June 1981

Report. No. STAN-CS-81-836

Verification of Concurrent Programs,
Part I: The Temporal Framework

by

Z.ohar Manna

Amir Pnucli

Naocnarch ecnanearnd hy

Office of Naval Research

Department of Computer Science

Stanford University
Stantord, CA 94305

a0 JUNITS
o0 12100 ™,
SF e TR
Qe Lm
) - PSR
;3 a ey
L 2
— —
= =
e
.

June 81

VERIFICATION OF CONCURRENT PROGRAMS:
THE TEMPORAL FRAMEWORK

by

ZOHAR MANNA AMIR PNUELI
Computer Science Department Applied Mathematics Department
Stanford University The Weizmann Institute
Stanford, CA Rehovot, Israel
and
Applied Mathematics Department
The Weixmann Institute
Rehovot, Israel

ABSTRACT

This is the first in a series of reports describing the application of temporal logic to the
specification and verification of concurrent programs.

We first introduce temporal logic as a tool for reasoning about sequences of states. Models
of concurrent programs based both on transition graphs and on linear-text represcntations are
presented and the notions of concurrent and fair executions are defined.

The general temporal language is then specialized to reason about those execution sequences
that are fair computations of a concurrent program. Subsequently, the language is used to describe
properties of concurrent programs. v

The set of interesting properties is classified into invariance (safety), eventuality (liveness),
and precedence (until) proper ties. Among the properties studied are: partial correctness, global
invariance, clean behavior, mutual exclusion, absence of deadlock, termination, total correctness,
intermittent assertions, accessibility, responsiveness, safe liveness, absence of unsolicited response,
fair responsiveness, and precedence.

In the following reports of this series, we will use the temporal formalism to develop proof
methodologies for proving the properties discussed here.

A preliminary version of this paper appears in The Correctness Problem in Computer Science (R.
S. Boyer and J S. Moore, eds.), International Lecture Series in Computer Science, Academic Press,
London, 1981.

This research was supported in part by the National Science IFoundation under grants MCS79-
09495 and MCS80-06930, by the Office of Naval Research under Contract N00014-76-C-0687, and
by the United States Air Force Office of Scientific Research under Grant AFOSR-81-0014.

l

INTRODUCTION

Temporal logic is a special branch of logic that deals with the development of situations in
time. Whereas ordinary logic is adequate for describing a sraric situation, temporal logic enables
us to discuss how a situation changes due to the passage of time. An execution of a program is
precisely a chain of situations, called execution states, that undergo a series of transformations
determined by the program’s instructions. This suggests that temporal logic is an appropriate tool
for reasoning about the execution of programs. The special advantage of this approach is that it
enables us to formalize the entire execution of a program and not just the funcrion or relation it
computes.

The temporal logic approach offers special advantages for the formalization and analysis of
the behavior of concurrent programs. Concurrent programs have long been a difficult subject to
formalize and have often defied generalization of methods that worked perfectly for sequential
programs.

One inherent difficulty in analyzing a concurrent program is that when combining two processes
to be run in parallel, we cannot infer the inpur-outpur relation computed by the combined program
from just the input-output relations computed by each of the individual component processes. The
obvious reason for this is that, running in parallel, the processes may interfere with one another,
altering the behavior each would have when run alone. Consequently, in order for any approach
to stand a chance of success, it must deal with more than the input-output relation computed by
a program. It should be concerned with execution sequences in one form or another, as well as be
able to discuss mid-execution events.

Another inherent difficulty is the discontinuity associated with the simulation of concurrency
by multiprogramming. A very convenient and widely used model of real concurrency is to regard
the participating events as composed of many atomic basic steps. Then instead of requiring that
these basic steps occur concurrently, we consider sequences in which these steps are interleaved in
all possible ways. The problem with modelling concurrency by multiprogramming (interleaving)
is that without further restrictions a certain process can be discriminated against by having its
execution continually delayed. Disallowing this discrimination introduces a discontinuity into the
set of interleaved execution sequences.

Consequently, any approach which is based strongly on the concept of continuity, such as
the denotational approach or equivalent relational ones, is bound to face severe difficulties when
extended to deal with concurrency.

Temporal logic avoids both these difficulties by (a) being geared from the start to analyze
and formalize properties in terms of execution sequences, and (b) not being based on limits and
assurnptions of continuity. In fact, it can very easily and naturally express such concepts as
“eventually” which describes an event arbitrarily ahead in the future, but still a finite duration
away.

In this report we introduce the framework and language of temporal logic and demonstrate
its appropriateness for describing properties of programs.

We start with an exposition of modal logic whose domain of interpretation is a set of states
and (general) accesstbility relations connecting these states. We then specialize to temporal logic
which requires that the states form a linear discrete sequence. Linear discrete sequences can be

2

used to describe a dynamic process that goes through changes at discrete instants. Consequ.ently,
temporal logic is suitable for reasoning about such dynamic processes and their behavior in time.

Next, we present a model of concurrent programs. The basic model is based on several
concurrent processes, each of which is given in the form of a transition graph or a linear-text
program. Executions of concurrent programs are defined to be an interleaving of execution steps,
each taken from one of the processes. We discuss the conditions under which an interleaved
execution faithfully represents real concurrency. One of these conditions calls for the interleaving
to be fair in that no process is neglected for too long.

We then show how the language of temporal logic can be further specialized to reason about
execution sequences of programs. In this way, properties of programs which are expressible as
properties of their execution sequences are readily formalizable.

The rest of the report overviews in a systematic manner the different properties of interest.
They are classified into:

e Invariance properties, stating that some condition holds continuously throughout the computa-
tion.

e Eventuality properties, stating that under some initial conditions, a certain event (such as the
program’s termination) must eventually be realized.

e Precedence properties, stating that a certain event always precedes another.

For each class of properties, we present several typical and useful properties together with
sample programs illustrating these properties.

1. THE GENERAL CONCEPTS OF TEMPORAL LOGIC

In the development of logic as a formalization tool, we can observe an increasing ability
to express change and variability. Propositional Calculus was developed to express constant or
absolute truth, stating basic facts about the universe of discourse. The propositional framework
mainly deals with the question of how the truth of a composite sentence depends on the truth of
its constituents. In Predicate Calculus we deal with variable or relative truth by distinguishing the
statement (the predicate) from its arguments. It is understood that the statement may be true
or false according to the particular individuals it is applied to. Thus we may regard predicates
as parameterized propositions. The Modal Calculus adds another dimension of variability to this
description by predicates. If we contemplate a major transition in which not only individuals,
but also the meaning of functions and predicates are changed, then the modal calculus provides
a special notation for this major change. For instance, any chain of reasoning which is valid on
Earth may become invalid on Mars because some of the basic concepts naturally used on Earth may
assume completely different meanings (or become meaningless) on Mars. Conceptually, this calls
for a partition of the universe of discourse into worlds of similar structure but different contents.
Variability within a world is handled by changing the arguments of predicates, while changes
between worlds are expressed by the special modal formalism.

Consider for example the statement: “It rains today”. Obviously, the truth of such a statement
depends on at least two parameters: The date and the location at which it is stated. Given a specific
date ty and location £g, the specific statement: “It rains at £y oun ¢;” has propositional character,
i.e., it is fully specified and must either be truc or false. We may also consider the fully variable
predicate rain(4,t): “It rains at £ on ¢” which gives equal priority to both parameters. The modal
approach distinguishes two levels of variability. In this example, we may choose time to be the
major varying factor, and the universe to consist of worlds which are days. Within each day we
consider the predicate rain(£) which, given the date, depends only on the location. Alternatively,
we can choose the location to be the major parameter and regard the raining history of each
location as a distinct world.

As is seen from this example, the transition from predicate logic to modal logic is not as sharp
as the transition from propositional logic to predicate logic. ¥or one thing it is not absolutely
cssential. We could manage quite reasonably with our two parameter predicate. Second, the
decision as to which parameter is chosen to be the major one may seem arbitrary. It is strongly
influenced by our intuitive view of the situation.

In spite of these reservations there are some obvious advantages to the introduction and use of
modal formalisms. [t allows us to explicicly make one parameter more significant than all the others,
and makes the dependence on that parameter implicit. Nowadays, when increasing attention is
being paid to the clear correspondence between the syntactical structure of a program and its
functional decomposition (as is repeatedly stressed by the discipline of structured programming), it
scems only appropriate to introduce extra structure into the description of varying situations. Thus
a clear distinction is made between variation within a world, which we express using predicates and
quantifiers, and variation from one world to another, which we express using the modal operators.

Another way to view the generalization offered by modal logic is to claim that predicate
calculus is appropriate for describing static situations. It gives statements about basic objects and
their interrelation. The additional dimension provided by the modal logic is that of dynamic change
from one situation into the other. One of the characteristics of changes due to time transitions is
the fact that the same basic objects and entities exist in each of the static situations but that their

4

attributes and interrclations may change. Thus modal logic faithfully and conveniently portrays
for us a dynamic situation consisting of a set of static situations and rules of change between them.

THE MODAL FRAMEWORK

The general modal framework ([HC]) considers a universe that consists of many similar
states (or worlds) and a basic accessibility relation between the states, R(s,s’), which specifies
the possibility of getting from one state s to another state s’.

Consider again the example of rainy days, with time taken to be the major parameter. There,
each state in the universe is a day. A possible accessibility relation might hold between two days
s and s’ if s’ is in the future of s.

The main notational idea is to avoid any explicit mention of either the state parameter (date in
our example) or the accessibility relation. Instead we introduce two special operators that describe
properties of states which are accessible from a given state in a universe.

The two modal operators introduced are O (called the necessity operator) and < (called the
possibility operator). Their meaning is given by the following rules of interpretation in which we
denote by |w|s the truth value of the formula w in a state s:

|Dwls = Vs'[I}(s, ') O |wl|s]
|0 wls = 3s'[R(s, ') A lw]s] .

Thus, O w is true at a state s if the formula w is true at all states R-accessible from s. Similarly,
O w is true at a state s if w is true in at least one state R-accessible from s. Usually, R is taken
to be reflexive, so that every state is R-accessible from itsclf and thus R(s, s) always holds.

A modal formula is a formula constructed from proposition symbols, predicate symbols (in-
cluding equality), function symbols, individual constants and individual variables, the classical
operators and quantifiers, and the modal operators. A formula without any modal operators is
called a static formula. A fully modal (dynamic) formula is conveniently viewed as consisting of
static subformulas to which modal and classical operators are applied. The truth value of a modal
formula at some state of a given universe is found by a repeated use of the rules above for the
modal operators and evaluation of any static subformula on the state itself. It is assumed that
every state contains a full interpretation of all the classical symbols in the formula, which fully
determines the truth value of every static formula.

For example, the formula
rain(l) 2 O ~rain({)

is interpreted in our model of rainy days as stating: For a given day and a given location £, if it
rains on that day at £ then there exists another day in the future on which it will not rain at ¥;
thus any rain will eventually stop. Similarly,

rain(£) O Orain(€)

claims that if it rains on that day it will rain everafter. Note that any modal formula is always
considered with respect to some fixed reference state, which may be chosen arbitrarily. In our
example, it has the meaning of “today”.

e e et 2h dich

Consider the general formula
O~w=~Qw.

As we can see from the definitions this claims that all R-accessible states satisfy ~w if and only
if there does not exist an R-accessible state satisfying w. This formula is true in any state for any
universe with an arbitrary R.

We now give a more precise definition. A universe U for a modal formula w consists of
a nonempty domain D, a set of states (or worlds) S, and a binary relation R on S, called the
accessibility relation. Each state s provides a first-order interpretation over the domain D for
all the proposition symbols, predicate symbols, function symbols, individual constants, and (free)
individual variables in w. A model (U, sg) is a universe U with one of the states of U, s € S,
designated as the initial or reference state. In short,

domain — D
universe of w :{set of states - S
accessibility relation between states - R

where

state = assignment to symbols of w over D

We define the truth value of a modal formula w at a state s (denoted by |w|s) in a given
universe U inductively:

1. If w is static, i.e., contains no modal operators, then its truth value
|w|s is found by interpreting w in s.

2. |Ow|, is V'[R(s,s") D |w|s].
3. [Qwls is 3I[R(s,s) A |w|s].
4. |wy V wa|s is true iff either |w,|s is true or |ws|s is true.
5. |~wl|s is true iff |w|s is false.
Note that by our rules of interpretation

o |O(Ow)|s means that [dw|s is true at some state s’, R-accessible from s. That is,
<0Ow

stands for: we can get to a point where w is true everafter; i.e., there is a state s’ R-accessible from
s such that s itself and all of its R-descendants satis{ying w.

e |O(O w)|s means that |O w|y is true for all states s’, R-accessible from s. That is,
Oow

stands for: wherever we go w is still realizable; i.e., for every state s’ accessible from s it is possible
to find an R-descendant of s’ which satisfies w.

e |O{w > Ow)|, means that |w D Ow|y is true for all states s/, R-accessible from s. That is,
O(w > Ow)

stands for: if w ever becomes true in some s’ accessible from s, it remains true for all descendants
of §'.

If a formula w is true in a state sg in a universe U we say that (U, sq) is a (satisfying) model
for that formula, or that the formula is satisfied in (U, sq).

A formula w which is true in all states of every universe is called walid; that is, for every
universe U of w and for every state s in U, |w|s is true. For example, the formula

O~w=~%w
is a valid formula. This formula establishes the connection between “necessity” and “possibility”.

Another valid formula is
L—_I(w1 2 '11)2) D (D wy D Dwg),

i.e., if in all accessible states w; D wy holds and if wy is true in all accessible states, then wy must
also be true in all of those states.

