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1. Introduction.

In computing the variance of a sample of N data points {z;},thcfundamental
calculation consists of computing the sum of squares of deviations from the mean.
This quantity, which for brevity will be referred to as “the sum of squares” or
simply as “S"”, is defined as ”

N
S=)> (z—2)} (1.1a)
1=1
where
1 N
T = ngi. (1.1b)

This computation can be easily performed dircctly by the rwo-pass algorithm
(1.1) provided that (a) N is small comparcd to the amount of core mecmory avail-
able and (b) the variance is not too small relative to the norm of the data,

llz]l2 = (Ef;l z%}/z If either of these conditions is violated, however, the situa-
tion changes. If N is large, this approach to computing S may bc unsatisfactory
since it requires passing through the data twice: once to compute Z and then again
to compute S. This problem is somctimes avoided by use of the following tcaztbook
algorithm, so called because, unfortunately, it is often suggested in statistical

textbooks:

N 1 N 2
S = Z:c? — N(Z :r,-) . (2)
1=1 =1
This rearrangement allows S to be computcd with only one pass through the data,
but the computation may be numecrically unstable and should almost ncver be
used in practice. This instability is particularly troublesome when S is very small

comparcd to [|z]|z, in which case eventhe two-pass algorithm can beunstable.

In discussing the stability of a numcrical scheme for computing S, a useful
concept is that of the condition numberk of the data. This quantity was first
introduced by Chan and Lewis[@] o gve a thorough discussion. Briclly,« is a
measure of the sensitivity of S to changes in the data. The quantity KU is anupper
bound for the relative perturbation which would occur in the exactly computed
sum of squares if the input data contained rclative errors of size w. Jf thetruc sum
of squares is S, then & is given by

. =l
e (1.3)
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It is easy to see that K 2> 1 and that in general x grows as the variance dccrcascs.
An error analysis of the textbook algorithm[2] 4 1ows that the rclntive error
in S can be bounded by something on the order of

3Nk2y,

where u is the machine roundofl unit (sce section 6). This algorithm is thercfore
seldom useful, as confirmed by the experimental results of Table 1.

The error analysis of the two-pass algorithm found in scction 6 shows that
the relative error in the sum of squares computed using that algorithm can be

bounded by

Nu + N%2u?,
The second term in this bound has traditionally becn ignored in crror analyses of
the two-pass algorithm as being of second order. But in the casec we are intcrcstcd
in here, when N and x are both large, this term can casily dominate. Table 2
shows this happening in practice.

During the preparation of this manuscript, a simple modification of thetwo-
pass algorithm was found by Professor Ake Bjorck which reduces this bound.
Based on the error analysis of section 6 for the standard two-pass algorithm, he
suggested computing'S by

S— }:(x,- - %(i(x,- —.»z))z. (1.4)

In exact arithmetic the second term is zero, but computationally it is a good
approximation to the error in the two-pass algorithm. Note that (1.4) can also
be viewed as the textbook algorithm applicd to the data {(z; — Z)}. The error
analysis of section 6 shows that therelative error in S computed by (1.4) can be

bounded by
Nu + 4N%u’

This modification adds only N additions and 2 multiplications to thec cost of the
two-pass algorithm (already 3N —2 additions and N -~ 1 multiplications)and can
be very useful when the data is poorly conditioned.Sce table 3 for somenumerical
results.

Of course formula (1.4) is still a two-pass algorithm. For large Vit may
be desirable to compute S with only onc pass through the data. A number of
papers have appcaredrecently on “updating” algorithms for computing S. These
are algorithms which are basced on formulae for adding one new data point to a
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sample and computing the value of S for the combined sample by updating thc
(presumably known) value of S for the original sample. By starting with a sample
of size 1 and applying this formula repcatedly, we get a one-pass algorithm for
computing S for a sample of arbitrary size. Youngs and Cramecr|[¢}haveinves-
tigated several such algorithms and have found the following algorithm to bc the
best:

s : =0
T := 1
for j = 2,3,...,,Ndo
T:=T+z, (1.5)
1 :
S =8+ ——(jz;— 1)~

il —1)

Sl y 'El,.—‘l + (]‘1. 71,) (16)

where Sy ; stands for the sum of squares for the data points z; throughz;and 7y ;
is the sum of z; through z;. This notation will be uscd throughout.

