blocking factor, selectivities of all

columns, relationships with other relations with respect to join paths, join selectivity with respect

to join paths.]

outputs:

e Optimal position of the clustering column for each relation.

e Optimal combination of partial-joins for each type of two-variable query.

Condition Assumed:

e Every column of each relation in the database has an index defined for it. Some of these indexes

will be dropped in the subsequent index selection step.

Algorithm 1:

1. Segregate the usage information in such a way that, if there is a subquery involving more than one

relation in the qualification part of an update transaction, it is separated and its frequency is

included with that of the same type’of query. Thereupon, all the remaining parts of the update

transactions will refer to only one relation.

2. Calculate the coupling factors with respect to individual two-variable queries for every relation in

the database using the given data characteristics.

3. Pick one relation and determine the optimal position of the clustering column as follows:

a. Assign the clustering property to one column of the relation.

b. Given that position of the clustering column, identify the best partial-join algorithm and

calculate its partial-join cost for every two-variable query that refers to this relation, using

the given data characteristics and the coupling factors.

c. Utilizing the usage information and the result of Step b, calculate the total cost associated

with this relation. This is done by summing up all the partial-join costs identified in Step

b-multiplied by their respective frequencies- and all costs incurred by one-variable

queries and update transactions acting upon this relation.

d. Shift the clustering property to another column of the relation and repeat Steps b and c.

e. Repeat Step d until all the columns of the relation have been considered. (The case in

which there is no clustering column is also considered. Then determine the one that gives

the minimal cost as the clustering column (or none).

4. Step 3 is repeated for every relation in the database. The aggregate of results for all relations

comprises the global optimum.

— 26 —

SEPARABILITY-AN APPROACH TO PIIYSICAL DATABASE DESIGN

A join path can often have a multiple column as the join column on either relation. In such cases, we

consider the multiple join column as a single effective column, independent of its component columns.

Therefore, according to the condition in the above algorithm, this effective column is considered to have a

multiple-column index defined for it (we do not consider here additional problems involved in the multiple-

column indexes).

Although in some cases improvement can be obtained by an adjustment in ordering among the effective

column’s component columns and by the deletion of overlapping indexes, this is not being considered here.

It will be noted that, under the assumptions given, the Design Step 1 algorithm yields a mathematically true

optimum.

1.6.2 Design Step 2: Index Selection

In the algorithm for Design Step 1, we imposed the restriction that every column of the relations in the

database must have an index defined for it. However, not every index is beneficial. Some indexes can

increase the total access cost because of their own access and update costs.

The index selection problem has been extensively studied by [KIN 743 [SCH 75] [HAM 76]. It concerns the

method of selecting a set of indexes that will minimize the processing cost in a single-relation environment.

Here we are using a slightly modified version of the approach introduced in [HAM 76]. The main

modification involves translating the frequency of a partial-join into an equivalent frequency of a one-variable

- query (single-relation restriction). The following example should clarify the procedure:

Example 4: Let us consider the same query and situation as in Figure 1-2, except that now both indexes for

R,.B, and R,.B, are nonclustering. When we use the join index method for both relations, the partial- join

cost of the partial-join for relation R, becomes

Cost = [IA(I,.R,) + IS(I5;.R,) + Cf, X Fp, X np.) (1.9)

However, if we refine our assumption so that tuplcs having the same join column value are now accessed in

TID order (we have ignored this fact so far for the sake of simplicity), the cost formula becomes

Cost = [IA(I5,,R,) + IS(5,.R,) + (Cf,/Fp) X bmg, pps, Fp X Fpy X Np-)l (1.10)

— 27 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

Here (Cf,,/Fg) is the number of distinct join column values selected by the coupling factor and the function

b represents the cost of accessing the data tuples that have specific join column values and satisfy the

restriction predicate. We used the b function because those tuples that have the same join column values are

accessed in TID order. If tuples with the same join column values were accessed randomly, we would obtain

Equation (1.9). Although Equation (1.10) is only a small refinement over Equation (1.9), it makes it easy to

observe that the data tuple access cost of a partial-join can be regarded as the joint restriction cost of the join

index and the restriction index, multiplied by the factor (Cf},/Fg,). We call this factor rhe equivalent

restriction frequency of a partial-join. Let us note that the function b in the above formula yields exactly the

same cost as would the joint restriction of two indexes.

More importantly, it can be shown that the gain in access cost by having the restriction index in a partial-

join — assuming the join index-is always present- is equal to the gain in access cost that the same restriction

index would yield in the joint restriction, multiplied by the equivalent restriction frequency. The same

observation holds with certain limitations when one of the indexes is clustering. A more detailed treatment

can be found in Appendix B. [1

Definition 9: The equivalent restriction frequency of a partial- join is defined as the ratio of the gain in

access cost by having the restriction indexes in a partial-join to the gain in access cost that the same restriction

indexes would yicld in the joint restriction with the join index if the join index is used in the partial-join (i.e, if

the join index method is used), or in the restriction of the restriction indexes alone if the join index is not used

ie. if the sort-merge method is used). [J

According to this definition, the equivalent restriction frequency of a partial-join using the sort-merge

method is 1, if the restriction indexes are used to access the relation initially before sorting, and 0 otherwise.

Since the preceding discussion is not concerned with the index-accessing cost, we use the equivalent

restriction frequency only to estimate the ranking of indexes in importance, as will be explained later. We

shall utilize partial-join cost formulas in our actual cost calculation.

SEPARABILITY-AN APPROACH TO PHYSICAL DATABASE DESIGN

Following is the algorithm for Design Step 2. This algorithm is mainly based on the above discussion, and

on Theorems 2 and 4.

Inputs:

e Outputs from Design Step 1: optimal position of the clustering column for each relation and
optimal combination of partial-joins for each type of two- variable query.

e Set of types of one-variable queries and update transactions of interest with their respective

frequencies. Here each type of one-variable query represents any Boolean combination of simple

predicates. A simple predicate is one that refers to only one column of the relation.

e Data characteristics similar to the ones used in Design Step 1, but only those parameters that

pertain to single relations are relevant.

outputs:

e Set of indexes of each relation that gives the minimum processing time.

Algorithm 2:

1. Select one relation

2. From the information outputted in Design Step 1, calculate the equivalent restriction frequency of

each partial-join involving this relation.

3. From the usage information for one-variable queries and the equivalent restriction frequencies

calculated above, compute the total frequency f of references to each column.

4. Rank the importance of the columns, using f X m X (1 — F), where m is the total number of

blocks of the relation and F is the selectivity of each column. The above formula represents an

; upper bound on the number of block accesses saved by the restriction index, in the sense that it

represents the number of block accesses saved if there is no other index and all the selected tuples

are clustered [HAM 76].

5. If a join index has ever been used in Design Step 1- that is, if at least one partial-join uses the join

index method- then assign an index to that column by default. This is a heuristic wc use to avoid

strong intcrfercnce between Design Step 1 and Design Step 2 (We assume that column domains

are rigorously defined, and that joins are limited to semantically appropriate columns [WIE 79)).
If the join index used in Design Step 1 were dropped in Design Step 2, we would have to switch

all the partial-joins that used this now nonexistent join index to the sort-merge method. The

result would be to distort the entire cost calculation that was performed in Design Step 1.