Both formulas are valid for any accessibility relation. If we agree to place further general
restrictions on the relation 2, we obtain additional valid formulas which are true for any model
with a relation satisfying these restrictions. According to the different restrictions we may impose
on R, we obtain different modal systems. In our discussion we stipulate that R s always reflexive
and transitive; t.e., we consider a formula to be wvalid iff it is true in all states of every universe
with a reflexive and transitive accessibility relation.

For example, the formula
Owow

is valid since it is true for every reflexive model. Tt claims for a state s that if all states accessible
from s satisfy w, then w is satisfied by s itself. This is obvious since s is accessible {rom itself (by
reflexivity).

The formula
O Qw D Qw,

which stands for (O(<O w)) D (O w), is valid since it is true for all transitive models. It claims for
a state sq: if there exists an sy accessible from s; which is accessible from sg such that sy satisfies
w, then there exists an s3 accessible from sg which satisifies w. This always holds in a transitive
model since by transitivity, s, is also accessible from s¢ and we may take s3 = s3.

THE TEMPORAL FRAMEWORK

The framework of temporal logic is a modal framework in which we impose further restrictions
on the models of interpretation ([PRI], [RU]). The interpretation given by temporal logic to the

7

basic accessibility relation is that of the passage of time. A world s’ is accessible from a world s
if through development in time, s can change into s’. We concentrate on histories of development
which are linear and discrete. Thus, the models of temporal logic consist of w-sequences, t.e.,
infinite sequences of the form o = sg, s1, In such a sequence, s; is accessible from s; iff ¢ <
j. Due to the discreteness of the sequences we can refer not only to states that lie in the future
of a given state, but also to the (unique) immediate future state or next state. This leads to the
introduction of an additional operator, the nezt instant operator denoted by O.

Relating these concepts to the general modal framework, a universe for temporal logic consists
again of a collection of states (worlds). On these states we define an tmmediate accessibilily relation
p which is required to be a function. That means that every world s has exactly one other world s’
such that p(s, s’). This corresponds to our intuition that in a discrete time model each instant has
exactly one immediate successor. R = p*, the transitive reflexive closure of p, is the accessibility
relation discussed under the general modal framework and is indeed both reflexive and transitive.
Intuitively R(s, s’) holds when s is either identical to s or lies in the future of s.

Given the restrictions imposed on 2, the resulting model (U, sg) can be represented as an
infinite sequence of states,

0 — 80, S1, S2, ...

where p(s;, 8;4.1) is true for ¢ > 0. This intuitively corresponds to the temporal development of a
process observed at a sequence of discrete points in time.

We will now give a more complete definition of the language we are going to use. Note that
this language is designed specially for the application we have in mind, namely reasoning about
programs, and is not necessarily the most general temporal language possible.

Symbols. The language uses a set of basic symbols consisting of individual variables and consturls,
and proposition, function and predicate symbols. The set is partitioned into two subsets: global
and local symbols. The global symbols have a uniform interpretation over the complete universe
and do not change their value or meaning from one state to another. The local symbols, on the
other hand, may assume different meanings and values in different states of the universe. IFor our
purpose, the only local symbols that interest us are local individual variables and local propositions.
We will have global symbols of all types.

Our symbols are further partitioned into different sorts. Each sort corresponds to a different
domain, and the interpretation will associate a domain with every sort. Corresponding to a sort we
may have individual constants that are interpreted over the associated domain, individual variables
that assume values from that domain, function symbols that represent functions over the domain,
and predicate symbols that represent predicates over the domain. The symbols used for individual
constants, functions and predicates will be typical of the first-order theory of the domain we wish
to formalize. For example, in dealing with the theory of natural numbers we use the conventional
symbols:

{O) 1; ey +) — Xy e, >y Z; }
8

Note that some functions and predicates may have a non-homogenous signature, i.e., they
may have different sorts associated with different argument positions. A typical example is the
if-then-else function which accepts one boolean argument and two arguments of possibly another
sort.

Operators and quantifiers. We use the regular set of boolean connectives: A, V, D, =, and ~
together with the equality operator = and the first-order quantifiers V and 3. This set is referred
to as the classical operators. The modal operators are:

g, ¢, O and U;

they are called respectively the always, sometime, next and until operators. The first three operators
are unary while the operator is binary.

The quantifiers V and 3 are applied only to global individual variables.

Terms. Terms are constructed from individual constants and individual variables to which we
apply functions. The application must conform with the arity and sort signature restrictions
associated with each symbol. An additional rule is that if ¢ is a term so is Ot — referred to as
the nexzt (value of) t. Note that we use the nezt operator O in two different ways — as a temporal
operator applied to formulas and as a temporal operator applied to terms.

Formulas (sentences). Formulas are constructed from atomic formulas to which we apply the
boolean connectives, the modal operators and quantification over global individual variables. Atomic

Jormulas consist of propositions and predicates (including the ‘=" operator) applied to terms of
the appropriate sorts.

Recall that a formula is said to be classical (static) if it involves no modal operators.

We will sometimes regard propositions and (closed) formulas as integer-valued functions yield-
ing 1 for true and 0 for false. These functions can then be combined arithmetically in order to
provide a compact representation for equivalent but longer propositional formulas. For example,
for propositions py, ..., pa, the statement

Pt bpa=1 or Y p=1

i=1
states that exactly one of the p;’s is true. This is of course equivalent to the formula

Vo A AN ~pinp)

1<:i<n 1<:<j<n

MODELS (ENVIRONMENTS)

A model (I,a,0)for our language consists of an (global) interpretation 7, a (global) assignment
o and a sequence of states o.

The interpretation I specifies a nonempty domain D; corresponding to each sort, and assigns
concrete elements, functions and predicates to the (global) individual constants, function and
predicate symbols.

The assignment o assigns a value over the appropriate domain to each of the global free
individual variables.

The sequence 0 = s, 51, .. . is an infinite sequence of states. Each state s; assigns values to
the local free individual variables and propositions.

For a sequence
0 = 8¢, 81, -
we denote by
oM = Siy Sicply + e e
the i-truncated suffix of o.

Given a temporal formula w, we present below an inductive definition of the truth value of
w in a model (I, a,0). The value of a subformula or term 7 under (I, ,0) is denoted by Tlg , I
being implicitly assumed.

Consider first the evaluation of terms:

e For a local individual variable or local proposition y:
y|(01 == ySQ)
i.e., the value assigned to y in sq, the first state of 0.
e For a global individual variable or global proposition u:
o
u'(f = a[u])
i.e., the value assigned to u by a.

e For an individual constant the evaluation is given by I:

c|g = I[c].

e For a k-ary function f:

f(tl) v ’tk)lg = I[f](tl‘g’ e ’tkl(oft)’

i.e., the value is given by the application of the interpreted function I[f] to the values
of t1, ...,tx evaluated in the environment (I, o, o).

e For a term ¢:
o
Ot{g = t|a(1)’

i.e., the value of Otin ¢ = s, sy, ... is given by the value of ¢ in the shifted scquence
(1) — '
ag = 81,82y +s

10

|
‘E
E
|
|
%
|
%
]
i
’:
|
|
|

Consider now the evaluation of sentences:

e For a k-ary predicate p (including equality):

p(tI; v atk)lg = I[p](tllg’ v ’tklg)'
Here again, we cvaluate the arguments in the environment and then test I{p] on them.

e For a disjunction:

(w1 Vw2)|g = true iff wllg = t{rue or wglg = true.

e For a negation:

(Nw)lg = true iff wlg = false.

e For a next-time application:
Ou|y = w|:(1).
Thus O w means: w will be true in the nezt instant — read “next w”.
e For an all-times application:
Dw‘g = true iff for every k > 0, w|?(k) = true,

i.e., w is true for all suffix sequences of o. Thus Ow means: w is true for all future
instants (including the present) — read “always w” or “henceforth w”.

e I'or a some-time application:
O w‘g = true iff there exists a k > 0 such that w|(o;(k) = true,

i.e., w is true on at least one suffix of 0. Thus O w means: w will be true for some
future instant (possibly the present) — read “somectimes w” or “eventually w”.

e For an until application:
wy U w2|g = true iff for some k > 0, ’U)glg(k) = {rue and

foralli, 0 <1 < k, w1|g(¢) = frue.

Thus w; U wo means: there is a future instant in which wy holds, and such that until
that instant w; continuously holds — read “w; until we”((KAM], [GPSS]).

e For a universal quantification:

!
(Vu.w)[g = true iff for every d € D;, wlg = true,

where o/ = o o [u « d] is the assignment obtained from o by assigning d to u. D; is
the domain corresponding to the sort of .

11

. e For an existential quantification:

/
(Gu.w)|§ = true iff for some d € D;, w|g = true,

where o/ = o [u + d].

Following are some examples of temporal expressions and their intuitive interpretations:

ud Qv —
O(u 2 O v) —
SOw —
SwAO~w) —

OCw —
O(u D Ov) —

Ou V (ulv) —

Ov D ((~v)Uu) —

If u is presently true, v will eventually become true.
Whenever u becomes true it will eventually be followed by v.
At some future instant w will become permanently true.

There will be a future instant such that w is true at that instant and false
at the next.

Every future instant is followed by a later one in which w is true, thus w is
true infinitely often.

If u ever becomes true, then v is true at that instant and ever after.

Either u holds continuously or it holds until an occurrence of v. This is the
weak form of the until operator that states that u will hold continuously
until the first occurrence of v if v ever happens or indefinitely otherwise.

If v ever happens, its first occurrence is preceded by (or coincides with) u.

If w is true under the model (I, o, 0) we say that (I, e, 0) satisfies w or that (I,a,0) is a
satisfying model for w. We denote this by

(I,a,0) F w.

A formula w is satisfiable if there exists a satisfying model for it.

A formula w is valid if it is true in every model, and we write

E w.

|
| Sometimes we are interested in a restricted class of models C. A formula w which is true for
\ every model in C is said to be C-valid, denoted by

CE w.

Ezample:

: The formula O(wy A we) D (O wy A Owy) is valid, ie,

E <>(w1 /\U)2) D (<>U)1 A <>’LU2)

12

It says that if therc exists an instant in which both w; and ws are true then there exists an instant
in which w; is true and there exists an instant in which w, is true.

The D-converse of this formula is not valid, i.e.,
V (<> w1 A 0102) D O(w1 A ’11)2).

For, consider an interpretation in which wy is true and wy is false at state s;, and in which wy is
false and wy is true at state sy, and sg is accessible from s; (also clearly sy from s; and sy from

82) B
Cho) O™
wy : true wy : false
wy : false wa : true

Then at state sy:

< wy is true (since wy is true at sy)
<& wy is true (since wq is true at s3)

O(wy A we) is false (since wy A we is false at s; and at sp).

Therefore, the formula is false under this interpretation. J
A REPERTOIRE OF VALID TEMPORAL STATEMENTS

In this section we present a list of valid temporal statements (schemata) which we justify by
semantic considerations. There are two reasons for presenting them here. First we would like to
illustrate the type of temporal recasoning we will later use. Second, the statements presented here
will later be taken to be established valid statements and used freely in proofs. When, in a later
part of this work, we present a formal deductive system for temporal reasoning, we will take some
of the valid statements listed here as axioms and deduce the others as theorems.

In the following list, whenever we write a valid temporal statement in form £ A D B and not
E A = B, it implies that its D-inverse is not valid, i.e., ¥ B D A. That is, a model can be found
under which an instance of B D A will be false.

1. F O~w = ~QOw
2. F O~w = ~0Ow
3. F O~w = ~Quw

These statements point out the duality between the operators.

Statement 1 says that w is falsc in all states (instants) of a sequence ¢ there is no state in
which w is true. '

13

Statement 2 says that there is a state in which w is false iff it is not the case that w is true in
all states.

Statement 3 says that w is false in the next state ¢ff it is not the case that w is true in the
next state. This statement restricts each state to have a single successor.

4. F w D Qw

5. F Ow D> w

6. E OQw D COw

7. k Ow D> OQOuw

8. E OQw D Qw

9. E Ow D> O0Ow
10, F wilwy D Ouwy

11. O0Ow 2> O%w.

Statement 4 says that if w is true now, then it will be true sometime in the future. This is an
immediate consequence of the fact that the present is considered to be part of the future.

Statement 5, a dual of 4, says that if w is true in all future instants it is also presently true.

Statement 6 says that if w is true at the next instant it will sometime be true. This is because
the next instant is also a part of the future.

Statement 7, a dual of 6, says that if w is true in all future instants it is also true for the next
instant.

Statement 8 says that if w is always true then it is sometimes true.

Statement 9 says that if w is true in all future instants it is also true for all future instants of
the next instant, i.e., all future instants excluding the present.

Statement 10 says that if w; is true until wy will happen then ws will eventually happen.

Statement 11 says that if w is permanently true beyond a certain instant then w is true
infinitely often.

12 F Dw = O0w
13. E QSw = OQw.

The statements 12 and 13 say that both O and © are idempotent. Intuitively speaking both imply
that the future is equivalent to the future of the future. Note that a corresponding statement does

not hold for O, since both ¥Ow > OOw and FOOw D> Qw.

14. E OOCw = O0Ow

15. E OOQw = OQuw
14

16. E ((O ’LU1) U (O 'U)z)) = O('lU1 U 'LU2).

Staternents 14 to 16 indicate the commutativity of the nezt operator O with each of the others. It
amounts to a shift of our reference point from the present to the immediately next instant.

Statement 14 says that w holds for the instant next to every future instant ¢ff w holds for all
future instants, barring the present.

Statement 15 says that w is realized in an instant next to some future instant iff it is realized
somcetimes in the future, excluding the present.

Statement 16 says that O wq holds until an instance of Owy #ff w; holds until wy starting
from the next instant.

