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ALGORITHMS IN MODERN MATHEMATICS AND COMPUTER SCIENCE

by Donald E. Knuth

My purpose in this paper is to stimulate discussion about a philosophical
question that has been on my mind for a long time: What is the actual role of the
notion of an algorithm in mathematical sciences?

For many years I have been convinced that computer science is primarily the
study of algorithms. My colleagues don’t all agree with me, but it turns out that
the source of our disagreement is simply that my definition of algorithms is much
broader than theirs: I tend to think of algorithms as encompassing the whole
range of concepts dealing with well-defined processes, including the structure of
data that is being acted upon as well as the structure of the sequence of operations
being performed; some other people think of algorithms merely as miscellaneous
methods for the solution of particular problems, analogous to individual theorems
in mathematics.

In the U.S.A., the sorts of things my colleagues and I do is called Computer
Science, emphasizing the fact that algorithms are performed by machines. But
if I lived in Germany or France, the field [ work in would be called Informatik
or Informatique, emphasizing the stuff that algorithms work on more than the
processes themselves. In the Soviet Union, the same field is now known as either
Kibernetika (Cybernetics), emphasizing the control of a process, or Prikladnaia
Matematika (Applied Mathematics), emphasizing the utility of the subject and
its ties to mathematics in general. I suppose the name of our discipline isn’t of
vital importance, since we will go on doing what we are doing no matter what it
is called; after all, other disciplines like Mathematics and Chemistry are no longer
related very strongly to the etymology of their names. However, if I had a chance
to vote for the name of my own discipline, I would choose to call it Algorithmics.

The site of our symposium is especially well suited to philosophical discus-
sions such as I wish to incite, both because of its rich history and because of the
grand scale of its scenery. This is an ideal time for us to consider the long range
aspects of our work, the issues that we usually have no time to perceive in our
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hectic everyday lives at home. During the coming week we will have a perfect
opportunity to look backward in time to the roots of our subject, as well as to
look ahead and to contemplate what our work is all about.

I have wanted to make a pilgrimage to this place for many years, ever since
learning that the word “algorithm” was derived from the name of al-Khwariz-
mi, the great ninth-century scientist whose name means “from Khwarizm.” The
modern Spanish word guarismo (“‘digit”) also stems from his name. Khwarizm
was not simply a notable city (Khiva) as many Western authors have thought,
it was (and still is) a rather large district. In fact, the Aral Sea was at one time
known as Lake Khwarizm (see, for example, [17, Plates 9-21}). By the time
of the conversion of this region to Islam in the seventh century, a high culture
had developed, having for example its own script and its own calendar (cf. al-
Birani [21)).

Catalog cards prepared by the U.S. Library of Congress say that al-Khwa-
rizmi flourished between 813 and 846 a.o. It is amusing to take the average of
these two numbers, obtaining 829.5, almost exactly 1150 years ago. Therefore we
are here at an auspicious time, to celebrate an undesesquicentennial.

Comparatively little is known for sure about al-Khwarizmi’s life. His full
Arabic name is essentially a capsule biography: Abu Ja’far Muhammad ibn Miséa
al-Khwarizmi, meaning “Mohammed, father of Jafar, son of Moses, the Khwariz-
mian.” However, the name does not prove that he was born here, it might have
been his ancestors instead of himself, We do know that his scientific work was done
in Baghdad, as part of an academy of scientists called the “House of Wisdom,”
under Caliph al-Ma’'min. Al-Ma’m{in was a great patron of science who invited
many learned men to his court in order to collect and extend the wisdom of the
world. In this respect he was building on foundations laid by his predecessor, the
Caliph Hardn al-Rashid, who is familiar to us because of the Arabian Nights. The
historian al-Tabari added “al-Qutrubbulli” to al-Khwarizmi’s name, referring to
the Qutrubbull district near Baghdad. Personally I think it is most likely that al-
Khwarizmi was born in Khwarizm and lived most of his life in Qutrubbull after
being summoned to Baghdad by the Caliph, but the truth will probably never be
known.

The Charisma of al-Khwarizmi.

In any event it is clear that al-Khwarizmi’s work had an enormous influence
throughout the succeeding generations. According to the Fihrist, a sort of “Who’s
Who” and bibliography of 987 a.p., “during his lifetime and afterwards, people
were accustomed to rely upon his tables.” Several of the books he wrote have
apparently vanished, including a historical Book of Chronology and works on the
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sundial and the astrolabe. But he compiled a map of the world (still extant) giving
coordinates for cities, mountains, rivers, and coastlines; this was the most com-
plete and accurate map that had ever been made up to that time. He also wrote a
short treatise on the Jewish calendar, and compiled extensive astronomical tables
that were in wide use for several hundred years. (But nobody is perfect: Some
modern scholars feel that these tables were not as accurate as they could have
been.)

The most significant works of al-Khwarizmi were almost certainly his text-
books on algebra and arithmetic, which apparently were the first Arabic writings
to deal with such topics. His algebra book was especially famous; in fact, at least
three manuscripts of this work in the original Arabic are known to have survived
to the present day, while more than 99% of the books by other authors mentioned
in the Fihrist have been lost. Al-Khwarizmi’s Algebra was translated into Latin
at least twice during the twelfth century, and this is how Europeans learned about
the subject. In fact, our word ‘“‘algebra” stems from part of the Arabic title of
this book, Kitdb al-jabr wa’l-mugébala, “The Book of Aljabr and Almugébala.”
(Historians disagree on the proper translation of this title. My personal opinion,
based on a reading of the work and on the early Latin translation restaurationis
et oppositionis [3,p.2], together with the fact that mugédbala signifies some sort
of standing face-to-face, is that it would be best to call al-Khwarizmi’s algebra
“The Book of Restoring and Equating.*)

We can get some idea of the reasons for al-Khwarizmi’s success by looking
at his Algebra in more detail. The purpose of the book was not to summarize
all knowledge of the subject, but rather to give the “easiest and most useful”
elements, the kinds of mathematics most often needed. He discovered that the
complicated geometric tricks previously used in Babylonian and Greek mathe-
matics could be replaced by simpler and more systematic methods that rely on
algebraic manipulations alone. Thus the subject became accessible to a much
wider audience. He explained how to reduce all nontrivial quadratic equations
to one of three forms that we would express as 2+bz=c,z2=bz+ ¢
22+ ¢ = bz in modern notation, where b and ¢ are positive numbers; note that
he has gotten rid of the coefficient of z2 by dividing it out. If he had known about
negative numbers, he would have been delighted to go further and reduce these
three possibilities to a single case.

