
UPDATING FORMULAE AND A PAIRWISE ALGORITHM FOR

COMPUTING SAMPLE VARIANCES

by

Tony F. Chan
Gene H. Golub

Randall J. LeVeque

STAN-CS-79-773

November 1979

DEPARTMENT OF COMPUTER SCIENCE

School of Humanities and Sciences

STANFORD UNIVERSITY

Updating Formulae and a Pairwise Algorithm for

Computing Sample Variances

Tony F. Chan"
Gene H. Golub™

Randall J. LeVeque™

Abstract. A general formula is presented for computing the sample viriance

for a sample of size m+ n given the means and variances for two subsariij.ics of
sizes m and mn. This formula is used in the construction of a pairwise algorithm

for computing the variance. Other applications are discussed as well, including

the use of updating formulae in a parallel computing cnviornmen t. We present

numerical results and rounding error analyses for several numerical sciicrcs.

*Department of Computer Science, Yale University, New XIlaven, CT 0623

**Department of Computer Science, Stanford University, Stanford, CA 9430).

This work was supported in part by Army contract No. DAAG29-76-G-0175 and

. by a National Science Foundation graduate fellowship. The paper was produced

using TEX, a computer typesetting system created by Donald Knuth at Sva:iford.

1. Introduction.

In computing the variance of a sample of N data points {z,},the fundamental
calculation consists of computing the sum of squares of deviations from thc mean.

This quantity, which for brevity will be referred to as “the sum of squares” or

simply as “S", is defined as

N

S =) (z;—z)} (1.1a)
=]

where

| N
T= DIL (1.15)

1—1

This computation can be easily performed directly by the two-pass algorithm

(1.1) provided that (a) N is small compared to the amount of core mcmory avail-

able and (b) the variance is not too small relative to the norm of the data,

l|zll2 = oN 22172 If either of these conditions is violated, however, the situa-
tion changes. If N 1s large, this approach to computing S may bc unsatisfactory

since it requires passing through the data twice: once to compute Z and then again

to compute S. This problem is somctimes avoided by use of the following tcatbook

algorithm, so called because, unfortunately, it is often suggested in statistical
textbooks:

N 1 N 22

s—3-35) g
1—=1 1=1]

This rearrangement allows S to be computed with only one pass through thc data,

but the computation may be numcrically unstable and should almost ncver bc

used in practice. This instability is particularly troublesome when S is very small

compared to ||z|lg, in which case cventhe two-pass algorithm can bec unstable.

In discussing the stability of a numcrical scheme for computing S, a useful

concept is that of the condition numberk of the data. This quantity was first

introduced by Chan and Lewis[®] lo gvc a thorough discussion. Briefly, is a
measure of the sensitivity of S to changes in the data. The quantity xu is anupper

bound for the relative perturbation which would occur in thc exactly computed

x sum of squares if the input data contained rclative errors of size wu. Jf thetruc sum

of squares is S, then & is given by

| 1adl2
K = ——. (1.3)

VS

It is easy to see that k > 1 and that in general xk grows as thc variance dccrcascs.

An error analysis of the textbook algorithm[2] 4 1ows that the rclntive error
in S can be bounded by something on the order of

3Nk?u,

where u is the machine roundofl unit (sce section 6). This algorithm is therefore
seldom useful, as confirmed by the experimental results of Table 1.

The error analysis of the two-pass algorithm found in scction 6 shows that

the relative error in the sum of squares computed using that algorithm can be

bounded by
Nu + N%*u?

The second term in this bound has traditionally becn ignored in crror analyses of

the two-pass algorithm as being of second order. But in the casc we are interested

in here, when /N and x are both large, this term can casily dominate. Table 2

shows this happening in practice.