17. F Owi Awz) = (Owy A Ows)
18. k OwyVwy) = (CwV Ows)
19. F O(wi Awz) = (Owy A Owy)
2. E O(wiVwsy) = (OwyV Owy)
2. k O{widDwy) = (Ow; D Ows)
22. F Ofw; =wy) = (Owy = Ow,)

23. k (w1 Awg)Uws) = ((wy U ws) A(ws U ws))
(w1

24. E w2 V ’u}3)) = ((UJ1 U 'lUQ) \V (’LU1 U UJ3)).
Statements 17 to 24 indicate distributivity relations between the temporal operators and the boolean
conncctives.

The O operator has a universal character — stating w for all future instants, and the < operator
has an existential character — stating w for some future instant. Consequently [distributes with
A (17) stating that both w, and wy hold in every future instant ¢ff w; holds for all future instants
and so does wy. The & operator distributes with V (18) stating that there will be an instant in
which either wy or wy hold ¢ff therc either will be an instant in which w; holds or there will be an
instant in which w, holds.

The O operator has both universal and existential character because it refers to a unique
instant - the next one. Therefore it distributes with both A and V, as is shown by statements 19
and 20.

Since the O operator has been shown to distribute with the basic boolean connectives ~,
A, V, it will also distribute over any other boolean connective such as O and =. For example,
Statement 21 says that if in the next instant w; implies wy and w; is known to hold at the next
instant then so does wy.

The until operator has a different character with respect te its two arguments. It is universal
with respect to its first argument which appears in the semantic definition under a Vi(0 < 1 < k)
quantification. It is existential with respect to its second argument which appears in the semantic
definition under a 3k(k > 0) quantification.

15

Statement 23 says that w; and wy both hold until an instance of wg iff wy holds until an
instance of w3 and wy holds until an instance of ws. To justify the implication from right to left,
we are guaranteed of having a ¢; such that ws is true at ¢; and w; holds until then, and a {3 such
that ws is true at ¢; and wy holds until then. By considering the earliest ol these two instants

= min(ty, t) we know that ws is true at ¢ and both wy and wj hold until then.

Statement 24 says that w; holds until an instance of either wy or w3 4ff either w; holds until
an instance of wg or wy holds until an instance of wj.

25. F (OwvOws) D OwiVw)

26. E O(wiAwz) D (Qwi AOws)

27. k ((wiUws)V(wzUws)) O (wyVw)lws
28. F (wi U (w2 Aws)) D ((wi U wse)A(wy U ws)).

Statements 25 to 28 indicate implications that hold when we interchange the order between
temporal operators and the boolean connectives. They are not equivalences and only the direction
of the given implication is true.

Statement 25 says that if either wy is true for all future instants or wy is true for all future
instants then in every future instant either w; or wy holds.

Statement 26 says that if there exists an instant in which both w; and w, are true then there
exists an instant in which w is true and there exists an instant in which wy is true.

Statement 27 says that if either w, holds until w3 or wy holds until w3 then there is an instance
of ws such that until then either w; or wy holds.

Statement 28 says that if w; holds until an instant ¢ in which both wy and wj are true then
both w; holds until w, at t and wy holds until w3z at ¢ implying the conjunction.

29. E {wy; D wy Ow, D Owy)

() 2 (

30. E O) (O w1 D O wy)

31. k O(wy Dw2) 2 (Owi D Ows)

32, k IO) D ((wi U ws) D (ws U ws))
33. k O() ((w

D 0 U LU1 ’LU() u ’LUQ)).

Statements 29 to 33 indicate the monotonicity of each of the temporal operators; that is, if
its application to a formula w; is true and w; universally implies wy (for all instants) then its
application to wa is also true.

This property is stated respectively for 0 in 29, © in 30, O in 31 and the two positions of U
in 32 and 33.

34. Ek (D wy A O w2) D O(w1 A 'wg)
35. E (D wg A ’LU2) D <>(w1 A ’U)g)
16

36. E (OwiA(welws)) O (wi Awp)l (wy Aws).

Statements 34 to 36 are frame rules. They say that if w; is known to hold for all states then w,
may be added as a conjunct under any other temporal operator. This is respectively stated for O
in 34, for © in 35 and for both argument positions of {/ in 36.

37. k (wADOw>Ow)) > Ow
38. E (wAO~w) D2 O(wAO~w).
39. E (QuiAQwy) D [Clur AQws) V Olwe A Owy).

Statements 37 and 38 are induction rules and Statement 39 describes the linearity property.

Statement 37 (corresponding to computational induction) says that if the fact that w holds at
any instant implies that it also holds at the next instant, and w holds in the present, then w holds
at all future instants.

Statement 38 (corresponding to the least number principle) is the dual of 37. It says that if w
is true now and is false sometime in the future, then there exists some instant such that w is true
at that instant and false at the next.

Statement 39 says that if w; and we are both guaranteed to happen, then either w; will
happen first, followed by ws or wo will happen first, followed by w;.

40. F Ow = (wAODQDw)
41. £k Sw = (wvOOw)
42, F wilwy, = wyV (w1 A Ofwy U wg))

Statements 40 to 42 explain the O, <, and U operators respectively by distributing their effect
into what is implied for the present and what is implied for the next instant.

Statement 40 says that w is true for all future instants ¢ff w is true for the present and for all
instants lying in the future of the next instant.

Statement 41 says that w is true in some future instance iff it is either true now or true at an
instant not earlier than the next.

bl

Statement 42 says that ‘w; until wy’ is presently true iff either wy is true now or w; holds
now and ‘wq until wy’ is true for the next instant.

43, = Qw

™
!
g
i~

£

44,

™

Ow; A <>w2) D (wy U we)
45.

T

(wi D wa)Uws) D ((wy U ws) D (ws U ws))

47.

m

(
(
46. k ((wy U wa) A(~waUws)) D (wy U ws)
(wy U (wa Aws)) D ((wr U we) U ws)
17

48. E ((w1 U U)2) U ’I.U3) 2 ((w1 vV ’U)2) u w3)
49. E (O wi A O’UJ2)) ((N’U)l U ’u)2) vV (N’UIQ U 'U)1))

This list of statements illustrates some properties of the until operator.

Statement 43 says that w is guaranteed to happen iff there is an instant in which w is true
and until this instant w is false. This states that w happens ¢ff there is an earliest occurence of w.

Statement 44 says that if ws is guaranteed to happen and w; is constantly true, then it will
be true until a guaranteed occurence of wy.

Statemncnt 45 says that if w; implies wo until w3 happens and wy is true until an instance
of w3 (not necessarily the same instance) then wy will hold until an instance of w3 (which can be
taken as the earlier of the two).

‘Statermnent 46 says that if w; holds until wy and w, is false until w3 then wy is true until ws;.
To justify this let (a) w; U wy and (b) ~w2 U w3 be the two clauses given as premises. By (b) we
know that w3 will happen say at t3 and wy will be false until then. By (a) we must happen, say at
t, and w, must be true until then. By (b) t2 > t3 so that w; must certainly be true until ¢3, an
instance of wj.

Statement 47 can be justified as follows. The premise guarantees an instant {5 such that wy
and wj are both true at ¢ and w; is true until then. Clearly, taking any 0 < ¢; < t2 we know
that wo will be true at t, and wy is true for every ¢, t; < t < ta, thus wy U wy at ty. Since wy U wo
is true for every t,, 0 < ¢y < tq, and wj is true at t5, wy U wy is true until ws.

Statement 48 says that if wq { ws is continuously true until an instance of w3 then so is wqVw,.

Statement 49 says that if both w; and wy are guaranteed to happen then one of them will
happen “lirst”; that is, cither wy happens first and w, is false until then, or w; happens first and
wy is false until then. (In both cases we allow the possibility that both w; and w; occur for the
first time at the same instant.)

50. F Odzw = JzQw
51. F OVzw = VzOw
52 F O3dzw = Jz0w

53. E OVzw = VzOQOuw
54.

hil

((wax) U ’U}g) = Vz(w;, U wy) provided z is not free in wy

55. E (w1 U (323102)) = Jz(w; U wa) provided z is not free in wy

Statements 50 to 55 indicatc the commutativity relations between the temporal operators and the
quantifiers. They follow from our restriction that the quantifiers ¥ and 3 are to be applied only to
global individual variables. Statements 50 and 51 are known as Barcan’s formulas.

Statement 50 demonstrates once more the existential character of the operator <. It says that
in some instant there exists an z satisfying w(z) iff there exists an z such that at some instant
w(z) is satisfied.

18

Statement 51 demonstrates the universal character of the [1 operator. It says that w is true
in all instants for all values of z iff it is true for all values of z for every instant.

Statements 52 and 53 demonstrate the dual character of the O operator, which is both
universal and existential.

Statements 54 and 55 demonstrate that the until operator has a universal character with
respect to its first argument and an existential character with respect to its second argument.

The preceeding statements were all of the form
Fw

and they stated formulas which are true in every model. The next list of statements contains
inferences of the form

Fw = F ws.

They state that if w; has been shown to be a valid statement then so is wq. The inference
statements enable us to deduce the validity of one formula from the other. For every valid formula
E wy D wsy there is a corresponding inference E wy; = E wa, and this is a standard way of justifying
an inference. However, there are inferences E w; = k wy such that E wy; D wy is not a valid
statement (see, for example, the following inference 56).

56. Fw = kE Qw O-insertion
5. Fw =k Qw O-insertion
58. Fw = k Quw O-insertion

Inference 56 states that if w is valid then so is {Jw. The fact that w is valid means that it is true
for every sequence and therefore for all suffixes o™ of a given sequence. Thus Clw is true for every
sequence ¢ and is therefore a valid statement.

Inference 57 may be deduced by inferring first £ Ow and then using the valid statement
E Ow > Ow (number 8 in our list) to infer k O w.

Inference 58 may be deduced similarly by using Statement 7, E Ow D O w.

5. E widw; = F Ow; D 0w, OO0 —insertion
60. Fwi DdDws = E Qw; 2wy O O ~insertion
61. kEw;dwy = E OQw; D 0wy O O —insertion

These inferences are all obtained by infering first # O{w; D wy) by Inference 56 and then using
statements 29 to 31, respectively.

>0 ‘

62. :Z z; 5 Dgz} = Fwy D Ows O-concatenation

63. o sz} = Fw D Ows O—concatenation
E wyg D Ow3

19

Inference 62 is obtained by first deriving E Ows; O OO ws; by Inference 59, observing that
OO0ws = Ows, and then using propositional reasoning. Inference 63 is obtained similarly by
applying Inference 60. Note that the corresponding O-concatenation inference does not hold.

E
64. F
E

65.

m

E
66. Fk
E

w1
W2
w3

wy
w2
ws

D wy
DOwzp= E w; D 0Owy O-consequence
D Wy

D wo
DQwier = E wy D Owy O—consequence
D wy

D wa
DOwzp =k wy D Owy O-consequence
D Wy

Inference 64 is obtained by deriving first E Ows D Owys by OO-introduction (59) and
then applying propositional reasoning. Similarly, inferences 65 and 66 are obtained by deriving
g Owy D Owy and E OQws D Owy by 60 and 61, respectively.

20

2. CONCURRENT PROGRAMS AND THEIR EXECUTION

In the following we introduce the model of concurrent programs that we will study here. (For
simpler models see [KEL] and [LAML].)

7 = fo(Z)
Py Py . ® ° P,
In our modcl, a concurrent program

7= fo(2); [P1]l - - - [|Pm]
consists of an initial value assignment 7 := fo(Z) followed by the parallel execution of m, m > 1,
processes Py, ..., Pn,. The processes operate on a set of program variables ¥ = (y1, ..., yn)
which are shared between the processes. The variables § are accessible to all the processes for
both referencing and modifying. Each process_P,, 1= 1, ..., m, is an independent transition
graph with nodes (locations) labeled by £y, £4, ..., £,. The sets of labels L; = {£, ..., £}

of the different processes are disjoint. The edges (or transitions) in each process are labeled by
instructions of the form:

@ col7) — [;] = fal(7)] J‘/Z’

where ¢, (7) is a condition called the enabling condition of the transition o, and f, is the transfor-

malion associated with the transition a. If ¢, (7) is true we say that the transition o is enabled for
y=n.

For a given node £ with k& outgoing transitions

ci(7) = [7:= f1(7)] e

oy !

we define I2,(7) = ¢1(y)V ... Vci(y) to be the full-exit condition at node £. We do not require that
the individual conditions are exhaustive, i.e., that Fy(7) = true for every ¥; thus, deadlocks (or
blockings) are allowed in our semantics. Nor do we require the conditions to be exclusive; thus, each
process can be nondeterministic. A location whose individual conditions are mutually exclusive is
called a deterministic location. If E4(7) is true, i.e. at least one of the a;, ¢ =1, ..., k, transitions
originating from £ is enabled, we say that the location £ is enabled for § = #%. If a process P; is
currently at £ € L; which is enabled, we say that the process is enabled.

The set of program variables ¥ = (y1, ..., ¥n) is accessible and shared by all the processes.
This model of concurrent programs is therefore called the shared-variables model. In this model,
communication and synchronization between processes are managed via the shared variables.

The initial assignment ¥ := fo(Z) assigns initial values to the shared program variables prior
to the beginning of the concurrent execution. The parameters T = (z, ..., ;) that appear in
this initial assignment, as well as other parameters appearing in the bodies of the processes, are
the input parameters of the program. The behavior of the program naturally depends on the input
parameters.

We will often represent a process in a linear-text form instead of a graph. In such a case the
nodes are the places (labels) just before each statement, and the transitions are the statements
themselves.

We list below the types of statements that we allow in the linear-text form and their repre-
sentation in the graph model: '

» L yi= f(y)
VA

is represented as

> £: if p(y) then goto m
£

is represented as

> L: if p(y) then §:= f(y)
I

is represented as

» £: loopuntil p(7)
Jo

This statement loops until the condition p(y) becomes true. It is represented as

C@ p(¥) — [] @

~p(7) — (]

» £: loopwhilep(7)
2

This statement is the complement of the above statement: it loops until condition p(7} is false. It
is represented as

; &E@ ~p(y) = [l {@
p(¥) - |

» £: compute Uy, ...,U, USING UL, ..., Vs
2

This statement represents a segment of terminating computation in whose details we are not

interested. The only facts we assume about this segment are:

1. The segment may modify only the program variables uy, ...,u,, r > 0,
and may reference only the program variables vy, ..., v,, s > 0.