One imporant characteristic of this updating formula is thatS) ; is forined
from Sj ;—; by adding to it a nonnegative quantitiy. In thetextbookalcorithm
(1.2), on the other hand, S is formed by a subtraction which canlcad to gross
cancellation and even to negative values of S being cornputcd.

In practice the method (1.5) generally performs on a level comparable to the
two-pass algorithm (1.1). Chan and Lewis[2] present detailcd crror analyses of
some similar updating methods.

In the next section we present a gencralization of thcupdating formul:(1.G)
for combining two samples of arbitrary size. Then in section 3 wedescribe a
pairwise algorithm for computing S which is essentially still a one-passilcorithm
but which numerically is often more stable than the standard two-pass algorithm.

2. A General Updating Formula.

The method of Youngs and Cramer depends on an updating formuia which
allows one to compute S for j+ 1 points when given the value of S for j points and
one new point. In other words, we can combine a sample of size j with a sample
of size 1 and determine the value of S for the combined samplec.

This formula can be easily generalized to allow us to combinc two samplcs of

arbitrary size. Suppose we have two samples {:r;};’.‘__._l,{a:.-}f_'__"f'"’l*_l and wc know
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m m-+tn

Tl,m=Z$i; Tm+1,m+n= E i,

i-1 i=m +1
m 1 m-+-n 1
Sl,m= Z(Xi - r_n'Tl,m)zy Sm—i—l,m—f:n == Z (:L‘,' - o m—f—l,m+n)2-
1=1 i=m+1

Then, if we combine all of the data into a sample of size m - n, it can be shown
that

Tl,m—l—-n = Tl,m + Tl,m+n (2-1‘1)
Si,m+n = S1,m + Sm+1,m+n :
m n
—— =T, m—T, man | . 2.16
+ n(m+n)(m 1,m m-+1,m + ) ( )

If we rewrite the latter formula as

2
m m-+n
Sl,m+n= Slfm"‘sm—}-l,m—{-n"l" n(m+n)( m Tl,m_Tl,n’}—m) ’

then we see that for m= 1, n = j — 1, this reduces to the formula of Youngs
and Cramer, since S == 0 for any single data point. The form (2.1D) is more stable
numerically, however.

Regardless of what method is used to compute S, thcformulac (2.1) may be
useful in their own right whenever two samples must be combincd. Onepossible
application is to parallel processing. If onchas two or morc processors available,the
sample can be split up into smaller subsamplcs, and the sum of squaires coinputed
-for each subsample independently using any algorithm dcsircd. The sum of squares
for the original sample can then bc calculated using the updating formulic.

However, even in the case of a single yroccssor, it is very desirable to compute
S using (2.1). The method (1.5) may be generalized to compute S by processing
the-data in groups of m elements: cornputc the sum of squarcs for caciigroup using
the two-pass algorithm and then update the global S accordingly. Traditional
updating algorithms such as that of Youngs and Cramer have uscdm = 1.

We have found, however, that the stability of the alzorithm is increased by
taking m > 1. One can easily scc that the total number of arithmetic operations
performed on the data is minimized by taking m = V/N. We mizht expect that
this choice of m will minimize the resulting error. Although we do not havea
satisfactory error analysis of this algorithm, the experimental results of table 4 do
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tend to confirm this prediction. Strictly speaking, with m > 1 thisisnolongera
one-pass algorithm, but we see that only m data values at a time ncced to be kept

in core, and m can be as small as necessary.