6. Select indexes incremently one by one, ordered by rank. Include only those indexes that reduce

the total cost. If, during the cost calculation, a query type represents a partial-join rather than a

one-variable query, the partial-join cost is used instead of the joint restriction cost.

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

1.6.3 Separability in Design Step 2

The implicit meaning of the index selection is that those indexes that do not compensate for their own

maintenance and access cost should be dropped. In Design Step 2 we again considered relations singly and

independently of one another. This was based on the separability theory of Theorem 2, i.e., that the access

structures assigned to one relation do not affect cost calculations for other relations. However, since, in

contrast to Design Step 1, we are eliminating some indexes, we can encounter situations that were excluded as

exceptions in Example 3 and Theorem 4. In these situations, calculation of cost is no longer separable.

Nevertheless, it turns out the calculative error caused by the assumption of separability, even in these

exceptional situations, is not significant.

If we look at Example 3 again, the actual cost at query-processing time will be

Cost = min(Costl, Cost2)

= min[{Cost(R .},.join-index) + Cost(R,,Cf, ,.join-index)},
{Cost(R,,Cf,,,join-index) + Cost(R,J,,join-index)}]

But, because we assumed symmetry, the sum of the costs we used implicitly in Design Step 2 is

Cost’ = Cost(R,Cf |, join-index) + Cost(R,,Cf,, join-index)

Thus, the total error in cost estimation will be

Error = g x (Cost — Cost’) (1.11)

=gX min[{Cost(R ,,J,.join-index) — Cost(R,,Cf,, join-index)}
{Cost(R,,J, join-index) — Cost(R,,Cf, ,join-index)}]

, where g is the frequency of this join.

-Remember, however, that the restriction indexes for both relations had been dropped because their

benefits did not compensate for their update and access cost. Hence, it must be either that the frequency of

access to the column is not significant, or that the effect of selectivity is small. Therefore, either the frequency

of the join we are concerned with is insignificant or the coupling factor approachcs the join

selectivity -making the error insignificant (see Equation (1.11)). Following this argument, we claim that

separability can be applied to all the cases of concern without causing any significant error. Similar situations

arise when, on both relations, only some of the restriction columns specified in a query have indexes assigned,

while others do not. A similar argument holds for such cases.

SEPARABILITY-AN APPROACH TO PHYSICAL DATABASE DESIGN

The costs of some partial-joins that usc the join index method may be changed as a result of the removal of

some indexes in Design Step 2. This could make the sort-merge method more feasible. However, according

to an argument analogous to the one above, we claim that the total of errors incurred in such situations could

not be significant; otherwise the index would not have been dropped.

1.7 Extensions and Further Study

An extension of nonseparable joins, for instance, the inner/outer-loop join method and the multiple-pass

method described in Section 1.3, could be made by means of the following heuristic method. After Design

Step 1, each type of two-variable query is considered in turn and its join cost, as determined in Design Step 1,

is compared with possible nonseparable joins. If a nonseparable join is cheaper, that query type should be

marked to note that this nonseparable join must be used. For a possible shift of the clustering column, after

completion of this step, Design Step 1 should be repeated — with the join method for a marked query type

fixed to be the nonseparable join method assigned previously. This whole procedure (Design Step 1 and the

refinement step with nonseparable join methods) 1s repeated until the refinement becomes insignifant.

The link structure [BLA 76] can be considered next. For every join path, the total cost of all queries using

this join path is compared with the cost based on a hypothetical link. If the latter is less, a link is assigned to

that join path. If the join column on the N-side relation of the 1-to-N relationship is a clustering column, the

link is endowed with the clustering property -otherwise not.

) The most attractive prospects for the inner/outer-loop join methods are those queries that use the sort-

merge method for the relation on the 1-side of the I-to-N relationship, but use the join index method for the

other side. Use of the inner/outer loop join method in these cases has the advantage of saving sorting time on

one relation and index-scarching time on the other (if it has a strong coupling factor). On the other hand, join

paths that support many queries using the inner/outer-loop join method would be the most promising

prospects for the link structure. Index selection could be done at the conclusion of these steps. By reinforcing

the foregoing approach with improved arguments and effective heuristics, we look forward to extending our

basic theory to querics of more than two variables.

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

Finally, although we have developed our theory in terms of the relational system, it should be pointed out

that the basic concept of separability is applicable to network database systems as well (Theorem 2 holds for

any system, while Theorems 3 and 4 are relevant only for relational systems).

1.8 Conclusion

It has been observed and proved that, with a separable set of join methods, the problem of designing the

optimal physical database can be reduced to one of designing optimal individual relations. This can be done

independently of one another by using the coupling factors that represent all interactions among the relations.

This substantially diminishes the complexity of the problem by partitioning it into disjoint subproblems. The

task is made even more manageable by dividing the procedure into two steps-one for deterrninipg the

optimal positions of clustering columns, the other for index selection. A proper interface between the two

steps was introduced. -

Design Step 1 results in a true mathematical optimum. Although, because of the heuristics used in Design

Step 2 and for the interface between the two steps, the overall design does not provide a true optimum, it was

argued that the deviation would be insignificant.

The key objective of this paper is to propose a formal approach to the design of physical databases that

simplifies the problem considerably and, at the same time, provides better insight into underlying

mechanisms. We believe that this novel approach can enable substantial progress to be made in the optimal

design of multifile physical databases.

ESTIMATING BLOCK ACCESSES IN DATABASE ORGANIZATIONS-A CLOSED NONITERATIVE FORMULA

2. Estimating Block Accesses in Database
Organizations — A Closed Noniterative Formula

2.1 Int roduction

In evaluating the access cost of a query for a database organization in which records are grouped into.

blocks in secondary storage [WIE 77], one must often estimate the number of block accesses required to

retrieve the records selected by the query. Various formulas have been proposed for this purpose [CAR 75]

[ROT 74] [SEV 72] [SIL 76} [WAT 72] [WAT 75} [WAT 76] [YAO 771 [YUE 75]. In particular, Yao [YAO 77]

presented the following theorem:’

Theorem 1: [Yao] Let n records be grouped into m blocks (1<m<n), each containing p = n/m records. If

k records are randomly selected from the n records, the expected number of blocks hit (blocks with at least

one record selected) 1s given by

b(m,p,k)=m [1 — (D/()] 2.1)
=m [1~ ((n-p)!(n-k)!)/((n-p-k)!n!)] 22)

=m [1 —=TI*_,(n—p—i+1)/(n—i+1)] (2.3)
when k<n-p, and

b(m,p,k) =m whenk>n-p. (2.4)

Earlier Cardenas [CAR 75] suggested the formula

be(m,p,k) = m [1 — (1 —1/m)¥], (2.5)

assuming that there are n records divided into m blocks and that the k records are randomly selected from the

n records. It is interesting to note that Eq. (2.5) is independent of the blocking factor p.