2. The segment must eventually terminate.

The statement is represented as

@ true — [(u1, ..., ur) == f(v1, ..., vs)] @

where f represents an unspecified function.

We will often use compute segments of the form

£: compute
£

for the case r = s = 0 to refer to a segment of terminating computation that does not modify or
access any program variables.

23

» £: executeuy, ...,U, USING Uy, ..., Us

A

This statement represents an arbitrary program segment that may modify only the program
variables uy, ..., u,, r > 0, and may reference only vy, ..., vs, s > 0. Herc we do not require
that the segment must eventually terminate. Consequently its representation is given by:

) ;&D true --» [(U’h ... ,U,—) = f(vly CIEE) Us)l//el

true — ||

» fZ.: halt

is represented as:
)
.¢., a node with no exits.

Note that for all the statements considered so far, except for the halt statement, the full-ezit
condition is always identically true. Also all the instructions (and their corresponding locations),
except for the execute uy, ..., u, instruction, are deterministic, i.¢., they have mutually exclusive
transitions. v

Erample:

Consider the following concurrent program for computing the binomial coefficient (Z) for
integers n and k, such that 0 < £ < n:

Program BC (Binomial Coefficient):

Yy :=mn, yY:=20, yz3:=1

fy: tfyr = (n— k) then go to £, mg: if ya = k then go to m.
£ yzi=ys- Y my: Y=y +1
£ y1:=yr— 1 ma loop until yy +y2 < n
f3: gotody m3 i Yz i= Y3/ya
£e: halt my: go to mg
mMe halt
— Process P, — — Process Py —

The input parameters to this program are n and k. Note that n appears in the initial
assignment while both n and & appear in statements of the processes.

We have not yet discussed the cxecution of concurrent programs in our model. Assume for
a moment that each instruction in this program is atomic and that at any instant only one such

24

atomic instruction is executed. Once it is completed, another instruction (from either process) is
exccuted to its completion, and so on. Under this assumption, the program BC, computes the
binomial coefficient

()=t toa

The values of yq, t.e., n,n— 1, ..., n— k + 1, are used to compute the numerator in Py (the
last value of y, n-— k, is not used), and the values of y,, i.e., 1,2, ..., k, are used to compute the
denominator (the first value of yg, 0, is not used). The process Py multiplies n-(n—1)---- - (n—k+1)
into y3 while P, divides y3 by 1-2. .-+ - k.

The instruction
mo: loop untily, +yy < n

guarantees even divisibility. It synchronizes [’s operation with that of P, to ensure that y; is
divided by 7 only after it has been multiplied by n — 7 4+ 1. We rely here on the mathematical
theorem that the product of 7 consecutive positive integers: k- (k + 1) - -+ - (k 47 — 1) is always
divisible by 1!.

Now, consider the intermediate expression at ma:

nofn—1y - -(n—7j+1
Y3 = (1.2).....(5'_1)])’

where 1 < 1 < j < n,y = n—7j and yo = 7. The numerator consists of the product of j
consecutive positive integers and is therefore divisible by 7 since ¢ < 7 . If 7 = 7, we have to wait
until y; is decremented by the instruction in €3 from n— 741 to n— ¢ before we can be absolutely
sure that (n — 7 - 1) has been multiplied into y3. Thus, process P, waits at my until y; 4y, drops
to a value less than or equal to n.]

In order to keep track of the progress of the execution in each process wc use a vector of
location variables T = {my, ..., 7m} where cach 7; ranges over the label set L, of process P;.

y := fo(2)

25

The location variable ; points to the location in P; which is to be executed next.

CONCURRENCY AND ITS MODELLING BY INTERLEAVING

Before defining the execution of concurrent programs in our model, we should first study in
more detail the actual behavior of a physically concurrent system.

As our motivating real-life situation we consider a system consisting of m physically separate
processors [T, ..., Il,,. Each of the processors II; is responsible for executing the process program
P;. The shared program variables vy, ..., y, reside in a common memory M to which each of
the processors must gain access in order to retrieve or store a value of a shared variable. In
addition, cach of the processors has its own set of private variables (registers). These are used
to hold intermediate results of the computation or values which are not needed by the other

- processes. We will refer to these private registers as tg, ¢4, We assume that the shared memory,

M, is hardware protected to allow only onc processor to access a shared variable al a certain
instant. While the access is taking place, the particular variable accessed is unavailable to all other
processors. Llach access is restricted to a single operation, a value retrieval or a value update, but
not both.

Consider for example the joint operation of two processors II; and Il which are executing the
following concurrent program:

Elementary Program EP

y: =20
Ly : by =y mg: tri =y
Eli tliztl—l my t21:t2+1
by : y:i=1t, My Y :=tq
Lo : halt me . halt
— P— — Py —

Each processor II, has its private register ¢,, ¢ = 1,2. This program has been carefully constructed
so that it uses only three standardized types of elementary instructions:

a. A shared retrieval (reference), transferring the current value of a shared variable
into a private register:

ty:=9y and iy:=y.

b. A shared update (modification), storing the value of a private register into a shared
variable:

c. An internal computation of the form ¢, := f(t) assigning to one register of a
processor a value which is a function of the registers ¢ of the same processor:

tp:=t; —1 and ty:=t;+ 1.
26

We also frequently use a fourth type of elementary instruction:
d. An internal test of the form

if p(t) then go to ¢,

where t are registers of the same processor.

With the execution of the instructions of types a and b we can associate a unique event which
is the actual access to the shared memory M. We refer to these events as shared access events.
For the simple program presented above we can associate the events r;, 1 = 1, 2, with the retrieval
of the value of the shared y at the instruction in locations £y and mg respectively. Similarly, we
associate the events u;,1 = 1, 2, with the updating of the shared variable y at the instructions 4,
and mo respectively. No access event is associated with internal computations such as those at £;
and m,.

Since in our cxample all four accesses refer to the same variable y, no two of them can occur
exactly at the same time because of the exclusivity mechanism provided by the memory unit M.
Thus in any possible concurrent execution of this program we will observe a linear sequence of the
occurrences of these four events. The only possible sequences are:

Ty, U1, 72, up leading to a final value of y =20
ra, U2, 71, Uy leading to a final value of y =20
r1, T2, Uy, uz leading to a final value of y =1
Ti, T2, U2, u1 leading to a final value of y = —1
7o, T1, U1, ug leading to a final value of y =1
T2, T1, U2, uy leading to a final value of y = —1.

IFor this program, the sequence of access events uniquely determines the final state of the computa-
tion.

While the access events themselves are constrained by the memory protection mechanism to
form a linear sequence in which no two events coincide, the execution of the non-accessing part
of the instructions will gencrally overlap in time. In fact, many different executions which greatly
differ in the timing and overlaps of their non-accessing parts and instructions correspond to the
same linear timing sequence of the accessing events, and hence yield the same final state. This
proliferation of executions which all yield the same result and display essentially the same behavior
makes the analysis of concurrent executions unnecessarily complicated.

Consequently, in order to reduce the complexity of analysis we use a simplificd model in which
the executions are restricted to be interleaved. An interlcaved execution is one in which at any
instant only one processor is executing an elementary instruction to its completion. Once the
elementary instruction is completed, another processor may initiate an elcmentary instruction and
proceed to complete it. Under this model, the execution proceeds as a sequence of discrete steps.
In each step one ehabled transition (instruction) is selected in one of the processes and is executed
to completion.

The sclection of the next process to be executed is personified by a scheduler who performs the
selection. At each step of the computation the scheduler sclects one process which has an enabled

27

transition and lets that process execute onc instruction (transition). For the sake of completeness
we also allow the scheduler to arbitrarily insert an idling step in which no process is scheduled, no
instruction is performed, and the values of all program and location variables remain the same. In
the case that no enabled transition is available, an idling step is the only choice that the scheduler
has thereafter. In such a case we say that the program is deadlocked. A special case of this situation
is when the program has terminated, i.e., all the proccsses have terminated.

When first encountered the model of interleaved ezecution may appear to be artificial and
counterintuitive. In fact it seems to defeat the whole idea of concurrency — concurrent (overlapping)
ezecution of instructions in different processes. Thercfore we emphasize that the interleaving model
is only a mathematical device for simplifying the analysis which proves to be adequate for the kind
of non-quantitative analysis we consider here. That is, as long as we are not interested in questions
about the timing of instructions and the running time of a program and make no assumptions about
the relative speeds of the processors, the model of interleaved exccutions faithfully represents all
the possible behaviors of the program.

We use the following definitions:

e An access to a variable in an instruction of a process P, is defined to be critical if it is either
a modification of a variable which is accessed by other processes or an access Lo a variable
which is modifiable by other processes.

e An instruction is said to obey the single (critical) access rule if it contains at most one critical
access.

We can then state the following result:

Proposition (single (critical) access): Interleaved executions of a program P, all of whose instruc-

tions obey the single (critical) access rule, faithfully represent all concurrent executions of
P.

Thus, it is possible to represent by interleaving all possible situations arising under concurrency.
Since this approach greatly simplilies the analysis, we will adopt this it in our treatment of
concurrent programs.

One necessary exception to the single access rule is semaphores.
SEMAPIHORES

Semaphores are devices for achieving synchronization in concurrent systems ([DIJ1]). They are
special atomic instructions denoted by request(y) (also known as P(y)), and release(y) (also known
as V(y)), operating on the semaphore variable y.

The request instruction

» £ request(y)
A

is equivalent to the single transition

28

®y>0 - [y=y—1] @

The release instruction

» £: release(y)
2

is equivalent to the transition

@ true — [y :=y+ 1] @

‘Semaphores are considered atomic (primitive) even under concurrent execution. Therefore
when programs are transformed to single access form, the semaphore instructions should be
preserved as atomic and not broken up into single access instructions. No other operations can be
performed on semaphore variables.

Usually the semaphore variable y is initialized to 1. A process reaching a request(y) instruction
will proceed beyond it only if ¥y > 0, and then it will decrement y by 1, setting it to 0. Thus a
location containing a request(y) instruction can be used as a checkpoint, synchronizing the process
with other processes containing request(y) and release(y) instructions operating on the same y.

Consider a concurrent program of form

y=1
2 request(y) 2% 1 request(y) 2% : request(y)
m': release(y) m? : release(y) mk : release(y)
— Py — — Py — o o o — Py —

Assume, for example, that Py arrived first at £! when y was 1. It then went beyond ¢! and set y to
0. As long as P; is between £! and m!, y will remain 0, and any other process, say P, which will
attempt to go beyond its request statement £2 will be held there since the enabling condition y > 0
is false. It must wait there for y to turn positive, which can only be caused by P; performing the
release(y) operation at m!. Even if P; and P, reach £! and £? simultaneously, the atomicity of
the request instruction (which is required for exactly this reason) ensures that only one process can
gain access to its region lying between £ and m. This region is called a critical section, and our use
of semaphores in this example ensures mutual ezcluston of access to the critical sections; that is,
at most one of the processes may execute its critical section at any instant. Semaphores may also
be used for a variety of other signalling and synchronization tasks.

29

Mutual exclusion of critical sections is necessary whenever two or more processes need to access
a shared variable or device {such as disk) and wish to be protected from interference or attempts
by the other processes to access the same resource while doing so.

Ezample:

Consider once more Program BCy (Binomial Coefficient). In order to recast it in the single
access form we notice that the variable y3 is the critically shared variable. Hence, we have to break
the instruction

£t yzi=y3 -y
into the sequence
£ tyi=y3- -y
O y3i=1ty
Note that y; is modified only by P;; hence its access at ¢4 is non-critical.
Similarly we have to break the instruction
m3 i Y3 = Ys/ya
into
m3: t2 = y3/y2
mh oy = t,. ,
Note that both the assignments y; := y1 — 1, y3 := y2 -+ 1 and the test y; + yo < n already
satisfy the single access rule.

The problem now is that of interference between the two new processes. Consider for example
an execution which includes the sequence:

‘elx ms, Ell) mg
Following this execution we find that while the instruction at £ stores a certain value into ys, it
is immediately overwritten by the value stored into it by the instruction at mf. Thus the value of
the computation performed in £, is completely lost and the result is of course invalid. To prevent
such a mishap we must protect cach of the sequences (44, ;) and (mg, m%) from interference by the

other. The protection is done by using a semaphore variable y4; the modified programs appears
below:

Program BC (modified Binomial Coefficient):

yri=mn, y2:=0, ys:=1, yg:=1

Ly: ifyr = (n— k) then go to L. mo: if y2 = k then go to m,
£ request(yq) my: Yy =y +1
Zigivtln——:vyg——él_ mo : loopuntily, +y2 <n
3 y3:=1ty m3: request(ys)
184 release(ys) my: by = y3/ya
Ls: yp:=y —1 ms: Y3 =t
L go tody me: release(ys)
L. : halt my: go to myg

me: halt

30

»

The mutually protected critical sections are (£2,£3,24) and (mg4, ms, mg) respectively. Their
exclusion ensures that each computed value of y; is assigned to y; without any interference. Under
interleaved executions, BC computes the binomial coeflicient and is in single reference form. 1

Ezample:
Consider the following program CP modelling a consumer-producer situation:

Program CP (Consumer Producer) :

b:=4A, s:=1, cf: =0, ce:=N

Ly : compute yy mg : request(cf)

£, : request(ce) my : request(s)

£ ¢ request(s) ma: Yy := head(b)
€y ty:=oboy mg: ty 1= tail(b)

£y: b:=1 mg: bi=1y

b5 release(s) ms : release(s)

Ls . release(cf) me : release(ce)

L7 gotody ‘mq: compule using ys

mg: go to my
— P, : Producer — — Py : Consumer —

The program is in single access form. The producer Py computes a value into y; without using
any other program variables; the computlation details are irrelevant. It then adds y; to the end
of the buffer b. The consumer P, removes the first element of the buffer into Yo and then uses
this value for its own purposes (at m7). It is assumed that the maximal capacity of the buffer b is
N > 0. The ‘compute using y2’ instruction references yo but does not modify any of the shared
program variables.

