A HIERARCHICAL ASSOCIATIVE ARCHITECTURE
FOR THE PARALLEL EVALUATION OF
RELATIONAL ALGEBRAIC DATABASE PRIMITIVES

by

David Elliot Shaw

STAN-CS-79-778
October 19 7 9

DEPARTMENT OF COMPUTER SCIENCE
School of Humanities and Sciences
STANFORD UNIVERSITY

A Hierarchical Associative Architecture
for the Parallel Evaluation of
Relational Algebraic Database Primitives

David Elliot Shaw

Artificial Intelligence Laboratory
Stanford University

October 1979

Abstract

Algorithm6 are described and analyzed for the efficient evaluation of the primitive
operators of a relational algebra on a proposed non-von Neumann machine based
on a hierarchy of associative storage devices. This architecture permits an O(log n)
decrease in time complexity over the best known evaluation methods on a conven-
tional computer system, without the use of redundant storage, and using currently
available and potentially competitive technology. In many cases of practical im-
port, the proposed architecture may also permit a significant improvement (by
a factor roughly proportional to the capacity of the primary associative storage
device) over the performance of previously implemented or proposed database
machine architectures based on associative secondary storage devices.

‘Acknowledgements

The author gratefully acknowledges the substantial contributions of Bob Floyd,
Don Knuth, Juan Ludlow, Luis Trabb-Pardo, Terry Winograd, and in particular,
Gio Wiederhold, to the work reported in this paper.

This research was supported in part by the Advanced Research Projects Agency
of the Department of Defense under contract MDAS03-77-C-0322.

2.1
2.2

2.3
24

3.1
3.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

71
7.2
7.3

8.1
8.2

Contents

Introduction
The Relational Algebra
The unstructured set operation6
Project
Join
Other operation6
Relevant Previous Work
Associative processors
Database machines
The Proposed Architecture
Notation
Internal Evaluation
Projection
Equi-join
Select ion
Restriction
Union
Intersection
Set difference
External Evaluation
Selection and Restriction
Projection

Equi-join, union, intersection and set difference

Partitioning and Transfer
Domain histogram partitioning
Hash partitioning

Summary

References

1. Introduction

At the heart of the system which we are implementing as part of our thesis
research is a process of description-based retrieval in which all documents in a
collection which match a KRL-like description on the basis of information ex-
tracted from a domain-specific knowledge base. The limited size of the document
collection which will be used to develop and test our thesis system should make
the matching task computationally tractable within the context of our research
effort. It is precisely in the case of a very large and conceptually heterogeneous
collection of structured entities (in our application, documents), however, where
the argument6 for our conceptual description matching techniques are strongest.
If these techniques are to be seriously considered a6 promising tool6 for retrieval
problems of practical significance, we must thus carefully consider the effect of an
increase of several order6 of magnitude in the size of the target collection. The
retrieval strategy which is perhaps most obvious, in which the search description
i1s matched successively against each candidate description in the target collection
(which would ordinarily reside on secondary storage), carries penalties in efficiency
which, although probably manageable in the course of a research project, are likely
to be prohibitive in the context of application6 which might involve several million
target descriptions.

There are a number of possibilities for the efficient implementation on a very
large scale of the sort of description matching with which we are concerned. One
approach might involve the careful design of specially-tailored indexing and access
schemes in software for execution on a “conventional” computer system architec-
ture, at the cost of considerable software complexity and a somewhat inflexible
attention to the details of the particular descriptive scheme under consideration.
In this paper, however, we will consider certain alternative hardware architectures
as a basis for a very general and efficient approach to large-scale meaning-based
retrieval.

One of the most difficult issues which often seem6 to be encountered by the
designer6 of complex special-purpose hardware, particularly in the research en-
vironment, involve6 the tradeoff between considerations of efficiency and economy
for the initially conceived application, on the one hand, and issues of generality,
flexibility and mutability in the face of incompletely specified and evolutionarily
changing system requirements, on the other. In particular, any attempt to reduce
conceptual matching to a small set of primitive operation6 for which efficient
special-purpose hardware mechanisms seem appropriate necessarily involves care-
ful consideration of the degree to which a given design decision may complicate
the addition or modification of new descriptor types, matching criteria, and data

2

representation schemes, should such characteristics subsequently be changed on
the basis of early research results. In this paper, we have adopted a fairly con-
servative approach in this regard, foregoing the exploitation of certain special
properties of our descriptive formalism which might in fact have been used to
obtain further efficiencies if flexibility were not a concern, and providing in some
instances mechanisms which are somewhat more general than those which would
be strictly required for our immdediate implementation.

What has emerged is an architecture which, while quite different from that
of a traditional von Neumann computer system, nonetheless speaks to a fairly
wide class of problems outside the immediate province of conceptual matching. In
particular, we have described a computer system for the parallel evaluation of the
primitives of a relational algebra, a6 described by Codd [1971)—specifically, the
operators project, equi-join, select, restrict, union, intersect, and set difference.
The system architecture which we will describe is thus intended to be applicable
to a wide range of problems of considerable current practical concern in the field of
database management, and in particular, to the design of efficient systems based
on the relational model of data.

The proposed architecture is organized a6 a two-level hierarchy of associative
storage devices—the smaller and faster level of which will be called primary, and
the larger and slower, secondary. In the course of evaluating each relational primi-
tive, the entire database is associatively probed using logic associated with the
secondary storage device6 themselves. In the case of all but two of the operators,
selected segments of the relevant data are then transferred in succession from
secondary to primary associative storage for further processing. This paper will
outline the organization of the architecture we are proposing, and will describe and
analyze algorithm@ for evaluation of each of the relational algebraic primitives,
both in the case where the arguments can fit entirely within primary storage (which
we call internal evaluation), and where they reside on secondary storage (external
evaluation).

Section 2 of this paper review6 the essential element6 of a relational algebra.
In Section 3, we survey previous work on the design of associative processors and

- database machines to provide a context for the introduction of our architecture.
Section 4 provide6 a functional description of the central hardware components
involved in our design. The notation to be used in analyzing the performance of
our algorithms for evaluation of the primitive relational operator6 is introduced in
Section 5. The algorithm6 for internal evaluation are presented in Section 6, along
with an average-case analysis of their time complexity. The procedure6 for exter-
nal evaluation (most of which make use of the internal evaluation routines) are
described in Section 7. In Section 8, two alternative schemes are described for the
partitioning of the argument relations into appropriate segments and their transfer

3

into primary storage, a time-critical part of the process of external evaluation. The
latter of these two schemes, which would appear to be preferable when appropriate
hardware is available, is analyzed in some detail. Our results are summarized in
Section 9; the reader may wish to glance briefly at this section before proceeding

with the body of the paper.

2. The Relational Algebra

The relational model of data, as typically formulated by researchers in database
management systems, has its roots in two seminal papers by Codd [1970,1972].
In this context, the term relation is used to denote a set of structured entities
called tuples which, within a single relation, share a common attribute structure.
More formally, we may define a normalized relation of degree n as a set of tuples,
where each tuple is an element of the Cartesian product of n (not necessarily dis-
tinct) sets-called the underlying domains of the relation-of non-decomposable
entities. (In some practical database applications, it may be useful to allow the
appearance of “null values” in various attributes of certain tuples in the case where
certain information is not available; apart from brief mention of one complication
introduced by this convention, however, we will not be concerned in this paper
with the problems of null values.) Since relations are sets, we may refer to the
number of elements-in this case, tuples-in a relation as the cardinality of that
relation.

Intuitively, relations may be thought of as “tables”, in which each “row”
represents one tuple and each column represents one of the n (simple) attributes
of that relation, It is conventional to either name or number the attributes of a
relation for convenience in referring either to a whole “column” of the relation,
or to the value of the attribute in question within a particular tuple. In some
discussions (and in particular, in much of this paper), it is also useful to group
several attributes (some possibly repeated) together, referring to them jointly as a
compound attribute. The term normalized reflects the “type distinction” between
underlying domain elements, which may serve as the values of attributes, and
tuples and relations, which may not. (A single tuple thus can not be used to
directly represent a hierarchically nested data structure.)

The relational algebra which forms the central focus of this paper is based on
a small set of algebraic operators enumerated by Codd [1972] which take one or
more relations (along with certain “control” information) as arguments, returning
"a single new relation as their value. This set of primitives includes the ordinary set
operations—union, intersection and set difference--which, with one restriction,
are defined for relations in much the same way as for other sets, along with several
structuredoperators, which make reference to the internal attribute structure of the
constituent tuples. For completeness, the unstructured set operations are reviewed
in Section 2.1. The two fundamental structured operators, project and join, are
then introduced in Sections 2.2 and 2.3, respectively. Several other structured
operations which may in fact be derived from project, join and the unstructured
set operations, but which serve certain particularly important functions in many

5

practical applications of relational algebraic systems, are then discussed in Section
24.

2.1 The unstructured set operations

The three binary set operators union, intersection and set difference are defined
in a relational algebraic system in the same way as for sets in general, with one
exception: the relational version of each is defined only when the two relations
which serve as its operands are union-compatible. Two relations are said to be
union-compatible if and only if they are of the same degree n and the underlying
domains of the #-th simple attributes of the two relations are the same for all <,
(1I<a<n).

We thus define the union of two union-compatible relations& and Ry, denoted
(R1URy), as a relation consisting of exactly those tuples which are an element of
Ry, of Ry, or both. The intersection (R1 NRy) is defined as that relation containing
all tuples found in both R; and Rj. Finally, the set difference (R; — Ry) is defined
to consist of exactly those tuples of R; which are not present in Fj.

2.2 Project

In preparation for our definition of the projection operator, we first introduce
some additional notation. First, we adopt the convention that a list of primitive
domain elements enclosed by angle brackets (“(" and *)") will designate a new
tuple containing the specified elements as the values of its simple attributes, in
the order listed. Futhermore, if r is a tuple of some n-ary relation R, we will
define r[j] to be the value of the j-th attribute of r, (L<j < n). It will be
convenient to extend this notation to allow expressions such as r[A], where A is
a compound attribute of R consisting of the m (not necessarily distinct) simple
attributes numbered ji, fa, . . ., Jm, defined such that (r[A]) represents the new tuple
(r[jl]; T[jg], e] T[jm]>.

We may now define the projection of a relation R over the compound attribute
A as_the set

{{r[A]):reR} .

Note that we have defined the projection operator in such a way that simple at-
tributes within the compound attribute A may be replicated in the course of projec-
tion. Depending on certain details in the definition of the join operation (Section
2.3), this convention may have important theoretical consequences affecting the
expressive power of the resulting algebra.

The projection operator may be thought of as a sort of “vertical subsetting”
operation, in which

1. the “non-projected” attributes of each tuple in the argument relation are
eliminated,

2. the remaining attributes may be permuted and/or replicated, and

3. any duplicate tuples which result from the elimination of values which formerly
distinguished different tuples are then removed,

In most implementations on a von Neumann machine, the first two functions
can be implemented using a simple and computationally inexpensive procedure
whose complexity is linear in the cardinality of the argument relation. The elimina-
tion of redundant tuples, on the other hand, may be surprisingly time-consuming,
particularly when the argument relation is large. In fact, one common convention
in some von Neumann implementations is to relax the requirement that relations
be true sets, allowing the introduction of duplication during some or all projections.
This approach introduces the following problems, however:

1. the maintenance of duplicate tuples may lead to combinatorially explosive
growth in the cardinality of the intermediate results of a complex query, and

2. functions sensitive to the repetition of identical tuples-the calculation of
numerical counts and statistical measures, for example-will not yield accurate
results if redundant tuples are not first eliminated.

One of the goals of the architectures discussed in this paper is the implemen-
tation of true projection without the high cost of redundant tuple elimination.

2.3 Join

Definition of the join operation requires the definition of one additional construct:
the concatenation of two tuples. If rj is a tuple of a relation Ry, having degree n;,
and r is a tuple of relation Ry, having degree ng, the concatenation (ri|rz) of r;
and ry is defined to be the new (n; + ng)-tuple

(ri(1],m(2], ..., ri[nd), 2(1], 2[2], . . ., e[m2))

Several variations of the join operator are commonly discussed in the litera-
ture; we will begin by defining a particularly important variant known as the equi-
join. The equi-join of two relations Ry and Rz over the compound attributes Aj
and Ag, respectively (each assumed to be composed of the same number of simple
attributes, with corresponding simple attributes having underlying domains which
are comparable under the equality predicate) is defined as

{(n|r2):meRy A el A ni[A)] = niAg]} .
7

Aj and Ay are referred to as the (compound) join attributes. and will have special
significance in the architectures introduced in this paper. In the case where A; and
Aj are the degenerate compound attributes containing no simple attributes, equi-
join reduces to the extended Cartesian product of the tuples of R; and Ro—that
is, to the set of all possible concatenations of one tuple from R; with one from
Rjy. The more general join operation may be intuitively thought of as a process
of filtering the extended Cartesian product of Rj and Rz by removing from the
result all conjoined tuples whose respective join attributes have different values.
(The computational method suggested by this interpretation, of course, would in
general be impractically inefficient.)