During the preparation of this manuscript, a simple modification of the two-

pass algorithm was found by Professor Ake Bjorck which reduces this bound.
Based on the error analysis of section 6 for the standard two-pass algorithm, he

suggested computingS by

N 1 N 2

$= Yn—a= 3Le—a) (1.4)
1—=1 1—=1

In exact arithmetic the second term is zero, but computationally it is a good

approximation to the error in the two-pass algorithm. Note that (1.4) can also

be viewed as the textbook algorithm applicd to the data {{z;— Z)}. The error
analysis of section 6 shows that therelative error in S computed by (1.4) can be

bounded by

Nu + 4N%ul

This modification adds only N additions and 2 multiplications to the cost of the

two-pass algorithm (already 3N —2 additions and N - 1 multiplications)and can
be very useful when the data is poorly conditioned.Sce table 3 for some numerical
results.

Of course formula (1.4) is still a two-pass algorithm. For large/V il may

be desirable to compute S with only onc pass through the data. A number of

papers have appcared recently on “updating” algorithms for computing S. These
are algorithms which are based on formulae for adding one new data point to a

2

sample and computing the value of S for the combined sample by updating the

(presumably known) value of S for the original sample. By starting with a sample

of size 1 and applying this formula repcatedly, we get a one-pass algorithm for

computing S for a sample of arbitrary size. Youngs and Cramecr[d}haveinves-

tigated several such algorithms and have found the following algorithm to bc the
best:

s 1-0

T := 1

for j i= 2,3,...,Ndo (1.5)
T:=T+z
Gp Le m2

S:=S5- TG — ha T)
This 1s based on the updating formula

I :

} S1,;= S1,j—1 + GbE Tu) (1.6)

where S;; stands for the sum of squares for the data points z;throughz;and7y4

is the sum of z; through z;. This notation will be used throughout.
One imporant characteristic of this updating formula is that 5) jis formed

from Sj,;—) by adding to it a nonnegative quantitiy. In tac textbook alzorithm

(1.2), on the other hand, S is formed by a subtraction which canlcad to gross
cancellation and even to negative values of S being cornputcd.

In practice the method (1.5) generally performs on a level comparable to the

two-pass algorithm (1.1). Chan and Lewis|2] present detailed crror analyses of
some similar updating methods.

In the next section we present a generalization of thc updating formula (1.0)

) for combining two samples of arbitrary size. Then in section 3 wedescribe a
pairwise algorithm for computing S which is essentially still a one-passalcorithm

but which numerically 1s often more stable than the standard two-pass algorithm.

2. A General Updating Formula.

The method of Youngs and Cramer depends on an updating formuta which

allows one to compute S for j+ 1 points when given the value of S for j points and

one new point. In other words, we can combine a sample of size J with a sample
of size 1 and determine the value of S for the combined sample.

This formula can be easily generalized to allow us to combine two samples of

arbitrary size. Suppose we have two samples {z;}, {=z} "mn+1 and we know

3

m m-+n

Tim=Y_ Thi men = > zy,
i-1 i=m +1

m m-+-n

| 1 2 . 1 9
Sl, m == D (xe — —T1,m)*, Smti,mtn = > (z; — ~Tmt1,m+4-n) :

s=1 m i=m +1

Then, if we combine all of the data into a sample of size m -}-n, it can be shown
that

11, m+n == Tim + TI, mtn (2.1a)

Si,m-+n = S1,m + Sm+1,m+-n
2

m n

EY —T1,m = Trmt-1,m +n } (2.10)
n{m+ n)\m

If we rewrite the latter formula as

m+n ’m

S1,m+n= S1,m + Sm+1,m+n+(PETym — Timm) :
then we see that for m= 1,n =j — 1, this reduces to the formula of Youngs

and Cramer, since S == 0 for any single data point. The form (2.1D) is more stable
numerically, however.

Regardless of what method is used to compute S, thc formulae (2.1) may be

useful in their own right whenever two samples must be combincd. Onepassible

application is to parallel processing. If onc has two or morc processors available,the

sample can be split up into smaller subsamplcs, and the sum of squares coinputed

-for each subsample independently using any algorithm dcsircd. The sum of squares

for the original sample can then bc calculated using the updating formule.

However, even in the case of a single yroccssor, it is very desirable to compute

S using (2.1). The method (1.5) may be generalized to compute S by processing

the-data in groups of m elements: cornputc the sum of squarcs for caciigroup using

the two-pass algorithm and then update the global S accordinaly. Traditional

updating algorithms such as that of Youngs and Cramer have uscd m = 1.