In order to ensure the correct synchronization between the processes we use three semaphore
variables:

e The variable s ensures that the accesses to the buffer are protected and provides exclusion
between the sections (£3,£4,¢5) and (mq, m3, m4, ms).

e The variable ce (“count of empties”) counts the number of free available slots in the buffer
b. It protccts the buffer b from overflowing. The producer cannot deposit a value in
the buffer if ce = 0, and when it does deposit a value, it decrements ce by 1. Since
we start with ce = N, the producer cannot deposit more than N items before the
consumer has removed any of them. The consumer, on the other hand, increments ce
by 1 whenever it removes an item and creates a new vacancy.

e The variable c¢f (“count of fulls”) counts how many items the bulfer currently holds.
It is initialized to 0, incremented by the producer whenever a new item is deposited,
and decremented by the consumer whenever an item is removed. It ensures that the
consumer does not, attempt to remove an item from an empty buffer.]

31

FAIRNESS

Another problem with modelling concurrency by interleaving is fairness. Consider first a pro-
gram with no semaphore instructions, and where the full-ezit condition E¢(7) at cach nonterminal
location £ (i.e., £ # £¢) is identically true, i.e., Ex(y) = true for every y. Note that the latter is
true for every linear-text program without semaphores. Under these restrictions every process that
has not yet terminated is enabled, 7.e., it always has an enabled transition, and if selected by the
scheduler can always execute this transition. Running under true concurrency, every process will
go on executing until it reaches its termination label Z.

In order to model the same property under interleaving execution we require the scheduler to
be fair. By that we mean that no process which is ready to run (i.e., enabled) will be neglected
forever. Stated more precisely, we exclude infinite executions in which a certain process which
has not terminated is never scheduled from a certain point on. Note that all finite terminating
sequences are necessarily fair. This will also prevent the scheduler from going on an infinite spree
of idling steps when at least one proccss is enabled.

Coming back to the more gencral situation which allows semaphore instructions, we have to
consider the possibility that a nonterminated process is not continuously enabled. [Furthermore,
its being enabled may depend on the action of the other processes, since in general the full-exit
condition FZ,(y) depends on the shared variables 7.

Our requirement of fairness for this more general casc will be formulated as:

We disallow infinite sequences in which a certain process is enabled infinitely
often and is scheduled only a finite number of times.

Ezample:

Consider the simplest case of two processes synchronized by a semaphore:

y:=1
£y o request(y) myg : request(y)
£y : release(y) my : release(y)
£y go tofy my i go to mg
— P, — — P —

Obviously the infinite execution sequence (where we only mention the label arrived at as a result
of the current transition)

Zl) 62) ZO; my, Mz, My, Zl; £2) ZO) my, Mz, Moy,
is fair. On the other hand the sequence:
Zl; fg, ZO) Zl) £2) E(),

while constantly 7y = my is unfair. This is because whenever 7y = £y or 1y = {3, Py is enabled.
Thus in this sequence, even though P, is not continuously enabled (it is not enabled when m; = £,),

32

o

it is enabled infinitely often. Since P, is never scheduled while being enabled infinitely often this
sequence is unfair.

In practice every scheduler which is fair satisfies a stronger requirement: it is fair within a
finite bound, i.e., no enabled process may be neglected for more than k instants of being enabled.
Here k is a constant, characteristic of the scheduler.

Generalizing the semaphore instruction request(y) which waits for y to turn positive and then
decrements it, we have the ‘wait until p(7)’ and ‘wait while p(y)’ instructions. They are modelled
as follows:

» £: wait until p(7)
VA

is represented by

@ p(7) —] (7
and

» £: wait while p(7)
£

is represented by »
~o(y) = 11~

o

The wait instructions are similar to the request instruction in that the full-exit condition is
not identically true. Thus for the ‘wait until p(7) instruction, the full-exit condition I£,(y) is equal
to p(7). Consequently fairness considerations ensure that if p(g) turns true infinitely often while a

process is waiting at £ it will eventually be scheduled (exactly when p(¥) is true) and proceced to £

b

Let us compare the ‘wait uniil p(y)’ instruction with the ‘loop until p(7) instruction whose

graph representation is

Q@ p(y) - [] J@

~p(y) - []

Note that the full-exit condition for this instruction is E, = true. Thus even if p(J) turns
true infinitely often we are not assured of ultimately reaching #. This is so because the only
requirement implied by fair scheduling is that if E, is infinitely often truc the process waiting at £
must eventually be scheduled at an instant in which E, is true. However this instant may always
happen to be one in which p(y) = false and the instruction executed is a transition back to £

The only condition that will guarantee for a loop instruction the eventual exit to £ is that p(7)
becomes permanently true beyond a certain stage in the computation.

There are practical implications to the distinction between the wait and loop instructions. If we
wish to implement an actual fair interleaving scheduler, it is easier to be fair to the loop instruction
than to the wait instruction. Since for the loop instruction, E), is identically true, in order to be fair

33

to a process which is at £, the scheduler just has to make sure it does not neglect it and eventually
comes around to scheduling it. In order to be fair to a wait instruction, whose full-exit condition
is p(7), we have to monitor the instants in which p(y) is true. Then when it is observed that p(%)
is true many times the relevant process has to be eventually scheduled.

On the other hand, the use of a wait instruction implies greater efliciency since the scheduler
may place the process executing a wait instruction on a suspension list, from which it will be
removed only when p(7) is true and the scheduler decides to schedule that process.

34

3. THE TEMPORAL DESCRIPTION OF PROGRAM PROPERTIES

As we have seen, the behavior of a concurrent program is characterized by the set of its fair
execution sequences. We have also developed the formalism of temporal logic whose formulas are
interpreted over sequences. We now combine the two and utilize temporal logic to state properties
of the execution sequences of a given program, thus describing properties of the dynamic behavior
of the program ([PNU1], [MP]).

In order to apply the general temporal formalism to execution sequences, it is necessary to
introduce additional structure and special notation into the temporal language. For states we will
consider “execution states” which each consist of the vector of current locations in the program and
of the current values of all program variables at a certain stage in the execution. The accessibility
relation between execution states will represent “derivability” by the program’s execution. We will
use predicates and propositions to describe properties of a single state, and modalities to describe
properties of the execution leading from one state to another.

Consider a typical concurrent program
P = y:= fo(@); [All...[|Pm]

with input parameters T = (zy, ..., z,) and shared program variables § = (y1, ..., yn) over a
domain D. (For simplicity, we do not consider many-sorted domains.)

An erecution state for this program has the general structure
s=(X;7),

where

e X = (A1, ..., \m) is the vector of current values held by the location variables 7. Thus
\: € L, is the label of the node in the transition graph of process /% where exccution is
to resume next. (It is the label of the next instruction to be executed in the lincar-text
representation.)

e = (N1, ..., Nn) € D™ is the vector of data values assumed by the program variables 7 in
the state s. Thus n; € D is the current value of y; in s.

An ezecution sequence of a concurrent program is an infinite sequence of states:

g = §&8p, S1, S2,

Corresponding to the structure of execution states and sequences we will consider temporal
formulas with the following individual variables:

(a) Local program variables: yy, ..., Yn.

These represent the current values of the program variables which of course may
vary from one execution state to the other.

(b) Local location variables: 7y, ..., Tp,.

35

These represent the location of each process in a given state. Each m; will range
over the set L;.

(c) Global variables: =z, ..., Tk, U1, Uz, -...

These are the input parameters =4, ..., Tk, and auxiliary variables u;, uqg, ...
which stay constant over the complete execution, z.e., they do not vary from state
to state. The auxiliary variables are used to express relations between local values
in different states. For example:

Vully = u) > Oy = u+ 1)

expresses the statement that there will be a future instant in which the value of
the variable y will be greater by 1 than its current value.

For a label £ € L;, we abbreviate the atomic formula 7; = £ to at¥, i.e.,
at? is true of m; =,

which may therefore be considered a local proposition. Thus, for a given state s = (X ; 7) and
location £ € L;, atf is true at s if the process £ is currently at £, i.e., \; = £.

More generally, for a set of labels I C L, the local proposition atL is defined to be true if P;
is anywhere within L, te.,

atL is true iff m; € L.

If L consists of all the labels £, within a segment, t.e., L = {{g, €341, ..., 4} for some 0 <
a < b, we will also write atL as atl, . Thus,

atly p = at{ly,laty, ..., 0} = \'_, atl.

We proceed to give a precise definition for the set of legal execution sequences o, corresponding
to a given program P with input values T = €. There are three requirements which a legal
execution sequence ought to fulfill:

A. Initialization

An execution sequence
0O = 80, S1, S2 .-
is properly initialized if 5o = (X\o;7g) has the structure:
¢)\ = (€, ..., £7), the set of initial locations in each of the processes;
e 7o = f(€), the initial values assumed by the program variables on initialization.
B. State to state transitions

An exccution sequence o is admissible if each sy = (XI; 7') is related to sy = (\; 77) by
one of the following rules:

36

.
;
‘L
4
r

ST T TRRRTERE ST

(a) Idling step: skp1 = sk (e,

N
(b) An i-step: For some ¢, 1 < ¢ < m, we have the following: The process P; contains a
transition o(9) [y @)
y ~— = P

such that m, = X\, ¢(7%) = true (i.e., the transition is énabled) and 7' = f(7). For all
3,7 7 ¢, we have X} == X;.

Note that in the prescnce of self loops, i.e.,

SO

we cannot always uniquely decide whether an idling step or a trivial i-step led from state si to
state sg41.

C. Fuairness or Justice

e An admissible scquence ¢ is justif there is no process P, which is continuously cnabled beyond
a certain state s in the sequence o, and only a finite number of steps of o are i-steps.

Thus the notion of justice ensures that no process is indefinitely neglected. This notion is adequate
for programs with no semaphore instructions.

e An admissible sequence ¢ is fair if there is no process /% which is enabled an infinite number
of times in ¢, and only a finite number of steps of ¢ are steps.

Note that a fair sequence is also a just sequence. In addition to the assurances given by
justice, fairness guarantees that no process will remain blocked at a semaphore instruction whose
exit condition turns true infinitely often. For programs without semaphore instructions the notions
of fairness and justice coincide. Consequently, our treatment will concentrate on fair executions.

Note that in checking for fairness we are allowed to take a given step both as an i-step and as
a j-step if both interpretations are possible. Thus the following degenerate program

£y go to £y mg : go to myg

possesses the legal execulion sequence

{(2o,m0);()), ((£0,m0); (),

Each step here may be interpreted as an idling step, a 1-step or a 2-step. Because of this possible
multiple interpretation the sequence is indeed fair.

Consider the sequence corresponding to a terminating computation, i.e., all processes have
terminated. Since in a terminating state m; = £ the process P, is never enabled, the fairness
criterion does not require further scheduling of P,, and the only possible steps from that point on
are idling steps. Thus our representation of a terminating computation as an infinite sequence in
which from a certain point on all states are identical is consistent with fairness. This state, to
which the sequence has “converged,” is the terminal state.

37

e

[E—

e Lvery suffix of a properly &-initialized, admissible, fair execution sequence is defined to be a
(P, €)-computation. The set of all (P, {)-computations is denoted by F(P, {). By definition,
this set is suflix closed, i.e., if o € F(P,€), then ¢ € F(P,€) for every i > 0.

For a given program P let ¢(Z) be a restriction (precondition) on the input parameters Z.
Usually ¢ characterizes the inputs we expect the program to operate on.

e A computation is said to be a (P, p)-computation (proper computation) if it is a (P, §)-
computation for some £ such that ¢(¢) is true.

e We define the set 7(P,) to be the set of all (P, p)-computations. Obviously 7(P, p) also
has the suffix closure property.

e A formula w is 7(P, p)-valid if it is true for every computation in 7{P,). Such a formula
is obviously an established valid property of all (P, p)-computations. In the following
sections we study the expression of program properties as (P, ¢)-valid formulas.

Since most of our reasoning will be done in the context of a fixed program P and a fixed
precondition , we introduce a special notation for F(P, ¢) validity. We denote

F(P,o)E w by E w.

The statement E w thus means that w is true for every suffix of a fair, admissible execution of P
which is initiated at £y = (£, ..., £5") with o(Z) holding and § = fo(Z).

Facts of the form & w will serve as the basic statements in our specification and description
of program properties. Consequently, we will discuss in later reports proof rules for deriving such
statcments.

The following is an important derivation:
Fw = E w.

It states that if w is true for every possible sequence it is true in particular for every (P,)-
computation. This enables us to transport all the generally known valid temporal statements
(E-valid) into reasoning about a particular program (k-valid). Thus the following are E-valid
formulas:

E O~w=~Cw
E O{w; D ws) D (dwy D Ow,)

E Ow>Ow)>d(w>dOw)

etc.

Another valid inference is

Ew = EQw

This rule states that if w is true for all the (P, ¢)-computations then Ow is also true for them. This
rule is a direct consequence of the suffix closure property of (P,). One can prove similarly that

38

all the inference rules (numbers 56 to 66) proven in the earlier repertoire still hold after replacing
F by k.

We will now review the expression of program properties by temporal formulas. The properties
will be classified according to the form of the temporal formulas expressing them.