Yao [YAO 773 showed that Eq. (2.5) is based on the assumption that records are selected with replacement,

1.e., a record can be selected more than once. But this assumption does not hold in practice, since records

selected by a query simultaneously must be distinct from one another. Yao eliminated this assumption and

proved Theorem 1 under the assumption that records are actually selected without replacement, 1.e., a record

cannot be selected more than once at one time.

"The notation and some of the conditions have been slightly modified

— 33 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

Theorem 1 gives the exact formula under the given assumptions. However, we notice that Eq. (2.3) has an

iterative form, which will take excessive time to evaluate if k becomes large. Another way of evaluating. Yao’s

formula is by using the Gamma function (in practice a Log Gamma (LGAM) [IBM 70] function should be

used, since the Gamma function grows very steeply). By modifying Eq. (2.2) slightly, we obtain

b(m,p.k) = m [1— exp(LGAM(n-p) + LGAM(n- k) — LGAM(n- p- k) — LGAM(n))]. (2.6)

Evaluation of this formula poses a problem in practice, especially when k is small. Since, in the evaluation of

the argument of the exponential function, we are subtracting big numbers from equally big numbers to get a

very small number, the roundoff error of the computation can become intolerable. For example, when Eq.

(2.6) is calculated by using single-precision variables on a 36-bit machine having the resolution of 2%

(=~10"%) [DEC 78], it has a 46% error at p= 10, m = 1000, n = 10000, and k = 2. The roundoff error is 310%

when p=10, m =3162, n =31620, and k=3. But these values of parameters are well within the range of

relevant databases.

We propose below a closed noniterative formula that approximates Yao’s exact formula with reasonable

accuracy, as well as reducing considerably the computation error caused by limited precision.

2.2 A Noniterative Formula

In this section, we introduce the following formula and discuss how it was obtained. Errors of this formula

will be discussed in Section 2.3. We assume throughout that m and k have only integer values.

b,,(mp.k)/m = [IL — (1— 1/m)¥| 2.7)
+ [I/m?p X kk —1)/2 X (1- I/m)*1]

+[1.5/m’p* X k(k — 1)(2k — 1)/6 X (1—1/m)*1]

when k<n-p, and

b,, (m,p,k)/m =1 when k > n-p (2.8)

I.ct us see how Eq. (2.7) has been derived. When k > n-p, we always have b,, (m.,p,k)/m = 1 from Eq. (2.4).

If we use n = mp, Eq. (2.3) can be transformed to an equivalent form

b(m,p.k)/m = 1 — MZ (1 -1/m(1 -i/mp)) 2.9)

If we perform a series expansion on 1/m(1 ~i/mp) and take only the first three terms, we obtain

b(m,p, kK)/m=~1 — ITE ((1 —1/m)— i/m?p — i2/m’p?)

If we expand the multiplication and keep the first three terms, we get

— 34 —

ESTIMATING BLOCK ACCESSES IN DATABASE ORGANIZATIONS — A CLOSED NONITERATIVE FORMULA

b(m,p,k)/m =~ [1 — (1— 1/m)Y] (2.10)
+ [I/m?p X kk- 1)/2 X (1- I/m)¥
+ [I/m’p? X k(k—1)Qk~-1)/6 X (1-1/m)*~1}.

Eq. (2.10) is only an approximation of Eq. (2.9), since we took only a few terms from the expansions. Two

factors were added to Eq. (2.10) to derive Eq. (2.7). The factor 1.5 has been introduced empirically to

compensate for the errors at small values of p, i.e., p=~1. It was chosen especially to reduce the error to zero

when p = 1, k=|n—p], as n goes to infinity (n—>00), in which case Eq. (2.10) has the most significant error.

The factor 1/p’ has been introduced empirically to reduce the effect of the third term for higher values of p,

for adding the third term at these values of p increases the error (although it reduces the error at lower values

of p). We shall show later that the approximation formula derived here constitutes a practically negligible

deviation from the exact formula.

2.3 Error Analysis

We note that the first term of Eq. (2.7) is identical to Cardenas’ formula, Eq. (2.5). The second term

compensates for the major error of Eq. (2.5), while the third term provides a finer adjustment to further

reduce the error. The third term has been empirically modified to get a better approximation.

Derived in Theorem 2 and plotted in Figure 2-1 for various values of p and x = k/n is a formula that gives

the limiting values of the error ERR(m,p.k) = (b(m,p,k) — b,,,(m.p.k))/b(m,p,k) as the total number of blocks

m (and, accordingly, the total number of records n) goes to infinity.

: Theorem 2:

mos00 ERR(M,pK) =1=(1—e PL—px’/2—k>/2p))/(1~(1 ~ x)P), 11)

where ERR(m,p,k) = (b(m,p.k) — b,,,(m,p.k))/b(m,p,k), and p and x have fixed values.

Proof: To derive this formula, we need the following form of Yao’s formula, which has the iteration on the

blocking factor p rather than on the number of sclected records k.

bm,pk) = 1 —MP_,((n— k-i+ 1)/(n—i+ 1)) (2.12)

This formula is easily derivable from Eq. (2.2). If we subtract Eq. (2.7) from Eq. (2.12) and divide the result

by Eq. (2.12), we can obtain Eq. (2.11) by taking the limit as m—09(accordingly n— 00) and by using the

identity hm co(l-1/m)" =e” I QED.

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

Eq. (2.12) is also a convenient formula for evaluating the exact value when we have integer blocking

factors. In fact, all computed values for integer blocking factors that we shall employ later in this section were

produced by using Eq. (2.12). The limiting values, as the blocking factor p goes to infinity with m and « fixed,

are proved to be zero in the following theorem.

Theorem 3: 0, aoERR(m,p.K) =0, where m and « = k/n have fixed values. Here 0<k<(m—1)p, and Kk is
an integer.

Proof: If x =0, both b(m,p,k)/m and b,, (m,p.k)/m simply become 1, so ERR(m,p,k) must be zero. If

k>0, we know that i“. oob(m,p.k)>1, since at least one block must be hit. Therefore, the denominator of
ERR(m,p,k) is always at least 1 and cannot be 0. To study the behavior of the numerator, let us look at Eq.

(2.12). In Eq. (2.12), (n—k—i+1)/(n—i+1)<(n—k)/n=1-«(<l. Therefore,

RN | [((n—k—i+1)/(n=i+ 1D) Ruin ¢| —k)®=0. Thus, oT, 6ob(m,p.k)= 1. But it is clear from Eq.
(2.7) that i“ cob, (m.p,k)=1 also, since oo oo(1—1/m)*™P~1oo, oo(1—1/m)*™P =_o€P=0, and

an exponential order can suppress any polynomial order of p. Hence, oo, ooERR(m,p,k) = 0. Q.E.D.

