
September 1981 Report. No. STAN-CS-81 -880

Well Structured Parallel Programs
Are Not Easier to Schedule

by

Ernst W. Mayr

Department of Computer Science

Stanford University

Stanford, CA 94305

7“So Unio,iN

Well structured parallel programs are not easier to schedule

| by

Ernst Mayr

Department of Computer Science

Stanford University

September 135, 1981

Abstract:

The scheduling problem for unit time task systems with arbitrary precedence
constraints is known to be NP-complete. We show that the same is true even
if the precedence constraints are restricted to certain subclasses which make
the corresponding parallel programs more structured. Among these classes
are those derived from hierarchic cobegin-coend programming constructs,
level graph forests, and the parallel or serial composition of an out-tree and
an in-tree. In each case, the completeness proof depends heavily on the
number of processors being part of the problem instances.

Key Words and Phrases: Scheduling, parallel programs, NP-complete, well-structured

This work was supported in part by the Deutsche Forschungsgemeinschaft. Grant No. 13 Ma 870/1-1, and in part
by Office of Naval Research contract N00014-81-K-0269 and by National Science Foundation grant IST-7921977.
Reproduction in whole or in part 1s permitted for any purpose of the United States government.

1. Introduction

Technological progress has made it possible to design and construct computer architectures with a large

number of processors. The intention is to make use of the apparent mutual independence of many

activities in (sequential or parallel) programs or task systems, thus achieving shorter overall execution

times. Because this hardware - time tradeoff is one of the main justifications to build parallel computers,

the scheduling problem, i.e., the problem to assign activities to processors such as to respect their inherent

precedence constraints and simultaneously to minimize time, has attracted considerable practical and

theoretical interest.

For finite task systems, the scheduling problem could in principle be solved by enumerating all possible

schedules and comparing them. However, in general it docs not make any sense at all to invest much more

time in finding a good schedule than this schedule can then save. Unfortunately, it turned out very soon

that already basic variants of the scheduling problem belong to the class of combinatorial optimization

problems which are NP-complete and for which only more or less ecnumerative solution methods of

exponential complexity are known [4,9,11]. Efficient algorithms which produce optimal schedules and

require only polynomial time are known only for the following few cases:

(1) the scheduling on an arbitrary number of identical processors of a unit-time task system whose

precedence constraints form an in-forest (resp., out-forest) [8];

(ii) the scheduling of an arbitrary unit-time task system on two identical processors [3];

(111) the scheduling on an arbitrary number of identical processors of a unit-time task system whose

incomparability graph is chordal [10].

- For an extended list of complexity results for scheduling problems, see [2,7].

While in [11] arbitrary prccedence constraints arc used to show NP-completeness of the scheduling

problem of unit-time task systems on an arbitrary number of identical processors, it is the purpose of this

paper to show that even well structured prccedence constraints arc of no help. In particular, wc prove that

precedence constraints as they derive from parallel constructs in programming languages like Concurrent

Pascal or Algol 68 still render the scheduling problem NP-complete. The same holds true for precedence

constraints consisting of forests of level graphs or in-trees and one or more out-trees (or, symmetrically,

out-trees and one or more in-trees). In the reductions cmployed for the proofs, the number of available

processors plays a significant role, an observation in support of the difficulty (or, maybe, impossibility) to

show NP-complctcness for a fixed number of processors.

I

2. Preliminaries and notation

A task system is afinite set T = {t1,.. ., ty} of rasks. For our purposes, all tasks in T require unit time

to get executed. A precedence constraint on a task system 7 is a partial order < over T. The relation

t; <t; means that the execution of ¢; cannot start until ¢; 1s finished. In the scquel, we usually represent

(T, <) by a directed acyclic graph (dag) with node set T and an edge from ¢; to ¢; iff t; <¢; and there

is no Zx such that {; <t,<t; (i.e, all transitive edges are omitted).

A schedule for (T, <) on m processors (m &€ N) is a mapping s from T onto some initial segment

{1,...,1} of N such that

(i) 1<|s7(r)|< m for all re{l,...,l}.

We say that t € T is executed at (time-)step s(¢), and we call 1 the length of the schedule s. Note that if

t; and {; are executed at the same time-step they must be incomparable with respect to <<, i.e., neither

t; <t; nor t;<¢; holds.