I mentioned that the Caliph wanted his scientists to put the existing scientific
knowledge of other lands into Arabic texts. Although no prior work is known to
have incorporated al-Khwarizmi’s elegant approach to quadratic equations, the
second part of his Algebra (which deals with questions of geometric measurements)
was almost entirely based on an interesting treatise called the Mishnat ha-Middot,
which Solomon Gandz has given good reason to believe was composed by a Jewish
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rabbi named Nehemiah about 150 a.». [4]. The differences between the Mishnat
and the Algebra help us to understand al-Khwarizmi’s methods. For example,
when the Hebrew text said that the circumference of a circle is 3% times the
diameter, al-Khwarizmi added that this is only a conventional approximation, not
a proved fact; he also mentioned V10 and §2832 as alternatives, the latter “used
by astronomers.” The Hebrew text merely stated the Pythagorean theorem, but
al-Khwarizmi appended a proof. Probably the most significant change occurred in
his treatment of the area of a general triangle: The Mishnat simply states Heron’s
formula \/s(s — a}(s — b)(s — c) where s = 4(a+ b+ c) is the semiperimeter,
but the A lgebra takes an entirely different tack. Al-Khwarizmi wanted to reduce
the number of basic operations, so he showed how to compute the area in general
from the simpler formula 1 (base X height), where the height could be computed
by simple algebra. Let the perpendicular to the largest side of the triangle from
the opposite corner strike the longest side at a distance z from its end; then
b2—z2 = ¢>—(a—z)?, hence b2 = ¢>—a?-}-2az and z = (a®2+4b%—c?)/(2a). The
height of the triangle can now be computed as Vb2 — z2; thus it isn’t necessary
to learn Heron’s trick.

Unless an earlier work turns up showing that al-Khwarizmi learned his ap-
proach to algebra from somebody else, these considerations show that we are
justified in calling him “the father of algebra.” In other words, we can add
the phrase ‘“abu-aljabr” to his name! The overall history of the subject can be

diagrammed roughly thus:

Sumeria - . America
Greece _ = . Europe /
Egypt al-Khwarizmi

India ~ Asia
‘China

(I have shown a dotted line from Sumeria to represent a plausible connection
between ancient traditions that might have reached Baghdad directly instead of
via Greece. Conservative scholars doubt this connection, but I think they are too
much influenced by old-fashioned attitudes to history in which Greek philosophers
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were regarded as the source of all scientific knowledge.) Of course, al-Khwariz-
mi never took the subject beyond quadratic equations in one variable, but he did
make the important leap away from geometry to abstract reckoning, and he made
the subject systematic and reasonably simple for practical use. (He was unaware
of Diophantus’s prior work on number theory, which was even more abstract and
removed from reality, therefore closer to modern algebra. It is difficult to rank
either al-Khwarizmi or Diophantus higher than the other, since they had such
different aims. The unique contribution of Greek scientists was their pursuit of
knowledge solely for its own sake.)

The original Arabic version of al-Khwarizmi ‘s small book on what he called
the Hindu art of reckoning seems to have vanished. Essentially all we have is
an incomplete 13th-century copy of what is a probably a 12th-century transla-
tion from Arabic into Latin; the original Arabic may well have been considerably
different. It is amusing to look at this Latin translation, because it is primarily
a document about how to calculate in Hindu numerals (the decimal system) but
it uses Roman numerals to express numbers! Perhaps al-Khwarizmi s original
treatise was similar in this respect, except that he would have used the alphabetic
notation for numbers adapted from earlier Greek and Hebrew sources to Arabic;
it is natural to expect that the first work on the subject would state problems and
their solutions in an old familiar notation. I suppose the new notation became
well known shortly after al-Khwarizmi’s book appeared, and that might be why
no copies of his original are left.

The Latin translation of al-Khwarizmi’s arithmetic has blank spaces where
most of the Hindu numerals were to be inserted; the scribe never got around
to this, but it is possible to make good guesses about how to fill in these gaps:
The portion of the manuscript that survives has never yet been translated from
Latin to English or any other Western language, although a Russian translation
appeared in 1964 [16]. Unfortunately both of the published transcriptions of the
Latin handwriting ([3],{27]) are highly inaccurate; see {18]. It would clearly be
desirable to have a proper edition of this work in English, so that more readers can
appreciate its contents. The algorithms given for decimal addition, subtraction,
multiplication, and division—if we may call them algorithms, since they omit
many details, even though they were written by al-Khwarizmi himself!--have
been studied by Tushkevich [9] and Rosenfel’d [16]. They are interesting because
they are comparatively unsuitable for pencil-and-paper calculation, requiring lots
of crossing-out or erasing; it seems clear that they are merely straightforward
adaptations of procedures that were used on an abacus of some sort, in India if not
in Persia. The development of methods more suitable for non-abacus calculations
seems to be due to al-Uqlidisi in Damascus about two centuries later [22].