The errors that occur when both n and p are finite were investigated by performing an exhaustive computer

calculation. These analyses show that Eq. (2.7) yields at most 3.7%(-3.7% if the sign is considered) of deviation

from the exact formula, Eq. (2.3), over the entire range of p>1,m>1,0<k<n-p, where m and k are

integers. This maximum error occurs at p=1 + v' 2, k =|n — p| as m— 00 (This can be observed in Figure 2-

1. In fact the maximum error and the value of p at which this error occurs can also be derived from Eq. (2.11),

once we know that this occurs at x = 1, as m— 00.) The maximum positive error (2.5%) occurs at p= 1.5,

k =3, and m = 3. The maximum positive error when m— ois 2.1% at p = 1.7 and k = 0.63n.

The dependence of the error on the values of n/p = m is shown in Figure 2-2, where k is set to be equal to

|In—p] (note that the maximum error occurred at this k value). At low values of m and p there is a short

range within which errors are changing by a large amounts, since at these values of m and p,

k=|n—p|={(m—1)p]is in the range where high positive errors occur, as we see in Figure 2-1 (see the value

when p =2, m = 3, n= 6, and k = 4, for example). The dependence of the error on m is otherwise very flat, as

ESTIMATING BLOCK ACCESSES IN DATABASE ORGANIZATIONS-A CLOSED NONITERATIVE FORMULA

in Figure 2-3, which shows the values when x =0.65 with corresponding k values rounded to the nearest

integers. In Figure 2-3 the values at m-1 and m =2 are 0 from Eq. (2.4) and Eq. (2.8), since at these points

k =0.65n > n-p.

The values of variables we used in the exhaustive computer calculation are as follows, with the constraint

that mp < 107(10° for noninteger blocking factors):

o m: 1,2, 3, 10, 32, 100, 316, 1000, 3162, 10000, 31623, 100000, 316228, 1000000

ep: 1,2,3,4,5, 10, 32, 100,316, 1000, 3162; 1.1, 1.2,1.9; 2.1,22,....29

e k/n: 0.0,0.02, 0.05,0.1,0.15,0.2,....1.0

e k:|n-p],1,2,3,4,5,6,7, 8,9, 10, 32,100

2.4 Computational Error due to Limited Precision

The major computational error is due to the evaluation of (I — 1/m) in Eq. (2.7). For example, if m = 108,

we need better resolution than 107°. However, it is shown in [WHA 81] that the number of valid digits

required by Eq. (2.7) is roughly proportional to log&n), while that required by Eq. (2.6) using the Gamma

function is proportional to log, (mn In(n)) for the same precision in the result. In the exhaustive calculation

using a DEC System 20 with single-precision variables, we obtained a maximum error of 0.2% when m= 10°

over the range of variables shown in Section 2.3.

2.5 Comments on Related Work

Formulas essentially identical to Cardenas’ and Yao’s formulas were derived independently by Waters and

Karayiannis [WAT 72][WAT 75][WAT 76]. Waters summarized three related formulas in [WAT 76], which

“are

b,,,(mp.K) =m[l—(1- k/n)?], (2.13)
b,,,(M.p.K) =m [1— (1 —p/n)"], and (2.14)
bors (MLD:K) =ml[l — mea — p/(n—i+1))]. (2.15)

Eq. (2.14) and Eq. (2.15) are identical to Eq. (2.5) and Eq. (2.3), respectively. Eq. (2.13) was derived in

[WAT 72) [WAT 75], as follows:

— 37 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

ERR(m,p,k) (%)

3 |-

m: infinity

2 | ZZ

| = p=1.7
1 XA)

3 |= | | \
-4

0 0.2 0.4 0.6 0.8 1.0

RATIO OF SELECTED RECORDS K/n

TO TOTAL NO. OF RECORDS

Figure 2-1: Error of Eq. (2.7) as m Goes to Infinity.

— 38—

ESTIMATING BLOCK ACCESSES IN DATABASE ORGANIZATIONS- A CLOSED NONITERATIVE FORMULA

ERR(m,p,k) (%)

2 |

p=1
0 —p | ——

NV p=10

-1 NL p=5
-3 NL p=3 a
-4 | nD =2.4

1 10 100 1000 10000 100000

NUMBER OF BLOCKS m

Figure 2-2: Error of Eq. (2.7) when k =n-p

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

ERR(m,p,k) (%)

3 [=

k/n= 0.65

~N p=1.7
2 1° — p=1.5

p=2

—

p=3

o |— p=10

| p=4

ZN D =o
-1 —_ |

S~— p=1

-2

1 10 100 1000 10000 ‘100000

: NUMBER OF BLOCKS m

Figure 2-3: Error of Eq. (2.7) when k = 0.65n

— 40 —

ESTIMATING BLOCK ACCESSES IN DATABASE ORGANIZATIONS — A CLOSED NONITERATIVE FORMULA

RHR = number of distinct records hit / total number of records in the file

= probability that any particular record is hit
= k/n.

C 1- RHR = probability that any particular record is not hit.
CL (1 — RHR)P = probability that any particular block is not hit.
". 1- (1 = RHR) = probability that any particular block is hit.

Subsequently, during one of Waters’ lectures, Karayiannis (then a student) suggested that Eq. (2.13) was

incorrect, pointing out that Eq. (2.13) gives an incorrect result where m = 1 (correct result is b(m,p,k)=1 if k >

0). He further suggested Eq. (2.14) as an alternative formula. Later Waters [WAT 76] announced that Eq.

(2.13) and the above derivation were incorrect and instead suggested Eq. (2.15) as an alternative formula.

However, we note that the derivation of Eq. (2.13) is correct if we make the independence assumption in

calculating the probability that any particular block will not be hit. More rigorous derivation should use

conditional probability, since the events of each record’s being hit are not mutually probabilistically

independent.

We note that, if we interchange p and k, Eq. (2.12) bears the same relationship with Eq. (2.13) as Eq. (2.3)

does with Eq. (2.14). In this sense, Eq. (2.12) and Eq. (2.13) are a dual of Eq. (2.3) and Eq. (2.14).

It was observed in [YAO 77] that Eq. (2.14) yields a good approximation when k << n (x << 1) or p » 1.

Hence, Eq. (2.13) will give a good approximation when p <<n (m >> 1) or k >> 1 by duality. This means that

; one formula will result in a good approximation when its counterpart yields a poor one, and vice versa.

Therefore, an obvious alternative approach to the one presented in this paper is to combine these two

formulas in such a way as to get a good approximation over the entire range. As an example, we suggest here

the follo wing formula:

b,,(mpk) = max {b_(mpk)b_ _(mpk)} (2.16)
= max{m|[l — (1- k/n)’}, m (1 — (1- p/n)]},

where ‘max’ represents the minimum of the two arguments. This equation will be a good approximation,

since either formula always produces a value smaller than the exact formula. (This can bc easily understood

by examining the underlying assumptions.)

— 4] —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

2.6 Application

An implicit assumption’made throughout the development of all the formulas is that a block is accessed no

more than once. We encounter this situation in practice when the records selected are accessed in TID (tuple

identifier or database key) order.