It should be acknowledged that our definition of the equi-join operator leaves
unanswered certain questions which, although not immediately relevant to the
concerns of this paper, are commonly encountered in practical database applica-
tions. One such problem arises in the case where null values are allowed to appear
in the join attributes, since it is generally not appropriate to treat two tuples as
matching in the case where their join attributes are both null. Consideration of
the various approaches which have been advanced for the accomodation of this
case will not fall within the scope of this paper, however.

The join operation is in general extremely expensive on a conventional von
Neumann machine, since the tuples of Rj and Ry must be paired for equality
with respect to the join attributes before the extended Cartesian product of each
group of “matching” tuples can be computed. In the absence of physical clustering
with respect to the join attributes (whose identity may vary in different joins
over the same pair of relations), or the use of various techniques requiring a large
amount of redundant storage, joining is typically accomplished most efficiently on
a von Neumann machine by pre-sorting the two argument relations with respect
to the join fields. The order of the tuples following the sort is actually gratuitous
information from the viewpoint of the join operation. From a strictly formal
perspective, the requirements of a join-that the tuples be paired in such a way
that the values of the join attribute match-are significantly weaker than those
of a sort, which requires that the resulting set be sequenced according to the those
values. The distinction i1s moot in the case of a von Neumann machine, where no
better general solution to this pairing problem than sorting is presently known.
One of the design goals of the architecture described in this paper, however, is to
make use of the weaker constraints involved in the definition of the join operation
to obviate the need for either pre-sorting or the extravagant use of redundant
storage.

One common variant of the equi-join operator is the natural join, in which
one of the two join attributes, which are redundantly represented in the result
relation in the case of equi-join, is eliminated (as if by projection). Our architecture

8

supports the natural join with a simple modification of the internal equi-join algo-
rithm described in Section 6.2. A more general form of join often discussed in the
literature is the #-join, whose definition is similar to that of the equi-join, but with
the equality predicate replaced by a more general binary predicate 8. (In Codd’s
definition, 6 is defined to be one of the arithmetic operations =, 3, <, <, >
or 2.) Consideration6 for the efficient evaluation of the general 8-join operator
differ in several respects from those involved in evaluating the equi-join. We will
not discuss this more general case in the present paper.

2.4 Other operations

Each of the relational algebraic operator6 described in this section can in fact be
derived from the structured operators project and join and the three unstructured
set operators, and are defined here for one or both of the following reasons:

1) The operator embodies a special case of one or more of the previously defined
primitives which might admit the possibility of either a less complex, or a more
efficient, hardware implementation

2) The operator represents an important and frequently encountered use of some
composition of the primitives defined earlier

One derived operation which occurs frequently in both practical and theoreti-
cal discussions, and which has a special role in most of the hardware designs
which we will discuss, is called selection. Most algorithms and architectures for
“associative retrieval” are based closely on what is essentially a process of relational
selection. The select operator also plays an important role in the architectures
we propose in this paper, although unlike most associative processor designs, our
architecture explicitly addresses the problems of efficiently imnlementing other
relational operators as well. The select operator returns a suuset of its single
argument relation consisting of all tuples which satisfy a list of attribute/value
pairs. The select operator may thus be regarded as a natural join of the argument

relation with a singleton relation (a relation consisting of exactly one explicitly
specified tuple) over all attributes of the singleton. More precisely, the result of a
selection from relation R with compound attribute A and value tuple V is

{rreRar[Al=V} |

where the corresponding A and V domain6 are again assumed to be compatible

with respect to equality.
Another important derived operation is known as restriction. While restric-

tion, like the join operator, is sometimes defined in terms of a general 8, we will

9

again be concerned only with the case where @ is the binary equality predicate.
The restriction of a relation R over the compound attributes A; and Az (both
composed of simple attributes of R) is defined as

{r:reR A r[A)) =r[A2))}

In its most common form, where the compound attributes A; and Az are each
composed of exactly one simple attribute, the restriction operator returns all tuples
of its argument relation in which the values of the two specified attributes are
equal. Although restriction can be defined solely in terms of the join and project
operators, an implementation based in a straightforward way on this derivation
would be considerably more complex and inefficient than one specifically tailored
to support the restrict operator. Restriction is an important enough operation in
practice that we have treated the capacity for direct (and efficient) evaluation of
restrictive expressions as a significant design objective.

Finally, we must acknowledge a derived operation which has considerable
theoretical and practical importance in many applications, but to which we have
devoted little special attention in our evaluation of alternative architectures. This
operation, called division, is used to achieve the effects of universal quantification
‘within the queries of a language based on the relational calculus (Codd [1972])
and may well be worthy of special attention in course of designing a generally-
applicable relational database machine. Since it is not clear at this point that the
design of our thesis system will require that this sort of operation be implemented
efficiently in its full generality, however, the relational division operator will not be
given the same sort of special consideration in this paper as the other two derived

operators described above.

10

3. Relevant Previous Work

In this section, we will briefly survey certain areas in the literature of com-
puter architecture which have central relevance to our own investigations. Because
the great majority of the recent work on specialized architectures for database
management applications-our own included-has drawn heavily on earlier work
involving the design of content-addressable memories and associative processors,
we will begin our review, in Section 3.1, with a rough taxonomy and description
of the most important classes of associative processing devices. In Section 3.2,
we will consider several of the best known proposals for, and actual prototype im-
plementations of, what might be called true database machines: systems oriented
toward fairly specific functions deemed relevant to actual database management
applications.

3.1 Associative processors

At the risk of oversimplification, it is probably safe to say that virtually all ex-
isting and proposed database machine architectures have drawn their power from
the utilization of a high degree of some variety of hardware parallelism at some
level within the system. The different techniques for achieving such parallel com-
putation are often distinguished according to a classification scheme suggested by
Flynn [1972], which characterized the conventional sequential processor as a Single
Instruction Stream Single Data Stream (SISD) machine, as contrasted with the
most common mechanisms for parallel computation, among which he distinguished
three different organizations:

1. Multiple Instruction Stream Single Data Stream (MISD) machines, typified by
the pipeline processing approach.

2. Single Instruction Stream Multiple Data Stream (SIMD) machines, in which a
- single operation is performed in parallel by a number of independent processing
units at any given time,

3. Multiple Instruction Stream Multiple Data Stream (MIMD) machines, which
function as a number of independent, but communicating processors, each of which
is capable of maintaining its own instruction and data streams.

Alternative classificatory schemes for parallel machines have also been proposed
(eg., Murtha and Beadles [1964]). For a more thorough discussion of the taxonomy
of parallel processors in general, the reader is referred to Thurber and Wald [1975).

11

Within the class of SIMD machines, two important subclasses are typically
recognized. (Again, however, other classifications are possible; see, for example,
Higbie [1973).) Members of the first subclass, exemplified by such machines as
ILLIAC 1V, are known as array processors, in which the data are processed in
parallel using the conventional mechanism of coordinate addressing. The second
subclass consists of the associative processor& which access their data in a content
addressable manner. Although each of the varieties of parallel processing which
we have described above may ultimately play an important role within practical
database machines, our primary concern in this paper will be with the family of
associative processors.

In general, we will define an associative processor to be a machine which is able
to access selected items stored in memory in parallel on the basis of their contents.
We will also require that items be accessible by partial match, so that selected
elements of the “key” field can be “masked out” in the course of content-based
addressing. (In many associative processors, the match criteria may be specified
in using predicates c&her than equality-arithmetic comparison operators, for ex-
ample; we will not require this capability as part of our definition of an associative
processor, however.) While the parallel modification of content-selected responders
is supported directly by a hardware multiwrite capability, output from an associa-
tive processor in the case where there is more than one responder presents a more
complicated problem. A number of designs have been proposed and evaluated for
reading out a single responder in the event of a multiple match. Typically (though
not always) this responder is chosen arbitrarily on the basis of physical position
within the associative memory. Although much work has been done in the area
of multiple match resolution, we will not be concerned with such problems in this
paper.

While the distribution of intelligence among memory elements is central to
-the operation of all associative processors, the degree of that distribution-more
specifically, the number of storage elements associated with each comparison logic
unit— varies widely among the various classes of associative devices. In the
remainder of this section, we will review the major categories of associative proces-
sor architecture, distinguished by the extent of distribution of the processing logic.
A survey by Yau and Fung [1977] provides an outline of associative processor
architecture in somewhat more depth than will be possible here. The area is treated
even more thoroughly in an outstanding book by Foster [1976).

The greatest degree of distribution is found in the fully parallel associative
processors, in which comparison logic is associated with every bit of storage. The
fastest of these machines are the fully parallel word organized associative proces-
sors, whose hardware complexity, however, has resulted in their implementation
only experimentally, and on a very small scale.

12

A second class of fully parallel designs is represented by the distributed logic
associative processors. In the original distributed logic associative processor design
introduced by Lee [1962], one comparison logic unit is associated with each charac-
ter of storage. (In some variants, the comparison logic unit is instead associated
with a small, fixed-size set of adjacent characters.) In all of the distributed logic
associative processors based on Lee’s design, each cell is capable of storing a small
amount of “state” information in addition to the symbol data itself. The design
includes a control unit which communicates with all cells in parallel using a com-
mon databus. Each cell, however, is connected not only to this public bus, but also
to its immediate right and left neighbors, thus forming a rail along which control
and state information can be propagated.

With some simplification and disregard for detail, a string of data stored in
a contiguous set of character cells is retrieved as follows. Initially, the control
system “broadcasts” a special “word header” character which precedes all strings
stored in memory. Each matching header cell is then instructed to enable its
right neighbor-for comparison against the first character in the search string. All
matching first characters in turn enable their right neighbors for matching against
the next character, and so on until the search string is exhausted. The set of
matching strings is now easily identified, and may be modified or output. A num-
ber of variations on Lee’s original distributed logic design have been proposed
to deal efficiently with certain operations frequently required in the course of in-
formation retrieval, parallel arithmetic manipulations, etc. (eg., Lee and Paull
[1963]; Gaines and Lee [1965]; Crane and Cithens [1965]). The content addressing
mechanisms incorporated in PEPE, one of the first large-scale associative processor
implementations, may also be regarded as derivative of Lee’s design.

Among the numerous distributed logic designs which have been suggested,
the Tree Channel Processor architecture proposed by Lipovski [1969;1970] for
the construction of very large primary associative processors is worthy of special
mention. In Lipovski’s design, the cells are themselves capable not only of passive
comparison and simple propagation, but (in a particular mode of operation) of

the active execution of certain control functions. The cells are organized in a tree
" structure, with “adjacent” cells connected by two separate rails and a “locally”
common channel. In contrast to the strictly public bus used in the basic dis-
tributed logic design, this channel may be dynamically partitioned, thus isolating
one or more subtrees which can then function as separate processing units. (In this
respect, the Tree Channel Processor might in fact be considered a unconventional
MIMD machine.) The Tree Channel Processor is designed to permit extremely high
bandwidth parallel input and output and to greatly reduce certain propagation
time bottlenecks associated with many applications of distributed logic processors.
Let us now turn our attention to a class of associative processors characterized

13

by somewhat less extensive distribution of intelligence: the bit-serial associative
processors. In this class of machines, first proposed by Shooman [1960], the content
addressable memory is organized into (often fairly large) words, and comparison
logic is associated with each word. In contrast with the fully parallel word or-
ganized processors, however, each logic unit is capable of manipulating only a
single bit position within the word at a given time, resulting in a reduction in
required processor logic roughly proportional to the number of bits per word, at
the cost of a corresponding decrease in speed. At each point in time, one “bit
slice” extending through all words is thus accessible for parallel processing. A
small amount of storage associated with each word is typically used to retain state
information between operations on successive bit slices in support of the primitive
content search and multi-write capabilities of associative processing.