Further details of al-Khwarizmi’s works appear in an excellent article by G.
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J. Toomer in the Dictionary of Scientific Biography [26]. This is surely the most
comprehensive summary of what is now known about Muhammad ibn Mis3, al-
though I was surprised to see no mention of the plausible hypothesis that local
traditions continued from Babylonian times to the Islamic era.

Before closing this historical introduction, I want to mention another remark-
able man from Khwarizm, namely, Abi Rayhdn Muhammad ibn Ahmad al-
Birdni (973-1048 a.p.) : philosopher, historian, traveler, geographer, linguist,
mathematician, encyclopedist, astronomer, poet, physicist, and computer scien-
tist, author of an estimated 150 books [12]. T have put “computer scientist” in this
list because of his interest in efficient calculation. For example, al-Birini showed
how to evaluate the sum 1 + 2 + .. . + 2% of the number of grains of wheat on a
chessboard if a single grain is placed on the first square, two on the second, twice
as many on the third, etc.: using a technique of divide and conquer, he proved that

the total is (((162)2)2)* — 1, and he gave the answer 18,446,744,073,709,551,615
in three systems of notation (decimal, sexagesimal, and a peculiar alphabetic-
Arabic). He also pointed out that this number amounts to approximately 2305
“mountains,” if one mountain equals 10000 wadis, one wadi is 1000 herds, one
herd is 10000 loads, one load is 8 bidar, and one bidar is 10000 units of wheat

(20; 21, pp. 132-136; 23].

Some Questions.

Will Durant has remarked that “scholars were as numerous as the pillars, in
thousands of mosques,” during that golden age of medieval science. Now here we
are, a group of scholars with a chance to be inspired by the same surroundings;
and I would like to raise several questions that I believe are important today.
What is the relation of algorithms to modern mathematics? Is there an essen-
tial difference between an algorithmic viewpoint and the traditional mathemati-
cal world-view? Do most mathematicians have an essentially different thinking
process from that of most computer scientists? Among members of university
mathematics departments, why do the logicians (and to a lesser extent the com-
binatorial mathematicians) tend to be much more interested in computer science
than their colleagues?

I raise these questions partly because of my own experiences as a student. [
began to study higher mathematics in 1957, the same year that I began to work
with digital computers, but I never mixed my mathematical thinking with my
computer-science thinking in nontrivial ways until 1961. In one building I was a
mathematician, in another I was a computer programer, and it was as if I had a
split personality. During 1961 I was excited by the idea that mathematics and
computer science might have some common ground, because BNF notation looked
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mathematical, so I bought a copy of Chomsky’s Syntactic Structures and set out
to find an algorithm to decide the ambiguity problem of context-free grammars
(not knowing that this had been proved impossible by Bar-Hillel, Perles, and
Shamir in 1960). I failed to solve that problem, although I found some useful
necessary and sufficient conditions for ambiguity, and I also derived a few other
results like the fact that context-free languages on one letter are regular. Here,
I thought, was a nice mathematical theory that I was able to develop with my
computer-science intuition; how curious! During the summer of 1962, I spent a
day or two analyzing the performance of hashing with linear probing, but this
did not really seem like a marriage between my computer science personality and
my mathematical personality since it was merely an application of combinatorial
mathematics to a problem that has relevance to programming.

I think it is generally agreed that mathematicians have somewhat different
thought processes from physicists, who have somewhat different thought processes
from chemists, who have somewhat different thought processes from biologists.
Similarly, the respective “mentalities” of lawyers, poets, playwrights, historians,
linguists, farmers, and so on, seem to be unique. Each of these groups can prob-
ably recognize that other types of people have a different approach to knowledge;
and it seems likely that a person gravitates to the particular kind of occupation
that corresponds to the mode of thought that he or she grew up with, whenever
a choice is possible. C. P. Snow wrote a famous book about “two cultures,”
scientific vs. humanistic, but in fact there seem to be many more than two.

Educators of computer science have repeatedly observed that only about 2
out of every 100 students enrolling in introductory programing courses really
“resonate” with the subject and seem to be natural-born computer scientists. (For
example, see Gruenberger [8].) Just last week I had some independent confirmation
of this, when I learned that 220 out of 11000 graduate students at the University of
Illinois are majoring in Computer Science. Since I believe that Computer Science
1s the study of algorithms, I conclude that roughly 2% of all people “think algo-
rithmically,” in the sense that they can rapidly reason about algorithmic processes.

While writing this paper, I learned about some recent statistical data gathered
by Gerrit DeYoung, a psychologist-interested-in-computer-science whom I met at
the University of Illinois. He had recently made an interesting experiment on
two groups of undergraduate students taking introductory courses in computer
science. Group I consisted of 135 students intending to major in computer science,
while Group II consisted of 35 social science majors. Both courses emphasized non-
numeric programming and various data and control structures, although numeri-
cal problems were treated too. DeYoung handed out a questionnaire that tested
each student’s so-called quantitative aptitude, a standard test that seems to cor-
relate with mathematical ability, and he also asked them to estimate their own
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performance in class, Afterwards he learned the grades that the students actually
did receive, so he had three pieces of data on each student:

A = quantitative aptitude;
B = student’s own perception of programming ability;
C == teacher’s perception of programming ability.

In both cases B correlated well with C (the coefficient was about .6), so we can
conclude that the teachers’ grading wasn’t random and that there is some validity
in these scores. The interesting thing was that there was no correlation between
A and B or between A and C among the computer science majors (Group I),
while there was a pronounced correlation of about .4 between the correspond-
ing numbers for the students of Group II. It isn’t clear how to interpret this
data, since many different hypotheses could account for such results; perhaps
psychologists know only how to measure the quantitative ability of people who
think like psychologists do! At any rate the lack of correlation between quantita-
tive ability and programming performance in the first group reminds me strongly
of the feelings I often have about differences between mathematical thinking and
computer-science thinking, so further study is indicated.