3. The Pairwise Algorithm.

Table 4 shows that choosing m > 1 not only gives more accuracy than using
m == 1, but can actually give significantly more accuracy than thctvo-pass algo-
rithm. This suggests that when computing the sum of squarcs for the subsamples
of size m, we should not use the two-pass algorithm when S is small. RRatiicr,we
should split the subsample into yet smaller groups. Taking this idca to the limit
yields a pairwise algorithm analogous to the well-known pairwisealzorithm for
computing the sum of N numbers. Let S ; stand for the sum of squarcs of clements
z; through z;, and let m = [N /2], the largest integer not exceeding N/2. Then
the method consists of computing Si,n by first computing Sj,m and Sy, 1, ~ and
then combining these by mcans of (2.1). Each of thcsclattcr quantitics has been
computed by a-similar combination of still smaller subsamplcs.

The algorithm can be implemented as just described, but for rcasonsv.liich
we will explain shortly it is actually best to perform the pairwisc alrorithm in
a somewhat modified manner. Consider the following example with N = 13.
Schematically, we compute from left to right in the tablcau (3.1). Theinterinediate
T; ; are also computed in a similar tableau for usc in updating the S; ;. The final
value 7' n will be the sum of all the data points as computed by thepairwise
summation algorithm. In practice we can compute from top to bottom in these
tableaux requiring only one pass through the data and using only O(log,/N)slorage
locations for intermediate results. We require one such location for cach column
in each tableau. The computation for the tableau (3.1) would procccd as follows:

(a) Compute Sj,2 and store in S[1].
(b) Compute S34, combine with S[I] to get 5j 4, and storc this in S[2].
(c) Compute Ssg and store in S[1].
(d) Compute S7,8, combine with S[1] to get S5s and then combine this
with S[2] to get S1,8, which is then stored in S[3].
(e) Compute Sy o and store in S[1].
(f) Compute Sjj,12, combine with S[1] to get Sy 12, which is then stored
in S[2].
(g) Clean-up (necessary when N is not a power of 2):
Combine z13 with S[2] to get Sg,13. Combine this with S[3] to get Sy ;3.
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Alternatively, we can use a stack structure for the temporary locations as is done
in the sample FORTRAN routine given in scction 9.

The final step (gPfour algorithm requiresthe combination of samples of quite
disparate sizes. Such a calculation would be avoided if we adopted the alzorithm
as described in the first paragraph of this scction. For the pairwise summation
algorithm, Tsao[4] points out that the corresponding method gives a decreased
“average error complcxi ty” and presents animplementation bascd on the binary
expansion of N. That strategy could be adopted in the present context as well,
but its usefulness here is qucstionablc. Wefeel that the small increase in accuracy
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which might result would be more than offset by the increased work which we
would thus incur. For the updating formula (2.1b), it is desirablc to have n=m
whenever possible, since that formula then becomes simply

|
- 2
Sl,2m == Sl,m + Sm+l,2m + om (Tl,m - Tm+1,2m) .

In this respect, the tableau (3.1) gives the preferable computational scheme. In
fact, the amount of work required to perform the pairwisc algorithm as described
here is not significantly more than that required for the two-passalcorithm. An
operation count shows that roughly 2N additions and 5N /2 multiplications arc
required, as opposed to 3N additions and N multiplications for the two-pass al-
gorithm. In addition, some bookkceping operations are required to manane the
pairwise algorithm.

Although we are not able to provide any error bounds proving thesupcriority
of the pairwise algorithm, our expcrimental results have been quite satisfactory.
Some of these results are shown in table 5 of section 8.