Since the introduction of Shooman’s “orthogonal computer”, bit-serial as-
sociative devices having a wide variety of characteristics have been proposed by
a number of researchers, including Kaplan [1963], Ewing and Davies [1964] and
Chu [1965]. The design of STARAN (Rudolph, 1972; Batcher, 1974], Goodyear
Aerospace Corporation’s large-scale associative processor, is based on a group of
“multidimensional access memories” which implement both bit-slice (for associa-
tive processing) and ordinary word slice (for input and output) access capabilities
-using standard random access memory chips. Among the other bit-serial associa-
tive processors which have been developed for practical use are the OMEN series
[Higbie, 1972], designed by Sanders Associates, The Raytheon Associative/Array
Processor (abbreviated RAP, but not to be confused with the Relational Associative
Processor, a database machine bearing the same acronym which will be discussed
in Section 3.2) [Couranz, Gerhardt and Young, 1974], the Extended Content
Addressed Memory (ECAM) [Anderson and Kain, 1976}, and the Hughes Aircraft
Associative Linear Array Processor, (ALAP) [Finnila, 1977].

Another class of less-than-fully-parallel content-addressable devices is com-
prised of the word-serial associative processors [Young, 1962; Crofut and Sottile,
1966; Rux, 1969], in which all bits of a single word are compared in parallel, but
the set of words is examined sequentially. Word-serial machines thus function in
much the same way as a program loop on a conventional von Neumann machine
in which each word in memory is examined in turn for partial match and modified
or output as appropriate. The word-serial associative architecture, however, ob-
viates the need to fetch and decode the instructions which would be required to
perform such functions in software on an ordinary von Neumann machine. While
the word size of a word-serial machine might in principle be chosen large enough
to make word-serial techniques competitive in speed with bit-serial schemes, the
number of words is generally much larger than the number of bits per word, thus
typically making word-serial techniques much slower in practice. Although this

14

speed disadvantage has thus far tended to discourage practical applications of the
word-serial approach in favor of distributed logic and bit-serial techniques, current
prospects for inexpensive, high density, noninertial circulating storage devices
(future generations of bubble memories or charge-coupled devices, for example)
may make the word-serial approach worthy of serious consideration for large-scale
associative processing applications.

At the low end of the associative logic distribution spectrum is the class of
block-oriented, or segment sequential associative processors (also sometimes called
partially associative devices), which offer much larger capacities than the devices
discussed thus far, but at a significant penalty in speed. Most commonly, such
devices are based on a rotating storage device (a disk, for example) having one or
more heads per track of storage, so that each piece of stored information passes
under some head exactly once during each revolution of the device. In the simplest
such designs, one search and modification logic unit is associated with each head
(and thus with each track), permitting one associative operation to be performed
on each revolution.

The first logic-per-track associative devices of which we are aware were
proposed by Slotnick [1970] and Parker [1971]. Parhami [1972] designed an associa-
tive processor called RAPID (for Rotating Associative Processor for Information
Dissemination), which functioned in much the same way as a slow distributed logic
memory, but with only one search operation possible per revolution, and with
information propagation in one direction only. Different block-oriented associative
processor designs have been proposed by Minsky [1972], Healy, Lipovski and Doty
[1972], and others. Because the need for large-scale storage is essential to data base
management applications, parallel head-per-track disk devices, or their equivalent,
have a central role in the majority of the database machine designs discussed in
Section 3.2.

While the block-oriented associative processors are usually regarded as rep
resenting the “low end” of the logic distribution spectrum within the family of
associative processor architectures, certain system designs based on an even lower
degree of distribution, but nonetheless sharing some of the features of an orthodox

" associative processor, might be worth mentioning in passing. One such approach
is illustrated by the modified head-per-track disk drives incorporated in the DBC
architecture (discussed in Section 3.2), in which the contents of one cylinder may be
associatively probed in a single revolution. An even lower degree of logic distribu-
tion which nonetheless speaks to some of the concerns of associative processing is
represented by the design proposed by Lang, et al, [1977] for the evolutionary en-
hancement of conventional disk-based systems—the authors’ proposal was in fact
presented in the context of an architecture like that of the IBM System/370—for
increased efficiency’in database applications. Their scheme involved the association

15

of one small, intelligent unit called a “DASD processor” with each direct access
storage device. Each such processor would be capable of searching for records based
on the values in arbitrarily specified (as opposed to fixed-position) fields when so
instructed by a special channel command. Analysis predicted significant perfor-
mance improvement over more conventional system architectures, particularly in
the case of heavy transaction traffic.

In the following section, we will review some of the ways in which the various
classes of associative processors have been applied to the specific problems of
database management.

3.2 Database machines

Several authors have surveyed the emerging field of database machine architecture
from various perspectives, and adopting various scopes, within the past several
years. Linde, Gates, and Peng [1973] were among the first to point out the poten-
tial advantages of associative processor-based architectures for real-time database
management applications. Berra [1974] reviewed the state of the art as of 1974,
and critically examined the potential for such applications, pointing out a number
of positive and negative aspects of the application of associative processors to
‘database management. Anderson [1976] and Baum and Hsiao [1976] provided later
overviews of trends in the field, the latter predicting the emergence of hierarchi-
cally organized systems, with each level containing functionally specialized search
and data manipulation modules. Lowenthal [1977] offered a taxonomy for distin-
guishing three different kinds of processors specialized for data base management
in distributed environments, which he called intelligent controllers, backends and
datacompu ters. Hsiao and Madnick [1977] and Berra [1977] also survey and provide
references to the field of data base machine architecture. In this section, we will
review the best known efforts to date in the area of database machine architecture.

One of the earliest actual implementations of an associative processor-based
system geared toward database management applications was IFAM (DeF'iore and
Berra [1973]), developed on an experimental prototype basis for the Rome Air
Development Center. This implementation of IFAM was based on a 2048-word,
48-bit, word parallel, bit serial associative processor called AM, developed by
Goodyear. The capabilities of IFAM were closely tied to the primitive associa-
tive operations; in relational terms, tuples could be retrieved only by selection
(although with inequality and “within-range” comparisons in addition to simple
equality). Although limited in storage capacity by comparison to later block-
oriented associative processor-based database machines, IFAM served to concretely
illustrate the potential utility of associative operations in database management
applications.

16

Moulder [1973] described an implementation of a hierarchical database manage-
ment system based on STARAN (described in Section 3.1) and a parallel head-per-
track disk drive. Using a technique similar to that described by DeFiore, Stillman
and Berra [1971], the hierarchical data structures chosen for data representation
were converted into a single level data base to permit the use of the associative
processing capacities of the hardware. Retrieval was again by selection based on
equality or inequality (but not ranges) over various attributes. The database was
partitioned into a number of physical disk sectors which were sucessively read into
the STARAN memory arrays in a high speed parallel fashion, where they were
searched using the associative capabilities of STARAN. The time required in the
case of typical queries to perform these associative searches within the STARAN
arrays was found to be small enough that every other sector could be searched
in the course of one revolution of the disk, so that the whole data base could be
searched in two revolutions (about 78 msec in the prototype system).

One of the first large-scale research efforts directed toward the development of
a specialized system containing many of the features critical to database manage-
ment is represented by the CASSM project, active at the University of Florida
since 1972. CASSM [Su, Copeland and Lipovski, 1973; Copeland, Lipovski and
Su, 1973; Lipovski, 1978] is a block-oriented design oriented specifically toward
a hierarchical data model, providing a direct hardware implementation of hierar-
chical data structures, which are linearized in a top-down, left-to-right manner;
CASSM is capable of supporting the relational and network (Codasyl DBTG)
models as well, however.

In the terminology of CASSM, the system architecture includes a collection
of identical cells, each consisting of a processing element and a circulating se-
quential memory element (a disk track or a circularly organized CCD or bubble
memory device, for example). Each processing element can communicate with
its two immediate neighbors, in support of the storage of files and records which
overlap physical segments of the secondary storage device. Associated with each
cell are two heads: one used for reading, and one for writing data. After being

read by the first head, data is pipelined through a chain of processing logic, each
portion of which serves a specialized function. CASSM includes special features for
searching complex data structures such as sets, ordered sets, trees, variable length
character strings and directed graphs. Among the distinctive features of CASSM
is the fact that both programs and data are stored on the associative secondary
storage device. Both an assembly language [Su, Chen and Emam,1978] and a
high-level nonprocedural language [Su and Emam, 1978] have been developed for
programming the CASSM system. A single cell prototype system was completed
in 1976. Since that time, efforts have concentrated on the implementation «{ and
experimentation with a software simulation of a multi-cell CASSM system.

17

The best-known database machine designed specifically for efficient support of
the relational model of data is probably RAP (for Relational Associative Processor),
developed at the University of Toronto [Ozkarahan, Schuster and Smith, 1974,
1975; Schuster, Ozkarahan and Smith, 1976; Ozkarahan, 1976]. RAP is designed as
a backend database processor for a general purpose computer, accepting from the
latter a set of primitive commands relevant to the evaluation of relational queries.
Like CASSM, the RAP architecture is organized around a set of identical cells, - «ch
consisting of a processor and a block of circulating memory, and capable of various
retrieval, insertion, deletion and update functions. All cells are connected to a
common controller, which includes a statistical arithmetic unit. Simple inter-cell
communication facilities are provided for priority polling in the course of output.
The front end computer is used to translate different query languages into RAP
primitives, to handle various input/output processes, for query scheduling, and
for various functions related to the maintenance of protection, security and data
integrity. The RAP language interface is described by Kerschberg, Ozkarahan and
Pacheco [1976] and Ozkarahan and Schuster [1976).

An analytical comparative performance evaluation [Ozkarahan, Schuster and
Sevcik, 1977] revealed advantages in speed ranging between one and three orders of
magnitude by comparison with a hypothetical conventional system using inverted
lists-with the very important exception of the join operation, where only a slight
improvement was found. (Note that it is just this sort of operation for which our
own architecture offers the greatest potential advantages.) Specific aspects of the
performance of of RAP are examined by Nakano [1976] and Ozkarahan, Schuster
and Sevcik [1977]. The RAP system has now evolved for several years, with the
latest version, called RAP.2 [Schuster, Nguyen, Ozkarahan, and Smith, 1979,
embodying several significant changes. First, a general purpose microprocessor has
been employed for implementation of the previously hardwired controller. Second,
the RAP.2 design is strongly oriented toward the use of CCD memories instead of
head-per-track disk devices. The instruction set has also been modified somewhat
in RAP.2 to make it more uniform and flexible, and to add certain additional
capabilities. Enhancements based on analogues of multiprogramming and virtual
memory organizations have been proposed by Ozkarahan and Sevcik [1977].

Another architecture specifically oriented toward the relational database model
is embodied in a proposed database machine called RARES [Lin and Smith, 1975;
Lin, Smith and Smith, 1976]. The RARES design is distinguished primarily by
the adoption of an orthogonal storage layout, in which individual tuples are dis-
tributed across (and not along) the tracks of the parallel head-per-track secondary
storage device, with one byte stored on each track. In the orthogonal storage
scheme, a given relation thus occupies all tracks within a particular sector of the

18

disk device (whose extent depends on the size of the relation), rather than com-
pletely filling a corresponding number of tracks. One motivation for the orthogonal
scheme adopted in the RARES design is to reduce the incidence of contention in
cases where more than one tuple is identified in parallel for output. Among the
other advantages cited for this scheme are a reduction in the amount of storage
necessary to hold each tuple in the course of associative comparison and certain
efficiencies in the execution of operations on relations in which a sorted order must
be maintained.

The relational database machine architectures which we have thus far con-
sidered have primarily addressed the problems of evaluating a single relational
primitive operation. An organization called DIRECT [DeWitt, 1979], on the other
hand, is directed to a broader set of problems, dealing with such questions as intra-
and inter-query concurrency and database integrity in a multiple-process relational
database environment. DIRECT is a virtual-memory, MIMD (see Section 3.1) sys-
tem, currently being implemented using a number of DEC LSI-11/03 microproces-
sors, along with O-based associative storage units. The microprocessors and
CCD modules are connected using a special cross-point switch design, with the
number of processors assigned to the evaluation of a given query determined
dynamically based on certain statistics of the query and the relations involved.

At Ohio State University, an architecture has been proposed for a very-large-
scale database system based on the use of a number of interconnected subsystems
specialized for different aspects of the process of database managcmcent. This sys-
tern, called DBC (for database computer) [Baum and Hsiao, 1976; Hsiao, 1977,
Banerjee, Baum, Hsiao and Kannan, 1979}, is designed to support all three data
models, communicating with a general-purpose computer through a very high level
language oriented toward the data base management functions for which DBC is
intended. The design of DBC was strongly influenced by several kinds of data
protection concerns, and includes specialized mechanisms for the imposition of
related constraints.

The system is composed of two sets of processor and memory components,
configured as closed loops, and interconnected (both to each other and to the general
" purpose computer to which DBC is subordinated) by a database command and
control processor. The first, called the data loop, contains a mass memory based on
a number of modified moving-head disk drives, along with a specialized processing
unit called the security filter processor. The second, called the structure loop, is
comprised of a block-oriented associative storage unit (envisioned to be constructed
using CCD or bubble technology) called the structure memory, another special-
ized processing unit called the structure memory information processor, and two
other specialized modules called the keyword transformation urit and the index

translation unit.