We have found, however, that the stability of the algorithm is increased by

taking m > 1. One can easily sce that the total number of arithmetic operations

performed on the data is minimized by taking m = VIN. We micht expect that

this choice of m will minimize the resulting error. Although we do not havea

satisfactory error analysis of this algorithm, the experimental results of table4 do

4

tend to confirm this prediction. Strictly speaking, with m > 1 thisisnolongera

one-pass algorithm, but we see that only m data values at a time nccd to bc kept

in core, and m can be as small as necessary.

3. The Pairwise Algorithm.

Table 4 shows that choosing m > 1 not only gives more accuracy than using

m == 1, but can actually give significantly more accuracy than thc two-pass algo-

rithm. This suggests that when computing the sum of squarcs for the subsamples

of size m, we should not use the two-pass algorithm when S is small. Iiatiier, we

should split the subsample into yet smaller groups. Taking this idca to the limit

yields a pairwise algorithm analogous to the well-known pairwise alzorithm for

computing the sum of N numbers. Let §; ; stand for the sum of squares of clements
z; through zj, and let m = [IN /2], the largest integer not exceeding N/2. Then
the method consists of computing Si,n by first computing Sj, and Sy,1 Nv and
then combining these by mecans of (2.1). Each of thcsclattcr quantities has been

computed by a-similar combination of still smaller subsamples.

The algorithm can be implemented as just described, but for rcasonsv./iich

we will explain shortly it is actually best to perform the pairwise alrorithm in

a somewhat modified manner. Consider the following example with N = 13.

Schematically, we compute from left to right in the tablcau (3.1). Theinterinediate

T;; are also computed in a similar tableau for usc in updating the S; ,;. The final
value T1 n will be the sum of all the data points as computed by the pairwise
summation algorithm. In practice we can compute from top to bottom in these

tableaux requiring only one pass through the data and using only O(log, N)siorage
locations for intermediate results. We require one such location for cach column

in each tableau. The computation for the tableau (3.1) would procecd as follows:

(a) Compute Sj and store in S[1].
(b) Compute S34, combine with S[I] to get Sj 4, and store this in S[2].
(c) Compute Ssg and store in S[1].
(d) Compute S7,8, combine with S[1] to get Ss and then combine this

with S[2] to get S1,8, which is then stored in S[3].
(e) Compute Sg jo and store in S[1].
(f) Compute Sjj,12, combine with S[1] to get Sg 12, which is then stored

in S{2].
(g) Clean-up (necessary when N 1s not a power of 2):

Combine z13 with S52] to get Sg,13. Combine this with S[3] to get S) is.

5

I] ~—
S1,2

n= NN
S1,4

I3

si
Z4

S18

Tie
S5,8 |
7

18 ING
Ss 8

57,8
7

Is

51,13
Zs |
810

Z10 SL
Sg 12

tht 59,13

wT
Z13

Alternatively, we can use a stack structure for the temporary locations as is done
in the sample FORTRAN routine given in scction 9.

The final step (gPfour algorithm requiresthe combination of samples of quite
disparate sizes. Such a calculation would be avoided if we adopted the algorithm

as described in the first paragraph of this scclion. For the pairwise summation

algorithm, Tsao[4] points out that the corresponding method gives a decreased
“average error complcxi ty” and presents an implementation based on the binary

expansion of N. That strategy could be adopted in the present context as well,

but its usefulness here is questionable. We feel that the small increase in accuracy

6

which might result would be more than offset by the increased work which we

would thus incur. For the updating formula (2.1b), it is desirable to have n=m
whenever possible, since that formula then becomes simply

|
= 2

S1,2m == Si, m + Sy4-1,2m + Tim Tyit-1,2m) .
In this respect, the tableau (3.1) gives the preferable computational scheme. In

fact, the amount of work required to perform the pairwisc algorithm as described

here is not significantly more than that required for the two-pass alrorithm. An

operation count shows that roughly 2N additions and SN /2 multiplications arc
required, as opposed to 3N additions and N multiplications for the two-pass al-

gorithm. In addition, some bookkeeping operations are rcquired to manace the

pairwise algorithm.

