September 1981

Report. No. STAN-CS-81 -880

Well Structured Parallel Programs
Are Not Easier to Schedule

by

Ernst W. Mayr

Department of Computer Science

Stanford University
Stanford, CA 94305

PR
R A
LTSS o0
AN, \({',
PR PR
) -
. \
= Ao 3
= pASN L
- L [
o . A
.ZJ"'

Well structured parallel programs are not easier to schedule

by

Ernst Mayr
Department of Computer Science
Stanford University

September 135, 1981

Abstract:

The scheduling problem for unit time task systems with arbitrary precedence
constraints is known to be NP-complete. We show that the same is true even
if the precedence constraints are restricted to certain subclasses which make
the corresponding parallel programs more structured. Among these classes
are those derived from hierarchic cobegin-coend programming constructs,
level graph forests, and the parallel or serial composition of an out-tree and
an in-tree. In each case, the completeness proof depends heavily on the
number of processors being part of the problem instances.

Key Words and Phrases: Scheduling, parallel programs, NP-complete, well-structured

This work was supported in part by the Deutsche Forschungsgemeinschaft. Grant No. 13 Ma 870/1~1, and in part
by Office of Naval Research contract N00014-81-K-0269 and by National Science Foundation grant IST-7921977.
Reproduction in whole or in part is permitted for any purpose of the United States government.

1. Introduction

Technological progress has made it possible to design and construct computer architectures with a large
number of processors. The intention is to make use of the apparent mutual independence of many
activities in (sequential or parallel) programs or task systems, thus achieving shorter overall execution
times. Because this hardware - time tradeoff is one of the main justifications to build parallel computers,
the scheduling problem, i.e., the problem to assign activities to processors such as to respect their inherent
precedence constraints and simultaneously to minimize time, has attracted considerable practical and

theoretical interest.

For finite task systems, the scheduling problem could in principle be solved by enumerating all possible
schedules and comparing them. However, in general it docs not make any sense at all to invest much more
time in finding a good schedule than this schedule can then save. Unfortunately, it turned out very soon
that already basic variants of the scheduling problem belong to the class of combinatorial optimization
problems which are NP-complete and for which only more or less enumecrative solution methods of
exponential complexity are known [4,9,11]. Efficient algorithms which produce optimal schedules and

require only polynomial time are known only for the following few cases:

(i) the scheduling on an arbitrary number of identical processors of a unit-time task system whose

precedence constraints form an in-forest (resp., out-forest) [8];
(ii) the scheduling of an arbitrary unit-time task system on two identical processors [3];

(iii) the scheduling on an arbitrary number of identical processors of a unit-time task system whose

incomparability graph is chordal [10].
For an extended list of complexity results for scheduling problems, see [2,7].

While in [11] arbitrary precedence constraints arc used to show NP-completeness of the schcduling
problem of unit-time task systems on an arbitrary number of identical processors, it is the purpose of this
paper to show that even well structured prccedence constraints arc of no help. In particular, wc prove that
precedence constraints as they derive from parallel constructs in programming languages like Concurrent
Pascal or Algol 68 still render the scheduling problem NP-complete. The same holds true for precedence
constraints consisting of forests of level graphs or in-trees and one or more out-trees (or, symmetrically,
out-trees and one or more in-trees). In the reductions employed for the proofs, thc number of available
processors plays a significant role, an obscrvation in support of the difficulty (or, maybe, impossibility) to

show NP-complcteness for a fixed number of processors.

2. Preliminaries and notation

A task system is afinite set T = {t1,.. ., t,} of tasks. For our purposes, all tasks in T require unit time
to get executed. A precedence constraint on a task system 7 is a partial order < over 7. The relation
t;<t; means that the execution of ¢; cannot start until ¢; is finished. In the scquel, we usually represent
(T, <) by adirected acyclic graph (dag) with node set 7 and an edge from ¢; to ¢; iff ¢;<¢; and there
is no ¢ such that ¢; <t, <t; (i.e., all transitive edges are omitted).

A schedule for (T, <)on m processors (m € N) is a mapping s from T onfo some initial segment
{1,...,1} of N such that

(i) t:i<t; = s(t;) < s(t;) for all ¢,t,€T;

() 1<s7 ()| < m for all r€{1,..., 1}

We say that ¢ € T is executed at (time-)step s(¢), and we call 1 the length of the schedule s. Note that if
t; and ¢; are executed at the same time-step they must be incomparable with respect to <, i.e., neither

t;<t; nor t;<t; holds.