19

The moving-head disk drives are modified to provide for simultaneous output
from all tracks in a given cylinder in parallel. (Such drives have in fact recently
been announced by Ampex Corporation [1978], and are apparently not expected
to be priced far above the cost of unmodified moving-head drives.) Associated
with each track is a track information processor, capable of associative comparison
operations. Thus, a single cylinder can be searched associatively by DBC in much
the same way as were the full contents of secondary storage in the associative head-
per-track devices discussed earlier. Information which is used to locate the relevant
cylinders to search is stored in the structure memory unit, which is designed for
very fast access and processing by the structure memory information processor,
in conjunction with the keyword transformation and index translation units. A
more detailed description of the structure memory, structure memory information
processor, keyword transformation unit and index translation unit are provided
by Hsiao and Kannan [1976] and Hsiao, Kannan and Kerr [1977]. The design of
the mass memory, security filter and associated units are detailed in Hsiao and
Kannan [1976a].

Other proposals for specialized database architectures include XDMS [Canady,
et al., 1974] a network-oriented SISD architecture originating at Bell Laboratories,
and an approach to the implementation of a relational database system suggested
by McGregor, Thompson and Dawson [1976].

20

4, The Proposed Architecture

As noted in the introduction, our proposed architecture is configured as a
hierarchy of associative storage devices. At the top of this hierarchy is the primary
associative memory (PAM), a fairly fast content-addressable memory of relatively
limited capacity. (For concreteness, the reader might imagine a PAM containing
between 10K and IM bytes, and requiring somewhere between 100 nanoseconds
and 10 microseconds per associative probe.) PAM might be realized with a large-
scale distributed logic memory, or with a suitable bit-serial or word-serial design.
There is reason to believe that recent progress in distributed logic architectures,
device-level fault-tolerant designs and wafer-scale integration could soon make
such a memory unit feasible for wide application.

Two primitive PAM operations, each requiring a single associative probe, will
be involved in our analysis: mark all and retrieve and mark first. In both cases, all
tuples of a specified relation for which the value of a selected compound attribute
is found equal to a particular constant are associatively identified. The mark all
operation writes a one or zero in a specified Aag bit of each such matching tuple
using a parallel hardware multiwrite. The retrieve and mark first operation sets a
specified flag bit within a single tuple chosen arbitrarily from among the responders
and copies the value of that tuple to storage external to PAM, but accessible to
the controlling processor.

As an alternative to physical content-addressability, the algorithms which
we will describe could be modified to accomodate a “pseudo-associative” PAM,
constructed using, say, random access memory and high-bandwidth special pur-
pose hash coding hardware. In general, however, argument and intermediate result
relations would have to be re-hashed (on different attributes) prior to every al-
gebraic evaluation, adding a significant (and less predictable, as seen from the
wide discrepancy between average and worst case hashing behavior) amount of
time to the algorithms presented in Chapter 6.

The secondary associative memory (SAM) is intended to be a larger, slower
- content-addressable device. (A capacity of between 1 and 100M bytes and an
associative operation time of between 1 and 100 milliseconds should adequately
exemplify our design.) Physically, SAM might be realized using an intelligent
circulating storage device such as a parallel head-per-track disk with a modest
amount of logic associated with each track, or a non-inertial circulating storage
device constructed using CCD or bubble memory storage technology, and having
similar logic associated with each storage loop. (The ability to temporarily suspend
circulation in individual storage loops in the latter class of device could in fact
be utilized to improve somewhat on the external evaluation results reported in

21

this paper, although such enhancements are not within the scope of our present
discussion.) It is assumed that the relative speeds of PAM and SAM are such that a
quantity of data sufficient to fill PAM can be transferred from PAM to SAM in the
course of a single SAM revolution. Although the combined potential bandwidth of
the set of intelligent heads associated with the SAM device could in principle be
extremely high, the average bandwidth in the course of a external evaluation will
ordinarily be much lower. Given adequate buffering capabilities, the algorithms
which we will describe should thus present no unusually stringent requirements on
the communication channel between SAM and PAM.

Among the specific capabilities assumed for the “per-track™ logic of an ac-
ceptable SAM device is the ability to output or mark all tuples for which the values
of selected attributes are found equal to a constant or to the value of some other
attribute within that tuple, or to be within some specified range of values. Note
that SAM is thus capable of evaluating the select and restrict operators directly,
without recourse to “internal evaluation” within PAM. Each per-track logical unit
is also assumed to have a sufficient quantity of random access buffer memory to
hold the tuple currently passing under its head until a determination can be made,
on the basis of selective or restrictive criteria, as to whether it satisfied the current
match criteria.

The specifications which we have thus far considered for SAM are quite similar
to those of such actual rotating associative processors as those used in the RAP
and CASSM systems. One of the techniques we will describe (in Section 8.1),
however, also requires that each per-track processing unit have a small amount of
random access memory dedicated to the tabulation of a “domain histogram™. In
addition, this algorithm requires that the unit be capable of determining whether
each tuple satisfies one of a set of (not more than a small fixed number of) range
specifications. In the alternative algorithm (described in Section 8.2), the per-track
logic unit is instead assumed to have the capability of sequentially computing a
hashing function on selected attribute values of each tuple which “passes under”
the associated head (or its functional equivalent), and of outputting all tuples for
which the resulting hashed value falls within a specified range.

The analytic portion of this paper assumes a fixed time for an associative
probe of the entire contents of SAM, as is the case for the sort of block-oriented
associative processors discussed in Section 3.1 and employed in such database ar-
chitectures as CASSM, RAP and RARES (Section 3.2). Our external evaluation
algorithms are also applicable, however, to the kind of modified moving-head disk
devices employed in the DBC design (Section 3.2), thus supporting very large data
base applications. In order to adapt the complexity results reported in Section 7 to
a SAM of this sort, in which only part of the database is associatively accessible on
each rotation, a constant term would be added to the external evaluation time- of

22

each of the seven primitives. In addition, the complexity of these results would be
increased (by a formally linear, although in practice probably quite small) factor
in the event the argument relation(s) were allowed to exceed the capacity of the
cylinder or cylinders capable of simultaneous parallel examination (at least in the
absence of a significant modification of our algorithm). To simplify our discussion,
however, the remainder of this paper will assume that SAM is a fixed probe time
associative device of sufficient capacity to store both argument relations.

The seven relational algebraic primitives with which we are concerned may be
evaluated most quickly when the argument relation(s) can fit into PAM- the case
we have referred to as internal evaluation. (Similarly, we will use the terms internal
projection, internal equi-join, etc., to refer to the evaluation of specific relational
operators in the case where their argument relation(s) fit entirely within SAM.)
External evaluation is performed whenever the argument relation(s) fit in SAM,
but not in PAM, and in most cases involves the reading into PAM of successive
segments of the argument relation(s), each of which is (are) processed according to
the corresponding internal evaluation algorithms, Note that this implies that each
tuple of the argument relations is processed only once in primary storage, in con-
trast with the best currently known general techniques for the external evaluation
of most of the algebraic primitives under consideration on a conventional non-
associative system.

In addition to the two associative devices involved in our design, we assume the
existence of a general purpose processor serving as a controller for the evaluation
process, and responsible for the performance or delegation to other specialized units
of all collateral functions (input language translation, input/output control, etc.)
which would be involved in a practical implementation. Adequate buffering would
also be required at several points within the design we are proposing. Although we
will give little explicit attention to such issues in the present paper, it should be
acknowledged that the detailed design of a useful realization of the architecture we
propose would require careful consideration of the nature and capacities of these

resources.

23

5. Notation

The following notation will be used in our analysis of the algorithms for the
internal and external evaluation of the relational algebraic primitives:

Fixed system parameters:

p Size in bytes of the primary associative memory (PAM)

S Size in bytes of the secondary associative memory (SAM)

Ty Time for an associative probe (returning one matching tuple) in PAM
T, Time for one revolution of SAM

Functions of the argument relation(s):

c(R) cardinality of the relation R

t(R) (fixed) size of the tuples of R in bytes

d(A,R) number of distinct values of the (compound) attribute A in R
r cardinality of the result relation

Because the quantity P/¢(R) (roughly speaking, the ‘tuple capacity’ of PAM)
plays an important role in our analysis, we will also define a derived function a(R)
with this value.

It should be noted that r is being treated as an independent variable, although
it is in fact determined by the composition of the argument relations. There are
several ways in which this functional dependence might have been explicitly em-
bodied in our analysis if we had chosen to do so. We might have used, for example,
a fixed value estimating the average number of occurrences of any given join at-
tribute value, or for a more careful analysis, a particular statistical distribution
of such values might have been assumed. While such an analysis might well help
to identify certain interesting properties of the proposed algorithms when applied
to argument relations having various properties, we have chosen in the present
analysis to forego the considerable added complexity involved in explicitly examin-
ing such relationships, treating the cardinality of the result relation as a constant
and indicating verbally its relationship to the arguments where appropriate.

When there is no danger of confusion, we will sometimes omit the relation
argument R.

24

6. Internal Evaluation

Our algorithms for internal evaluation of the project and join operators will
be expressed in a hypothetical parallel programming language having a Pascal-like
format, but extended to include four high-level associative processing primitives.
The first is the parallel set command, used to set a specified flag to ¢true in each
tuple satisfying certain conditions; all flags are set in parallel using a single mark
all operation, requiring one associative probe. This command has the form

parallel set {flag) in all (tuple variable) of (relation) with (conditions)

where (conditions) is a Boolean combination of predicates involving the variable
(tuple variable). The format of the parallel clear command is identical to that of
parallel set, but sets the specified flags to false.

The third associative processing primitive is the for each control structure,

which has the form
for each (tuple variable) with (conditions) [set (flag) and] do (statement)

where the “set.. . and” clause is optional. Unlike the parallel set and parallel clear
statements, execution of a for each loop is sequential (although each iteration of the
loop involves the performance of parallel associative probes). During each itera-
tion, a single retrieve and mark first operation is performed, during which {(tuple
variable) is instantiated with an arbitrarily chosen tuple satisfying (conditions).
If a “set . .. and” clause is specified, the appropriate {flag) is set within this tuple;
(statement), which may be either a simple statement or a “begin . . . end” block,
and which may set flags affecting the value of (conditions), is then executed with
the current binding of (tuple variable). Iteration terminates when no further tuples
of the specified relation satisfy (conditions).
The final primitive is a conditional statement, which has the form

if [not] exists (tuple variable) with (conditions) [set (ffag) and] do (statement)
where not is optional. This statement executes a retrieve and mark first operation,

executing (statement) if any tuple satisfies (conditions) (or in the case where not
1s specified, if no tuple satisfies (conditions)).

25

procedure project (R, A);
for each { of R
with not flag do (r =+ 1 probes)

begin (r times)

output tA];

parallel set flag (r probes)
inall ' of R
with '[A] = t[A];

end;

Algorithm 1. Internal Project

6.1 Project

The procedure for internally projecting a relation R over a compound attribute A
is detailed in Algorithm 1.

From the execution counts, it can be seen that internal projection requires
time

(2r+ 1)T,

in addition to the time required to extract the projected compound attribute
of, and output, each of the r result tuples, both non-associative functions which
could be overlapped with the following associative probe. As noted in Section 2.2,
projection can be quite expensive on a von Neumann machine, particularly in the
case where the argument relation is large. The utility of the proposed architec-
ture for the evaluation of the relational project operator thus lies not only in the
fact that it requires time independent of the size of the the argument relation
(being proportional only to the cardinality of the result relation, which can never
be larger, and is often much smaller), but also that it implicitly eliminates the
possibility of tuple duplication, obviating the need for sorting, for example, to
remove redundant result tuples.

26

procedure join(R;, Ry, A}, Az);
for eacht) of R
with not flag
set flag and do
begin
distribute(t;, Ra, A1, A2);
for each t} of R,
with t'l [A1] =1 [AI]
and not flag
set flag and do
distribute(t}, R, A1, A2);
end;

procedure distribute(t), Ry, A}, Az);
begin
for each t3 of Ry
with fq[Az] e== t1[A1]
and not flag
set flag and do
output (f1[41] | t2[A2]);
parallel clear flag
in all & of Ry
with &[Ag) = ti[A1);
end;

(d(A1,R1) + 1 probes)
(d (A1, Ry) times)

(c(R1) probes)
(c(R1) — d (A1, R1) times)

(c(Ri) times)

(r + ¢(R;) probes)

(c(R;) probes)

Algorithm 2. Internal Join

6.2 Join

Algorithm 2 computes the equi-join (or with the indicated modification, the natural
join) of relations R; and Ry over the compound attributes A and Ag, respectively.