Although we are not able to provide any error bounds proving the superiority

of the pairwise algorithm, our experimental results have been quite satisfactory.
Some of these results are shown in table 5 of section 8.

S. Extensions.

Often one wants to compute a weighted sum of squarcs of deviations irom

the mean,

N

1=1

The updating formulae (2.1) still hold with only a few minor modifications. l.ct

Wk = Si; w;. Then (2.1) is replaced by
TNm4n=T1 m+ Trm+t1,m+4n
Wimtn=Wi m+ Woii min

sw, gm Mm
mtn rm Wnt 1,m4n(Wi,m + Wint1,m- n) (5.2)

2

Wor1, m+n

(EE Tass :Wim y

Another quantity which is often of interest is the covariance of two simples

{z;} and {y;}. For this it iS necessary to compute

N

Ci,N= PINE ~— Z){ys — 1).
1—=1

[|

If we let T'%) = Si i Ti TW = us then the updating formula for C 1s

C Cim=+C + =1 = x

,m—+n l,m m--1,m-}n n(m + n)
(5.3)

N p(s n

x (21= Ths min) TE TDs rin)

6. Error analysis of the two-pass olgorithms.

We assume throughout our error analyses that wc are dealing with a machine

with a guard digit and relative precisionu. On a base @ machine with a. t digit

mantissa and proper unbiased rounding, u = 1p1—t,
Roman letters with tildas over them will be used to denote quantitics ac-

tually computed numerically. The same letter without a tilda will iiidicate the

corresponding exact--quantity.

In this section we present error analyses for both the standard two-pass algo-

rithm (1.1) and Bjorck's modification (1.4). Let

N

S] = PE — z)?,
1=1

ye ;

si= x (Lm).N =]

S=25 —%.

The standard two-pass algorithm is Sj. We first compute a value 7 for Lhe
mean of {z;}. If this is computed in the standard manner wc have

1 N
z= N> zi(l + &), with |&] < Nv + Ou?),

} 1

=Itg)zits

The computed value Si 1s then given by

8

S=> @—2+n) In <N+2u+t0?
~ \2

=> (te = 9+ =). nm
= (@—2"+2— DE —5) + E—7) +m) (6.2)

_ y _

1

+ Hx (N+ > ni).

The O(u?) terms in the bounds for [ni] and [§;] turn out to be unimportant in the
present error analysis and will be dropped below. Note that > (2; —2)=0 and
that the following inequalities hold:

3 (es — 2nd< Siler < SV + Du

3 mitlallllglle < NY 2lialaliglloo < N*/2lzllon,

3a— Bn < 520nlle < SVAN nlloe < SVEN VAN A 2)

So from (6.2) we obtain the bound

ISi — S|] < SIN + 2)u + 2N(N + 2)SY2||z]jau?+ N2||z]j2u?(1 4+ (N + 2)u).

; Recalling the definition (1.3) of kK, we see that

5 -S

|= < (N + 2)u + 2N(N + 2ku? + N21 + (N + 2)u) (6.3)i
~ Nu + N%2%u? + 2N%*u?

When N >> 1, k >> 1, the term N22, may cause problems as was scen in
table 2. Note that this term results from the term N(&3. z;&)? in (6.2). We will
now show that the computed value Sg is a good approximation to this crror. We
have that

9

|

. . 2

Sy = (3 — z)(1 , 7) with |v] < (N + 2)u + Ou).
| 3 _- 2

=(2 —9) +E=H+)
1 NE VY :
= > (zi — 2) — ~(> sits) (N+)
1 4 2 _ (
TN 2 (= — zy) —IE —&)%) (> ziti) NV +> %)

1 2(4 2

. ~5(30 =e) N* 2N Y + (2)
Note that S contains a term N (22), so, using Bjorck's modification of the
two-pass algorithm we compute S as

S=(E—%)1+8), with [§|<u
2— =\2 -

(s + 2a — I)" — =(3 ié:) > (a — Z)(1 +n)
1 2 1 1)

2 _

— rales —an)(me) (V+ 30)
1 2 2

— (Zn) (av Zot (Ta)) Ju +o)
Bounding these quantities as before gives the following bound for the rclative error:

S—S : 2
5 << (N + 2u + (N + 2)(4Nk + 2(N+4-2))u

+ (N + 2)@N%2 + BN + 4s + (N + 2))u’ + Ou)
~ Nu + dN? ++ 3N3k 23,

The modification has thus reduced the “sccond order term” by roughly a factor
of K.