I believe that the real reason underlying the fact that Computer Science has
become a thriving discipline at essentially all of the world’s universities, although
it was totally unknown twenty years ago, is not tbat computers exist in quan-
tity; the real reason is that the algorithmic thinkers among the scientists of the
world never before had a home. We are brought together in Computer Science
departments because we find people who think like we do.

At least, that seems a viable hypothesis, which hasn’t been contradicted by
my observations during the last half dozen or so years since the possibility occurred
to me.

My goal, therefore, is to get a deeper understanding of these phenomena; the
“different modes of thought” hypothesis merely scratches the surface. Can we
come up with a fairly clear idea of just what algorithmic thinking is, and contrast
it with classical mathematical thinking?

At times when I try to come to grips with this question, I find myself almost
convinced that algorithmic thinking is really like mathematical thinking, only
it concentrates on more “difficult” things. But at other times I have just the
opposite impression, that somehow algorithms hit only the “simpler” kinds of
mathematics.. , . Clearly such an approach leads only to confusion and gets me
nowhere.

While pondering these things recently, I suddenly remembered the collec-
tion of expository works called Mathematics: Its Content, Methods, and Meaning
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[1], so I reread what A. D. Aleksandrov said in his excellent introductory essay.
Interestingly enough, I found that he makes prominent mention of al-Khwarizmi.
Aleksandrov lists the following characteristic features of mathematics:

 Abstractness, with many levels of abstraction.
o Precision and logical rigor.

o Quantitative relations.

« Broad range of applications.

Unfortunately, all four of these features seem to be characteristic also of computer
science; 1s there really no difference betwen computer science and mathematics?

A Plan.

I decided that I could make no further progress unless I took a stab at
analyzing the question “What is mathematics?*“-analyzing it in some depth.
The answer, of course, is that “Mathematics is what mathematicians do.” More
precisely, the appropriate question should probably be, “What is good mathe-
matics?” and the answer is that “Good mathematics is what good mathematicians
do.”

Therefore I took nine books off of my shelf, mostly books that I had used as
texts during my student days but also a few more for variety’s sake. I decided to
look at page 100 (i.e., a “random” page) in each book and to study the first result
on that page. This way I could get a sample of what good mathematicians do,
and I could attempt to understand the types of thinking that seem to be involved.

From the standpoint of computer science, the notion of “types of thinking” is
not so vague as it once was, since we can now imagine trying to make a computer
program discover the mathematics. What sorts of capabilities would we have to
put into such an artificially intelligent program, if it were to be able to come up
with the results on page 100 of the books I selected?

In order to make this experiment fair, I was careful to abide by the following
ground rules: (1) The books were all to be chosen first, before I studied any
particular one of them. (2) Page 100 was to be the page examined in each case,
since I had no a priori knowledge of what was on that page in any book. If
somehow page 100 turned out to be a bad choice, I wouldn’t try anything sneaky
like searching for another page number that would give results more in accord
with my prejudices. (3) I would not suppress any of the data; every book I had
chosen would appear in the final sample, so that I wouldn’t introduce any bias by
selecting a subset.



The results of this experiment opened up my eyes somewhat, so I would like
to share them with you. Here is a book-by-book summary of what I found.

Book 1: Thomas’s Calculus.

I looked first at the book that first introduced me to higher mathematics, the
calculus text by George B. Thomas [25] that T had used as a college freshman. On
page 100 he treats the following problem: What value of z minimizes the travel
time from (0, a)to(z,0) to (d, —b), if you must go at speed 8; from (0, a) to
(z, 0) and at speed 83 from (z, 0) to (d, —b)?

(0,4)

a 01

\ d-x

z

e b

(d, —b)

In other words, we want to minimize the function

f(z) =Va?+ z2/s; + \/b2 + (d —z)?/s,.
The solution is to differentiate f(z), obtaining

fl(z) = ——— d-x _sind; _ singy
812+ 22 s30/02 + (d — z)? $1 82

As z runs from O to d, the value of (sin 8;)/s; starts at zero and increases, while
the value of (sin 03)/s2 decreases to zero. Therefore the derivative starts nega-
tive and ends positive; there must be a point where it is zero, i.e., (sin 8;)/s;=
(sin 8;)/s2, and that’s where the minimum occurs. Thomas remarks that this is
“Snell’s Law” in optics; somehow light rays know how to minimize their travel
time.
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The mathematics involved here seems to be mostly a systematic procedure
for minimization, based on formula manipulation and the correspondence between
formulas and geometric figures, together with some reasoning about changes in
function values. Let’s keep this in mind as we look at the other examples, to see
how much the examples have in common.

Book 2: A Survey of Mathematics.

Returning to the survey volumes edited by Aleksandrov et al. {1}, we find
that page 100 is the chapter on Analysis by Lavrent’ev and Nikol’skil. It shows
how to deduce the derivative of the function log, z in a clever way:

. z/h
log,(z + h)— log, 2 _ 1 log, = Th_ Dlog, (1 + _13) .
h h z z z

The logarithm function is continuous, so we have

h/z z/h
1 h I ) h |

f— —— =—1 1 — =—1 . .
m zloga(1+ a:) . og, hlm (1+z) og, €

li
h—0 —0 z

since it has already been established that (1+ 4)"* approaches a constant called e
when n approaches infinity through integer or noninteger values. Here the reason-
ing involves formula manipulation and an understanding of limiting processes.

Book 3: Kelley’s General Topology.