Intuitively, the join algorithm functions as follows: First, an arbitrary R;
tuple is retrieved and marked. The extended Cartesian product of all (associatively
retrieved) R; and Rz tuples having the same value in their respective compound
join attributes as this arbitrarily selected tuple is then output. Another arbitrary
R, tuple is then arbitrarily selected from among those which have not yet been
processed, and the above procedure repeated until all R; tuples have been ex-
hausted, at which point the equi-join is complete. The process of forming the

27

extended Cartesian product involves a nested iteration over all matching R; (in the
outer loop) and Rj (in the subfunction distribute) tuples, each of which is retrieved
in a fixed amount of time, without regard to its position in memory, by virtue of
the content-addressibility of PAM. Excluding the time required for concatenation

and output,
(T + 3C(R1) + d(Al,Rl) + 1)Tp

1s required for internal evaluation of the join operator.

Note that the asymmetry of this algorithm with respect to the roles played
by the two argument relations permits a (possibly quite significant) increase in
efficiency in the case where the relative sizes of the two argument relations is
known or inexpensively computable. Some of the existing designs which might
be chosen for a particular physical implementation of PAM are in fact capable of
providing, in a single associative operation, a count of the number of responders
to an associative probe. When this capability is provided, the above algorithm
may be preceded by two counting probes (on all R} and Rj tuples) to determine
the smaller relation, When such relative size information is available, R; should
in practice generally be chosen to be the smaller of the two relations in order to
minimize the size of the ¢(R;) and d(R,) terms, since d(R;) might in practice be
expected to be directly related (or at least not strongly inversely related) to ¢(R;).
This observation is particularly significant in the common special case where the
two argument relations are of very different sizes. As it happens, our external
algorithm for the evaluation of two very large relations A and B admits the pos-
sibility of assigning A segments to R; during some of the internal cycles, and B
segments during others. At the cost of a very minor complication of the procedures
for transfer from SAM into PAM, the algorithm can thus in some cases be made
to perform more efficiently than would be the case if either A or B were “bound”
to I; for the duration of the join, yielding a modest improvement on the above
results.

As in the case of projection, it is instructive to compare the proposed associa-
tive equi-join algorithm to the best known general algorithms for this operation
on a- conventional von Neumann machine, which, as seen from the discussion in
Section 2.3, are of O(nlog n) complexity in the absence of physical clustering with
respect to the join attributes or the use of extensive storage redundar- On the
machine we have described, on the other hand, tuples can be set in correspon-
dence using a procedure of lower computational complexity than sorting, yielding
a joining time which is linear in the cardinality of the smaller argument relation,
the number of distinct join attribute values in this relation, and the size of the
result relation. (As we shall see in Section 7.3, linear complexity is preserved in
the external algorithm for equi-join as well.)

28

Lest these results be misinterpreted, it should be emphasized the worst case
behavior of this algorithm (or indeed, of any algorithm involving sequential output,
regardless of the underlying architecture) may still be quite bad when the result
relation is very large. Specifically, if for all ¢{;eR%; and teRy,

b [A1] = tafAg] = ¢,

for some single constant tuple ¢, the cardinality of the result relation will be equal
to the product of the cardinalities of the two input relations. Given reasonable
assumptions reflecting the typical use of the join operation, however, the architec-
ture and algorithm which we have described offer a very significant increase in
efficiency.

It is worth noting that the algorithm we have described assumes access only
to a structural model of the data, and not to any of the semantic characteristics
of the stored relations (both terms being understood in the senses applied in the
relational database literature). In fact, such semantic information, if available,
could be used to significantly improve on several important special cases of the
above join algorithm. As an example, consider the case where the compound join
attribute is in fact a primary key of R;, Ry or both- that is, where the value of
the join attribute uniquely identifies a single tuple of the relation. In this case, the
associative probe used to terminate the above the for each control structures is
unnecessary, resulting in a saving of roughly half of the necessary probes within
the innermost two loops of the algorithm. In many problems, the availability
of domain-specific knowledge might permit certain other kinds of improvements
on these results. Although an adequate analysis of the manner in which such
additional sources of information might be profitably integrated into our approach
is unfortunately beyond the scope of our present discussion, it is worth noting
that the very general case of evaluation on the basis of purely structural charac-
teristics, to which our attention is currently directed, may often in practice ignore
information sources which might lead to increased efficiencies.

29

procedure select (R, A, V);
for each t of R
with t[A] = V
and not flag
set flagand do . (r+ 1 probes)
output ¢;

Algorithm 3. Internal Select (with sequential output)

6.3 Select

The algorithm for selection is quite straightforward within the architecture we
have specified, since the associative retrieval primitive which defines the behavior
of PAM itself serves what is essentially a selective function. If, in a particular
application, it is not necessary to sequentially enumerate and output the result
of a selection, but only to mark the included tuples, (as may in fact be the case
in the evaluation of many complex queries), the operator in fact requires only a
single probe, and takes exactly time T}, independent of the size of the argument
relation. When sequential output is required, the selection from relation R with
compound attribute A equal to value tuple Vis defined as in Algorithm 3. It is
easily seen that r 4 1 probes are required, so that the time required for a single

selection with sequential output is simply
(r+1)T,

It should be noted that the time required for selection with sequential output is
again independent of the size of the argument relation.

30

procedure restrict(R, A1, Az);
for each 7 of R
with not flag do (d(A1,R;) + 1 probes)
begin (d(A1, Ry) times)
for each t' of R .
with t'[A]] = t[A}]
and t'[Ag) = t[A}]

and not flag
set flag and do (r + d(A1,R,) probes)
output ¢’ (r times)

parallel s« flag

in all ¢ of R

with t"[A;] = t[A;] of R (d(A1, R;) probes)
end;

Algorithm 4. Internal Restrict

6.4 Restrict

The procedure for internal restriction is detailed in Algorithm 4. Initially, an
arbitrary tuple is chosen from the argument relation. If the A; and Az values of
this tuple are equal, one tuple having this value for both A; and Az is output
during each successive probe until exhaustion. At this point, all tuples having
that value for their Aj attribute are flagged, and the process is repeated on all
unflagged tuples. The total time required for internal restriction is

(2d(A,Ry) + 7)Tp -

It is worth mentioning that the addition of certain hardware capabilities to
the PAM device may substantially decrease the complexity of internal restriction.
If the hardware permits the associative retrieval of all tuples in which a Boolean
disjunction of attribute-value pairs is specified, for example, the parallel set in-
struction can be changed to flag all tuples in which the value of either Aj or As
is equal to t[A;]; the elimination of such tuples may exclude from consideration
some of the d(Aj,R;) tuples having distinct A; values without the need for a
separate associative probe in the outer loop. A more significant improvement may
be possible if the PAM device itself supports the associative retrieval of tuples
having identical values in specified fields; in this case, internal restriction has the

same complexity as selection.

31

procedure union(R;, Ry);
begin
for each {; of R}
with not flag
set flag and do (c(R1) + 1 probes)
begin (c(Ry) times)
output ¢;;
parallel sct jlag (c{R,) probes)
in all {3 of Ry
with # =1,
end;
Jor each &y of Ry
with not flag set flag and do (r — ¢(R1) + 1 probes)
output (t;
end;

Algorithm 5. Internal Union

6.5 Union

The algorithm for the union of relations R; and Rz, assuming as usual the require-
ment for sequential output of the result relation, has two stages. First, each tuple
of Ry is output in succession, and each one which also occurs in Fj is associatively
marked to avoid duplication in the result relation. Second, all unmarked Rz tuples
are output. The procedure is detailed in Algorithm 5. From the execution counts,
it may be seen that the algorithm requires time

(r+ () + 2)T,

It should be noted that, as in the case of the join operator, this algorithm is
asymmetric with respect to Rj and Ry, and is more efficient when R; is chosen to
be the smaller of the two argument relations. The techniques discussed in Section
6.2 may thus be employed to optimize the efficiency of the evaluation of union on
the basis of the relative sizes of its argument relations.

32

procedure intersect(R;, Ra);
begin
for each t; of R,
with not flag

set flag and do (c(R1) + 1 probes)
if exists ¢y in Ry (c(R;) probes)
with ¢ =1, do
output {;;

Algorithm 6. Internal Intersect

6.6 Intersect

In Algorithm 6, which computes the intersection of relations Rj and R, each tuple
of R} is examined in turn, and an associative probe is performed to determine
whether the tuple in question is also a member of Ry. It is easily seen that

(2¢(Ry) +)T,

is required to intersect two relations in PAM. Again, the dependence of our result
on the choice of Rj should be noted. Selection of the smaller argument relation
for R; is in fact somewhat more important in the case of set intersection than set
union because of the larger relative contribution of the cardinality of R) to total
execution time.

It is interesting to compare our algorithm for set intersection with the one
presented for the join operator. Note that set intersection may be regarded as
a special case of natural join in which the compound join attributes are exactly
the set of all attributes of the argument relations. In the case of intersection,
though, we know that no two tuples in an argument relation can have the same
value for this compound join attribute, since relations are in fact sets, and are
thus prohibited from containing duplicate tuples as elements. This is precisely the
sort of “additional information” discussed earlier which must, in the case of the
general join, be determined by reference to the semanticsof the particular database
at hand. Because this information is available on purely structural grounds in
the case of intersection, our intersect algorithm avoids the probe which is always
necessary to detect exhaustion of all R; tuples having the current join attribute
value. In the case of those join attribute values which match some Rj tuple, an
additional probe is saved over the case of the general join, for much the same

reasomn.

33

Recent work by Trabb-Pardo [1978] on the complexity of set intersection on a
von Neumann machine suggests another interesting perspective on our associative
algorithm for intersection. Trabb-Pardo considered two strategies for representing
and intersecting sets of unstructured elements (as distinguished from tuplcs having
internal attribute-value structure, as in the relational algebra). The first involves
the representation of sets as tries, which are intersected through a process of paral-
lel traversal. The second approach, which permits extremely fast intersections, is
closely related to our own algorithm, but uses hashing functions to approximate
the process of associative retrieval on a von Neumann machine. Like our algorithm,
Trabb-Pardo’s hashed intersection algorithm searches for the presence of each R
tuple, in turn, within Rg, and intersects in time linearly proportional to the smaller
argument relation.

In the case of intersection (as opposed to the more general join operator),
Trabb-Pardo’s “pseudo-associative” intersection algorithm in fact appears to offer
comparable performance to the associative scheme described here. It is in the more
general case of the natural join, where result tuples may be generated based on
a partial match between the corresponding attributes of the argument relations,
that the argument for a non-von Neumann architecture is strongest. Extending
the use of hashed search to the case of the general natural join in the most obvious
-way would require that each tuple be hashed in more than one way to provide
for natural joins over different compound attributes. Since the set of compound
attributes on which a join might be based is equivalent to the powerset over the
simple attributes, the number of such hashings is in fact exponential in the number
of simple attributes. At the cost of a non-standard, but economically feasible,
hardware design, the architecture and algorithms which we have described permit
the straightforward and efficient generalization of the associative approach to set
intersection to the more general case of the relational join.

34

procedure setD:j j erence(R;, Ry);
begin
Jor each t; of R,
with not flag
set flag and do (c(R1) + 1 probes)
if not exists t2in B3 (c(R;) probes)
with {3 =1t; do
output i);

Algorithm 7. Internal Set Difference

6.7 Set difference

The algorithm for set difference (Algorithm 7), where R; is the set minuend and
Rj is the set subtrahend, is quite similar to that for intersection: As in the case of

intersection, evaluation of the set difference operator requires time
(2C(Rl) + I)TP ’

but does not offer the freedom to choose R; for maximum efficiency.

35

7. External Evaluation

In this section, we will describe the algorithms for evaluating the relational
algebraic primitives in the case where the argument relation(s) exceed the capacity
of PAM. The seven relational operators may be divided into three categories ac-
cording to the general manner in which they are externally evaluated. The first
category includes the two unary operators select and restrict, whose external
evaluafion algorithms are the least complex (both in the sense of perspicacity and
efficiency) of the seven. The second category contains the single remaining unary
operator, project, whose external evaluation is made more complex by the need
to avoid duplicate result tuples. The final category is comprised of the four binary
operators, equi-join, union, intersection and set difference, whose tuples are set
into correspondence using a generalization of the category two algorithm.