7. Calculation of the mean in double precision.

A greater accuracy can bc achicved from any alcorithm for computing the
sum of squares by simply using higher precision arithmetic. It is important to

10

note, however, that a large increase in accuracy can often be achieved by shifting

only some of the calculations to double precision. From the crror analysis of the

two-pass algorithm, we see that computing the sample mcan in double precision

would replace the bound [&] < Nv + O(u?) in (6.1) by |&]< Nu? Ou).If
the remainder of the calculations are still computed in single precision,the error

bound (6.3) Wil nonetheless be replaced by the improved bound

ED < Nu + O(u?).S

The difference which this can make in practice is evident from table in scction

8, which gives the results of some numerical experiments.

The generalized updating algorithm and the pairwise algorithm arc also

improved by calculating the corresponding running sums in double precision.

Numerical results for these modified algorithms are given in tables 7 and 8respec-

tively. .

8. Experimental results

All of the results presented in this section were computedon an IDM370/108
computer at the Stanford Linear Accelerator Center. The data used was providea

by a random number gencrator with mean 1 and a varicty of dilicrent variances

0%. For this choice of the mean, krslfo. In each casc the results have been
averaged over 20 runs. Single precision was used in mos{ of thecic:ls except in

the cases where the mean was computed in double precision (tables 6-8). Insingle
precision, u a 5 X 1077, The “correct” answer for USC in computinsthe error
was computed in quad precision. We report the number of correct digitsintie

calculation, defined as —log;o(E) where I is the relative error.

11

Table 1: Number of correct digits for the textbook algorithm on N data points

chosen randomly from N(L.O, o?).

) N
oO 64 256 1024 2048

1.0 5.4 4.3 4.1 4.1

101 4.2 4.7 3.0 3.0
10—2 3.2 3.2 2.0 2.0

103 2.2 2.2 1.0 1.0
104 1.2 1.1 0.0 0.0
107° 0.2 02 -1.0 -1.0
10° —08 -0.8 2.0 -2.0
107 -1.8 -1.9 -3.0 -3.0

10=3 22.8 -2.8 -4.0 -4.0

Table 2: Number of correct digits for the two-pass algorithm on N data points

chosen randomly from N(LO, o?).

) N
o | 64 256 1024 2048

1.0 5.2 5.1 4.0 4.0

10~1 54 45 4.2 4.2

107% | 56 45 4.4 3.7
1073 56 4.6 4.5 3.6

10—4 52 48 4.4 4.0
107° 55 53 3.1 3.0

10° 45 4.4 2.1 1.9
10~7 3.5 3.3 1.1 0.9
103 2.5 2.3 0.1 —0.1

12

Table 3: Number of correct digits for Bjorck's two-pass algorithm on N data points

chosen randomly from N(L.O, o2).

EAN0? 64 256 1024 2048

1.0 5.2 5.1 4.0 4.0

101 54 45 4.2 4.2

102 56 45 4.4 3.7

10—3 56 4.6 4.4 3.6

10—* 52 48 3.9 3.7

10 52 5.0 3.9 3.8

10° 54 50 4.1 4.0

10~7 57 4.6 4.2 4.2

10—8 62 46 3.8 3.3

Table 4: Number of corrcct digits for the generalized updating algoritim on 1624

data points chosen randomly from N(1.0, 0%) with various values of m. {Note
that m == 1 corresponds to algorithm (1.5) while mi == 1024 1s just the two-pass

algorithm).