Two typical applications of these formulas are in query optimization [YAO 79] and, physical-database

design [HAM 76] [WI-IA 81]. The formulas are used to estimate the number of block accesses, which is an

important measure of cost. In an approach employed in [WHA 81], they are also used to estimate the number

of logical groups of records selected. A logical group is a set of records grouped according to certain

criteria- for example, common possession of the same value on a certain field. Close estimation of the

number of logical groups selected is necessary in analyzing the interactions among relations in the design of a

physical database. In this application, we are very likely to have low grouping factors (number of records in a

group) that correspond to the blocking factors of a block (physical group). For example, we have a grouping

factor of 1 when the records are grouped according to the values of a key field.

Although Cardenas’ formula (currently used in System R [SCH 81]) gives a reasonable approximation in

many cases, it is expccially prone to failure at low blocking factors (particularly when p < 10). Eq. (2.7) proves

to be very useful in these situations.

2.7 Conclusion

A closed noniterative formula for estimating the number of block accesses was introduced. It improves

Yao’s exact formula in the sense that it significantly reduces the computation time by eliminating the iterative

loop, while providing a practically negligible deviation (maximum error = 3.7%) from the exact formula over

the entire range of variables involved. The computational error due to the machine’s limited precision has

been greatly reduced as compared with a method using the Gamma function based on Yao’s formula. It

significantly improves Cardenas’ earlier formula, which has a maximum error of e 1 =36.8% (atp = 1).

RELATIONSHIPS BETWEEN RELATIONS

Appendix A. Relationships between Relations

In this section, we demonstrate that the assumption that we made in Section 1.2 excluding M-to-N

relationships from consideration for optimization is reasonable.

Relations can have various relationships (not necessarily semantically meaningful ones) depending on the

characteristics of the domains of the attributes that are related. For example, if we relate a key attribute (or

set of attributes) in relation R, and a nonkey attribute (or set of attributes) in relation R,, then R, and R, have

a 1-to-N relationship with respect to these attributes considered. Relations R, and R, will have a I-to-]

relationship if attributes considered in both relations are key attributes, and an M-to-N relationship if both

are nonkey attributes.

In this section, we shall show that a relation scheme any of whose relation instance is a join of two relations

which has an M-to-N relationship with respect to a set of attributes A has a multivalued dependency

(MVD) — assuming that the only predicate that relates these two relations is the one that represents the join

on A.

Intuitively, if a relation scheme R has an MVD A— —B (and accordingly A——>R— B), where A and B are

sets of attributes in R, then in a specific relation instance r of R, given a specific value of A, the values of

R- B are completely replicated for every distinct value of B. Because of this replication, sets of attributes B

) and R — B do not bear much meaningful relationship, and thus it does not make much sense to have both sets

of attributes together in a single relation.

. We believe, in accordance with the above argument, that joining two relations that have M-to-N

relationships with respect to the set of attributes on which the join is performed is relatively infrequent. In

Section 1.2, on the basis of this argument, we excluded from consideration as prospects for optimization join

operations on relations that bear an M-to-N relationship.

We have the following theorems:

— 43 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

Theorem 1: If a relation scheme R has an MVD A —> —B, where A and B are sets of attributes of R, then

every relation r for R is a natural join of projections of r on the relation schemes R; = A, R, = AUB, R, =

AU(R — B), respectively, where R,, R,, and R, possess the relationships shown in Figure A-l.

A

Ry 11

/ \
/ \

J *

AUB AU(R- B)
-----4a- _-__— = =m = = =

R, 11 11 Ry

Figure A-l: Relation Schemes and Their Relationships.

In this figure — — * represents a I-to-N relationship with respect to A.

Proof: R,, R,, and R; can be obtained by two consecutive lossless join decompositions, i.e., decomposition

of R into AUB and AU(R-B) and decomposition of AUB into A and AUB. These two decompositions are

lossless, since we have an MVD A— —B [ULL 80]. Thus, the overall join decomposition of R into R,, R,,

and R, is also lossless. Therefore, for any relation r for R, r = JOIN?_ dlp (1).
1

To prove that R; and R, has a I-to-N relationship, we note that A in R is akey, since it is the only

attribute (or set of attributes) in R,. However, A in R, is generally not a key. So we have a I-to-N

relationship from R, to R,

When A in R, is a key, we have a 1-to- relationship between R, and R,, which can be considered as a

special case of a I-to-N relationship. Similarly, R; and R, have a I-to-N rclationship. Q.E.D.

Theorem 2: A relation scheme R has MVDs A—— B and C— —D if any relation r for R is a natural join

of some relations I, 7), and fy for relation schemes R,, R,, and R,, respectively, where R,, R,, and R, have

the relationships shown in Figure A-2.

— 44 —

RELATIONSHIPS BETWEEN RELATIONS

AUC E

Ry II

/ \

/ \

/ \
* °

A B c D

R, I | | | | | Rg

Figure A-2: Relation schemes and their relationships.

In that figure — — * represents a 1-to-N relationship with respect to A on the left side and one with respect

to C on the right side.

Proof: Consider tuples t and s with fA] = s[A] in a relation r for R. Since r is a natural join of some

relations ry, T,, and ry, respectively, there must exist tuples uy, u, in fy7 vy, V,in r,; and w,, W, in I such that

dA} = u[A] = v{[A] and tC] = u,[C] = w,[C]

lA] = u,[A] = v,[A] and s[C] = u,[C] = w,[C].

Since t[A] = s[A], we have u,[A] = u,[A]. But since R, and R, have a I-to-N relationship from R, to R,

and they are connected through A, A must have unique values in r;. Hence u, =u, and accordingly u,[C] =

u,[C] = w,[C].

- Therefore r will contain a tuple z where

fA] = v,[A] = dA] = s[A]

2B] = v,[B] = {B}
7IR—- AUB] = w,[R-AUB] = sfR—AUBI.

Thus R has an MVD A——DB. By a similar argument, R has C——D. Q.E.D.

Corollary: Let relation schemes R, and R, have an M-to-N relationship with respect to a set of attributes

A. The relation scheme R whose relation instances are natural joins on A of two relations ry for R, andr, for

R, has MVDs A——»(R,;—-A) and A——>(R,—A).

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

Proof: We can consider a two-relation join of r; and r, as a three-relation join of r,,r,, and an imaginary

relation IIAly UII,r,. Then the relation scheme R, corresponding to this imaginary relation has 1-to-N

relationships with R; and R,, with respect to A, as shown in Figure A-3.

A

Ry | |

/ \

/ \

* »

ARTA ARTA
Ry 11 1 | R,

Figure A-3: Relation R, has I-to-N Relationships with R; and R,.

Thus relation scheme R has MVDs A——>(R,— A) and A——-(R,— B) from Theorem 2. Q.E.D.

— 46 —

EQUIVALENT RESTRICTION FREQUENCY OF A PARTIAL-JOIN

Appendix B. Equivalent Restriction Frequency of
a Partial-Join

In Section 1.6, the equivalent restriction frequency of a partial-join using the join index method was defined

as the ratio of the gain in access cost by having the restriction indexes in a partial-join to the gain in access cost

that the same restriction indexes would yield in the joint restriction with the join index. We shall show in this

section that this equivalent restriction frequency of a partial join using the join index method performed on

relation R, can be calculated, with one exceptional case, as Cf,/F,, where Cf, is the coupling factor from

relation R, to relation R, and F_ is the selectivity of the join columns of relation R,

By formulating the partial-join cost and the cost of the joint restriction in both cases in which the restriction

index 1s used and in which the restriction index is not used (or does not exist), we shall show that the number

of block accesses saved in a partial-join is the same as the number of block accesses saved in the joint

restriction of the join index and the restriction index used in the partial-join multiplied by Cf,,/F.