Aninstance of the scheduling problem for unit-time task systems on an arbitrary nurnber of (identical)

processors is given by a quadruple (T, <, m, {) where

(i) T is a finite task system, without loss of gencrality denoted by the numerals for 1 through |T'|;

(il) < is a partial order over T, without loss of generality dcnoted by a list of the edges in the dag
defined by < as noted above;

(iii) m and !/ arc positive intcgers in radix notation.

Theorem ([11]):

The set
{(T,<,m,l); there is a schedule for (T, <) on m processors of length <[}

is NP-complete.

In the proof of this theorem in [11], task systems with precedence constraints from a completely general
class are used. We want to improve on the above result by showing that precedence constraints of a very

natural structure suffice to make the above scheduling problem NP-complete.
Definition:

A dag (directed acyclic graph) is a hierarchic parallel graph (HPG) if and only if it can be obtained in a’

finite number of steps from the axiom e by the graph grammar with the following rules:

(i) any node e can be replaced by

(ii)) any node e can be replaced by , for any n € N.

(Note that all edges point downward; thus all edges entering a node which is being replaced, afterwards
enter the topmost node of the replacing graph, and correspondingly, the edges which leave the node then

become outgoing edges of the bottommost node.)

We should like to remark that HPG’s are closely related to parallel control structures of programs in high

level programming languages like Concurrent Pascal [1] or Algol68 [12].

Let H be some directed acyclic graph. Then I7 defines, in an obvious way, a task system Ty — the set

of nodes of H — together with a partial order <y — the partial order over T}; generated by the edges

of H.

Theorem 1;

The Hierarchic Programs Scheduling Problem
HPSP=4.¢ {(H, m, I); Il is an HPG, and there is a schedule for (7Ty, < ;) on m processors of length
<1

is NP-complete.

It is clear that HPSP is in NP. As a matter of fact, it is not hard to test whether a given graph is an HPG,
and then HPSP is a restriction of the general scheduling problem of [11] which is in NP. In the next two
sections wc will show that HPSP is NP-complctc. This is achicved by cfficicntly reducing to HPSP the

satisfiability problem 3SAT for sets of clauses with three different litcrals each [S].

3. A basic task system which is hard to schedule

Let L = L A... AL, be a propositional formula in three literal conjunctive normal form over the set of
variables {z,..., z,}, i.e., every clause L; is a disjunction of three different literals (from three different
variables) in {Z1,Z1,. .., Tn, Tn}-

We first present a directed acyclic graph I, which by itself is not an HPG, but consists of 2n HPG
components, and which is hard to schedule. For the time being we assume in addition that the number
m of processors available in the system is not constant but changes in a predetermined manner at every
time-step. We will then show in the next section how to dispose of this assumption, and also, how to
transform H %, into a hicrarchic parallel graph.

Let 1%, be defined as shown in Figure 1 where all edges are considered as directed downward. The graph
H', consists of 2n connected components, one for each literal in {z;,Z,, ..., X,, T,}. Each component
has exactly n + 2r + 2 levels. Within each component, every level contains either one or two tasks. The
i-th component has two tasks exactly on level [<£2] and on all levels n + 2 j + 1 such that 1 <j<r
and the literal belonging to component i (which is zits if 1 is odd, and z4 if i is even) does not occur in
L;. Also, within each component every task on level i has (directed) edges going to every task on level
i+ 1, forall 1 <i<n + 2r + 3, and two tasks on any level are always followed by just one task on

the next level. Obviously, each component forms an HPG.

The next two lemmas show that there is a schedule for H', of length at most n + 27 + 3 if and only if

the formula L is satisfiable.

Lemma 1:

If L is satisfiable then there is a schedule for (TH,L , <) which in every time-step uses at most as many

processors as indicated in Figurc 1, and whose lengthis n + 2r + 3.