ml

ot A I 2 4 8 16 32 64 128 2560 512
1.0 4.0 4.0 4.3 4.6 4.9 5.0 5.0 5.1 5.0 4.2

101 42 42 45 48 50 51 52 5.3 4.5 4.3

10—2 45 44 47 50 51 53 54 4.9 4.5 4.4

103 41 42 45 48 50 52 52 48 4G 4.6

10—4 3.6 3.7 4.0 4.3 4.5 4.8 5.0 4.8 4.8 4.6

103 3.2 3.4 3.8 4.1 4.3 4.6 4.8 5.1. 5.1 3.4

10° 25 30 33 37 40 43 44 4.6 4.6 2.4

107 1.4 21 25 29 36 36 35 3.4 3.3 1.4

108 04 1.0 17 24 30 28 25 2.4 2.3 0.4

13

Table 5: Number of correct digits for the pairwise algorithm on N data points

chosen randomly from N(1.O, o?).

~o? 64 256 1024 2048

1.0 5.8 5.8 5.6 5.6

10—1 6.0 5.7 5.7 5.7

10—2 6.2 5.8 5.7 5.6

103 5.9 6.0 5.6 5.6

10—* 5.5 5.8 5.9 5.8

10—° 4.7 5.2 5.4 5.4

10° 4.5 4.7 4.8 4.9

10~7 3.9 4.2 4.3 4.4

10-3 3.2 3.7 3.8 3.9

Table 6: Number of correct digits for the two-pass algorithm on N data points

chosen randomly from N(1.O, a). In this test the means were computed in double
precision.

~No* 64 25G 1024 2048

1.0 5.2 5.1 4.0 4.0

101 5.3 4.5 4.2 4.2

102 56 45 4.4 3.7

102 5.6 4.6 4.4 3.6

10—4 5.2 4.8 3.9 3.7

10—° 5.1 5.0 3.9 3.8

10—° 5.2 5.0 4.1 4.0

107 54 45 4.2 4.2

10—8 5.6 4.5 4.4 3.7

14

Table 7: Number of correct digits for the generalized updating algorithm on 1024

data points chosen randomly from N(I1.O, a?) with various valucs of m. In this
test the running sums wcre computed in double precision. (Note that m= 1

corresponds to algorithm (1.5) while m = 1024 is just the two-pass algorithm).

mM

ANS 2 4 8 16 32 64 128 256 512
1.0 4.0 4.0 4.3 4.6 4.9 5.0 5.1 5.1 5.0 4.2

10—4 42 42 45 48 50 51 52 5.3 4.5 4.3
102 44 44 47 49 52 53 54 4.9 4.5 4.4
103 44 44 47 49 52 53 53 4.8 4.G 4.6
104 39 39 42 45 48 50 49 4.8 4.38 4.8
107° 39 39 42 45 48 50 50 4.9 4.9 4.3
10° 41 41 43 4G 49 50 5.1 5.1 4.8 4.2
10—7 42 42 45 48 50 52 52 53 4.5 4.3
108 44 44 47 50 52 53 54 4.9 4.5 4.4

Table 8: Number of correct digits for the pairwise algorithm on N data points

chosen randomly from N(l.O, o?). In this test the running sums were computed in
double precision.

N

a? \ | 64 256 1024 2048
1.0 59 5.8 5.7 5.7

101 5.9 5.7 5.7 5.7

102 6.0 5.7 5.7 5.6

103 6.0 5.7 5.6 5.5

104 5.9 5.8 5.7 5.6

10—° 5.9 5.8 5.6 5.6

10—° 5.9 5.8 5.7 5.6

10—7 60 5.8 5.7 5.7

10—3 6.1 5.8 5.8 5.6

15

9. AFORTRAN implementation of the pairwise algorithm.

SUBROUTINE UPDATE (N,N,SUM,S, X)
INISGER M,N

REAL*3 5 ,SUN, X(N)
C

C GIVEN THE SUM BND SUM OF SQUARES OF DEVIATIONS FROM THE

C FEAN FOR A SAMPLF OF MM POINTS,
Cc

C M

| C SUY = 50M Y(1)
C I=]

C

C M 2

Cc S = SU (YI) = SOM/M)
C I=1

C

C AND GIVEN § NEW DATA POINIS X(1)...X(N), THIS ROUTINE PRODUCES
C THY SUM AND-SUM CF SQUARES FOR THE COMBINED SAMPLE:
C

C N

C SU4 := SUM + SUM X (I)