5. Extensions.

Often one wants to compute a weighted sum of squarcs of dcviations from
the mean,

M = wifz — )% (5.1)

1=1
The updating_formulae (2.1) still hold with only a few minor modifications. L.et
W k= Z’:: ;Wi. Then (2.1) is replaced by
. Tl,m+n = Tl,m + Tnz+l,m+n
Wi,min=Wi,m+ Wanii,min
SW) = gW) 4
1m+n Lm W1n+l,n1—{—n(Wl,m + Wm+l,m+ n) (52)

X va—l—l,m—l—n
Wl,m

1,m

2
Tl,m - Tm+l,m+ n) .

4

Another quantity which is often of interest is the covariancc of two samples
{z;} and {y;}. For this it is necessary to compute

N

CiN = D (@i — )y — ).

=1



If we let Tgfl = Ef_:jx;, Tgi::Zf:jy,-, then the updating formula for C is

Cl,m+n = Clm + Crnt1,m4+n+ m

n n,
X (27—~ s ) (T8~ Tp1 )

6. Error analysis of the two-pass olgorithms.

(5.3)

We assume throughout our error analyses that wc are dealing with a machine
with a guard digit and relative precisionu. On a base fmachinc with a. t digit

mantissa and proper unbiased rounding, u = Zl,ﬁl"’t.

Roman letters with tildas over them will be used to denotec quantitics ac-
tually computed numerically. The same letter without a tilda will indicate the

corresponding exact--quantity.

In this section we present error analyses for both the standard two-pass algo-

rithm (1.1) and Bjorck's modification (1.4). Let

N
Sl=2($5_$)2’

=1

] (& R%

v{Zea)
S=5 —S,

The standard two-pass algorithm is S;. We first compute a value 7 for Lhe

mean of {z;}. If this is computed in the standard manner wc have

8
I

N

S a1 &), with [6] < N o+ 0(),
=1

=i+ %Z-’F.’E.‘-

The computed value Sl is then given by

8
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Si=2 (e — 21 4n) bl <IN+ 2u+0(u)
=Z((Xi — )+ (i—é)) (L m)
=Y (- +rm—ae—+E—)0+n) gy

=S + Z(fc."—i)?m— ]%'(Z x.‘&) Z(xi"‘ﬂ—f)(l'{"h)

The O(u?) terms in the bounds for |7;] and |€;] turn out to be unimportant in the
present error analysis and will be dropped below. Note that Z(x,'——i)-——-() and
that the following inequalities hold:

< Sllle < SN + 2)y,

Z (2 — z)*ni

Szt < lzlaliéls < N'lellllélleo < N ljzllou,

> s — i < SV2linlla < SVANY2fln < SVAN VAN A 2

So from (6.2) we obtain the bound
151 — SII< SN + 2)u + 2N(N + 2)S"/?|ljzu? + N?lz|5u*(1 4 (N + 2)u).
Recalling the definition (1.3) of &, we see that

- t
|2 S_ S < (N + 2u + 2N(N + 2ku? + N2l + (N + 2)u) (6.3)
i .
~ Nu + N%?u? + 2N%u?,

When N >> 1, K >> 1, the term N2%2u? may cause problecms as wasscen in
table 2. Note that this term results from the term N(# 3 z:&)? in (6.2). We will
now show that the computed value S'z is a good approximation to this crror. We
have that



S= (D=0, W) withul < (V + 2u + 00,

(ot — )
(s —2)+ 6 — 20 +)°
(Z(x.'—i)'n — IL\I(Z $.‘fi)(N + Z’Y.'))2

(Zl(x.‘-—:i)"/i)2 }32(2 )(Zz,&) N - ny,-)
+ m(zfi&) ( COINDY % (Z%))

Note that Sp contains a term '[J\)‘(Zziei)zy so, using Bjorck's modification of the

g

2= Z|- Z|-

Z|—

two-pass algorithm we compute § as
=G — &)1 +8), with 5|<u
- (s + 3 e — 2)t— Z(E zi6i) > (@ — 2)(1 +n)
D) S A
— (2t — ) () (N + 3 )
_ 1_\/1_3(2 a;,-f,-)2(2N S (}_: «,,-)2))(1 +6).