INVARIANCE (SAFETY) PROPERTIES

Consider first the class of program properties that hold continuously throughout all computa-
tions. They are expressible by formulas of the form:

E Quw.

. Such a formula states that 0w holds for every computation, t.e., w is an invariant of every
computation. By the gencralization rule this could have been written as E w, but we prefer the
above form since it emphasizes the invariant character of the properties in this class.

Note that the initial condition associated with the proper computation is:

atly A 7= fo(Z) A (%)

which characterizes the initial state for inputs Z satisfying the precondition o(z). Here, £, =
(2(],, e ,66") is the set of initial locations in each of the processes. To emphasize the precondition
©(Z) we sometimes express E Qw as

E (Z)Dd 0Ow.

A formula of this form therefore expresses an invariance property. The properties in this class
are also known as safety properties, based on the premise that they ensure that “nothing bad will
ever happen” ([LAM1]).

More generally, invariance properties can be expressed by formulas of the form
E wy D Dw.

This form may be used to state that a certain event implies the invariance of some other condition
from that moment on. Under this interpretation wy is the triggering event whose occurrence causes
the subsequent invariance of the property w.

We give below a sample of important properties falling under this category.

a. Partial Correctness

This property is meaningful only for programs in which each process contains a terminal
location £,. We call such programs terminating programs, in contrast with continuous (or cyclic
programs) whose proper behavior does not call for termination and therefore do not contain terminal
locations.

39

Let ©(Z) be the precondition that restricts the set of inputs for which the program is supposed
to be correct, and ¥(Z, i) the statement of its correctness, i.e., the relation that should hold between
the input values Z and the output values §. Then in order to state partial correctness with respect
to a specification (p,) we can write:

E o(z) 2 O(atl O ¥(z,7)),

where £, = (£}, ..., £™) is the vector of terminal locations in each of the processes. This formula
claims that if the initial state satisfies the precondition, then in any state accessible from it: If
that state happens to be an exit state, i.e. X\ = £, then the relation ¥(Z,7) holds between the
input parameters ¥ and the current values of 7. Thus this formula states that all convergent -
computations terminate in a state satisfying 1/, but it does not guarantee termination itself. Note
that we rely on = being global and retaining its original value throughout the computation.

Ezample:

Let us consider as a concrete example, a single process program for computing z! over the
nonnegative integers.

Program F' (Factorial Program):

Yy =1, yg =1

Ly : if yp =0 then goto £,
Ly (Y, y2) == (y1 — Ly - v2)

£y 1 goto ¥y
2. : halt.
The statement of its partial correctness is
E (z > 0) D O(atle D y2 = z!),
where the initial condition associated with the proper computation is actually
atlg AN y1=2 A y2=1 A z2>0.
We are justified in regarding partial correctness as an invariance property since it is actually

a part of a “network of invariants” normally used in the Invariant-Assertion Method; namely, for
the Program F' above:

E (z>0) > O{ J[atly D (y1 > 0)A(y2-y!=z!)]
A latly O (y1 > 0)A(y2 - yi! = 2!}
A latls D (y1 2 0)A(y2-yi! = 1)
A [at!e 2 (yl = 0) A (yg = z!] }.

And in fact, in order to prove the partial correctness property, we usually prove the invariance of
this larger formula, from which partial correctness follows. J

Ezample:

40

As another example consider a program TN counting the number of nodes in a binary tree X.

Program TN (Counting the nodes of a tree):

S:=(X), C:=0

£y : if S={() then goto £,
£ (T, S):= (hd(S), ti(S))
Lo if T=A then goto £y
£3: C:=C+1

Ly S:=4T)-r(T)-S

Z5 : goto Eo

£.: halt.

The program operates on a tree variable 7 and a variable S which is a stack of trees. The input
variable X is a tree. The output is the value of the counter C. Each node in a tree may have zero,
one or two descendants.

The available operations on trees are the functions #(7") and r(T) which yield the left and right
subtrees of a tree T respectively. If the tree does not possess one of these subtrees the functions

return the value A.

The stack S is initialized to contain the tree X . Taking the head and tail of a stack (functions
hd and t! respectivcly) yields the top element and rest of the stack respectively. The operation in
£, pops the top of the stack into the variable 7. The operation at £4 pushes both the right subtree
and the left subtree of 7" onto the top of the stack.

At any iteration of the program, the stack S contains the list of subtrees of X whose nodes
have not yet been counted. The iteration removes one such subtrce from the stack. If it is the
empty subtree, T = A, we proceed to cxamine the next subtree on the stack. If it is not the empty
subtree we add one to the counter C and pushes the left and right subtrees of 7' to the stack.
When the stack is empty, S = (), the program halts.

Denoting by |T'| the number of nodes in a tree T we can express the statement of partial
correctness of the program TN by:

E Olatl, D C = |X|].
The actual initial condition associated with the proper computation is

atly A S=(X) A C=0.

Ezample:

As a more complex example consider again the program BC for the concurrent computation
of a binomial coefficient.

The statement of partial correctness to be proved there is:

E (0<k<n) D Ofatle Aatm,) D y3 = (})]-
41

That is, every properly initialized execution of the program BC that terminates satisfies y3 = (Z)
at its termination point. The actual initial condition associated with the proper computation is

atly AN atmg A y1=n A y2=0 A y3=1 A yu=1 A 0<k<n §

b. Clean Behavior

For cvery location in a program we can formulate a cleanness condition that states that
the instruction at this location will execute successfully and will generate no execution faults
(exceptions). Thus if the statement contains a division, the cleanness condition will include the
clause specifying that the divisor is nonzero or not too small (to avoid arithmetic overflow). If
the statement contains an array reference, the cleanness condition will state that the subscript
expressions are within the declared range. Denoting the cleanness condition at location £ by ay,
the statement of clean behavior is:

E () D D/\(atz D o).
¢
The conjunction is taken over all “potentially dangerous” locations in the program.

Ezample:

The factorial program F' above should produce only natural number values during its com-
putation. A cleanness condition at £y, which is clearly a critical point, is (under the precondition
z > 0) '

E (:II >0) D D[at21 D (y1 > 0)],

guaranteeing that the subtraction performed at £; always yields a natural number. Note that we
have not indicated that y; is an integer; such type considerations will be ignored in our discussions.

|
Ezample:

If a program contains the instruction
£: if y1 > yo then yy = (S[i] + ya2),

where - is the integer-division operator and the range of the array subscript ¢ is between 1 and
m, then the cleaness condition at £ can be expressed as follows:

E O{fatlA(yr > 32)] D [(1 <1 <m)A(y220)]}. &

Ezample:
A clean behavior statement for the tree node counting program T'N is given by:

E Ol(atly S # () A (atly DT # A)).
42

This ensures that no attempt is made to pop an empty stack or to decompose an empty tree. 1

Ezample:

In the binomial coefficient program BC an appropriate and crucial cleanness statement is given
by:

E (0<k<n) 2> O{atms D [(y2 #0)A(yz mody, = 0)}-

That is, whenever we reach the location my in a proper computation of BC, yj3 is evenly divisible
by y2. 1

A general concern in the considerations of clean behavior is the compatibility of values with
types. In the presence of dynamic types we should also worry about the compatibility of types.

¢. Global and Local Invariants

Very frequently, invariant properties are not related to any particular location. In general, some
properties may be invariant independent of the location. In these cases we speak of global invariants,
i.e., invariants unattached to any particular location. The expression of global invariance is even
more straightforward. Thus, we write :

E o(z) > OF,

to state that property B holds at all times during a proper computation.

Ezample:

In the factorial program F' above, to claim that y; is always a nonnegative integer, we may
write:

E (z>0) 5 Oy >0).
Another valid global invariant for this program is:
E (I > 0) 2 D(yg cyy = (E!),

which states that y, - y;! = z! at all steps of the execution. &

Ezample:

For the binomial coefficient program BC, an appropriate global assertion would be:

E (0<k<n) D Omn—k<y<n)A(0<y2<k)] 0

Another interesting set of properties are invariance properties which are attached to particular
locations, but not necessarily to the exit locations of the program. These properties are particularly
important for programs which have no exits and are expected to run indefinitely.

43

We refer to such properties as local invariants and write
E O(atl> PB)

to indicate that a statenient 8 is true whenever we are at a certain location £. Partial correctness
is actually a local invariant referring to the exit locations.
Ezample:

In the TIN program for counting the nodes in a tree, we can express as a local invariant the
fact which is true whenever we visit the location £y; namely,

E Ofatsy > (DI + C=|X]),

tes

i.e., the sum of the number of nodes in all the subtrecs currently in the stack plus the current value
of the counter C is invariant at £3 and cquals the number of nodes in the tree X. §

Invariants can also be used in the context of a program whose output is not necessarily apparent
at the end of the exccution; for example, a sequential program whose output is printed on an
external file during the computation.

Ezample:

Consider the following program PR for printing the infinite sequence of successive prime
numbers ’

2, 3, 5 7, 11, 13, 17T,

Program PR (Printing the prime numbers):
Yp =2

Ly 2 print(y:)

£yt yri=y+1

by yo =2

L3 if (y2)? >y, then goto £y

Ly : if (yy modyy) =0 then goto £

ls: ypi=ys+1
g : golo £3

A part of the correctness statement for this program is:
e O{atly D prime(y1));

it indicates that only primes are printed. 1

Next we will examine some properties which are meaningful only for concurrent programs.

44

d. Mutual Exclusion
The notions of critical sections and mutual exclusion were introduced earlier, but let us briefly
review them.

Consider two processes Py and P, being executed in parallel. Assume that each process contains
a section C; C L;, for 1 = 1,2, which includes some task critical to the cooperation of the two
processes. For example, it might access a shared device (such as a disk) or a shared variable. If
the nature of the task is such that it must never be done by both of them simultaneously, we call
these sections critical sections. The property stating that the processes will never simultaneously
execute their respective critical sections is called mutual ezclusion with respect to this pair of
critical sections.

The property of mutual exclusion for Cy and C3 can be described by:
E () D O~(atCi A atCy).

This states that it is never the case that the joint execution of the processes reaches €y and Ch
simultaneously.

Ezample:
Consider again the consumer-producer program CP. The sections
Ci = {{3,44,¢5} in Py
and
Ca = {ma,m3,my,ms} in Py
are obviously critical sections since they make severat accesses to the shared variable b. In order

to obtain the correct result it must be ensured that no other accesses to b are made during the
computation involving b.

The mutual exclusion property in this case can be expressed by:
E O~(atCi A atCy),
where the initial condition associated with the proper computations is:
atly A atmg A b=A A s=1 A ¢f=0 A ce=N.

The formula states that we can never simultaneously be in both critical sections C; and C,. Note
that actually it suffices to prove

E DN(atZ;; A atmg).

This is so because there exists an cxecution in which atf3 A atm, in some state if and only if there
exists an exccution in which atCy{ A atC3 in some state. R

45

Ezample:

Similarly a statement of mutual exclusion for the program BC computing the binomial coefficient
is given by:

E (0 < k< n) > O~(atly. 4 A atmy g).
Here, we follow our convention,

atly 4 denotes my € {fo, 3,44}
and

atmg. ¢ denotes mp € {my4,m5,mg}. 1

e. Decadlock Freedom

A concurrent program consisting of m processes is said to be deadlocked if no process is enabled.
This leaves the idling step as the only possible choice of the scheduler. The rest of the computation
will therefore consist of an endless repetition of the current deadlocked state. Clearly in a deadlock
situation each process I?; must be blocked at a location £ € L; whose [ull-exit condition E, is [alse
for the current value 7 of 3. Therefore the only potential deadlock locations are those £ for which
E, is not identically true. We refer to such locations as waiting locations. The terminal location £,
is also considered to be a waiting location. However, the special case in which all processes are at

their respective £, locations is not considered to be a deadlock but rather a termination.

Let us therefore consider a tuple £ = (£!, ...,#™) of waiting locations, # € L,, not all of
which are terminal locations. Let Ey, ..., E,, be their associated full-exit conditions. To prevent

a deadlock at £ we require:

E p(z) o O 7\ atf? o \/ E;(7)).

7=1 j=1

This indicates that whenever all the processes are each at #7, j = 1, ..., m, at least one of them
is enabled. The corresponding process can then proceed and deadlock is averted.

In order to eliminate the possibility of a deadlock in the full program, we must impose a similar
requirement for every possible n-tuple of waiting locations, excluding £, = (£}, ..., £7).

Ezample:

In the consumer producer program CP, the complete deadlock freedom condition will be
expressed as

E D{ [(atly A atmg) D (ce > 0V cf > 0)]
A [(atly A atmy) D (ce > 0V s > 0)]
A

(atly A atmg) D (s > 0Vcf > 0)
46

A [(atly Aatmy) D (s> 0)}. B

f. generalized deadlock

We may generalize the definition of waiting locations to also include looping instructions of
the form:

£: loop until p(7) or £: loop while ~p(g).

Obviously, being trapped at a tuple (£!, ...,£™) some of whose locations are looping locations,
with 7 = 7 such that p(%) = false for their escape conditions, is just as bad as a deadlock. Formally
such a situation is not a deadlock since the execution of the self-transitions in the looping locations
is not officially an idling step. But it is also self-evident that these steps cannot alter the state and
the computation will remain trapped forever.

Let us therefore call a generalized deadlock situation to be a state s = (€%, ..., £™; 7) such
that each £' is either a waiting location or a looping location, and such that &(7) = false for
each 1 = 1, ..., m. The escape condition £,(y) corresponding to location £ is taken as the exit
condition Ky (7) if ¢ is a semaphore location, false if £* is a terminal location Zi, and the condition
for getting out of the self-loop if £* is a looping instruction of the form

2 : loop until £,(7) or 22 loop while ~&,(7).