The third book I chose was a standard topology text [10], where page 100
contains the following exercise: “Problem A. The image under a continuous map
of a connected space is connected.” No solution is given, but I imagine something
like the following was intended: First we recall the relevant definitions, that a
function f from topological space X to topological space Y is continuous when
the inverse image f—!(V)is open in X, for all open sets V in Y; a topological
space X is connected when it cannot be written as a union of two nonempty open
sets. Thus, let us try to prove that Y is connected, under the assumption that
f is continuous and X is connected, where j(X) = Y. If Y =ViU Va2, where
Vi and V, are disjoint and open, then X = f~}Vi)uU f~(V2), where f—(V3)
and f—(V3) are disjoint and open. It follows that f~}(V;) or f~}(V2) is empty,
say f~*(V1) is empty. Finally, therefore, V; is empty, since V; C f(f~ (V1))
Q.E.D.
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(Note that no properties of “open sets” were needed in this proof.)

The mathematical thinking involved here is somewhat different from what
we have seen before; it consists primarily of constructing chains of implications
from the hypotheses to the desired conclusions, using a repertoire of facts like
“f~HANB)=f"YA) N f~YB)”. This is analogous to constructing chains of
computer instructions that transform some input into some desired output, using
a repertoire of subroutines, although the topological facts have a more abstract
charater.

Another type of mathematical thinking is involved here, too, and we should
be careful not to forget it: Somebody had to define the concepts of continuity
and connectedness in some way that would lead to a rich theory having lots of
applications. This generalizes many special cases that had been proved before the
abstract pattern was perceived.

Book 4: From the 18th Century.

Another book on my list was Struik’s Source Book in Mathematics, which
quotes authors of famous papers written during the period 1200-1800 a.p. Page
100 is concerned with Euler’s attempt to prove the fundamental theorem of al-
gebra, in the course of which he derived the following auxiliary result: “Theorem 4.
Every quartic polynomial z* - Az3- Bz? + Cz + D with real coefficients can
be factored into two quadratics.”

Here’s how he did it. First he reduced the problem to the case A =0 by set-
ting £ = y — 1 A. Then he was left with the problem of solving (z%+ uz -+ a) X
(22 — uz -+ ) =z* + Bz?--Cz + D for u,a, and A, so he wanted to solve the
equations B =a-f —u?, C =(f — a)u, D =af. These equations lead to the
relations 28 = B+u?+4C/u,2a = B+u?—C/u, and (B+u?)?—C?/u? = 4D.
But the cubic polynomial (u?)® +4-2B(u?)? + (B% — 4D)u® — C? goes from —C?
to o0 as u? runs from O to oo, so it has a positive root, and the factorization
is complete.

(Euler went on to generalize, arguing that every equation of degree 2™ can
be-factored into two of degree 2"~ !, via an equation of odd degree %(231 ;) in u?
having a negative constant term. But this part of his derivation was not rigorous;
Lagrange and Gauss later pointed out a serious flaw.)

When I first looked at this example, it seemed to be more “algorithmic” than
the preceding ones, probably because Euler was essentially explaining how to take
a quartic polynomial as input and to produce two quadratic polynomials as out-
put. Input/output characteristics are significant aspects of algorithms, although
Euler’s actual construction is comparatively simple and direct so it doesn’t exhibit
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the complex control structure that algorithms usually have. The types of thinking
involved here seem to be (a) to reduce a general problem to a simpler special case
(by showing that A can be assumed zero, and by realizing that a sixth-degree
equation in u was really a third-degree equation in u2); (b) formula manipulation
to solve simultaneous equations for a, 8, and u; (c) generalization by recognizing
a pattern for the case of 4th degree equations that apparently would extend to
degrees 8, 16, etc.

Book 5: Abstract Algebra.

My next choice was another standard textbook, Commutative Algebra by
Zariski and Samuel [28). Their page 100 is concerned with the general structure of
arbitrary fields. Suppose k and K are fields with k C K; the transcendence de-
gree of K over k is defined to be the cardinal number of any “transcendence basis”
L of K over k, namely a set L such that all of its finite subsets are algebraically
independent over k and such that all elements of K are algebraic over k(L); i.e.,
they are roots of polynomial equations whose coefficients are in the smallest field
containing k U L. The exposition in the book has just found that this cardinal
number is a well-defined invariant of k and K, i.e., that all transcendence bases
of K over k have the same cardinality.

Now comes Theorem 26: If k. C K_C K, the transcendence degree of K
over k is the sum of the transcendence degrees of K over k and of K over K.
To prove the theorem, Zariski and Samuel let L be a transcendence basis of K
over k and L a transcendence basis of K over K ; the idea is to prove that LU L
is a transcendence basis of K over &, and the result follows since L and L are
disjoint.

The required proof is not difficult and it is worth studying in detail. Let
{z1,...,2Zm, X1,-..,X M} be a finite subset of L U L, where the x’s are in L and
the X’s in L, and assume that they satisfy some polynomial equation over k,
namely

> ales, .. emE1, .. Ep)zit.zipX B XPF =0 (%)

Cu---,cmZO
El,...,EMZO
where all the a(ey, .. ., em, E1,.. ., Ep) are in k and only finitely many a’s are

nonzero. This equation can be rewritten as

e em E Eym
Z ( Z a(el,...,em,El,...,EM)zl‘...zm)Xl‘...XM =0,
E,..EmM>0 e€1,..,em20
(+4)
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a polynomial in the X’s with coefficients in K, hence all of these coefficients are
zero by the algebraic independence over L over K. These coefficients in turn are
polynomials in the x’s with coefficients in &, so all the a’s must be zero. In other
words, any finite subset of L U L is algebraically independent.

Finally, all elements of K are algebraic over k(L) and all elements of K are
algebraic over K(L). It follows from the previously developed theory of algebraic
extensions that all elements of K are algebraic over k(L)(L), the smallest field
containing kU L U L. Hence L U L satisfies all the criteria of a transcendence
basis.

Note that the proof involves somewhat sophisticated “data structures,” i.e.,
representations of complex objects, in this case polynomials in many variables.
The key idea is a pun, the equivalence between the polynomial over k in (x) and
the polynomial over k(L) in (¥*). In fact, the structure theory of fields being
developed in this part of Zariski and Samuel’s book is essentially a theory about
data structures by which all elements of the field can be manipulated. Theorem 26
1s not as important as the construction of transcendence bases that appears in its
proof.