Bounding these quantities as before gives the following bound for the rclative crror:

S—5

N < (N + Qu + (N + 2)(dNr + 2(N4-2))u?

+ (N + 2)(3N%2 4 (ON + 4)x - (N + 2))u® 4- O(u?)
~ Nu + 4N%u? 4 3N*:%3

The modification has thus reduced the “sccond order term” by roughly a factor

of K.

7. Calculation of the mcan in double precision.

A greater accuracy can bc achicved from any alcorithm for computing the
sum of squares by simply using higher precision arithmetic. It is important to
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note, however, that a large increase in accuracy can often be achieved by shifting
only some of the calculations to double precision. From the crror analysis of the
two-pass algorithm, we see that computing the sample mcan in double precision
would replace the bound |&] < N v + O(u?) in (6.1) by |[&] < Nu? - O(u?).If
the remainder of the calculations are still computed in single precision, the error
bound (6.3) Wil nonetheless be replaced by the improved bound

5 —5 < Nu + O(d?).

S

The difference which this can make in practice is evident from table6 in scction
8, which gives the results of some numerical experiments.

The generalized updating algorithm and the pairwise algorithm arc also

improved by calculating the corresponding running sums in double precision.

Numerical results for these modified algorithms are given in tables 7 and8respec-

tively.

8. Experimcental results

All of the results presented in this section were computedon an II3M370/108
computer at the Stanford Linear Accelerator Center. The data used was provided
by a random number gencrator with mean 1 and a varicty of dilicrent variances
o2, For this choice of the mean, fcml/a. In each casctheresults have boen
averaged over 20 runs. Single precision was used in most of theieits except in
the cases where the mean was computed in double precision (tables 6-8). Insinzle
precision, u a5 X 1077, The “correct” answer for USC in computins the error
was computed in quad precision. We report the number of corrcct digitsintie
calculation, defined as —log;o(E) where E' is the relative error.
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Table 1: Number of correct digits for the textbook algorithm on N data points
chosen randomly from N(I.O, 02).

NV
o 64 256 1024 2048
1.0 5.4 4.3 4.1 4.1
101 4.2 4.7 3.0 3.0
102 3.2 3.2 2.0 2.0
103 2.2 2.2 1.0 1.0
104 1.2 1.1 0.0 0.0
10—5 0.2 0.2 -1.0 “1.0
10— —0.8 -0.8 -2.0 -2.0
107 -1.8 -1.9 -3.0 -3.0
10=8 22.8 -2.8 -4.0 -4.0

Table 2: Number of correct digits for the two-pass algorithm on N data points

chosen randomly from N(I.O, 02).

NV
o | 64 256 1024 2048
1.0 52 5.1 4.0 4.0
101 5.4 4.5 4.2 4.2
102 56 4.5 4.4 3.7
103 5.6 4.6 4.5 3.6
10— 52 4.8 4.4 4.0
103 55 53 3.1 3.0
10—8 4.5 4.4 2.1 1.9
107 3.5 3.3 1.1 0.9
108 2.5 2.3 0.1 —0.1
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Table 3: Number of correct digits for Bjorck's two-pass algorithm on N data points
chosen randomly from N(I.O, 02).

N
AN

64 256 1024 2048
1.0 52 5.1 4.0 4.0
101 5.4 4.5 4.2 4.2
102 5.6 45 4.4 3.7
103 5.6 4.6 4.4 3.6
10— 5.2 4.8 3.9 3.7
10— 5.2 5.0 3.9 3.8
108 5.4 5.0 4.1 4.0
107 5.7 4.6 4.2 4.2
108 6.2 4.6 3.8 3.3

Table 4: Number of corrcct digits for the generalized updating alzorithm on 1624
data points chosen randomly from N( 1.0, 0?) with various valucs of m.(Note
that m = 1 corresponds to algorithm (1.5) while m == 1024 is just the two-pass

algorithm).