An instance of the scheduling problem for unit-time task systems on an arbitrary nurnber of (identical)

processors is given by a quadruple (T, <, m, {) where

(i) T is a finite task system, without loss of gencrality denoted by the numerals for 1 through |T|;

(ii) < is a partial order over 7, without loss of generality denoted by a list of the edges in the dag

defined by < as noted above;

(111) m and { arc positive integers in radix notation.

Theorem ([11}):

The set

{(T',<,m,1); there is a schedule for (7, <) on m processors of length <{}

is NP-complete.

In the proof of this theorem in [11], task systems with precedence constraints from a completely general

class are used. We want to improve on the above result by showing that precedence constraints of a very

natural structure suffice to make the above scheduling problem NP-complete.

Definition:

A dag (directed acyclic graph) is a hierarchic parallel graph (HPG) if and only if it can be obtained in a

2

finite number of steps from the axiom eo by the graph grammar with the following rules:

(i) any node e can be replaced by |

(il) any node ee can be replaced by . for any n € N.

(Note that all edges point downward; thus all edges entering a node which is being replaced, afterwards

enter the topmost node of the replacing graph, and correspondingly, the edges which leave the node then

become outgoing edges of the bottommost node.)

We should like to remark that HPG’s are closely related to parallel control structures of programs in high

level programming languages like Concurrent Pascal [1] or Algol68 [12].

Let H be some directed acyclic graph. Then II defines, in an obvious way, a task system Ty — the set

of nodes of H — together with a partial order <p — the partial order over Ty generated by the edges

of H.

‘Theorem 1:

The Hierarchic Programs Scheduling Problem

HPSP=4.r {(H, m, 1); II is an HPG, and there is a schedule for (Ts, =< 7) on m processors of length

<l}

) is NP-complete.

It is clear that HPSP is in NP. As a matter of fact, it is not hard to test whether a given graph is an HPG,

and then HPSP is a restriction of the general scheduling problem of [11] which is in NP. In the next two

sections wc will show that HPSP is NP-complctc. This is achieved by cfficicntly reducing to HPSP the

satisfiability problem 3SAT for sets of clauses with three different literals each [5].

3. A basic task system which is hard to schedule

Let L = LyA...AL, be a propositional formula in three literal conjunctive normal form over the set of

variables {z,..., z,}, i.e., every clause L; is a disjunction of three different literals (from three different

variables) in {z1, Z;,. .., Tn, Tn}.

We first present a directed acyclic graph IH’, which by itself is not an HPG, but consists of 2n HPG

components, and which is hard to schedule. For the time being we assume in addition that the number

m of processors available in the system is not constant but changes in a predetermined manner at every

time-step. We will then show in the next section how to dispose of this assumption, and also, how to

transform FH into a hierarchic parallel graph.

Let HI, be defined as shown in Figure 1 where all edges are considered as directed downward. The graph

H', consists of 2n connected components, one for each literal in {z,,Zy,..., X,, Z,}. Each component

has exactly n + 2r + 2 levels. Within each component, every level contains either one or two tasks. The

i-th component has two tasks exactly on level [2:2] and on all levels n + 2 j + 1 such that 1 <j<r

and the literal belonging to component 1 (which 1s Zits if 1 is odd, and zs if 1 is even) does not occur in

L;. Also, within each component every task on level 1 has (directed) edges going to every task on level

i+ 1, forall 1 <i<n + 2r + 3, and two tasks on any level are always followed by just one task on

the next level. Obviously, each component forms an HPG.

The next two lemmas show that there is a schedule for HY, of length at most n + 27 + 3 if and only if

the formula L is satisfiable.

Lemma 1:

If L 1s satisfiable then there is a schedule for (Th, < pr) which in every time-step uses at most as many

processors as indicated in Figurc 1, and whose length is n + 2r + 3.