Another noteworthy aspect of this example is the way infinite sets are treated.
Finite concepts have been generalized to infinite ones by saying that all finite sub-
sets must have the property; this allows algorithmic constructions to be applied

to the subsets.

Book 6: Metamathematics.

I chose Kleene’s Introduction to Metamathematics [13] as a representative
book on logic. Page 100 talks about “disjunction elimination”: Suppose we are
given (1) —A VB and (2) A - C and (3) B}~ C. Then by a rule that has just
been proved, (2) and (3) yield

(4) AVBC.

From (1) and (4) we may now conclude “(5) = C”. Kleene points out that this is
the familiar idea of reasoning by cases. If either A or B is true, we can consider
case 1 that A is true (then C holds); or case 2 that B is true (and again C holds).
Hence C holds in any case.

The reasoning in this example is simple formula manipulation, together with
an understanding that familiar thought patterns are being generalized and made

formal.
I was hoping to hit a more inherently metamathematical argument here,

something like “anything that can be proved in system X can also be proved in
14



system Y ,” since such arguments are often essentially algorithms that convert
arbitrary X-proofs into Y-proofs. But page 100 was more elementary, this being
an introductory book.

Book 7: Knuth.

3s my own work [14] algorithmic? Well, page 100 isn’t especially so, since it
is part of the introduction to mathematical techniques that appear before I get
into the real computer science content. The problem discussed on that page is to
get the mean and standard deviation of the number of “heads” in n coin flips,
when each independent flip comes up “heads” with probability p and “tails” with
probability g =1 — p. I introduce the notation pnx for the probability that &
heads occur, and observe that

Prk = P Pr—lk—1 . q-pn_1k

To solve this recurrence, I introduce the generating function

Gn(2) - Zkzop""zk

and obtain G,(z) = (q+p2)Gr—1(2), G4(2) = g+pz. Hence G,(2) = (g+p2)",
and

mean(G,) = nmean(Gy) = pn; var(Gyn) = nvar(G;) = pgn.

Thus, the recurrence relation is set up by reasoning about probabilities; it is
solved by formula manipulation according to patterns that are discussed earlier
in the book. I like to think that I was being like al-Khwarizmi here-not using a
special trick for this particular problem, rather illustrating a general method.

Book 8: Pélya and Szegd.

The good old days of mathematics are represented by Pélya and Szego’s
famous Aufgabenund Lehrsatze, recently available in an English translation with
many new Aufgaben [19]. Page 100 contains a real challenge:

m nl1g2n cos ¢

. I - - dé = 2.
217 ,}l.fnoo —n |(2ne? —1).. . (2ne' —n)| T
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Fortunately the answer pages provide enough of aclue to reveal the proof that
they had in mind. We have |2ne'? — k|2 = 4n% + k% — 4nk cos 0 = (2n —k)? +
4nk(l — cosf) = (2n — k) + 8nk sin® 8/2. Replacing 8 by z/+/n allows us to

rewrite the integral as
| 92n o
ni2 f fn(z)dz
(2n—1)...n)yn'—

where f,p(z) = o for |z] > my/n, and otherwise

( \1/2

fn.(x) — 92n (cosz/v/mn— 1) H 1
1<k<n { + 8nk sin2 z

= exp (21n2)n(cos%——l)—l— Z %ln I

n 1<ksn 1+ sin
(2n ——k)z 2\/%}/

\
ank 4
:exp(——z ln2—|—0( )—I— Z ( n—nk z —+ (22)))
1<k<n

4
= exp(—z21n2 —(1 ——1112):1:2—1~O(1 —;z ))

Thus, fn(z) converges uniformly to e—2" in any bounded internal. Furthermore
|fn(z)] < 22n(cosz/VR—1) 3pq

2

T T zt

005\7_;;—‘1‘1- - G -5472,5
< (1o\E g < n/vE
="\2 24/)n or I3 = ’

since the cosine function is “enveloped” by its Maclaurin series; therefore | f(z)] is
. . 2 .
less than the integrable function e~¢* for all n, where ¢ = 1- x2/12. From this
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uniformly bounded convergence we are justified in taking limits past the integral
sign,

00 0o .
lim fo(z)dz =/ e % dz = /7.
n—00 v — 0o — 00

Finally, the coefficient in front of fiooo fn(2) dz is 22T 1n!2/\/n(2n)!, which is
2v/7(1+ 0(1/n)) by Stirling’s approximation, and the result follows.

This derivation gives some idea of how far mathematics had developed be-
tween the time of al-Khwarizmi and 1920. It involves formula manipulation
and an understanding of the asymptotic limiting behavior of functions, together
with the idea of inventing a suitable function f. that will make the interchange
liMp oo o fa(z)dz = [ (limpoo fn(z)) dz valid. The definition of fn(z)
requires a clear understanding of how functions like exp z and cos £ behave.

Book 9: Bishop’s Constructive Mathematics.

The last book I chose to sample turned out to be most interesting of all from
the standpoint of my quest; it was Errett Bishop’s Foundations of Constructive
Mathematics [2], a book that I had heard about but never before read. The inter-
esting thing about this book is that it reads essentially like ordinary mathematics,
yet it is entirely algorithmic in nature if you look between the lines.

Page 100 of Bishop’s book contains Corollary 3 to the Stone-Weirstrass
theorem developed on the preceding pages: Every uniformly continuous function
on a compact set X C R can be arbitrarily closely approximated on X by poly-
nomial functions over R. And here is his proof: “By Lemma 5, the function
z — |z — zo| can be arbitrarily closely approximated on X by polynomials. The
theorem then follows from Corollary 2.”