The algorithms for evaluation of theoperators in the second and third categories
are each based on the partitioning of the argument relation (or in the case of
category three, relations) into disjoint buckets (or disjoint shared buckets, in
category three). Typically, one such bucket (which, in the case of the category two
operators, will in general include tuples from both argument relations) is trans-
ferred into PAM during each successive revolution of SAM, and the corresponding
internal operation performed. In each case, partitioning is accomplished by as-
sociatively examining the values of some (compound) key attribute in the argument
relation(s), defined as follows for each of the category two and three algorithms.
In the case of projection, the key is the (compound) projected attribute of the
single argument relation. For an external join, the (compound) join attribute in
each of the two argument relations are defined as the keys. In the case of the three
conventional set operators (union, intersection and sef difference), all attributes
-in the argument relations are included in the key.

In this section, we will describe and analyze the algorithms for transferring
successive segments of large argument relations from SAM into PAM in the case of
the operators belonging to the first, second and third external evaluation categories,
respectively.

7.1 Select and Restrict

Selection and restriction differ from the other relational algebraic operations in
that they can be evaluated using only the per-track logic of the SAM device,
and hence do nof require that successive segments of their argument relation be
read into PAM for internal evaluation. Very little need be said about the external
evaluation of the select operator, since the retrieval of all tuples of a given relation

36

having values from selected attributes which match explicitly specified constants
is in fact the central primitive operation characterizing a SAM device. As in the
case of CASSM, RAP and RARES, our architecture thus performs external selec-
tion in constant time, independent of the size of the argument relation, assuming
only that the argument relation is no larger than the capacity of the secondary
associative storage device, and that the size of the result relation is does not exceed
the bandwidth and buffering limitations of the system. Under these assumptions,
a single selection requires time T, the time for one revolution of SAM. Indeed,
our assumptions raise a number of interesting practical questions which must be
considered by the designer of a practical system; these issues have been raised
by other database machine researchers, however, and will not be given further
attention in the current paper.

As noted in Section 4, the our specifications for the SAM device also permit
the restriction operator to be performed entirely within the SAM device, since the
per-track logic is itself capable of testing for equality among the attributes of a
single tuple. IR contrast with the case of internal evaluation, external restriction
thus has the same complexity as external selection, requiring time T, under the
assumptions specified above.

7.2 Project

As we have noted earlier in this paper, it is the problem of redundant tuple elimina-
tion which makes projection a substantial computational task in most applications.
In the case where the argument relation is no larger than the capacity of PAM,
redundant tuples are implicitly eliminated in the course of the internal projection
algorithm. In order to extend the projection algorithm to the problem of external
evaluation, however, we must first partition the large argument relation into a set
of key-disjoint buckets. Buckets are defined as non-intersecting subsets of tuples
from a given relation; a set of buckets is called key-disjoint if no bucket contains
any tuple whose key-which in the case of projection is the value of the projected
compound attribute-is the same as that of some tuple belonging to a different
" bucket.

In most cases, the partitioning and transfer algorithms described in Section
8 will tend to produce buckets no larger than the capacity of PAM. Given such
a partitioning of the argument relation, external projection is effected by reading
each bucket into PAM in succession and using the fast associative capabilities
of PAM to project the tuples over the key. In the case where a bucket exceeds
the capacity of PAM, the procedure is complicated somewhat, although the ag-
gregate effect of such “PAM overflows” on the efficiency of the external evaluation
algorithm will be negligible under most conditions.

37

To illustrate the notion of key-disjoint buckets, let us consider a projection
over the second attribute of the following binary, integer-valued relation, which
we will assume to be stored on SAM:

2 7
(3 1)
(4 7)
8 7
9 3
3 2
(4 1)
2 3

Extracting the second attribute without removing duplications yields two
instances of the value 1, one of the value 2, two of the value 3 and three of the
value 7. Supposing (unrealistically, of course) that PAM has a capacity of five
such two-attribute tuples, we might bring all tuples having a key value of either
1 or ‘7 into PAM during a single cycle for internal projection. It is significant that
the values represented in a given PAM load need not be contiguous; indeed, the
values 1 and 7 are non-contiguous within the projected domain of our example.
It is required only that if any tuples having the key 1 are brought into PAM on
some given cycle, then—in the absence of PAM overflow-4 such tuples are in
fact collected on the same cycle.

Let us now consider the modifications necessary to this algorithm in order to
accomodate any instances of PAM overflows, occuring when a single bucket exceeds
the capacity of PAM. The simplest (and by far the most common) case is that of a
partition which exceeds the size of PAM by less than 50%, and can thus be divided
into three sub-buckets A, B and C, any two of which can fit into PAM at a given
time. During one SAM revolution, sub-buckets A and B are transferred into PAM
and projected over the attribute in question. During the next SAM revolution,
the tuples of sub-bucket B are replaced in PAM by those of sub-bucket C, and
following another internal evaluation phase, those of sub-bucket A are replaced
by those of sub-bucket B. In this manner, all possible pairs of sub-buckets, and
hence, all possible pairs of tuples, are submitted to internal projection in PAM at
some point. Generalizing this procedure to the case where z tuples are assigned
to a given bucket (z > a), a total of

nn —1)
2

SAM revolutions are found to be required, where

38

n= 2z (e <z <o)
1@

In the worst case (corresponding to the situation where all key values fall within a
given segment, and must thus be assigned to the same partition), external projection
thus has a complexity of O(n?) (albeit with very small constants). In most cases,
however, the partitioning and transfer algorithms which we will consider should
insure that the effects of PAM overflow are dominated by the lower-complexity
terms.

It should be clear that the operation of partitioning the argument relation into
key-disjoint buckets on the basis of matching values of the compound key attribute
is at the heart of the process of efficient external projection. Because a similar
partitioning process, based on the key attributes of both argument relations, is
involved in the external evaluation of the equi-join, union, intersection and set
difference operators, we have chosen to consider the details of partitioning as a
separate topic in Section 8.

7.3 Join, union, intersect and set difference

As is the case for projection, external evaluation of the equi-join, union, intersec-
tion and set difference operators can not be performed efficiently within the SAM
device alone. Again, it is necessary to transfer successive portions of the argument
relations into PAM for internal evaluation on the basis of associatively identified
characteristics of the key attributes. In the case of category three evaluation,
though, each bucket is in general comprised of tuples from both of the two argu-
ment relations whose keys satisfy the current criteria for that bucket. The two
argument relations are thus partitioned into what we shall call key-disjoint sharcd
buckets, which may be regarded as a variant of the notion of key-disjoint buckets
introduced in the previous section.

Specifically, a shared bucket 1s defined as a set of tuples from either or both of
the argument relations& and Rz. Again, the partitioning and transfer algorithms
described in Section 8 insure that the size of the great majority of such buckets

- (including both R; and R tuples) will not exceed the capacity of PAM. A set of
shared buckets is called key-disjoint if no bucket contains any tuple whose key is
the same as that of some tuple belonging to a different bucket. It should be recalled
that the key of an equi-join is the (possibly compound) join attribute, while in
the case of the unstructured set operators, the key is comprised of all attributes
taken together. In the latter case, the key-disjointness condition thus reduces to
the requirement that no bucket contain a tuple of one argument relation which is
also present within some other bucket (necessarily as part of the other argument

relation.)

39

As an example, consider the case of an equi-join of the following two integer-
valued relations Rj and Ry over the second attribute of Rj and the first attribute
of Ry:

Rl:

2 7
(3 1)
(4 7)
8 1)
9 3
3 2
(4 1)
2 3

R21

(7 8
(2 5)
(6 3)
(2 6
(1 5)

Assuming again a PAM capacity of 5 binary tuples, one possible partitioning
would assign to the first bucket all R; tuples whose second attribute has either 1 or
3 as its value and all Ry tuples whose first attribute has either 1 or 3 as its value—
specifically, the Rj tuples (31),(93), (41) and (23), together with the Ry tuple
(15). (It 1s perhaps worth mentioning at this point that the identity of the relation
to which each such tuple belongs must be included as part of its rcpresentation
within PAM.) The second bucket might contain all tuples having 7 as the value
of the join attribute, with a final bucket for keys of value 2 or 6. Again, it should
be noted that the key values included within a given bucket need not fall within
a single contiguous range. Indeed, the efficiency of one of the two partitioning
algorithms described in the following section is dependent on the admissability of
non-contiguously defined buckets.

The procedure for recovery from PAM overflows in the course of external
joining is somewhat different from that employed in external projection. The
algorithm’divides both Rj and Rz into sub-buckets, each no larger than half the
capacity of PAM; each pair of sub-buckets, one chosen from R; and one from Ry,
is then transferred into PAM in succession. If z; tuples from R; and z; tuples from
Ry are assigned to the bucket in question (z1 + 22 > a), this recovery procedure

40

requires exactly nyng SAM revolutions, where

"= [0(21;1)]

M=L(21;2)]

and

41

8. Partitioning and Transfer

Since the external evaluation of each of the relational algebraic operators with
the exception of selection and restriction is dependent on the partitioning of the
argument relation into key-disjoint (possibly shared) buckets, we now turn our
attention to the manner in which this process may be efficiently executed. We will
consider two techniques for partitioning large argument relations into key-disjoint
buckets. The two schemes, which we call the domain histogram and hashing
methods, impose somewhat different requirements on the logic and memory which
must be associated with each functional head, and differ slightly in efficiency.
Independent of its merits as a practical algorithm for incorporation in an actual
system, the domain histogram method is of interest by virtue of its relationship to
previous work on associative sorting techniques. The process of domain histogram
partitioning will be considered in this context in Section 8.1. When supported by
the available per-track hardware, however, the hash partitioning scheme, described
in Section 8.2, should generally be somewhat faster, and is also more amenable to

statistical analysis.

-8.1 Domain histogram partitioning

The domain histogram method is closely related to a technique introduced by Lin
[1977] for sorting external files stored on an associative head-per-track disk device
such as SAM. Lin’s bucket sort algorithm assumes, as does our scheme, that the file
can be stored entirely on the associative disk device, and thus that each data entity
passes under an intelligent processing unit exactly once per revolution. The scheme
functions in a manner analogous to that we have described for external evaluation
of the relational algebraic operators, reading one bucket from the external file into
“a primary random access memory during each successive revolution of the disk. By
contrast with the relational operators, however, the task of sorting requires that
each partition be comprised of tuples whose sort domain-the compound attribute
whose value is to determine the sorted order-contains contiguous values. Note
that if the sort domain values were known a priori to be uniformly distributed
over some range [Zmin, Zmax), the file could be divided into h = (c/a) buckets, each
containing a tuples of relation R (ignoring a few boundary conditions), with the
i-th inter-bucket boundary being

Tmin + (xmax — zmin)i
h

Each such bucket would correspond to one contiguous range of sort domain values,
so that successive buckets could be read into primary storage in a monotonic

42

sequence of their sort key ranges, then internally sorted, and the resulting file
output in fully-sorted order.

Unfortunately, most files of practical interest deviate substantially from this
assumption of uniform sort domain distribution. Lin’s solution involves dividing
the domain into a large number of equal-sized intervals whose size is small by
comparison with P. During a single preliminary revolution of the associative disk
device, a count is taken of the number of tuples of R whose sort domain values
fall within the bounds of each of these smaller intervals, forming what is called a
domain histogram. The lowest-valued k intervals are then combined to form the
first bucket, with k chosen as large as possible such that the resulting bucket would
fit within available primary storage (based on the counts of each such interval
and the fixed tuple size). This first bucket is then tranferred into primary storage
for internal sorting. On each successive revolution of the associative disk device,
another such bucket is identified in a similar manner and read into primary storage.

As an example, consider the case of a file of I0-byte tuples whose integer-
valued sort domain is bounded by the values 0 and 99. We might first divide the
domain into ten equal intervals, and obtain the following counts for the number
of tuples whose sort domain values fall within each interval:

[z, zy]: wunt
[0, 9] 53
[10, 19]: 81
(20, 29]: 27
[30, 39]: 59
40, 49):)
150, 59): 14
[60, 69]: 11
170, 19 28
[80, 89]: 36
[90, 99]: 91

Assuming 2000 bytes of available storage, the first three intervals, together
occupying (53 4 81 + 27) 10 = 1610 bytes, would constitute the first bucket.
Thus on the first revolution (following the one required for histogram creation),
all tuples whose sort domain values fell between 0 and 29 would be read into
primary storage in the order they were encountered on the disk. The algorithm
for internal projection would then be applied to this first bucket of tuples, and the
result output. On the next revolution, all tuples in the five intervals bounded by
(30, 89) would be read and processed internally; the third bucket would consist of

43

all tuples within the bounds of the final interval.