- Proof:

let vC{z1,Z1,..., X,, To} bc the set of litcrals sct true under some fixed truth assignment to the

variables z,...,%, that satisfies L, and let V be the set of those components of H'}, corresponding to

literals in V. Consider the schedule s which, for 1 <j<n + 2r + 2, assigns j to all tasks on level]

in components in V, and j + 1 to all other tasks on level 3. Wc claim that s satisfies the condition in

the lemma. This is certainly truce for time-step 1 because | Vi =n. In time-step 2, n processors arc, used
to execute the remaining tasks on level 1, and another n + 1 processors are used to execute all level 2

4

tasks of the n components in V. This is possible because V contains either z; or T; but not both. The

same reasoning now applies up through time-step n + 2 after which exactly the n tasks on level n + 2 in

components in V have becn executed. In time-step n + 3, n processors are used to execute the remaining

tasks on level n + 2. Another 2n — 3, 2n — 2, or 2n — 1 processors are used to execute all tasks on level

n + 3 of the components in V, depending on whether 3, 2, or 1 literals of L; are in V. In the first two

cases, two resp. one of the available 3n — 1 processors remain idle at time-step n + 3. As V contains

the ‘true’ literals under a satisfying assignment for L it contains at least one literal of L;. Thus, 2n — 1

processors certainly suffice to execute all tasks on level n + 3 of the components in V.

In the next time-step, the remaining tasks on level n + 3 and the n tasks on level n + 4 of components

in V are executed for which at most 2n + n = 3n processors arc necdcd. Again we may now observe

inductively that after time-step n + 2r + 2 all tasks in level n + 27 + 1 have been executed and there are

exactly those n tasks on level n + 27 + 2 left which are not in components in V. These n tasks can be

scheduled for the n processors available in time-step n +27 + 3. |

Lemma 2:

If there is a schedule for (Ty, < H) of length at most n + 27 + 3 which at every time-step uses at most

the number of processors indicated in Figure 1, then L is satisfiable.

Proof:

First observe that any task on level i+ 1 can be cxccuted only if all tasks on level 1 of the same components

have been exccuted before. As there arc 2n components each of which has cxactly n + 2r + 2 levels and

- as there are only n processors available at the first step, every admissible schedule for (Ty, < rr,) has

a length at least n + 2r + 3. Further, as there also are only n processors available in the last step every

admissible schedule s for (Tr, <p,) of length n + 2r + 3 satisfies the following property:

There is a set V of exactly n components of IT’, such that for all j with [<j< n+ 2r + 2,

(I) under s all tasks on level j of components in V arc cxccuted at time-step j, and all tasks

on level j of components not in V are executed at time-step j + 1.

Let V be the set of literals belonging to the components in V. We are now going to show that V defines

a satisfying truth assignment for L via z; :=true iff =z; € V, for 1 <i <_n. Assume first that there

is some minimal i, 1 <i < n, such that V contains z; and Z;. Then n + 2 processors are nceded in

time-step i + 1 to execute all tasks on level i + 1 of the components in V, and only n (resp. n — 1, if

6

i = 1) processors are left to complete the execution of level i of H. As i was chosen minimal, there

are, however, n + 1 (resp. n, if i = 1) tasks left on level i. Hence, V must contain, for every i, either

Xi Or 7.

Next assume that there is some minimal j, 1 <j <r, such that V contains no literal occurring in

L;. Then 2n processors are necded in time-step n + 2 j + 1 to exccute all tasks on level n + 2 j + 1 of

the components in V, and only n — 1 processors are available to execute the remaining n tasks of level

n + 27, in contradiction to property (I). Hence, V must contain, for every j, at least on literal in Lj, i.e.,

V gives rise, in the way indicated above, to a satisfying truth assignment for L. |i

In the next section, wc shall show how to embed HY, in a hierarchic parallel graph in such a way that

at each time-step exactly the proper number of processors is available for the tasks in the embedded

subgraph.

4. MPG’s are hard to schedule

In this section, we prove our main

Theorem 2;

HPSP is NP-complete.

Proof:

Let L and H', be as in the previous section. We now define the instance (Hp, m, 1) of the Hierarchic

Programs Scheduling Problem with Hy as in Figure 2, m =3n + 1, and l=n + 2r + 8.

Hy has n + 2r + 8 levels. Note that every directed path from the topmost to the bottommost node of

H, which travels along the left part of Hy in Figure 2 contains n + 2r + 8 nodes. As a consequence,

every schedule of length <I! has in fact length =! and must execute these tasks level by level. The

construction of HH; thus assures that for all time-steps i + 3 with 1 <i<n + 2r + 3 the number of

processors available for the right part of I, in Figure 2 (which is I1%) is exactly the same as for 117, in

the previous section at time-step 1.