We might call this a compact proof! Before unwrapping it to explain what
Lemma 5 and Corollary 2 are, I want to stress that the proof is essentially an
algorithm; the algorithm takes any constructively given compact set X and con-
tinuous function j and tolerance ¢ as input, and it outputs a polynomial that ap-
proximates j to within € on all points of X. Furthermore the algorithm operates
on algorithms, since j is given by an algorithm of a certain type, and since real
numbers are essentially algorithms themselves.

I will try to put Bishop’s implicit algorithms into an explicit ALGOL-like
form, although the capabilities of today’s programming languages have to be
stretched considerably to reflect his constructions. First let’s consider Lemma 5,
which states that for each ¢ > O there exists a polynomial p: R = R such that
p(0) = 0 and ||z|— p(z)|< ¢ for all |z|<1. Bishop’s proof, which makes the
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lemma an algorithm, is essentially the following.

R polynomial procedure Lemma 5(real ¢);
begin integer N; R polynomial ¢,p;

N := suitable function of ¢;

gt =1 ’—215,;51\/(1{;2)(_‘1)%”;

p(t) := g(—t?) — g(1);

return p;

end.

Here N is computed large enough that |g(t) — (1 —t)*/?|<kefor 0 <t< 1.

The other missing component of the proof on page 100 is Corollary 2, which
states that if X is any compact metric space and if G is the set of all functions
z — p(z, xc), where zo € X and where p(z, y) denotes the metric distance from z
to y, then “A(G) is dense in C(X),” That is, all uniformly continuous real-valued
functions on X can be approximated to arbitrarily high accuracy by functions
obtained from the functions G by a finite number of operations of addition, mul-
tiplication, and multiplication by real numbers. As stated, Corollary 2 turns out
to be false in the case that X contains only one point, since G and A(G) then
consist only of the zero function. I noticed this oversight while trying to formulate
his proof in an explicitly algorithmic way, but the defect is easily remedied.

For our purposes it is best to reformulate Corollary 2 in the following way:
“Let X bc a compact metric space containing at least two points, and let G be
the set of all functions of the form z v cp(z, zo), where ¢ > 0 and zo € X. Then
G is a separating family over X .” T’ll repeat his definition of separating family in
a minute; first I want to mention his Theorem 7, the Stone-Weierstrass theorem
whose proof I shall not discuss in detail, namely the fact that A(G) is dense in
C(X) whenever G is a separating family of uniformly continuous functions over a
compact metric space X. In view of this theorem, my reformulation of Corollary 2
leads to the corollary as he stated it.

A separating family is a collection of real-valued functions G over X, together
with a function é from the positive reals R into R, and also together with
two selection algorithms o and 7. Algorithm o takes elements z,y of X and a
positive real number ¢ as input, where p(z,y) > ¢, and selects an element g of G
such that for all zin X we have

p(z,2) <6(e) implies 9(z)] <
ply, 2) < 6(e) implies [g(z) — 1| <e.
Algorithm 7 takes an element y of X and a positive real number € as input, and

selects an element g of G such that the second of the above implications holds,
for all 2 in X.
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Thus the reformulated Corollary 2 is an algorithm that takes a nontrivial
compact metric space X as input and yields a separating family (6,0, 7), where
o and 7 select functions of the form p(z, z¢). Here is the construction:

X-separating family procedure Corollary 2(compact metric space X;
X-element Yo, ¥1);
comment Yo and y; are distinct elements of X;
begin Rt — R function §;
X x X = R7T function d;
X X X X Rt - C(X) function o;
X x R+ — C(X) function 7;
X XX — R function d;
d(z,y) .= X.p(z,y); comment the distance function in X;
6(e) = min(fz» ed( yo, !/1)));
o(z,y, €) := (R procedure g(X-element z);
return d(z, z)/d(z, y));
7(y, €) := (R procedure g(X-element z);
return(if d(y, y1) < $d(yo, y1)

then d(yl Z)/d(y, yO)

else d(y, 2)/d(y, y1)))
return (6,0,71);
cud.

My notation for the complicated types involved in these algorithms is not
the best possible, but I hope it is reasonably comprehensible without further ex-
planation. The selection rule o determined by this algorithm has the desired
property since, for example, p(z,y) > ¢ and p(y, z) < 6(¢) < €2 implies that
Ig(Z) - 1| = IP(:C, Z) - p(x: y)l/p(xl y) S P(y, z)/p(:z:, y) S €.

Bishop’s proof of Corollary 3 can now be displayed more explicitly as an
algorithm in the following way. If X is a compact subset of R, under Bishop’s
definition, we can compute A4 = bound(X) such that X is contained in the closed
interval [—M, M]. Let us assume that his Theorem 7 is a procedure whose input
parameters consist of a compact metric space X, a separating family (6,0, 7) over
X that selects functions from some set G C C(X), and a uniformly continuous
function f: X — R, and a positive real number €. The output of this procedure
is an element A of A(G), namely a finite sum of terms of the form Coi(2). . . gm(z)
where m > 1 and each g; € G; this output satisfies |A(z) — f(z)| <e for all z
in X.
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Here is the fleshed-out form of Corollary 3:

R polynomial procedure Corollary 3(compact real set X;
X-continuous function f;
positive €);

begin R polynomial p,q,r; real M,B; X-element Yo, yi;

A(G)-element A, where G is the set of functions z + ¢|z — zo|;

M = bound(X),

Yo := element(X);

if trivial(X) then r(t) := f(yo)

else beginy; := element(X \ {yo});

A := Theorem 7(X, Corollary 2(X, ye, y1), [, ¥€);
B := suitable function of A, see below;
p(t) .= Lemma 5(¢/B);
q(t) :=2Mp(t/2M);
comment [|:c — zo| — q(z — xo)[ <¢/B for all z;
r(z) := substitute cq(z — zo) for each factor g,(z) = c|z — zo|
of each term of A;
comment B was chosen so that iq(x—zo)—lz——xollge/B
implies that |r(z) — A(z)|<i¢;
end;
rcturn r;
end.