Then again the statement cnsuring prevention of generalized deadlock at a tuple L= (£, ..., ™)
is the requirement

E D(K atf? D C/ £;()).

j=1 j=1

Ezample:

Consider the binomial coefficient program BC. A statement of the impossibility of general
deadlock at the potentially dangerous locations is given by:

E (0<k<n) > O{ [(atls Aatmg) D (ys > 0)]
A [(atly A atme) D (ya > 0)]
A [(atle A atma) D (y1 + y2 < n)]
A [(atle A atmgz) D (ya > 0)]
A [(atly A atmg) D (ya > 0V y: +y2 < n)l}.

This statement ensures that if execution is at (£;,m3) then y4 > 0 and one of the processes is
able to proceed; if one of the processes is ever at its terminal location the other process is not
deadlocked at its request instruction or trapped at its loop instruction; and if the execution is ever
at (£1,m2) then either y4 > 0 or yy + y2 < n, thus either enabling P, or permitting P; to exit
from its self-loop. 1

47

i i 2

EVENTUALITY (LIVENESS) PROPERTIES

A second category of properties are those expressible by formulas of the form:
E w; D Ows.

This formula states that for every proper computation, if w, is initially true then wo must eventually
be realized. In comparison with invariance properties that only describe the preservation of a
desired property from one step to the next, an eventuality property guarantees that some event
will finally be accomplished. It is therefore more appropriate for the statement of goals which may
need many steps to be realized.

Note that because of the suffix closure of the set of proper computations this formula is
equivalent to: ‘

E D(w1 D 0’!1)2)

which states that whenever wy arises during the computation it will eventually be followed by the
realization of wsy.

A property expressible by such a formula is called an eventuality (liveness) property ([OL]).
Following are some samples of eventuality properties.

a. Total Correctness
This property, like partial correctness, is meaningful only for programs with terminal locations,
i.e., programs that are expected to terminate in contrast to continuous (cyclic) programs.

A program is said to be tolally correct with respect to a specification (p, %), if for all input
values Z satisfying (%), termination is guaranteed, and the output values § upon termination
satisly ¥(Z,%). Once more, let £, denote the exit points of the program. Total correctness w.r.t.
(©,) is expressible by:

E (@) O Olatl, A (T, 7).

This says that if we have an admissible execution sequence beginning in a state which is at locations
£y and has values § = fo(7) where p(_f) is true, then later in that execution sequence we are
guaranteed to have a state which is at £, and satisfies (%, 7).

Example:
The statement of total correctness for the factorial program F' is:

E (z>0)D Olaté, A y2=12!).

Ezample:
The expression of total correctness for the tree node counting program T'N is given by:
E Oatle A C=|X|). N
48

Ezample:

The statement of total correctness for the binomial coefficient program BC is given by:

E (0<k<n) D Olatly A atme A ya=(3)]. 8

b. Intermittent Assertions

Eventuality formulas enable us to express a causality relation between any two events, not
only between program initialization and termination but also between events arising during the
execution. This becomes especially important when discussing continuous (cyclic) programs, i.e.,
programs that are not supposed to terminate but are to operate continuously. The gencral form
of such an eventuality is:

E (atlA @)D O(atl! A @)

and it claims that whenever (in a proper computation) ¢ arises at £ we are guaranteed of eventually
reaching ¢ with ¢’ true. This is the exact formalization of the basic Intermitient-Assertion
statement ([BUR], [MW]):

“If sometime ¢ at £ then sometime ¢’ at £.”

Ezample:

Consider the program TN for counting the number of nodes in a tree. An important intermit-
tent assertion that serves as a basis for the proof of its correctness is:

E [atlg A S=u-s A C=¢c D QOlatly A S=35 A C=c+ [y

Here, u, s and ¢ are used in the role of global variables, while S and C are local program variables.
This statement says that being at £y with a nonempty stack ensures a later arrival to £p. In a
subsequent arrival (not necessarily the next one), the top element of the stack will be removed and
the value of C will have been incremented by the number of nodes in the top element.

Example:

Consider again the program PR for printing successive prime numbers. Under the invariance
properties we expressed the claim that nothing but primes is printed

(1) & [(atfy O prime(y1)).

Now we can state that the proper sequence of primes is produced. The property that every prime
number is printed can be expressed by

(2) E [atly A y1 =2 A prime(u)] D Ofatly A yy = u).
49

o TTERRREEE

In conjunction with the invariance property (1), this statement guarantees that all printed
results are primes

2, 3, 5 7, 11, 13, 17, ...,

but they do not guarantece that some primes arc not printed more than once or out of sequence.
Tor example, the sequence of integers

satisfies the statements above.

We thus have to add an additional statement that will guarantee that the printed sequence is
exactly the desired one. We have to be careful in devising a solution: Note that the statement

[atly Ay = u] D Oatly Dy > u)

does not resolve the problem! Why?

The property that the primes are printed in order can be expressed by
(3) E atly Ayy =1u] D Oatly D yr > u).

This ensures monotonicity for any future visit to &;. 1

The following properiies are of interest mainly for concurrent programs having more than one
process.

c. Accessibility

Consider again a process that has a critical section C. In the previous discussion we have shown
how to state exclusion (or protection) for that section. A related and complementary property is
accessibility. That is, if a process wishes to enter its critical section it will eventually get there and
will not be indefinitely held up by the protection mechanism. Obviously a foolproof protection
mechanism is worthless if it does not eventually admit the process into its critical section.

Let £, be a location just before the critical section. The fact that the process is at £; indicates
an intention to enter the critical section. Let C be the set of locations in the critical section. The
property of accessibility can then be expressed by

E atly D OatC;

namely, whenever the program is at £, it will eventually get into C.

A correct construction of critical sections should ensure these two complementary properties:
protection (exclusiveness) and accessibility.

50

Ezample:

For the consumer-producer program CP, we wish to express the property that whenever
the producer is at £; it will eventually get to £3 and be able to deposit y; in the buffer. A
symmetric statement expresses accessibility for the consumer: whenever the consumer is at mq it
will eventually get to my. The conjunction of these two properties, expressing the accessibility

property of the program, is given by:

E [atll IR at23] A [atmo 20 atm2].

d. Liveness

A more general class of eventuality properties arises when we consider the notion that the
computation of any particular process must eventually progress. Here we do not necessarily restrict
ourselves to locations containing semaphore instructions.

Consider an arbitrary non-terminal location £ in some process P, i.e., £ 5% £, for that process.
If the computation of this process is to proceed we cannot remain blocked at € due to a failure
of the scheduler to schedule process /2. Assuming that our program contains self-loops only for
waiting purposes, such as in the loop instruction, progress in P is observable by sceing I moving
from a state of atZ to a state of ~ aff. Consequently, the properly of liveness for a general location
£, £ #~ L., can be expressed by:

E atl D O~ atd,

e, if we arrive at this location we will eventually move out. In fact we can simplify this formula
to

E O~ atd
which is equivalent to
B ~[at?,

meaning that we cannot gct blocked at the location £.

The property of liveness is also known as absencce of livelock or frcedom from individual star-
vation. A lvelock (or indiwiduel starvation) is defined as a situation in which some processes which
are nob in a terminal location cannot proceed even though the full program may still progress by
having somc otlher processes execute. Note that this is a stronger requirement than the absence of
a (generalized) deadlock. As long as at least one of the processes can proceed the program is not
deadlocked.

e. Responsiveness

A very important class of programs that are usually modeled as concurrent programs are
operating systems and real-time programs such as airline reservation systems and other online

51

data-base systems. These programs can conveniently be considered as continuous (cyclic) pro-
grams which are to run forever. A halt in these programs usually indicates an error condition.
Consequently these programs are not run for their end resuits but for the effects produced during
their endless operation. Thus the notions of total and partial correctness are meaningless and have
to be replaced by statements about the programs’ continuous behavior.

A property usually expected of such programs is responsiveness.

Ezample:

Consider a continuous program (granter) G modelling an operating system. Assume that it
serves a number of customer programs (requesters) Iy, ..., I by scheduling a shared resource
between them. The resource here can be a shared disk, main memory, etc. Let the customer
programs communicate with the operating system concerning the resource via a set of boolean
variables {r,, q,}, for : = 1, ..., t. Here, r; is set to true by the customer program f?; to signal a
request for the resource; g; is set to true by G signalling to 12, that it has been granted (allocated)
the resource. After using the resource, the customer R, releases the resource back to the system
G by sctting r; to false. This release is then acknowledged by the system G by setting g; to false.

To summarize:

R, signals a request = r; := true
G allocates a resource = g, 1= frue
12, releases the resource = 7, := false

G acknowledges the release = g, := false.

The statement that the operating system fairly responds to the customer requests — respon-
siveness ~ is given by:

a,: 1030,

i.e., whenever 7, becomes true, eventually g, will turn true. Note that this statement does not
stipulate that 7, becomes true when G is at a particular location. Consequently it can cxpress
events such as interrupts or unsolicited signals which may occur at any arbitrary moment.

Similarly we have to ensure that the system acknowledges the release of the resource by turning
¢; to false:

b.,; : ~7r, D <>~g1-.

Furthermore, the system cannot hope to operate successfully if it does not enjoy the cooperation
of the customer programs. For example, the system cannot promise Ry an eventual grant of the
resource if 2, who currently holds the resource, does not ever intend to release it. Consequently
we will expect the 2,’s to satisly some proper behavior requirements, namely for each 1:

i g DO ~r;.
52

This statement ensures that when the resource is granted to R, it will eventually be released.

To these statements we will usually add some invariance statements ensuring the correct
continuous behavior of G. One such statement is

|
:
!.
E
g
3
3
!
:
i
|
]

d: D(Et:g,'gl)

1=1

g’ meaning that at any particular time the system grants the resource to at most one requester. This
: is a type of a mutual exclusion.

Denote the correct behavior statement of G by

The problem of proving the correct behavior of G can be approached in two different ways:

: e Consider a concurrent program P that consists of G alone. The 7;'s and g;’s are then
; considered as input/output variables, where the 7,’s are supposed to be sct by the external
agents F2q, ..., Fs.

For this program we would prove:
E Op > 0Ovy.

That is, provided the external communication ¢ continuously bchaves properly we can
promise the correct behavior 9 of G.

e As another alternative consider the concurrent program P that cousists of G running together
with Ry, ..., Ry, te.

P = (7,9) := (false, ..., false); [G||Ri]|...||Re].

For each IR, here we substitute a simplified model that guarantees to maintain O¢;. Such
a model can be represented as:

£y : ezecute

2y : r; = true

£y : wait until g;

23 . compute {use resource}
£y: 1, := false

£y : wait until ~g;

53

R ey

Zs . go to Zo

-— Customer Program R; —

If we believe that our model for R, faithfully represents the real F; as far as communication
with G is concerned, we can proceed to prove

E O(p A)

to ensure the correct behavior of P.

Thus the two modelling alternatives available to us are the following: either considering G
alone communicating with the external world via the r;, g, variables, or considering a combined
system of G together with Ry, ..., F;. In the first case the proper behavior of the external world
has to be promised through a continuous maintainance of . In the second case the proper behavior
of the I?;’s is proven at the same time as the proper behavior of G.

The same analysis can of course be conducted for other situations where a program communi-
cates with external devices and is expected to respond properly to incoming signals. §

The application of the temporal formalism to the problems of responsiveness points out its
power. Invariances and total correctness are long-known properties and many special formal
systems and methodologies have been proposed and successfully implemented for their analysis and
proofs. The temporal logic contribution to this problem is a uniform treatment and an explicit
direct expressibility. In contrast, the discussion of responsiveness is relatively recent; no prior
formalism addressed itself to the description and proof of these properties.

PRECEDENCE (UNTIL) PROPERTIES

The third class of properties to be considered are those properties which are expressible using
the until operator.

In their simplest form they will be expressed by statements of the type:
E w; u wa.

This statement says that in all proper computations of P there will be a future instance in which
we holds and such that w; will hold until that instance. Recall that the formal meaning of the
until operator was given by

w2|g(k) = frue and

for all 4,0 < § < k, wy|®

wy U w2|g = true iff for some k > 0,
(=
o

)y = true.

Note that we require 1 < k and not 7 < k. Thus, the formula w{ U wy expresses the ezclusive form
of the until operator since w; is required to hold until the instant that wy becomes true but not
including that instant. The corresponding inclusive until property that requires w; to be true up
to and including the instant in which wy becomes true can be expressed by the formula

wy U (wy A wa).

54

The until operator is also very useful in expressing precedence relations between events. We
define the derived precede operator P by:

Wy P Wwa is ~((~w1) U ’(1)2).

This makes P the dual of { in a similar way to O being the dual of &. The statement wy P w,,
read w; precedes wq, states that if w, ever happens it will not happen until w; happens first. This
is equivalent to stating that the first instance of w; (observed from the present) strictly precedes
the first instance of wy. The formal meaning of the precede operator can be given by

o
if = {rue
w1szl8‘ = true 1iff forevery k > 0, ! w2|o’(k) . | .
then for some ¢, 0 < ¢ < k, wl‘g(i) — true.

Note that we have again 7 < k and not 1 < k. Thus, the precedes operator P is again an ezclusive
operator, expressing strict precedence between w; and wj.

If we wish to express inclusive precedence, allowing the first instances of w; and w3 to coincide,
we may use

wy P (~w1 A ’wz).

To show that this indeed expresses inclusive precedence, we may substitute ~wq A wz for wy in
the definition above to obtain after some manipulation:

for every k > 0,
. o
if w2|a(k) = true

a . .
wy P (~wi Awa)l) = true if andonlyif |y @
o

(¢4

or for some 7, 0 < ¢ < k, wllo(i

)y = true

showing that the first instance of wy either coincides with an instance of wy or is preceded by such
an instance. '

While w; U w, implies that w, is bound to happen, this is not guaranteed by w; P wsy. In fact,
if wy never happens then w; P wy holds for every wy.