The associative bucket sort algorithm can be applied to the problem of key-
disjoint partitioning and transfer by using the key of the argument relation (in
the case of projection) or relations (in the case of join, union, intersection and
set difference) in the same way as the sort domain is used in the bucket sort algo-
rithm. As it happens, though, the loosening of the contiguity constraint in favor
of the weaker requirements of key-disjoint partitioning makes possible a modest
refinement of this technique when applied to the relational algebraic operators.
Note that if the interval bounded by [80,89] is added to the first partition (which,
unlike the interval immediately following the first partition, would not result in
a PAM overflow), and the entire third partition then merged with the second
(which would now have enough room), only two SAM revolutions (plus the one
for histogram construction) would be required to pass the relation through PAM.
The contiguity requirement thus makes it necessary to expend one extra SAM
revolution by comparison with a different assignment of intervals to buckets which
would be possible in the absence of this requirement. Indeed, Lin has observed
that the average bucket size obtained using the bucket sort algorithm may be as
small as half the capacity of the available primary store in a worst case situation,
resulting in up to twice the optimal number of disk revolutions.

The task of finding an optimum partitioning of the relation from the view-
point of minimizing the required number of SAM revolutions is an example of
a bin packing problem, whose exact solution is unfortunately NP-complete. In
practice, however, one of several known linear time heuristic algorithms for non-
optimal, but typically reasonably effective, bin packing can be used to improve the
performance of the partitioning of relations using domain histograms. (As these
algorithms seem to constitute a separable and fairly well reported area of work,
they will not be given further attention in this paper.)

Having identified a group of interval sets which do a reasonable job of con-
trolling the number of buckets, all tuples whose key falls within the set of interval
ranges which define a particular bucket must be retrieved during a single revolution
of SAM. This imposes stronger requirements on the capabilities of the per-track
logic than those required by the unoptimized algorithm, since more than one range
specification must be checked for each tuple which passes under the head. Although
there are several possible ways in which this operation might be performed, most
depend on a fixed limit on the number of non-contiguous ranges used to define
each bucket, thus constraining the bin packing problem in an interesting way.

Three factors are worth mentioning with regard to the choice of interval size.
First, the expected amount of wasted PAM space after bin packing (manifested
in a larger number of buckets, and hence, additional SAM revolutions) is directly
related to the size of the intervals. Second, the likelihood that those tuples whose

44

keys fall within a single interval will exceed the capacity of PAM (thus causing a
PAM overflow regardless of the chosen partitioning) varies inversely with interval
size. Note, however, that there is no interval size small enough to guarantee that
no overflow will occur; the recovery procedures outlined in Section 7 are necessary
to provide for the occurence of PAM overflow, however unlikely.

Finally, we note that the choice of an extremely small interval size is not
without substantial cost, as each per-track logical unit would almost certainly (at
least within the context of the designs we have considered) require a quantity
of random access memory bearing an inverse linear relationship to interval size.
To see why this is the case, note that the total number of interval count incre-
ments required during the first (histogram creation) revolution of SAM is exactly
¢ (assuming, for simplicity, a single argument relation). The bandwidth necessary
to perform all of these increments directly on one single-ported random access
memory could easily be several orders of magnitude too great in a typical practical
application. All of the solutions which we have considered seem to be essentially
equivalent to the provision of a number of random access words within each per-
track unit which is equal to the maximum number of intervals into which the
domain can be divided. The individual subtotals from each per-track logical unit
may then be summed to obtain the final counts for each interval. (Although the
time required for this final summation is proportional to the number of SAM heads
in the absence of n-argument adding hardware, this delay, which occurs only once
per operator evaluation, should ordinarily be insignificant by comparison with the
cost of associative retrieval.)

In attempting to rigorously evaluate the average case behavior of the domain
histogram method, we are faced with the need to make fairly strong (and problematic,
given our limited current understanding of the actual and potential use of such
systems) assumptions about the incidence of PAM overflow. In the case of the
hash partitioning method, on the other hand, a much weaker set of assumptions
yields an analytically tractable model for use in computing the average case cost—
which in fact turns out to be linear and small-of PAM overflows. Since the hash
partitioning technique is probably superior in most applications to the method

" currently under discussion (at least under the assumption of suitable per-track
logical capabilities), we will thus omif a detailed average case analysis of the
overflow scheme as applied to domain histogram partitioning, but include such a
treatment in our analysis of the hash-based scheme.

8.2 Hash partitioning

Let us now turn our attention to the hash-based scheme for partitioning and
transferring the argument relation, The intent of this algorithm is to manage

45

the problem of non-uniform distribution of the key by assigning tuples to PAM-
sized buckets using a hashing function. The algorithm requires that each per-track
unit be capable of sequentially computing a hashing function on the compound
attribute in question, and of outputting all tuples for which the resulting hashed
value falls within a specified range. Because the algorithm does not require the
ability for a dynamic choice of the range of the hash function, the requirement for
real-time hashing is well within the capabilities of the sort of simple and inexpen-
sive hardware which would be required in a practical per-track logical unit. One
implementation, for example, would combine the entire compound attribute into a
single, fixed length “signature word” (of, say, 16 bits), by computing the exclusive
or of each two-byte segment with the current accumulated signature word as it
passes under the head. In the discussion which follows, we assume that the hashing
function maps all keys onto a range [0, Hax]-

In the interest of simplicity, we will first consider the case of a single rela-
tional argument. In the first step of the algorithm for category two hash-based
partitioning, the range of the hash function is divided into & equal hash intervals,

where LW
b= [(_““_)_]

a

W (for “waste factor”) is a fixed system parameter, ordinarily much smaller than
one. The number of hash intervals is thus chosen to be slightly larger than the size
of the relation in “PAM-fulls”, (We assume that the size in bytes of each stored
relation is immediately available or easily determinable, so that this operation
requires negligible time.) During each SAM revolution, all tuples whose keys hash
to a value within a single hash interval are transferred into PAM, providing their
combined size does not exceed the capacity of PAM.
. In the absence of overflows, exactly 2 SAM revolutions, requiring time k7T, are

necessary to transfer all buckets of the argument relation(s) into PAM. Whenever
z, the number of tuples assigned to the current bucket, is greater than (¢/h) by a
factor of more than W, however, an overflow occurs, resulting in the expenditure
of more than one SAM revolution for the bucket in question; the exact number of
revolutions depends on the ratio of x to (¢/h). In the general case where an average
of v extra “‘overflow revolutions” are required per bucket, the time required is
exactly

(14 v)hT,

The central concern of our analysis is the derivation of an upper bound on the

average case value of v.
By comparison with the domain histogram algorithm, the randomizing property

of the hashing scheme permits a relatively accurate statistical evaluation of the

46

number and extent of PAM overflows to be expected in the course of hash par-
titioning without excessively stringent assumptions regarding the distribution of
the key values. (Our analysis is dependent, of course, on the assumption that the
distribution of hash values, given a large set of keys, will be close to uniform over
the range [1, Hnax); this may not in fact always be the case.) The analysis is based
on the treatment of the partitioning process as a set of ¢ independent Bernoulli
trials, one for each tuple in the relation, with each trial defined as successful if
the tuple in question falls within the current hash interval, and as unsuccessful
otherwise. The number of tuples which will be assigned to any given bucket is
thus a binomially distributed random variable whose probability of being equal
to some particular value k is exactly

HOICHI

Unless there is-a very small number of tuples per PAM load, this function is well
approximated by the Gaussian distribution

o

vV2ro

having mean

B §
I
b ol IS

and variance)
2 __(;__1
o (1 h)n
Furthermore, both 7 and o? approach

a

14+W

as ¢ grows large, and are thus asymptotically independent of the size of the argu-
men t relations.

Note that this approximation differs from that most commonly employed
in analyzing hash coding behavior in database management applications (see
Wiederhold [1977], for example). In the more common use of hashing, the ex-
pected value of x is typically quite small, so that the corresponding function is
better approximated by a Poisson distribution. When the 7 is reasonably large,
however, a normal distribution provides a better approximation. As a practical

47

rule of thumb, the Gaussian approximation, which is justified in the limit by the
DeMoivre-Laplace theorem, is very good whenever the quantity

(5-3)

is less than about 0.1, which should be true in most conceivable practical cases.
The expected number of overflow revolutions may thus be estimated by

00 (i+1)a/2
v=2'('+1) ¢($_n)d$

&= 2 Jiop o

For purposes of obtaining a simple upper bound, the discrete summation may
be eliminated by substituting 2z/a for ¢+ within each term, so that a constant
expression equal to--the lower limit of integration is replaced by the variable of
integration within that range, which must necessarily be larger. This yields

Czfz 1 z—n
”</.. ;(z+§)¢(>)”’z

— (515)2{(202 +nl@n+a)1 — @(‘i};’)) + @0+ 3a)¢(‘:/_§;’)} :

where

®(z) = /_ cw«i’(y)dy ,

which has no closed form solution, but whose values for specific x are available in

tabular form.
"v is thus independent of the size of the argument relations, and since h varies

linearly with argument size, the time
(14 v)hT,

for partitioning and transfer is of linear complexity in the size of the argument
relations. (Since the algorithm for internal projection is also linear, the correspond-
ing external algorithms are linear.) The time required is, however, inversely related
to W, the waste factor, and directly related to «a, the capacity in tuples of PAM.

48

Calculations using a range of typical c, t, P and h values suggest that a very
modest W (say, on the order of 0.1) should generally suffice to make the cost of
overflow recovery negligible by comparison with the complexity component due

to the transfer of non-overflowing buckets.
The algorithm for hash-based external evaluation of the join, union, intersect

and set difference operators is analogous to the one described for external projec-
tion. In the case of the category two operators, the number of hash intervals, A,

is set equal to R R
he [(1 + W)(:ERB + Zﬁﬂﬁ)]

Analysis of the average case time complexity of the category two operators is
similar to that presented above for projection, the primary differences being due
to substitution of n;ny for n(n—1)/2 as the number of SAM revolutions required
for recovery from PAM overflow. As in the case of projection, such overflows make
only a linear contribution to the cost of category two evaluation.

In practice,. the time required for evaluation of both the category one and
category two operators should ordinarily be quite close to the sum of

1. the time required for a number of SAM revolutions equal to the size of the
argument relation (or in the case of category two, the combined size of the two
argument relations) in “PAM-fulls”, and

2. the time required for internal evaluation of the operator in question.

In the case where the argument relation(s) are large, this may represent a
very substantial improvement on the results attainable using a database machine
based on an associative secondary storage device alone, as in the RAP, CASSM

and RARES designs.

49

9. summary

In this paper, we have proposed a non-von Neumann machine architecture
for the efficient large-scale evaluation of relational algebraic database primitives.
The design is based on a content-addressable primary storage unit called PAM
and a rotating logic-per-track associative device called SAM, both based on exist-
ing, and in the near future, economically feasible, technology. The machine we
have described functions in much the same way as several proposed and already-
implemented database machines for the operations of selection and restriction, but
appears to offer a significant performance advantage in the case of project, join,
and the unstructured set operators.

Specifically, the time required for external selection and restriction is inde-
pendent of the size of the argument relation, being equal to the time for one
revolution of SAM under the assumptions enumerated in the paper. This result
substantially improves upon the best known general algorithms for evaluating
these operations on a von Neumann machine, but is essentially equivalent to those
obtained on most of the database machines reviewed in Section 3.2. The time
required for external projection, join, union, intersection and set difference, on the
other hand, is roughly that required for a number of SAM revolutions equal to
the combined size of the argument relations in ‘PAM-fulls” plus the (also linear)
time required for internal evaluation of the operator in question. This latter result
represents an O(log n) improvement over the best presently known methods on a
von Neumann machine, and appears to offer a large linear factor improvement
(roughly proportional to the capacity of PAM) over the best reported results in-
volving a specialized database machine architecture having comparable hardware
complexity.

It must be acknowledged, however, that we have left many details unspecified,
have made a number of assumptions which ought to be carefully examined, and
have not yet performed the sorts of detailed comparisons that would justify a
confident claim that the architecture we have described is in fact more suitable for
practical application than those already proposed in the literature. It is hoped that
the readers of this paper will contribute to the process of critical review necessary
to adequately assess the merit of the approach we have suggested.

50

References

Ampex Corporation, “9300 Parallel Transfer Disk Drive”, product announcement,
Redwood City, 1978. ’

Anderson, Donald R., “Data base processor technology”, Proceedingsof the National
Computer Conference, 1976.

Anderson, G. A. and Kain, R. Y., “A content-addressed memory design for data
base applications” , Proceedings of the 1976 International Conference on Parallel
Processing, IEEE, New York, pp. 191-195, 1976.

Banerjee, Jayanta, Baum, Richard 1., Hsiao, David K. and Kannan, Krishnamurthi,
“Concepts and capabilitiesof a databasecomputer”, to appear in ACM Transactions
on Database Systems, 1979.

Batcher, K. E., “STARAN parallel processor system hardware”, Proceedings of
the AFIPS 1974 National Computer Conference, vol. 43, AFIPS Press, Montvale,

New Jersey, pp. 405-410, 1974.