We have three general cases: in Case 1 both the join index and the restriction index are nonclustering; in

Case 2 the join index is nonclustering, while the restriction index is clustering; in case 3 the join index is

clustering, while the restriction index is nonclustering.

Case 1: both the join index and the restriction index are nonclustering

a. When the restriction index is used

Joint restriction cost = b(m,p,F_ XF.Xn)
Partial-join cost = (Cf),/F) b(m,p,F,_X F.X n)

In a joint restriction, the number of records selected is FXEXn. We assume that these records are evenly

spread and are accessed in TID order. Thus we get b(m,p,F, X F. Xn) block accesses. In a partial-join, we are

following the join index in the order of join column value, and FXF.Xn records are accessed for a distinct

join column value. Since these records are spread over the entire file and are accessed in TID order, we get

b(m,p,F,XF Xn) block accesses. This procedure is repeated for every distinct join column value selected by

— 47 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

the coupling effect and the join selectivity (i.e., according to the coupling factor). The total number of distinct

join column values are 1/F2 Therefore, as the partial-join cost, we have (Cf,/F) b(m,p,F, X F. Xn).

b. When the restriction index is not used (or does not exist)

Joint restriction cost = b(m,p,F,X n)

Partial-join cost = (Cf,/F)) b(m,p,F, Xn)

An analysis applies that is the same as above except that the restriction index is not used. Thus, we have

F, Xn selected records instead of F2, X F.Xn.

Case 2: the join index is nonclustering while the restriction index is clustering

There are two cases to be considered separately: when F.2>1 and when EF. <1.

1. When F.>1

a. When the restriction index is used

Joint restriction cost =b(F.Xm, p, FJF; Xn)

Partial-join cost = (Cf,/F2) b(F, Xm, P, FF. Xn).

This case is almost identical to Case 1, except that the restriction index is clustering and the range within

which the selected records can bc found 1s limited to FXm blocks instead of m (the number of blocks of the

entire file). To use b function it is required that F.Xm2>1.

b. When the restriction index is not used (or does not exist)

Joint restriction cost = b(m,p,FXn)

Partial-join cost = (Cf},/F)) b(m,p,F, Xn)

This case 1s exactly the same as Case I-b.

2. When F.Xm<1

a. When the restriction index is used

EQUIVALENT RESTRICTION FREQUENCY OF A PARTIAL-JOIN

Joint restriction cost = FX b(1/F;, F. Xn, F,Xn)

Partial-join cost = (Cf,/F)XF.Xb(1/F,F,XnF, Xn).

Since F.Xm <1 and the restriction index is clustering, all records selected according to the restriction index

will be confined in an area smaller than 1 block (let us call this a selected area). Let us assume that this

selected area resides within a physical block (i.e., we ignore the case in which this selected area resides on the’

border of two blocks). If we assume that the file is divided into logical blocks of the same size as this selected

area, the probability that this selected area will be hit by a joint restriction is

(1/(1/F)) b(1/F, F. Xn, F, Xn).

This is also the probability that the physical block containing the selected area will be hit (note that there are

1/F, logical blocks in the file). This is also the number of physical blocks to be hit by the joint restriction,

since the physical block containing the selected area is the only one that can possibly be accessed.

In a partial-join, the same analysis is valid for each distinct join column value, assuming that the same block

must be fetched again if a repeated forward scan inside this block is to be performed. Thus the partial-join

cost is the product of (Cf},/F) and the joint restriction cost.

b. When the restriction index is not used

Joint restriction cost = b(m,p,F,Xn)

Partial-join cost = (Cf},/F) b(m,p,F, Xn)

This case 1s exactly the same as Case I-b.

Case 3: the join index is clustering, while the restriction index is nonclustering

1. When F, Xm2>1

a. When the restriction index is used

Joint restriction cost = b(F, Xm, p, F, XF.Xn)

Partial-join cost = (Cf ,/F) b(F, Xm, D, F, XF,Xn).

An analysis similar to Case 2-1-a applies, except that the range of the selected records is limited to F,Xm

blocks instead of F.Xm.

— 49 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

b. When the restriction index is not used

Joint restriction cost = F_Xm

Partial-join cost = (Ct},/F)XF, Xm = Cf, Xm.

Since the join index is clustering, the number of blocks accessed is proportional to the number of records

selected.

2. When F_ Xm <1

a. When the restriction index is used

Joint restriction cost = (1/(1/F))) b(1/F, F Xn, F.Xn)
Partial-join cost = b(m, 1/(F,m), Cf, Xb(l/F, F Xn, F.Xn)).

The joint restriction cost can be obtained by a similar analysis used in Case 2-2-a, except that the roles of F,

and F, are interchanged.

In the partial-join, the entire file is divided into 1/F, logical blocks, each of which contains F,Xn records.

According to the restriction index, F.Xn records are selected; the number of logical blocks selected by this

restriction is b(I/F, F, Xn, F. Xn).

The coupling factor Cf,, determines how many distinct join column values are actually selected. Since one

logical block corresponds to one distinct join column value, the number of logical blocks selected according to

the coupling factor and the selectivity of the restriction index is Cf;,Xb(1/FF Xn, F.Xn).

To calculate the number of physical blocks hit, let us assume that the entire file consists of m blocks, each

of which contains 1/(F,m) logical blocks. Since Cf, Xb(l/F, F Xn, F. Xn) logical blocks are sclected, the

number of physical blocks that will be hit is b(m, 1/(F,m), Cf,Xb(1/Foo Fa X10, F.Xn)).

b. When restriction index is not used (or does not exist)

Joint restriction cost = 1

Partial-join cost = b(m,1/(F,m),Cf,,/F)

— 50 —

EQUIVALENT RESTRICTION FREQUENCY OF A PARTIAL-JOIN

This can be easily derived from Case 3-2-b by setting F.to l.

We have seen, in all situations except Case 3-2, that the partial-join cost is equivalent to Cf.,/F, times the

joint restriction cost. Accordingly, the cost saved by having the restriction index in a partial-join is Cf,,/F,

times the cost saved by having the restriction index in the joint restriction.

Case 3-2 is the only case in which the equivalent restriction frequency of a partial-join using the join index

method cannot be represented as Cf.,/F. The reason is that, in a partial-join, the logical blocks are accessed

in a serial order, and thus several logical blocks may cause only one block access. In the case of joint

restriction, we need one block access in any case if at least one record is selected.

The derivations of the formulas were introduced to show how we can formulate cost formulas with the b

function, as well as to show that, in most cases, equivalent restriction frequency has a simple form, Cf,/F,.

While the detailed form of cost formulas depend on the specific cost models, we believe that the same

principle we used in the derivation can be easily applied to any given model.