W

o? I 2 4 8 16 32 64 128 256 512
1.0 40 40 43 46 49 50 50 5.1 5.0 4.2
101 42 42 45 48 50 51 52 5.3 4.5 4.3
10—2 4.5 44 47 50 51 53 54 4.9 4.5 4.4
103 4.1 42 45 48 50 52 52 4.8 4.G 4.6
104 3.6 37 40 43 45 48 50 4.8 4.8 4.6
105 3.2 34 38 41 43 46 48 5.1. 5.1 3.4
10—© 2.5 30 33 37 40 43 44 4.6 4.6 2.4
10—7 1.4 21 25 29 36 36 35 3.4 3.3 1.4
10—8 0.4 1.0 17 24 30 28 25 2.4 2.3 0.4
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Table 5: Number of corrcct digits for the pairwise algorithm on N data points
chosen randomly from N(LO, &?).

N
o 64 256 1024 2048

1.0 5.8 5.8 5.6 5.6
10—t 6.0 5.7 5.7 5.7
102 6.2 5.8 5.7 5.6
103 5.9 6.0 5.6 5.6
104 5.5 5.8 5.9 5.8
103 4.7 5.2 5.4 5.4
10—8 45 47 4.8 4.9
107 3.9 42 43 4.4
108 3.2 3.7 3.8 3.9

Table 6: Number of correct digits for the two-pass algorithm on N data points
chosen randomly from N(1.O, ¢2). In this test the means were computed in double

precision.
N
o? 64 256 1024 2048

1.0 5.2 5.1 4.0 4.0
10—t 5.3 45 42 42
102 5.6 4.5 4.4 3.7

103 5.6 4.6 4.4 3.6
10— 5.2 4.8 3.9 3.7
1079 5.1 5.0 3.9 3.8
10—8 5.2 5.0 4.1 4.0
10—7 5.4 45 42 42
108 5.6 4.5 4.4 3.7
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Table 7: Number of correct digits for the generalized updating algorithm on 1024
data points chosen randomly from N(I1.0O, 02) with various valucs of m. In this
test the running sums wcre computed in double precision. (Note that m =1

corresponds to algorithm (1.5) while m = 1024 is just the two-pass algorithm).

m
0\ I 2 4 8 16 32 64 128 256 512
1.0 40 40 43 46 49 50 5.1 5.1 5.0 4.2
10—1 42 42 45 48 50 51 52 53 45 4.3
102 44 44 47 49 52 53 54 4.9 45 4.4
10—3 44 44 47 49 52 53 53 4.8 4G 4.6
104 39 39 42 45 48 50 49 4.8 4.8 4.8
103 39 39 42 45 48 50 50 4.9 4.9 4.3
10— 41 41 43 4G 49 50 5.1 5.1 4.8 4.2
10—7 42 42 45 48 50 52 52 53 4.5 4.3
10— 44 44 47 50 52 53 54 4.9 45 4.4

Table 8: Number of correct digits for the pairwise algorithm on N data points
chosen randomly from N(1.O, 02). In this test the running sums werc computed in

double precision.

N
o 64 256 1024 2048
1.0 5.9 5.8 5.7 5.7
10! 5.9 5.7 5.7 5.7
102 6.0 5.7 5.7 5.6
103 6.0 5.7 5.6 5.5
104 5.9 5.8 5.7 5.6
103 5.9 5.8 5.6 5.6
10—° 5.9 5.8 5.7 5.6
107 6.0 5.8 5.7 5.7
108 6.1 5.8 5.8 5.6
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9. AFORTRAN implementation of the pairwise algorithm.