Baum, Richard I. and Hsiao, David K., “Data base computers-a step towards
data utilities” , IEEE Transactions on Computers, vol. C-25, December, 1976.

Berra, P. Bruce, “Some problems in associative processor applications to data base
management”, Proceedings of the National Computer Conference, 1974.

Berra, P. Bruce, ‘Data Base Machines”, ACM SIGIR Forum, Winter, 1977.

Canady, et al,, “A back-end computer for database management”, Communications
of the Association for Computing Machinery, vol. 17, pp. 575-582, October, 1974.

Chu, Y. H., “A destructive-readout associative memory”’, IEEE Transactions on
Computers, EC-14, pp. 600-605, August, 1963.

Codd, E. F., “A relational modelof data for largeshared data banks”, Communications
of the ACM, vol. 13, no. 6, pp. 377-387, June, 1970.

Codd, E. F., “A Data Base Sublanguage Founded on the Relational Calculus”,
Proceedings of the 1971 ACM SIGFIDET Workshop on Data Description, Access
and Control, Association for Computing Machinery, 1971.

Codd, E. F., “‘Relational completeness of data base sublanguages”, in Rustin,
Randall (ed.), Courant Computer Science Symposium 6: Data Base Systems,
Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1972.

51

Copeland, G. P., Lipovski, G. J. and Su, S. Y. W., “The architecture of CASSM:
A cellular system for nonnumeric processing”, Proceedings of the First Annual
Symposium on Computer Architecture, 1973.

Couranz, G.R., Gerhardt, M. S., and Young, C. J. “Programmable radar signal
processing using the RAP”, Proceedings of -the Sagamore Computer Conference
on Parallel Processing, Springer-Verlag, New York, pp. 37-52, 1974.

Crane, B. A. and Githens, J. A., “Bulk processing in distributed logic memory”,
IEEE Transactions on Computers, EC-14, pp. 186-196, April, 1965.

Crofut, W. A. and Sottile, M. R., “Design techniques of a delay-line content-
addressed memory”, IEEE Transactions on Computers, pp. 529-534, 1966.

DeFiore, Casper R. and Berra, P. Bruce, “A data management system utilizing an
associative memory”, Proceedings of the AFIPS National Computer Conference,
vol. 42, 1973.

DeF'iore, Casper R., Stillman, C. R., and Berra, P. Bruce, “Associative techniques
in the solution of data management problems”, Proceedings of the ACM, pp. 28-
36, 1971.

Dewitt, David J., “DIRECT-A multiprocessor organization for supporting rela-
tional database management systems”, IEEE Transactions on Computers, vol. c-

28, no. 6, June, 1979.

Ewing, R. G. and Davies, P. M., “An associative processor”, Proceedings of the
AFIPS 1964 Fall Joint Computer Conference, Spartan Books, Inc., Baltimore,
Maryland, pp. 147-158, 1964.

Finnila, C. A., “The associative linear array processor”’, IEEE Transactions on
-Computers, February, 1977.

Flynn, M. J., “Some computer organizations and their effectiveness”, IEEE Transactions
on Computers, pp. 948-960, September, 1972.

Foster, Caxton C., Content Addressable Parallel Processors, New York, Van
Nostrand Reinhold, 1976.

Gains, R. S., and Lee, C. Y., “An improved cell memory”, IEEE Transactions on
Computers, pp. 72-75, February, 1965.

Healy, L. D., Lipovski, G. J. and Doty, K. L., “The architecture of a context
addressed segment-sequential storage” Proceedings of the AFIPS 1972 Fall Joint
Computer Conference, AFIPS Press, Montvale, New Jersey, pp. 691-701, 1972.

Higbie, L. C., “The OMEN computers: Associative array processors”’, IEEE
52

COMPCON, pp. 287-290, 1972.

Higbie, L. C., “Supercomputer architecture”, Computer, pp. 48-58, December,
1973.

Hsiao, David K., “The architectureof a database computer-A summary”’, Proceedings
of the Third Workshop on Non-Numeric Processing, May, 1977.

Hsiao, David K., and Kannan, Krishnamurthi, “The architecture of a database
computer-part II: The design of the structure memory and its related processors”,
Technical Report OSU-CISRC-TR-76-2, Ohio State University, October, 1976.

Hsiao, David K., and Kannan, Krishnamurthi, “The architecture of a database
computer-part III: The design of the mass memory and its related components”,
Technical Report OSU-CISRC-TR-76-3, Ohio State University, December, 1976a.

Hsiao, David K., Kannan, Krishnamurthi, and Kerr, D. S., “Structure memory
designs for a data base computer”, Proceedings of the ACM Annual Conference,

pp. 343-350, 1977.

Hsiao, David K. and Madnick, Stuart E., ‘Data Base Machine Architecture in
the Context of Information Technology Evolution”, Proceedings of the Third
International Conference on Very Large Data Bases, October, 1977.

Kaplan, A., “A search memory subsystem for a general-purpose computer”, Proceedings
of the AFIPS 1963 Fall Joint Computer Conference, vol. 24, Spartan Books, Inc.,
Baltimore, Maryland, pp. 193-200, 1963.

Kerschberg, L., Ozkarahan, Esen A., and Pacheco, J. E. S., “A synthetic English
query language for a relational associative processor”, Proceedings of the Second
International Conference on Software Engineering, October, 1976.

Lang, T., Nahouraii, E., Kasuga, K. and Fernandez, E. B., “An architectural
extension for a large database system incorporating a processor for disk search”,
Proceedings of the Third International Conference on Very Large Data Bases,

-Tokyo, Japan, October, 1977.

Lee, C. Y., “Intercommunicating cells as a basis for a distributed logic computer”,
Proceedings of the AFIPS 1962 Fall Joint Computer Conference, Spartan Books
Inc., Baltimore, Maryland, pp. 130-136, 1962.

Lee, C. Y., and Paull, M. C., “A content adressable distributed logic memory
with applications to information retrieval”, Proceedings of the IEEE, pp. 924-932,

June, 1963.

Lin, Chyuan Shiun, “Sorting with associative secondary storage devices”, Proceedings

53

of the National Computer Conference, pp. 691-695, 1977.

Lin, Chyuan Shiun, and Smith, Diane C. P., “The design of a rotating associative
array memory for a relational data base management application”, Proceedings of
the International Conference on Very Large Data Bases, vol. 1, no. 1, September,

1975.

Lin, Chyuan Shiun, Smith, Diane C. P., and Smith, John Miles, “The design
of a rotating associative memory for relational database applications”, ACM
Transactions on Database Systems vol. 1, no. 1, pp. 53-65, March 1976. (Revised
version of Lin and Smith [1975], cited above).

Linde, Richard R., Gates, Roy and Peng, Te-Fu, “Associative processor applica-
tions to real-time data management”, Proceedings of the National Computer

Conference, 1973.

Lipovski, G.J., “The architecture of a large distributed logic associative memory”,
National Technical Information Service, AD 692195, July, 1969.

Lipovski, G.J., “The architecture of a large associative processor”’, Proceedings
of the AFIPS Spring Joint Computer Conference, pp. 385-396, 1970.

‘Lipovski, G. J., “Architectural features of CASSM: A context addressed segment
sequential memory”, Proceedings of the Fifth Annual Symposium on Computer
Architecture, Palo Alto, California, pp. 31-38, April, 1978.

Lowenthal, Eugene 1., “A survey-The application of data base management com-
puters in distributed systems”, Proceedings of the Third International Conference
on Very Large Data Bases, Tokyo, Japan, October, 1977.

McGregor, D., Thompson, R. and Dawson, W., “High performance hardware for
‘database systems”, in Systems for Large Data Bases, Lockmann and Newhold,
eds., Amsterdam, The Netherlands, North Holland, pp. 103-116, 1976.

Minsky, N., “Rotating storage devices as partially associative memories”, Proceedings
of the AFIPS 1972 Fall Joint Computer Conference, AFIPS Press. Montvale, New
Jersey, pp. 587-595, 1972.

Moulder, Richard, “An implementation of a data management system on an as-
socia t ive processor” , Proceedings of the National Computer Conference, 1973.

Murtha, J. C., and Beadles, R. L., “Survey of the highly parallel information
processing systems”, Office of Naval Research Report No. 4755, November, 1964.

Nakano, R., “A simulator for a RAP virtual memory system”, M.S. thesis, University
of Toronto, 1976.

54

Ozkarahan, Esen A., “An associative processor for relational data bases-RAP”,
Ph.D. Dissertation, University of Toronto, 1976.

Ozkarahan, Esen A., and Schuster, Stewart A., “A high level machine-oriented as-
sembler language for a data base machine”, Technical Report CSRG-74, Computer
Systems Research Group, University of Toronto, October, 1976.

Ozkarahan, Esen A., Schuster, Stewart A., and Sevcik, K. C., ‘Performance
evaluation of a relational associative processor’, ACM TODS, vol. 2, pp. 175-195,

June, 1977.

Ozkarahan, Esen A., Schuster, Stewart A., and Smith, Kenneth C., “A data
base processor’, Technical Report CSRG-43, Computer Systems Research Group,
University of Toronto, Sept. 1974.

Ozkarahan, Esen A,, Schuster, Stewart A., and Smith, Kenneth C., “RAP--
An associative processor for data base management”, Proceedings of the AFIPS
National Computer Conference, vol. 44, pp. 379-387, 1975.

Ozkarahan, Esen A., and Sevcik, K. C., “Analysis of architectural features for
enhancing the performance of a data base machine”, ACM TODS, vol. 2, pp. 297-
316, December, 1977.

Parhami, B., “A highly parallel computing system for information retrieval”,
Proceedings of the AFIPS 1972 Fall Joint Computer Conference, AFIPS Press,
Montvale, New Jersey, pp. 681-690, 1972.

Parker, J. L., “A logic per track retrieval system”, Proceedings of the IFIP 1971
Congress, vol. 1, North-Holland Publishing Co., Amsterdam, The Netherlands,

pp. 711-716, 1971,

Rudolph, J. A., “A production implementation of an associative array processor:
STARAN?", Proceedings of the AFIPS 1972 Fall Joint Computer Conference, vol.
41, pt. 1, AFIPS Press, Montvale, New Jersey, pp. 229241, 1972.

Rux, P. T., “A glass delay line content-addressable memory”, IEEE Transactions
‘on Computers, pp. 512-520, 1969.

Schuster, Stewart A,, Nguyen, H. B., Ozkarahan, Esen A., and Smith, Kenneth
C., “RAP.2-An associative architecture for data bases and its applications”,
IEEE Transactions on Computers, vol. c-28, no, 6, June 1979. (Revised version
of “RAP.2-an Associative Processor for Data Bases”, Proceedings of the Fifth

Computer Architecture Symposium, May, 1978.)

Schuster, Stewart A., Ozkarahan, Esen A., and Smith, Kenneth C., “A virtual
memory system for a relational associative processor”, Proceedings of the AFIPS

55

National Computer Conference, vol. 45, pp. 855-862, 1976.

Shooman, W., “Parallel computing with vertical data”, Proceedings of the 1960
Eastern Joint Computer Conference, New York, pp. 393-400, 1960.

Slotnick, D. L., ‘Logic per track devices”’, Advances in Computers, vol. 10,
Academic Press, New York, pp. 291-296, 1970.

Su, Stanley Y. U., Chen, W. F. and Emam, Ahmed, “CASAL: CASSM’s as-
sembly language”, Technical Report 7778-7, Computer and Information Sciences
Department, University of Florida, March, 1978.

Su, Stanley Y. U., Copeland, George P., and Lipovski, G. J., ‘Retrieval operations
and data representations in a content-addressed disc system”, Proceedings of the
International Conference on Very Large Data Bases, Framingham, Massachusetts,

September, 1975.

Su, Stanley Y. U., and Emam, Ahmed, “CASDAL: CASSM’s data language”,
ACM Transactions on Database Systems, vol. 3, no. 1., pp. 57-91, March, 1978.

Thurber, Kenneth J. and Wahl, Leon D., “Associative and parallel processors”,
Computing Surveys, vol. 7, No. 4, December, 1975.

Trabb-Pardo, Luis, Set Representation and Set Intersection, Ph.D. thesis, Report
STAN-CS-78-681, Computer Science Department, Stanford University, December,
1978,

Wiederhold, Gio, Database Design, McGraw-Hill, pp. 292-294, 1977.

Yau, S. S., and Fung, H. S., “Associative processor architecture-a survey”,
Computing Surveys, vol. 9, no. 1, March, 1977,

Young, F. H., “Circulating associative memories”, Department of Mathematics
Report, Oregon State University, 1962.

56