I1;, obviously is an HPG and can bc constructed from L in polynomial time (though we omit the details

of this construction). This establishes, together with Lemmas 1 and 2, the claim of the theorem. §

Wc should like to mention that HPSP still remains NP-complctc if the size of m and 1 in the instances

is taken from their unary representation.

7

Co

Level hoes
1 | —

2 Co —

3 | ZN | -

5 | n—l.¢ 2n+1

6 .e n—2 r | 2n-+2

nbd . | nia. | | 2n+2
n4+5 en—2.. °c oo °e o o oo 2n+1

n+6 } : | 3n—1

n+7 | | HY, | 3n

n—+8 3n—1

n+9 3n

nt 243 | 3n

n+2r+4 /\ 3n—1
© n42r+5 | | 3n

n+2r+7 | —

n+2r+8

Figure 2

‘The hierarchic parallel -graph II,

5. Level graphs and forests

In this section, we extend the result of the previous section to a class of seemingly very simple precedence

constraints.

Level Process
] 2n+1 .. oe oo eo oo eo eo n

2 \ 2n+1
3 Zo 2n+2
4 Pel 2n+2

n-+2 2n+1

n-+3 vd H' 3n—1
n+4 3n

n+2r+1 3n—1

n4+2r42 e oo eo oo e oo 3n

© n+2r43 A n

Figure 3

The level forest FT, for L = LA... AL,, with L, = ,Vz2VZE,, Ly = £,VzZ;Vz,, L, = 2,VE;VZ,

Definition:

A directed acyclic graph H is a level graph UY its node set Ty can bc partitioned into sets Ty, . . . , 1)

such that, for all 1 <7 < s, there is an edge from every node in 7; to every node in 1},|.

A level forest 1s a directed acyclic graph consisting of finitely many level graph components.

9

Note that every component of H, in Section 3 is a level graph, and hence, that II) is a level forest.

Theorem 3:

The scheduling problem with an arbitrary number of identical processors and unit-time task systems with

level forests as precedence constraints is NP-complete.

Proof:

We also use a reduction of 3SAT to the above problem. We noted already that H' is a level forest. Now

Figure 3 provides an embedding of H', into a level forest graph Hj which by the same argument as in

the proof of Theorem 2 has a schedule on m = 3n + 1 processors which is of length 1 <n + 27 + 3 if

and only if L is satisfiable. |}

10

6. In-forests with one out-tree

While trees (in-trees or out-trees) were the first class of precedence constraints for which a polynomial

time scheduling algorithm was found [8] (a result which easily generalizes to in-forests and out-forests)

wc shall show in this section that already the simplest combination of the two kinds of trees makes the

scheduling problem hard.

Let MF (mixed forest) be the class of directed acyclic graphs each of whose components is either an

in-tree or an out-tree, and let 2MF be the subclass of MF whose members have at most two components.

Theorem 4:

The scheduling problem with an arbitrary number of identical processors, unit-time task systems, and

with elements of 2MF as precedence constraints is NP-complete.

Corollary: --

The scheduling problem for MF-graphs is NP-complete.

Proofof the Theorem:

A variant of 3SAT which is also NP-complete, is One-in-three-3SAT, i.e., the problem to determine for

an arbitrary propositional formula I, in 3-conjunctive normal form whether there is a satisfying truth

assignment to the variables in L such that, in every clause L;, exactly one literal is assigned true [S]. For a

given L = L; A... AL, with variables v,,..., Vv, we construct H1 as indicated in Figure 4. HL consists

of one in-tree and one out-tree (again all edges are considered directed downward).

) Further, let H 1. be H L without its level 2n+2r+4 nodes and the incident edges. I1 consists of 2n

connected components of 2n + 2r + 2 levels each (these in-tree components arc called r-com ponents)

and two components of 2n + 27 + 3 levels (called [-components), one in-tree and onc out-tree. Each

" r-component contains, on every level, cither onc or two tasks, and the i-th r-component (which belongs

to xirs1 if7 is odd, and Ty, if7 is even) has two tasks on levels 2 [1and 2 j + 1 for allj 5£[51,
1 <j<n, as well as on level 2n + 2 j (resp., 2n + 2j + 1) if the corresponding literal docs (resp., does

not) occur in Lj.