- Proof:
Let v C{z1,Z1,..., X,, Tn} bc the sct of litcrals sct true under some fixed truth assignment to the
variables z,...,Z, that satisfies L, and let V be the set of those components of H', corresponding to

literals in V. Consider the schedule s which, for 1_<j<n + 27 + 2, assigns j to all tasks on level j
in components in V, and j + 1 to all other tasks on level 7. Wc claim that s satisfics the condition in
the lemma. This is certainly true for time-step 1 because | 17| =n. In time-step 2, n processors arc, used

to execute the remaining tasks on level 1, and another n + 1processors are used to execute all level 2

tasks of the n components in \7 This is possible because V contains either z; or T; but not both. The
same reasoning now applies up through time-step n + 2 after which exactly the n tasks on level n + 2 in
components in V have becn executed. In time-step n + 3, n processors are used to execute the remaining
tasks on level n + 2. Another 2n — 3, 2n — 2, or 2n — 1 processors are used to execute all tasks on level
n + 3 of the components in v, depending on whether 3, 2, or 1 literals of L, are in V. In the first two
cases, two resp. one of the available 3n — 1 processors remain idle at time-step n + 3. As V contains
the ‘true’ literals under a satisfying assignment for L it contains at least one literal of L,. Thus, 2n — 1

processors certainly suffice to execute all tasks on level n + 3 of the components in V.

In the next time-step, the remaining tasks on level n + 3 and the »n tasks on level n + 4 of components
in V are executed for which at most 2n + n = 3n proccessors arc necdcd. Again we may now observe
inductively that after time-step n + 2r + 2 all tasks in level n + 27 + 1 have been executed and there are
exactly those n tasks on level n + 27 + 2 left which are not in components in V. These n tasks can be

scheduled for the n processors available in time-step n +2r + 3. |

Lemma 2:

If there is a schedule for (T, < Hr,‘) of length at most n + 27 + 3 which at every time-step uses at most

the number of processors indicated in Figure 1, then L is satisfiable.
Proof;

First observe that any task on level i+ 1 can be cxccuted only if all tasks on level i of the same components
have been exccuted before. As there arc 2n components each of which has exactly n + 2r + 2 levels and
as there are only n processors available at the first step, every admissible schedule for (74 , < rr,) has
a length at least n + 2r + 3. Further, as there also are only n processors available in the last step every

admissible schedule s for (Ty, <my,) of length n + 2r + 3 satisfies the following property:

There is a set V of exactly n components of I}, such that for all j with | <j< n+ 27 + 2,
(I) under s all tasks on level j of components in V arc cxccuted at time-step j, and all tasks

on level j of componcnts not in V are executed at time-step j + 1.

Let V be the set of literals belonging to the components in V. We are now going to show that V defines
a satisfying truth assignment for L via z; :=true iff z; € V, for 1<i <_n. Assume first that there
is some minimal i, 1_<i < n, such that V contains z; and Z;. Then n + 2 processors are nceded in

time-step i + 1 to exccute all tasks on level i + 1 of the components in ‘; and only n (resp. n — 1, if

i = 1) processors are left to complete the execution of level i of H’,. As i was chosen minimal, there
are, however, n + 1 (resp. n, if i = 1) tasks left on level i. Hence, V must contain, for every i, either
Xi Or T;.

Next assume that there is some minimal j, 1 <j <, such that V contains no literal occurring in
L;. Then 2n processors are needed in time-step n + 2 j + 1 to exccute all tasks on level n + 2 j + 1 of
the components in V, and only n — 1 processors are available to execute the remaining 7 tasks of level
n + 27, in contradiction to property (I). Hence, V must contain, for every j, at least on literal in L;, i.e.,

V gives rise, in the way indicated above, to a satisfying truth assignment for L. 1l

In the next section, wc shall show how to embed H, in a hierarchic parallel graph in such a way that
at each time-step exactly the proper number of processors is available for the tasks in the embedded

subgraph.

4. MPG’s are hard to schedule

In this scction, we prove our main
Theorem 2:

HPSP is NP-complete.

Proof:

Let L and H',, be as in the previous section. We now define the instance (Hy, m, 1) of the Hierarchic
Programs Scheduling Problem with H, as in Figure2, m =3n + 1,andl=n + 2r + 8.

Hjphas n + 2r + 8 levels. Note that every directed path from the topmost to the bottommost node of
H,, which travels along the left part of H in Figure 2 contains n + 2r + 8 nodes. As a consequence,
every schedule of length <! has in fact length =1 and must execute these tasks level by level. The
construction of Hy, thus assures that for all time-steps i + 3 with 1 <i<n + 2r + 3 the number of
processors available for the right part of 1, in Figure 2 (which is 717) is exactly the same as for I17, in
the previous section at time-step i.