SUBROUIINE UPDATE(M,N,SUM,S,X)
INI3GER M¥,N
REAL*3 S5 ,SUN,X (N)

GIVEN ITHE SUM BND SUM OF SQUARES OF DEVIATIONS FROM THE
KEAN FOR A SAMPLF OF M POINTS,

SUY = S0 Y (1)
I=]

Y 2
S = SUM (YI) = 30M/M)
I=1

AND GIVEN N NEW DATA POINIS X(1)...X(N), THIS ROUTINE PRODUCES
THE SUM AND-SUM CF SQUARES FOR THE COMBINED SAMPLE:

N
SU4 := SUM + SUM X(I)
I=1
M 2 N 2
S = SUM (Y (I) - SUM/(M+N)) + SUM (X(I) = SUM/(M+N))
I=1 I=1

IHE SUY AND S5UM CF SQUARES FOR THE NEW POINTS ARE CALCULATED
USING THE PAIRWISE ALGORTIHM. THE OLD SUM AND SUM OF SQUARES

1S THLN UPDATED.

THIS RJDJUTINE HRS LOCALLY DIMENSICNED AFRAYS TERMS, SUMA AND
SA WHICH CURRENTLY HAVE DIMENSION 21. THIS LIMITS THE

NUMBER OF POINTS WHICH CAN BE HANDLED TO N <= 2%%*20 = 1048576.
TO UsZ WITH LAFGEF N, INCREASE THESE DIMENSIONS TO SOMETHING
AT LEAS';' AS LARGE AS LOGZ2(N) + 1.

_INIEGER TERMS (21),TOP,T

REAL*3 SUMA (21) ,SA (21) ,MEAN,NSUM,NS

TERAS (1) = 0

TOP = 2

N2 = N2

IF (N .LE. 0) GC TC 70
IF (N .GT. 1) GO TO 6

NSUX = X (1)
NS =0
GO 7O 50

16
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a0

6 DO 20 I=1,N2
# COMPUTE THE SUM AND SUM OF SQUARES FOR THE NEXT T#0
# DATA POINTS IN X. PUT THESE QUANTITIES ON TOP OF
# THE STACK.
SUMA (TOP) = X (2*%I-1) + X (2*I)
SA(IOP) = (X(2*I) - X(2*%I-N)*xx2 / 2.0
TERMS (TCP) = 2
13 IF (TERMS (TOP) .NE. TERKS (TOP-1)) GO TO 20
# TOP TWO ELEMENTS ON STACK CONTAIN QUANTITIES COMPUTED
# PEOM THE SAME NUMBER OF DATA POINTS. COMBINE THEM:
)P = TOP-1
TERNS (TOP) = 2 * TERNMS (T2P)
SA (ICP) = SA(TOP) + SA(TOP+1) + (SUMA(TOP) - SUMA (TOP+1) ) *=%x2
X / TERMS (TOPF)
SUMA (TOP) = SUMA (TOP) + SUMA (TOP+1)
50 TO 10
23 TOP = TCP+1

TOP = TOP-1
IF (2%*N2 .EQ. N) GC TO 30
# N IS OuUD., ©PUT LAST PCINT ON STACK:
TOP = TCP+1
TERYS (TOP) = 1
SOUMA (TGP) = X (V)
sa(ropy = 0.0
30 T = TEKMS (TOP)
NSUM = SUMA (TOP)
NS = SA(TOP)
IF (TOP .LT. 3) GC TO 50
# N IS NOT A PCWER OF 2, THE STACK CONTAINS MORE THAN
# ONE ELEMENT. COMBINE THEM:
DG 40 J=3,TOP
I = TOoP+2 - J
NS = NS + SA(I) + T*(TERMS (I)*NSUM/T - SUMA(I))**2 /
X (TERES (I) * (TERMS(I) +T))
NS UM = NSUK + SUMA (I)
43 I = T+TERNKS(I)

50 CCANTINUE
¥ COMBINENS AND NSUM WITH S AND SUM RESPECTIVELY:
IF (M +EQ. 0) GO TO 6C
NS = s + NS + M*x(N*xSUM/K - NSUM)**2 / (N*(N+¥))
NSUM = SUM ¢ NSUM
60 S = NS
SUM = NSOUHM

70 RETURN
END
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