We now show that there is a schedule for (T5 , <7) on m = 3n + 3 processors of length at mostL L

2n +27 + 3 if and only if I, is in One-in-three-3SAT.

First, let VvC{z,%,,..., x, To}be the sct of litcrals set true under some fixed truth assignment to

11

_ _ _ Processors
Literal x1 IT Zo To +++ Tp, Ty for r-camp’s

Level 1 eo 2n42 .. .e. n

2 aD 4 2n+1

3 3n

4 | ® ® ® 31

i NOT TLL VY
2n+1 3n

2n—+2 on 3n

2n+3 | 3n+1

2n+4 T 3n—12n—+95 ® . ° ° 3n+1

2n+2r 3n—1

2n+2r+42 Ce In —9

2n+2r+3 re 2n+2 3 n

IN+2r+4 | &..3m+2

Figure 4

The m xcd forest ig where Ly = Z,Vzy,VE,, Ly = z,Vz,;Vz,, L, = 2,VZ;Vz,

the variables z,,...,z, such that V contains exactly one literal of every clause L; of L, and let V be

the set of those components of H determined by the litcrals in V. Consider the schedule s which, for

all 1 <j3<2n + 27 + 2, assigns j to all tasks on level j of all the r-components in V and the two

[-components, and j + 1 to all tasks on level j of all the other r-components. Level 2n + 27 + 3 of the

I-components is assigned 2n + 27 + 3 under s. Wc leave it to the reader to verify that, in fact, sis a

12

correct schedule for (Tj , =< i.)

For the other direction assume that there is a schedule s for (75 , =< a.) on m= 3n + 3 processors,
of length <2n + 2r + 3. As the Z-components of H|, consist of 2n + 2r + 3 levels, we must in fact

have the length of s equal 2n + 2r + 3. Now note that also because of the Z-components, in the first and

last time-step at most n processors are available for the 2n r-components. As these components all have

2n + 27 + 2 levels the following property must hold:

There is a set V of exactly n r-components in H, such that, for all j with 1 <j<

2n + 2r + 2, under s all tasks on level j of components in V are executed at or prior to

(I) time-step j, and in every r-component not in V, there is at least one task on level j not yet

executed after time-step j (i.e., its value under s is > j). Furthermore, all tasks on level

j are executed at the latest at time-step J + 1.

[et V be thesct of literals belonging to the r-components in V. We shall show that V defines, as in

Lemma 2, a truth assignment satisfying L, and also that V contains exactly one literal of every clause L;

of L.

As 2n + 3 processors are needed to execute the level 1 tasks in the two Z-components, and because of

property (II), all tasks executed at time-step 1 are of level 1. Let V be the set of those r-components

whose level 1 tasks are executed in the first step, and let V bc defined as above.

Assume first that there is some minimal ¢ such that V contains either both x; and Z; or none of the two

literals. It easily follows from the construction of i 1 and property (II) that after time-step 21 — 1

a) all levels j with 1 <j <2i — 1 are completed,

b) all tasks on lcvcl 2i —1 of components in V have been exccuted, and

c) no other tasks have been executed so far.

At time-step 2:, three (resp., n + 2 if1 = 1) processors arc needed to execute all tasks on level 2i of

the Z-components, and 2n — 1 (resp., n if i = 1) processors have to be used to complete level 2i — 1.

- Therefore, n + 1 processors are available for tasks which are on levels > 2i and executable at time-step

2i. If V contains both z; and Z;, these n + 1 processors do not suffice to cxccutc the n + 2 tasks on level

21 in the components in V, contradicting property (II). If V contains ncither z; nor Z;, then n processors

suffice to execute all tasks on lcvcl 2i of the components in V, and the one remaining processor could

be used for any task on some level > 2i all of whose predecessors have already been executed. Let us

assume instead that one processor is added to the m processors available at time-step 2i + 1. It follows

from the construction of FI, however, that in this case 3n + 5, processors arc necessary at time-step

21 + 1 to assure property (II). Thus, we again obtain a contradiction, and wc conclude that, for all i, V

13

must contain either z; or T;. Furthermore, a simple counting argument shows that, under 8, in time-step

j, where 1 <j < 2n + 1, only tasks on levels j or j —1 are executed.