H/, obviously is an HPG and can bc constructed from L in polynomial time (though we omit the details

of this construction). This establishes, togcther with Lemmas 1 and 2, the claim of the theorem. |

Wc should like to mention that HPSP still remains NP-complctc if the size of m and 1 in the instances

is taken from their unary rcpresentation.

Level

Processors

for HY,
1 —
2) —
3 —
4 AN I
5 2n+1
§ 2n+2
'n-:i-4 2n+2
n+5 o o e o o o 2n+1
n+6 3n—1
n+7 HY 3n
n+8 3n—1
n-{i—Q 3n
n+ér+3 3n
n+2r+4 3n—1
n+2r+5 % %t 2, 3n
n+2r+6 n
n+2r+4+7 —_
n+2r+8

The hierarchic parallel -graph 17,

5. Level graphs and forests

In this section, we extend the result of the previous section to a class of seemingly very simple precedence

constraints.
Level P?gﬁe;ﬁrs
1 e o e o e e n
2 2n+1
3 2n+2
4 2n+2
n;i-l 2n:+2
n+2 2n+1
n+3 HY 3n—1
n-.{-4 3n
n-i;2r 3;1
n+2r+1 3n—1
n+2r+2 e o o o e o 3n
n+2r+3 n

Figure 3

The level forest 7T, for L = LyA.. . AL,, with L, = T,V&sVZE,, Ly = £,VZ;VZ,, L, = 2,VE VT,

Definition:

A directed acyclic graph H is a level graph iff its node set Ty can be partitioned into sets 74, . . ., T,

such that, for all 1 <7 <s, there is an edge from every node in 75 to every node in T .

A tevel forest is a directed acyclic graph consisting of finitely many level graph components.

Note that every component of H', in Section 3 is a level graph, and hence, that 119, is a level forest.
Theorem 3:

The scheduling problem with an arbitrary number of identical processors and unit-time task systems with

level forests as precedence constraints is NP-complete.
Proof:

We also use a reduction of 3SAT to the above problem. We noted already that H' is a level forest. Now
Figure 3 provides an embedding of H', into a level forest graph H;, which by the same argument as in
the proof of Theorem 2 has a schedule on m = 3n + 1 processors which is of length 1 <n + 27 + 3 if

and only if I is satisfiable. |

10

6. In-forests with one out-tree

While trees (in-trees or out-trees) were the first class of precedence constraints for which a polynomial
time scheduling algorithm was found [8] (a result which easily generalizes to in-forests and out-forests)
wc shall show in this section that already the simplest combination of the two kinds of trees makes the
scheduling problem hard.

Let MF (mixed forest) be the class of directed acyclic graphs each of whose components is either an

in-tree or an out-tree, and let 2MF be the subclass of MF whose members have at most two components.
Theorem 4:

The scheduling problem with an arbitrary number of identical processors, unit-time task systems, and

with elements of 2MF as precedence constraints is NP-complete.

Corollary: --
The scheduling problem for MF-graphs is NP-complete.
Proof of the Theorem:

A variant of 3SAT which is also NP-complete, is One-in-three-3SAT, i.e., the problem to determine for
an arbitrary propositional formula I, in 3-conjunctive normal form whether there is a satisfying truth
assignment to the variables in L such that, in every clause L;, exactly one litcral is assigned true [S]. For a
given L = L;A... AL, with variables v,, ..., v,, we construct H L as indicated in Figure 4. H 1, consists
of one in-tree and one out-tree (again all edges are considered directed downward).

Further, let H 1, be H,, without its level 2n+2r+4 nodes and the incident edges. H |, consists of 2n
connected components of 2n + 27 + 2 levels each (these in-tree components arc called r-components)
and two components of 2n + 2r + 3 levels (called [-components), one in-tree and onc out-tree. Each
" r-component contains, on every level, cither onc or two tasks, and the i-th »-component (which belongs
(0 xiexa if ¢ is odd, and Zy, if ¢ is even) has two tasks on levels 2 [§]and 2 j + 1 for all] [3],
1 <j<n,as well as on level 2n + 2 j (resp., 2n + 2j + 1) if the corresponding literal docs (resp., does
not) occur in L.