Clearly it would be an extremely interesting project from the standpoint of high-
level programming language design to find an elegant notation in which Bishop’s
constructions are both readable and explicit.

Tentative Conclusions.

What insights do we get from these nine randomly selected examples of
mathematics? In the first place, they point out something that should have been
obvious to me from the start, that there is no such thing as “mathematical think-
ing” as a single concept; mathematicians use a variety of modes of thought, not
just one. My question about computer-science thinking as distinct from math
thinking therefore needs to be reformulated. Indeed, during my student days, I
not only would wear my CS hat when programming computers and my math hat
when taking courses, I also had other hats representing the modes of thought I
used when I was editing a student magazine or when I was acting as officer of
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a fraternity, etc. And al-Birini’s biography shows that he had more hats than
anybody else.

Thus, it seems better to think of a model in which people have a certain
numboer of different modes of thought, somcthing like genes in DNA. It is probable
that computer scientists and mathematicians overlap in the sense that they share
several modes of thought, yet there are other modes peculiar to one or the other.
Under this model, different areas of science would be characterized by different
“personality profiles.”

I tried to distill out different kinds of reasoning in the nine examples, and I
came up with nine categorics that I tentatively would diagram as follows. (Two
z’s means a strong use of some reasoning mode, while one z indicates a mild
connection.)

g
‘g & Q . =]
a3 2l |4 R
S @ S8BT o= = = .
[as} (=N o ~ - ) - &0 D oo E
5|l 9=2ic 9|5 o = Q. El = 5| 2
= o208 5la> ] . 3| B
S plo@d@lmra|lEl.2 R = = 4 g 5 =
=] 50|79 = A= g @ - O - o 5
s 8l 5=lSelSglfal § |22 L? B
o ) . —
L el RSeS|z a|lREl U (<2 22 <
I (Thomas) zz | zT | 22
2 (L avrent’ev) XX z zT
3 (Kclley) T zz | zT
4 (Euler) XX XX z Tz z
5 (Zariski) z z Tz z Tz zz
6 (Kleene) z zz | zZ z
7 (Knuth) XX z z
8 (Pdlya) XX XX XX Tz
9 (Bishop) XX XX XX z zz zz z
“Algorithmic
thinking” z XX XX Tz Iz XX

These nine categories aren’t precisely defined, and they may represent combina-
tions of more fundamental things; for example, both formula manipulation and
generalization involve the general idea of pattern recognition, spotting certain
kinds of order. Another fundamental distinction might be in the type of “visuali-
zation” needed, whether it be geometric or abstract or recursive, etc. Thus, I am
not at all certain of the categories, they are simply put forward as a basis for
discussion.
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I have added a tenth row to the table labeled ‘“algorithmic thinking,” trying
to make it represent my perception of the most typical thought processes used by
a computer scientist. Since computer science is such a young discipline, I don’t
know what books would be appropriate candidates from which to examine page
100; perhaps some of you can help me round out this study. It seems to me
that most of the modes of thought listed in the table are common in computer
science as well as in mathematics, with the notable exception of “reasoning about
infinity.” Infinite-dimensional spaces seem to be of little relevance for computer
scientists, although most other branches of mathematics have been extensively
applied in many ways.

Computer scientists will notice, I think, that one type of thinking is absent
from the examples we have studied, so this may be the thing that separates
mathematicians from computer scientists. The missing concept is related to the
“assignment operation” :=, which changes values of quantities. More precisely,
I would say the missing concept is the dynamic notion of the state of a process:
“How did I get here? What is true now? What should happen next if I'm going
to get to the end?” Changing states of affairs, or snapshots of a computation,
seem to be intimately related to algorithms and algorithmic thinking. Many of
the concepts of data structures, which are so fundamental in computer science,
depend very heavily on an ability to reason about the notion of process states, and
so do the studies of the interaction of processes that are acting simultaneously.

Our nine examples don’t have anything resembling “n :=n 417, except
for Euler’s discussion where he essentially begins by setting z :=z —1A. The
assignment operations in Bishop’s constructions aren’t really assignments, they
are simply definitions of quantities, and those definitions won’t be changed. This
discrepancy between classical mathematics and computer science is well illustrated
by the fact that Burks, Goldstine, and von Neumann did not actually have the
notion of assignment in their early notes on computer programming; they used a
curious in-between concept instead (see [15]).

The closest thing to “:=" in classical mathematics is the reduction of a
relatively hard problem to a simpler one, since the simpler problem replaces the
former one. Al-Khwarizmi did this when he divided both sides of a quadratic
equation by the coefficient of z2; so I shall conclude this lecture by once again
paying tribute to al-Khwarizmi, a remarkable pioneer in our discipline.
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Note on the spelling of Khwarizm: In the first and second editions of my book
[14] T spelled Muhammad ben Misa’s name “al-Khowarizmi,” following the con-
vention used in most American books up to about 1930 and perpetrated in many
other modern texts. Recently I learned that “al-Khuwarizmi” would be a more
proper transliteration of the Arabic letters, since the character in question cur-
rently has an ‘oo’ sound; the U.S. Library of Congress uses this convention. The
Moorish scholars who brought Arabic works to Spain in medieval times evidently
pronounced the letter as they would say a Latin ‘o’; and it is not clear to what
extent this particular vowel has changed its pronunciation in the East or the West,
or both, since those days. At any rate, from about 1935 until the present time,
the leading American scholars of oriental mathematics history have almost unan-
imously agreed on the form “al-Khwarizmi” (or its equivalent, “al-Khwarizmi”,
which is easier to type on conventional typewriters). They obviously know the
subject much better than I do, so I am happy to conform to their practice.
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