Now assume that there is some minimal j, 1 <j <r, such that V does not contain exactly one literal

of L;. Then, by an argument analogous to the one just presented, we achieve a contradiction to property

(Il) at time-step 2n + 2 j if V contains more than one literal of L;, and at time-step 2n + 2j + 1 if V

contains no literal of Lj; at all. Hence, V provides a truth assignment for z;,...,T, showing that L is

in One-in-three-3SAT.

It is now immediate that there is a schedule for (T';,,<g,) on m = 3n + 3 processors of length

[<2n +2r + 4 if and only if L is a member of One-in-three-3SAT. Again we leave it to the reader to

convince himself that the above reduction can be carried out in polynomial time. |}

The result stated in Theorem 4 has independently been obtained in [6].

As a fin-ther corollary of Theorem 4 and the construction of H 1, we obtain that the scheduling problem for

preccdence constraints decomposable into an out-tree and an in-tree opposing each other is NP-complete.

This follows immediately if we add to I; one node (at the top) with outgoing edges to all nodes in

H,, without predecessor, and a second node (at the bottom) with incoming edges from all nodes of H,

without successor.

14

7. Conclusion

There are several conclusions we should like to point at which can be drawn from the results presented

in the previous sections. The first is that restricting the precedence constraints to be either in-forests

or out-forests allows a polynomial scheduling algorithm, but that relinquishing this restriction slightly in

either one of a number of directions immediately renders the scheduling problem NP-complete. We have

shown this to hold, for example, for the parallel composition of an out-tree and an in-tree as well as for

their serial, opposing composition. The latter might seem a little bit surprising in view of the polynomial

scheduling algorithms for in- and out-trees, respectively. But it is the intricate interleaving of the two

trees on different levels which makes them so difficult to schedule together.

We also showed that restricting the precedence constraints to a subclass which is widely considered well-

structured and which forms a subset of the precedence constraints originating from parallel constructs

in high level programming languages does not help, this subclass is, in a sense, as hard to schedule

as the general class. Again the nicely structured precedence constraints still allow the encoding of an

NP-complctc combinatorial problem.

The last observation is that in all the reductions given in the previous sections, the number of parallel

processors is part of the problem instance, and that this fact is heavily made use of. This once more

supports the conjecture that it might not be possible to prove the scheduling problem on some fixed

number of processors to be NP-complete.

15

8. Rcfcrences

1. BRINCH Hansen, P.: The architecture of concurrent programs.

Englewood Cliffs, N.J.: Prentice Hall 1977

2. CorrFMaN, E.G. (Ep.) : Computer and job/shop scheduling theory.

New York: Wiley 1976

3. CorrFMaN, E.G. Grarrzam, R.L.: Optimal scheduling for two-processor systems.

Acta Informatica 1 (1972), pp. 200-213

4. Cook, S.A.: The complexity of theorem proving procedures.

Proc. 3rd Ann. ACM STOC (1971), pp. 151-158

5. Garey, M.R., JOHNSON, D.S.: Computers and intractability: a guide to the theory of NP-

completeness.

San Francisco: W.H. Freeman and Company 1979

6. Garey, M.R., ET AL. : Scheduling opposing forests.

TM-81-11216-44, Bell Labs, Murray Hill, N.J. (1981)

7. GrRanaM, RL. ET AL. : Optimization and approximation in deterministic sequencing and

scheduling: a survey.

In: HaMmMER, P.L., ET AL. (EDS.) : Annals of Discrete Mathematics 5. Amsterdam-New

York-Oxford: North-Holland Publishing Company (1979), pp. 287-326

8. Hu, T.C.: Parallel sequencing and assembly line problems.

Operations Research 9 (1961), pp. 841-848

9. KARP, RM. : Reducibility among combinatorial problems.

In: MirLer, R.E., THATCHER, JM. (EDS.): Complexity of computer computations. New York:
Plenum (1975), pp. 85-103

10. PAPADIMITRIOU, CH., YANNAKAKIS, M.: Scheduling interval-ordered tasks.

SIAM J. Comput. 8 (1979), pp. 405-409

11. Unima ~, J.D.: NP-complete scheduling problems.

J. Comput. System Sci. 10 (1975), pp. 384-393

12. WioNcaARDEN, A. VAN, ET AL. : Revised report on the algorithmic language ALGOL 68.

Berlin-Hcidelbcrg-New York: Springer-Verlag 1976

16