— 5] —

COMPUTATIONAL ERRORS

Appendix C. Computational Errors

C.1 Comparison of Computational Errors

In this appendix we develop the prediction of the computational errors which occur in the estimation of

block accesses discussed in Section 2.4. These computational errors occur due to the limited precision of the

computing system used. |

Theorem 1: Calculation of Eq. (2.6) to d digits of precision with a possible error of £ 1 in the least

significant digit (LSD) requires at least log, (mn log(n)) + d valid digits with a possible error of £1 in the

LSD.

Proof: We shall use a pseudo equality symbol = throughout this proof and the proof of Theorem 2, ighoring

the deviation from equality whenever it neither affects the logical flow of the proof nor changes the numerical

result significantly.

By Stirling’s approximation [KNU-a 73],

I['(n+1)=+v 2wn(n/e)", and

In(T(n+ 1) =In(v 27) +0.51In(n) + n(ln(n) — 1)

= n In(n),

since we are considering relatively large n’s.

From Eq. (2.6),

b(m,p,k)= 1—exp[LGAM(n—p)+LGAM(n— k)- LGAM(n—p—k)—LGAM(n)] (2.17)

] — —LGAM(n—p)— LGAM(n—k)+LGAM(n—p—k)+LGAM(n).

Let us consider the case in which k = 1. At this k value, all four terms in Eq. (2.17) are close to n In(n), the

result is the smallest possible, and we shall get the maximum error. If we assume that evaluation of Eq. (2.17)

causes the crror of = 1 in the LSD, then the error of the result will be

10™* X n In(n),

where Xx is the number of significant digits.

The exact value of the result of Eq. (2.17) must be 1/m, since only one block will be hit. Therefore, the

relative error caused by the computation with x significant digits will be

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

(10~* X n In(n))/(1/m)=(mn In(n)) X 10%. (2.18)

If we require this to have an error of less than 10™9, so that we have d digits of precision in the result with a

possible error of & 1 in the LSD, Eq. (2.18) must be less than 10 4 Therefore,

X > log, (mn In(n)) + d. Q.E.D.

Theorem 2: x > (log; m)+d + log, (d)+ 1 valid digits with a possible error of £1 in the LSD are

sufficient in the calculation of Eq. (2.7) to d digits of precision.

Proof: The major cause of the error is in the calculation of 1- I/m as m gets larger, since it requires as

many digits as log,, m. We shall use the equality (1- 1/m)™ =e -1 throughout, assuming that m is sufficiently

large. For convenience let us consider only the first term of Eq. (2.7), since the other terms behave similarly

and their absolute values are always less than (1 — 1/m)*.

Let us divide the values of k into 3 ranges: k < 0.1m, k > In(I0)XdXm, and O.Im <k < In(10)Xd Xm.

(1) k<0.1m

From a Taylor expansion we have

(1-1/m¥=1-k/m+k(k—1)/2 X (1/m)’ ... = 1—k/m, and thus
1- (1- I/m)* = k/m.

In the calculation of (1 —1/m) we have an error of 107%, so that, as a result of computation, we get

(1-1/m+ 107% = 1— k(1/m- 107%).

(For-convenience let us consider only a positive error. Negative errors can be treated similarly.) Accordingly,

the error of the overall calculation will be

(k(/m- 1079 —k/m)/(k/m)=—10"* X m.

Thus, we get a precision of d digits in the result if and only if

107* Xm <1079 or

X > (log, m) + d.

(2) k2>In(JO) Xd X m

|

| In this case 0 < (1 — 1/m)X <107¢, Hence,

COMPUTATIONAL ERRORS

1>1-(1-1/m)* >1-10"9>009,

assuming d 2 1. However, actual computation may yield

1—(1-1/m+10"%k,

Since

xX > (log), m)+ d+1,

we have

107*< (1/m)10~@+ 1,

Since

(1- 1/m+ 10~@d+1D/mk

= (1-(1-10"W*+ ym)

= _10-@+D= 10" (1-10)Xd - 10-d

assuming d>1, the relative error, ((1- 1/m)¥ —(1- I/m+ 107%)%)70.9, cannot be greater than

(1/0.9X10~ %= 10~9, Thus we have a precision of d digits in the result.

(3) O.Im<k<In(10)XdXm

We have

In[((- I/m)+ 107%)/(1— 1/m)¥]
= k(In(I- /m+ 107%)—=1In(1— 1/m))

= k((- I/m+ 107%)~(1—- I/m))

=k X 107%
J

- Accordingly,

(1 =1/m+107%% = (1 = I/m)*)/(1 — 1/m)¥

= exp(kX107%) — 1.

a) m<k<(ln 10)XdXm

The relative error will be

(1-1/m+10"")*—(1- I/m)*)/(1~ (1 — 1/m)¥)
<(Q-1/m+10"%= (1-1/m)*))/(1 — 1I/m)*

= cxp(kX107%) — 1

< exp((k/md)Xx10~4+1y _ 1

— 55 —

SEPARABILITY AS A PHYSICAL DATABASE DESIGN METHODOLOGY

< exp(In(10)x10~@+1y _ 1
<In(10)x10~@+D

. =023x1074,

Thus, we have a precision of d digits.

b) 0.1 m<k<m

We have

(1- 1/m)* = 1 = k/m< 0.9.

Hence, the relative error will be

(1-1/m+10"*= (1= I/m)*)/(1= (1 — I/m)¥)
< (1/0.1)((1-1/m +10 %*— (1 - 1/m)¥)
<10((1— 1/m+10"9— (1 = 1/m)¥)/(1 = I/m)k
= 10(exp(kX10™%) — 1)

< 10(exp((k/m)x10~@+Dy _ 1)
< 10((k/m)X 10+1)

< 10x10~@+D
= 1074

This shows that we have a precision of d digits. Q.E.D.

Corollary: Eq. (2.7) requires at least x > (log,, m)+ d valid digits to get d digits of precision in the result.

Proof: This follows from the case (1) of Theorem 2. Q.E.D.

" Applying Theorem 2 and its corollary, the actual requirement will be

(logy, m)+d<x< (log, m) +d + log, ,(d) +1.

Example 1: Let us calculate the number of valid digits required by the evaluationof Eq. (2.7) and Eq. (2.6),

respectively, when m = 10°, p=10,n= 107, and we need a precision of 2 digits in the result.

(a) For Eq. (2.7),

log,(10°)+2+log,(2) +1=93,
log ,(10°)+2=8, and
8 <x<9.3.

— 56 —

COMPUTATIONAL ERRORS

(b) For Eq. (2.6),

x = log,(10° X 10” X In(10%)) + 2
= 16.3.

We note that Eq. (2.6) requires roughly twice as many valid digits as does Eq. (2.7). 1

In the exhaustive calculation we made over the range specified in Section 2.3, the maximum error (0.2%)

occurred at m = 10°, p= 1, and k << m (i.e. KJ, which actually corresponds to the lower bound given in the

corollary.