We now show that there is a schedule for (TI:IL , < fh,) on m = 3n + 3 processors of length at most

2n + 27 + 3 if and only if I, is in One-in-three-3SAT.

First, let V C{z, %, ..., x, To} be the sct of litcrals set true under some fixed truth assignment to

11

Licr s m m Bz |
Level 1 n
? : 2n+1
’ 3n
4.() X 3n
) A
2n-+1 in
2n+2 in
an+d 3n+1
antd 3n—1
2n+§ . 3n+1
dntor ' a1
2n+2r+1 S+l
2n+2r+2 Sn—9
2n+2r+3 "
2n+2r+4

Figure 4

The m xcd forest FI, where Ly = T,Vz,V 7Ty, L, =2z,Vz;Vz,, L, = 2,VE;Vz,

the variables z,,...,2z, such that V' contains exactly one literal of every clause L, of L, and let V be
the set of those components of H L determined by the litcrals in V. Consider the schedule s which, for
all 1 <7< 2n + 27 + 2, assigns j to all tasks on level j of all the r-components in V and the two
I-components, and j + 1 to all tasks on level j of all the other r-components. Level 2n + 27 + 3 of the

I-components is assigned 2n + 27 + 3 under s. Wc leave it to the reader to verify that, in fact, s is a

12

correct schedule for (T , < f:IL)'

For the other direction assume that there is a schedule s for (TI:J , < I:h) onm = 3n + 3 processors,
of length < 2n + 27 + 3. As the Z-components of H , consist of 2n + 2r + 3 levels, we must in fact
have the length of s equal 2n + 27 + 3. Now note that also because of the Z-components, in the first and
last time-step at most n processors are available for the 2n r-components. As these components all have

2n + 27 + 2 levels the following property must hold:

There is a set V of exactly n r-components in M, such that, for all jowith 1 <j<
2n + 2r + 2, under s all tasks on level j of components in V are executed at or prior to
(D) time-step j, and in every r-component not in V, there is at least onc task on level Jj not yet
executed after time-step j (i.e., its value under s is > j). Furthermore, all tasks on level

j are executed at the latest at time-step j + 1.

Let V be thesct of literals belonging to the r-components in V. We shall show that V defines, as in
Lemma 2, a truth assignment satisfying L, and also that V contains exactly one literal of every clause L;
of L.

As 2n + 3 processors are needed to execute the level 1 tasks in the two Z-components, and because of
property (II), all tasks executed at time-step 1 are of level 1. Let V be the set of those r-components
whose level 1 tasks are executed in the first step, and let V bc defined as above.

Assume first that there is some minimal ¢ such that V contains either both z; and Z; or none of the two
literals. It easily follows from the construction of f:[. and property (I) that after time-step 2i — 1

a) all levels j with 1 <j<2i — 1 are completed,

b) all tasks on Icvcl 2i —1 of components in V have been exccuted, and

¢) no other tasks have been executed so far.

At time-step 21, three (resp., n + 2 if i = 1) processors arc needed to execute all tasks on level 2i of
the Z-components, and 2n — 1 (resp., n if i = 1) processors have to be used to complete level 2i — 1.
- Therefore, n + 1 processors are available for tasks which are on levels 2> 2i and executable at time-step
2i. If V contains both z; and %, these n + 1 processors do not suffice to cxccute the n + 2 tasks on level
2i in the components in v, contradicting property (II). If V contains ncither z; nor Z;, then n processors
suffice to execute all tasks on Icvel 2i of the components in V, and the one remaining processor could
be used for any task on some level > 2i all of whose predecessors have already been executed. Let us
assume instead that one processor is added to the m processors available at time-step 2i + 1. It follows
from the construction of f1 1, however, that in this case 3n + 5, processors arc necessary at time-step

2i + 1 to assure property (II). Thus, we again obtain a contradiction, and wc conclude that, for all i, V

13

must contain either z; or ;. Furthermore, a simple counting argument shows that, under s, in time-step
j, where 1 <j< 2n + 1, only tasks on levels j or j —1 are executed.