Several obvious properties of the precedes operator may be derived from corresponding properties
of the U operator and the definition of P. Among them are:

1. ¥ wPw = O~w

2. F wiPwy A wePwz D wi P ws

3. F wiPwy = ~wyAlwgVO(wr P ws)
4. F O~wy D wy Pw,

5. F wyPwy V wePwy V Owy Aws)
6. £ wy Pwy V wy P (~wz2Aw)

7. B wylwy = ~(~wy P wy).

55

Dt Gl ka2

S LTS

Statement 1 says that w may precede itself iff it never happens, since no event can come before
the first occurrence of that event.

Statement 2 indicates the transitivity of the precedence relation. It says that if w; precedes
wq which precedes wj then w; precedes ws.

Statement 3 gives an inductive characterization of the P operator. It says that w; precedes
wy iff wy is presently false and either w, is true now or w; precedes wy when observed from the
next instant.

Statement 4 says that if w, never happens then obviously w; precedes wy, for every w;.

Statements 5 and 6, each characterizes the linearity of time. Statement 5 says that for every
two events w; and w,, either w, precedes wy or wy precedes wy or both occur at the same time.
Statement 6 says that for every two events w; and wa, either wy strictly precedes wy or w, weakly
precedes wy.

Statement 7 shows that the U operator itself is expressible by the P operator.

We will consider formulas involving the P operator as belonging to the class of until properties.
We discuss below several subclasses of properties involving the {{ and P operalors.

a. Safe Liveness

We may interpret invariance properties as an assurance that nothing bad will happen, and
liveness propertics as a promise that something good will eventually happen. Consistent with this,
we may want to ascertain that nothing bad happens until something good happens. This is exactly
expressible by

B wy U we,

where wy is a safety property that we wish to maintain (e.g., clean behaviour and global assertions),
while wy is a liveness property that we want ultimately to achieve (e.g., termination and correct-
ness). It is reccommended that a full specification of a program should always be expressed as an
until expression E w; U wq, t.€., achieve we while maintaining wy.

In some cases the “until” notation is just a conveniently expressed combination of safety and
liveness propertics since:

E (Owi AOwsz) D wy U ws.

However the more interesting case is when w; holds up to but not including the instant in which
wy happens. Then it is no longer true that (Jw; is a program-valid statement.

The until operator can also be used to express “first-Ltime” properties. Recall that a formula
of form

E (atfA¢)D Olatt! A ¢')

expresses the some-time property: If the program is at £ and ¢ is true, then sometime (eventually)
the program must reach ¢/ with ¢’ being true. Similarly, a formula of form

E (atZA6) D [(~atl) U (atl A ¢')]
56

R

expresses the first-time property: If the program is at £ and ¢ is true, then sometime the program
must reach £, and on the first visit, ¢’ will be true.

Ezample:

The safety and liveness properties for the binomial coefficient program BC can be stated as:

E (0<k<n) D
{{(atma > (y270) A (ys modys =0))
An—k <y <n) A (0<y2 <Kk)
U
[atle A atme Ays = (})] }.

That is, achieve termination and correct result while maintaining clean behavior and global in-
variances. |l

b. Absence of Unsolicited Response

Let w; O O wy be a statement of responsiveness which guarantees that to every situation in
which w; is true the program responds by making ws true. We often wish to complement this
statement by requiring that on the other hand, wy will never happen unless preceded by wy, i.e. the
program does not respond unless explicitly requested. This of course is expressible as:

E wleg,

meaning that there is always a w; preceding every ws.

There is however a problem associated with the interpretation of the formal statement above
as expressing our intuitive requirement. Assume a situation in which w; occurs at ¢; and w; indeed
follows at t2, to > t;, and neither w; nor wy is true between t; and fy. If we try to test the
statement: “w; precedes wp” at any t3, ¢; < tz < t2, it will turn out to be false, since the first
event following t3 is wy rather than w;. Thus we have to be careful to restrict our statement to
only such reference points from which the precedence relation can be safely observed.

Thus a more careful description of the no-request-no-response statement is:
E (atZo Dwy P ’LU2) A [(w2 A ON’LUQ) D O(w1 P U)2)]

This selects as good reference points from which the precedence of wy to wy may be observed either
the starting point of the computation, or an instant in which ws is true and is changing to false in
the next instant. In the later case w; P ws begins to hold only in the next instant.

In most practical cases we have additional information about the behavior of w; and wy that
helps us formulate the requirements in simpler terms. Thus if we knew that once w; was raised
and not yet answered by a wy it stays true until answered, the above problem would not have risen.
Instead we could use the simpler

E (atZ()VN'wl) 2 wle2.
57

Ezample:

Let us reconsider the example of the operating system model: an allocator (granter) G that
allocates a resource between customers (requesters) Ry, ..., R,. Customer R; signals its requests
by setting 7, to true. The allocator G eventually responds by setting g, to true. The customer
eventually releases the resource by setting r, to false which the allocator acknowledges by setting
g; to false.

This simple communication protocol between a particular customer R; and the allocator can
be specified by the following four invariants:

1. E (T,‘ A Ngi) D O

This says that if »; is true and g, is false, meaning that R, is requesting the resource but has not
yet been granted its request, R; should persist in its request by leaving r; on for the next instant.
Note that we exclude instantancous response by using the current values of 7, and g, to determine
the nezxt value of r;.

2. E (. Ag)D Ougy.

This states that if the resource has been granted to F,, then the allocator is not allowed to withdraw
its grant until the resource is released by R;, by setting r; to false.

3. E (NT,' A gz) D O ~ry.

This states Lhat if the allocator has not yet acknowledged the release of the resource by R;, then
R, may not issue a new request.

4, E (~7iA~g)D O~y

This states that if the resource is not currently allocated to I, nor is 2; requesting it, the allocator
should not grant the resource to a process which is not requesting it. This is exactly our requirement
of no unsolicited responses for this case.

These four demands with the additional responsiveness requirement

5. E r,D2Cg
6. E gD O~ry

7. E ~r; DO ~g;

ensure the correct and proper behavior of the system.

The four statements 1-4 above characterize the behavior of the program by immediate transi-
tion rules. Since it is not always obvious what are the global consequences of such local constraints,
we would prefer to specify them in a more global style. Such specifications can be given by:

(a) E ri D[lU(g: Am)]
(b) kB @D [9U(~riAgl
58

ST TR T

() B ~mD[~ril(~gA~r)
(d) E ~g D(r:Pg)
which replace 1-T.

Statement (a) says that if 7, is true it will remain true until g; is granted. Statement (b) says
that if the resource is granted it will remain granted until released. Statement (c) says that if the
resource has been released it will = be requested again until the release has been acknowledged.
Statement (d) says that if g, is noi urrently allocated, its next allocation must be preceded by a
request. 1

c. Fair Responsiveness

" In many situations we have the precedence of two events ¥; and ¥y, t.e., ¥, precedes 1, only
when two earlier events ¢; and ¢, occurred in the same order, t.e. ¢; precedes ¢3. We will refer
to such situations as conditional precedence. It is expressible by the statement:

E (¢1 P #2) D (¥1 P ¢a).
This says that if ¢; (strictly) precedes ¢, then 1y will (strictly) precede 3.

Coupled with the implications
E ¢ D2<CY, and E by D O Yo

which ensure responsiveness, the conditional precedence sharpens our committment to fair respon-
siveness. That is, if we interpret E ¢; D Oy and E ¢ D Oz as describing a response
¥, to a request @,, then responsiveness says that every request will eventually be honored by a
response. The fair responsiveness establishes a first-come-first-serve discipline by ensuring that if
$1 preceded ¢, then the response to ¢;, namely v, will precede the response to ¢z, t.e. 1.

Ezample:

Let us consider again the problem of the granter (allocator) and his serviced customers (requesters).
We may impose a fairness requirement on his responsiveness obligations by insisting on a first-
come-first-serve policy. This would be expressed by:

E (ri Prj) D (g P gy)

This means that if customer R; placed his request before customer R; he will be serviced prior to
customer 2;. However, we again must be careful to state this only in “quiescent” reference points.
For example, if g; is currently true, while both r, = r; = false, a situation which may occur just
at the end of a granting period to F;, we certainly cannot promise that g; will precede g;.

A reasonable set of reference points is such instants in which g, is currently false. Thus the
conditional precedence statement restricted to these observation points is:

E (~g)2riPr)D(0:? g) 1
59

Ezample:

Consider a pair of processes where the critical sections Cy = {£2,£3} and Cy = {my, m3} are
mutually protected by semaphores:

y:=1
£y : execule mg : ezecute
2, ¢ request(y) my : request(y)
£y : compute ms: compute
by: release(y) my : release(y)
£4: goto {y myg: goto my
— P — — Py -

We discussed previously the statement of accessiblity for such a program; namely, that if Py
is waiting at ¢, it will be eventually admitted into Cy. This cnsures only the absence of infinite
overtaking, i.e., the possibility of P; waiting at £; forever while P, enters its own critical section
infinitely often. Yet, can we prevent overtaking altogether; i.e., can we prevent P, from overtaking
P, and entering Cy even though P reached ¢; before P, reached m;?

We may impose fair responsiveness on this situation by requiring that the first process to reach
its request instruction will be the first to be admitted into its critical section. We may attempt to

state this property by:
E [(atdy P atmy) D (atCy P atC)] A [(atmy P atly) D (atCy P atCy)|.

This states that if P; gets to £, before P, gets to my then Py will gain access to Cy before P, gets
to Cy, and similarly for the dual case in which P, gets to m before Py gets to £;.

However we again face the question of appropriate reference points. The statement would
certainly not be true if P, is currently at Cy. In the above example we may be aided by the location
variables in order to select appropriate reference points. One correct specification of fairness of the
semaphores in this case is:

B [(atly A at{mg, mo}) D (atly P atma)] A [(atmy A at{ls,£e}) D (atmz P atdy)].

This says that if we are at an instant in which Py is already at £; while [’ is both out of Cq and
has not yet arrived at my then Py will be admitted to its critical section first, and similarly for the
dual case. 1

One should not be confused by the double appearance of the notion of fairness, once when
discussing fair scheduling and fair ezecution sequences, and here when discussing fair responsiveness
as a program property. The concepts are very similar, but previously we assumed fairness as
a restriction on execution sequences, since we were interested only in fair execution sequences.
Here we consider (and later prove) fairness as a property of the program that gives rise to those
sequences. A badly designed program could fail to achieve fairness in responding even when each
of the executions we cxamine is fair as a computation, i.e., the scheduler may be doing its best
but the program failed to ensure correct (and timely) response to cach request.

60

Consequently, when we prove that a program has the fair responsiveness property for every
proper computation, we assume that the computation is scheduled fairly and prove that it responds
fairly.

Acknowledgement

We thankfully acknowledge the help extended to us by Yoni Malachi, Ben Moszkowski, Richard
Schwartz, Pierre Wolper, Frank Yellin, Rivi Zarhi, and the CS256 students (Spring 1981) at
Stanford University in reading the earlier drafts of the manuscript. Special thanks are due to
Connie Stanley and Evelyn Eldridge-Diaz for TEXing the infinitely often (C1 <) changing versions
of the manuscript.

61

REFERENCES

[BUR] Burstall, R.M., “Program proving as hand simulation with a little induction,” Proc.
IFIP Congress, Amsterdam, The Netherlands (1974), North Holland, pp- 308-312.

[DIJI] Dijkstra, E.W., ‘Cooperating processes,” in Programming Languages and Systems (F.
Genvys, cd.), Academic Press, New ‘York, NY (1968), pp. 43-112.

[D1J2] Dij kstra, E.ZW. “A constructive approach to the problem of program correctness,”
BIT 8 (1968), pp. 179-186.

[GPSS] Gabbay D., A. Pnueli, S. Shelah, and J. Stavi, “The temporal analysis of fairness,”
Proc. 7th POPL, Las Vegas, NV (January 1980), pp. 163-173.

[HC] Hughes, G.E. and M.J. Crcsswell, An Introduction to Modal Logic, Methuen & Co.,
London, 1968.

[KAM] Kamp, H.W., “Tense logic and the theory of linear order,” Ph.D. Thesis, University
of California, Los Angeles, 1968.

[KEL] Keller, R.M., “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July
1976), pp. 371-384.

[LAM1] Lamport, L., “Proving the correctness of multiprocess programs,” IEEE Transactions
on Software Engineering, Vol. SE-3, No. 7 (March 1977), pp. 125-143.

[MAN] Manna, Z., “Logics of programs,” Proc. IFIP Congress, Tokyo and Melbourne
(October 1980), North Holland, pp. 41-51.

[MP| Manna, Z. and A. Pnueli, “The modal logic of programs,” Proc. 6th International
Colloquium on Automata, Languages and Programming, Graz, Austria (July 1979). Lecture
Notes in Computer Science, Vol. 71, Springer Verlag, pp. 385-409.

[MW] Manna, Z. and R. Waldingcr, “Is ‘sometime’ sometimes better than ‘always’?: Intermit-
tent assertions in proving program correctness,” CACM, Vol. 21, No. 2 (February 1978),
pp. 159-172.

[OL] Owicki, S. and L. Lamport, “Proving liveness properties of concurrent programs,”
unpublished report (October 1980).

[PNU1] Pnueli, A., “The temporal logic of program,” Proc. 18th FOCS, Providence, RI
(November 1977), pp. 46-57.

[PNU2| Pnueli, A., “The tempora! semantics of concurrent programs,” Proc. Symposium
on Semantics of Concurrent Computations, Evian, France (July 1979), Lecture Notes in
-Computer Science,Vol. 70, Springer Verlag, pp. 1-20.

[PRI] -Prior, A., Past, Present and Future, Oxford University Press, 1967.

[RU] Rescher and Urquhart, Temporal Logic, Library of Exact Philosophy, Springer Verlag,
1971.

62