Example 2: The error of 0.2% is equivalent to a precision of 2 digits according to our definition, since 0.998

compared with 1.0 clearly has an error exceeding 1 in the third digit, and the first and second-digits are the

only valid digits with possible error of £1 in the LSD. Thus, the number of valid digits x of the computer

required by Eq. (2.7)) when m = 10° will be

8§<xL93

The DECSYSTEM-20 has 2%’ of resolution, approximately corresponding to 8 valid digits, which confirms

our result. [J

C.2 Computational Error in an Extended Range

The maximum computational error when the number of blocks m is extended to 10 1s 4.3%: it occurs at

k = 1 for all values of p.

We assumed throughout that m has only integer values. However, computer calculation performed over all

combinations of the following range shows that the maximum deviation of Eq. (2.7) from the exact formula is

3.7%, even for the real values of m.

o 1.1 < p< 3.9 with increments of 0.1,

e 1 <p <10 where p is an integer,

0 1.1 € m< 3.9 with increments of 0.1.

REFERENCES

References

[BAT 80] Batory, D. S. and Gotlieb. C. C., “A Unifying Model of Physical Databases,” Tech. report CSRG-
109, Computer Systems Research Group, University of Toronto, April 1980.

[BAY 72] Bayer, R. and McCreight, E., “Organization and Maintenance of Large Ordered Indices,” Acta
Informatica, Vol. 1, 1972, .

[BLA 76] Blasgen, M. W. and Eswaren, K. P., “On the Evaluation of Queries in a Database System,” IBM
Research Report RJ1945, IBM, San Jose, Calif., April 1976.

[CAR 75] Cardenas, A. F., “Analysis and Performance of Inverted Database Structures,” Comm. ACM, Vol.

18, No. 5, May 1975, pp. 253-263.

[DEC 78] Digital Equipment Corporation, DECsystem-10/DECSYSTEM-20 Hardware Reference Manual-
Central Processor, 1978.

[ELM 80] El-Masri, R. and Wiederhold G., “Properties of Relationships and Their Representation,” Natl.

Computer Conf., AFIPS, Vol. 49, May 1980, pp. 191-192.

[GAM 77] Gambino, T. J. and Gerritsen, R., “A Database Design Decision Support System,” Proc. Int.
Conf. on Very Large Databases, Tokyo, Japan, IEEE, October 1977, pp. 534-544.

[GOT 75] Gotlieb, L., “Computing Joins of Relations,” Proc. Intl. Conf. on Management of Data, San Jose,

Calif., May 1975, pp. 55-63.

[HAM 76] Hammer, M. and Chan, A., “Index Selection in a Self-Adaptive Database Management System,”
Proc. Intl. Conf. on Management of Data, Washington, D.C., ACM SIGMOD, June 1976, pp. 1-8.

[HSI 70] Hsiao, D. and Harary, F., “A Formal System for Information Retrieval from Files,” Comm. ACM,
Vol. 13, No. 4, February 1970, pp. 67-73, Also see Comm. ACM 13, 4, April 1070, p.266.

[IBM 703 IBM, System 360 Scientific Subroutine Package, 1970.

[KAT 80] Katz, Ii. H. and Wong, E., “An Access Path Model for Physical Database Design,” Proc. Intl.
; Conf. on Management of Data, Santa Monica, Calif., ACM SIGMOD, May 1980, pp. 22-29.

[KIN 74] King, W. F., “On the Selection of Indices for a File,” IBM Research Report RJ1341, IBM, San
Jose, Calif., 1974.

[KNU-a 73]

Knuth, D., The Art of Computer Programming- Fundamental Algorithms, Addcson-Wesley, , Vol.

1, 1973.

[KNU-b 73]

Knuth, D., The Art of Computer Programming- Sortng and Searching, Addison-Wesley, , Vol. 3,
1973.

[PEC75] Pechcrer, R. M., “Efficient Evaluation of Expression in a Relational Algebra,” ACM Pacific 7.5
Regional Conference, San Francisco, April 1975, pp. 44-49.

SEPARABILITY AS A PI IYSICAL DATABASE DESIGN METHODOLOGY

[ROT 74] Rothnie, J. B. and l.ozano, T., “Attribute based file organization in a paged memory

environment,” Comm. ACM, Vol. 17, No. 2, February 1974, pp. 63-69.

[SCH 75] Schkolnick, M., “The Optimal Selection of Secondary Indices for Files,” Information Systems,

Vol. 1, March 1975, pp. 141-146. |

[SCH 81] Schkolnick, M., private communication,

[SEL 79] Selinger, P. G. et al., “The Optimal Selection of Secondary Indices for Files,” Proc. Intl. Conf. on

Management of Data, Boston, Mass., May 1979, pp. 23-34.

[SEV 72] Severance, D. G., Some Generalized Modeling Structures for Use in Design of File Organizations,
PhD dissertation, University of Michigan, Ann Arbor, Mich., 1972.

[SEV 75] Severance, D. G., “A Parametric Model of Alternative File Structures,” Information Systems, Vol.

1, No. 2, 1975, pp. 51-55.

[SIL 76] Siler, K. F., “A stochastic evaluation model for database organizations in data retrival systems,”
Comm. ACM, Vol. 19, No. 2, February 1976, pp. 84-95.

[SMI 75] Smith, J. and Chang, P., “Optimizing. the Performance of a Relational Algebra Database
Interface,” Comm. ACM, Vol. 18, No. 10, October 1975, pp. 568-579.

[ULL 80] Ullman J., Principles of Database Systems, Computer Science Press, Potomac, Maryland, 1980.

[WAT 72] Waters, S. J., “File design fallacies,” The Computer Journal, Vol. 15, No. 1, 1972, pp. 1-4.

[WAT 75] Waters, S. J., “Estimating magnetic disc seeks,” The Computer Journal, Vol. 18, No. 1, 1975, pp.
12-17.

[WAT 76] Waters, S. J., “Hit ratios,” The Computer Journal, Vol. 19, No. 1, 1976, pp. 21-24.

[WHA 81] Whang, K., “Separability — An Approach to Physical Database Design,” Tech. report, Stanford
University, 1981, to be published.

[WIE 77] Wicderhold, G., Database Design, McGraw-Hill Book Company, New York, 1977.

[WIE 79] Wicdcrhold, G. and El-Masri, R., “The Structural Model for Database Design,” Proc. Intl. Conf.
on Entity Relationship Approach, Los Angeles, Calif., December 1979, pp. 247-267.

[WON 76] Wong, E. and Youseffi, K., “Decomposition — A Strategy for Query Processing,” ACM Trans.
Database Systems, Vol. 1, No. 3, September 1976, pp. 223-241.

[YAO 77] Yao, S. B., “An Attribute Based Model for Database Access Cost Analysis,” ACM Trans.
Database Systems, Vol. 2, No. 1, March 1977, pp. 45-67.

[YAO 79] Yao, S. B., “Optimization of Query Evaluation Algorithm,” ACM Trans. Database Systems, June

1979, pp. 133-155.

[YUE 75} Yuc, P. C. and Wong, C. K., “Storage cost considerations in secondary index selection,”

International Journal of Computer and Information Sciences, Vol. 4, No. 4, 1975, pp. 307-327.