Now assume that there is some minimal j, 1 <j <, such that V does not contain exactly one literal
of L;. Then, by an argument analogous to the one just presented, we achieve a contradiction to property
(I) at time-step 2n + 2 j if V contains more than one literal of L;, and at time-step 2n + 2j + 1 if V
contains no literal of L; at all. Hence, V provides a truth assignment for y,...,T, showing that L is
in One-in-three-3SAT.

It is now immediate that there is a schedule for (T,-,L,-< iI,_) on m = 3n + 3 processors of length
[<2n +2r +4if and only if L is a member of One-in-three-3SAT. Again we leave it to the reader to

convince himsclf that the above reduction can be carried out in polynomial time. |

The result stated in Theorem 4 has independently been obtained in [6].

As a fin-ther corollary of Theorem 4 and the construction of H 1, we obtain that the scheduling problem for
preccdence constraints decomposable into an out-tree and an in-tree opposing each other is NP-complete.
This follows immediately if we add to I, one node (at the top) with outgoing cdges to all nodes in
H ,, without predecessor, and a second node (at the bottom) with incoming edges from all nodes of Hy

without successor.

14

7. Conclusion

There are several conclusions we should like to point at which can be drawn from the results presented
in the previous sections. The first is that restricting the precedence constraints to be either in-forests
or out-forests allows a polynomial scheduling algorithm, but that relinquishing this restriction slightly in
either one of a number of directions immediately renders the scheduling problem NP-complete. We have
shown this to hold, for example, for the parallel composition of an out-tree and an in-tree as well as for
their serial, opposing composition. The latter might seem a little bit surprising in view of the polynomial
scheduling algorithms for in- and out-trees, respectively. But it is the intricate interleaving of the two
trees on different levels which makes them so difficult to schedule together.

We also showed that restricting the precedence constraints to a subclass which is widely considered well-
structured and which forms a subset of the precedence constraints originating from parallel constructs
in high level programming languages does not help, this subclass is, in a sense, as hard to schedule
as the general class. Again the nicely structured precedence constraints still allow the encoding of an
NP-complctc combinatorial problem.

The last observation is that in all the reductions given in the previous sections, the number of parallel
processors is part of the problem instance, and that this fact is heavily made use of. This once more
supports the conjecture that it might not be possible to prove the scheduling problem on some fixed

number of processors to be NP-complete.

8. Rcferences

1. BRINCH Hansen, P.: The architecture of concurrent programs.

2.

10.

11.

12.

Englewood Cliffs, N.J.: Prentice Hall 1977
CorrMaN, E.G. (Ep.) : Computer and job/shop scheduling theory.
New York: Wiley 1976

. CorrMan, E.G., Grarzam, R.L.: Optimal scheduling for two-processor systems.

Acta Informatica 1 (1972), pp. 200-213

. Cook, S.A.: The complexity of theorem proving procedures.

Proc. 3rd Ann. ACM STOC (1971), pp. 151-158

. Garey, M.R., JOHNSON, D.S.: Computers and intractability: a guide to the theory of NP-

completeness.
San Francisco: W.H. Freeman and Company 1979

.Garey, M.R., ET an.: Scheduling opposing forests.

TM-81-11216-44, Bell Labs, Murray Hill, N.J. (1981)

. GrRaramM, RL., ET arn.: Optimization and approximation in deterministic sequencing and

scheduling: a survey.
In: HamMmMer, P.L., ET AL. (EDS.) : Annals of Discrete Mathematics 5. Amsterdam-New
York-Oxford: North-Holland Publishing Company (1979), pp. 287-326

. Hu, T.C.: Parallel sequencing and assembly line problems.

Operations Research 9 (1961), pp. 841-848

. KARP, RM. : Reducibility among combinatorial problems.

In: Mrzrer, R.E., THATCHER,J.M. (EDS.): Complexity of computer computations. New York:
Plenum (1975), pp. 85-103

PAPADIMITRIOU, CH., YanNakakIis, M.: Scheduling interval-ordered tasks.

SIAM J. Comput. 8 (1979), pp. 405-409

Urwma N, J.D.: NP-complete scheduling problems.

J. Comput. System Sci. 10 (1975), pp. 384-393

WIJNcAARDEN, A.vVaN, ET aAL.: Revised report on the algorithmic language ALGOL 68.
Berlin-Hcidelberg-New York: Springer-Verlag 1976

16