C I=1

-

C M 2 N 2

c S := SUM (Y (I) =- SUM/(M+¢N)) + SUM (X(I) = SUM/(M+N))
C I= 1 I=1

C IHE SUY AND 50M CF SQUARES FOR THE NEW POINTS ARE CALCULATED

C USING THE PAIRWISE ALGORKTIHM, THE OLD SUM AND SUM OF SQUARES

Cc +5 TH UPDATED.
C

C THIS ROUTINE HRS LOCALLY DIMENSIONED AFRAYS TERMS, SUMA AND

Cc _ SA WHICH CURRENTLY HAVE DIMENSION 21. THIS LIMITS THE
C NUMBER OF POINTES WHICH CAN BE HANDLED TO N <= 2%%*2(= 1048576.

C TO UsZ WITH LAFGEF N, INCREASE THESE DIMENSIONS TO SOMETHING

rz AT LEAS';' AS LARGE AS LGG2(N) + I.

“INIZGER TERMS(21) ,TOP,T

| REAL*3 SUMA (21) ,SA (21) ,MEAN,NSUM,NS
mn

TERMS (1) = 0
oP = 2

N2 = N2

IF (N .LE. 0) GC TC 70

5 IF (N .GT. 1) GO TC 6

NSU = Y (1)
NS = 0

GO TO 50

16

6 DO 20 I=1,N2

C $ COMPUTE THE SUM AND SUM OF SQUARES FOR THE NEXT TW#0

c # DATA POINTS IN X. PUT THESE QUANTITIES ON TOP OF

C # THE STACK.

SUMA (TOP) = X(2*I-1) + X (2*I)
SA (OP) = (X(2*I) - X(2*%I-N)**x2 / 2.0
TERMS (TCP) = 2

13 IF (TERMS (TOP) .NE. TERKS (TOP-1)) GO TO 20
c # TOP TWO ELEMENTS ON STACK CONTAIN QUANTITIES COMPUTED

c # FEOM THE SAME NUMBER OF DATA POINTS. COMBINE THEM:

TIP = TOP-1

TERNS (TOP) = 2 * TERKS (TDP)

SA (TCP) = SA(TOP) + SA (TOP+1) + (SUMA (TOP) —- SUMA (TOP+1)) *=*2
X / TERMS (TOF)

SUMA (TOP) = SUMA (TOP) + SUMA (TOP+1)
50 TO 10

23 TOP = TCP+1

C

TOP = TOP-1

IF (2%*N2 .EQ.N) GC TO 30
C # N IS OLD. PUT LAST PCINT GON STACK:

TOP = TCP+1

TERYS (TOP) = 1

SUMA (TGP) = X (Y)

SA (TOP) = 0.0
30 T = TEKMS (TOP)

NSUM = SUMA (TOP)

NS = SA (TOP)

IF (TOP .LT. 3) GC TO 50
C # N IS NOT A PCWER OF 2, THE STACK CONTAINS MORE THAN
C $¢ ONE ELEMENT. COMBINE THEM:

DG 40 J=3,TOP
I = TOP+2 = J

NS = NS + SA(I)+ T* (TERMS (I)*NSUM/T - SUMA (I))**2 /

X (TERKS (I) * (TERMS(I)+T))

NSUM = NSUM + SUMA (I)

43 I = T+TERKS(I)

C

C

© 50 CONTINUE

c # COMBINENS AND NSUM WITH S AND SUM RESPECTIVELY:

IF (M .EQ. 0) GO TO 60
NS = s + NS + M* (N*SUM/K ~— NSUM)*%X2 / (N* (N+M))
NSUY = SUM + NSUM

60 S = NS

SUM = NSU

C

70 RETURN

END

17

Acknowledgements.

We are particularly indebted to A. Bjorck for his suggestions concerning the
two-pass algorithm.

References.

[1] Chan, T.F.C., and Lewis, J.G. Computing standard deviations: accuracy.
CACM 22,9(Sept. 1979), 526-531.

(2) Ghan, T.F.C., and Lewis, J.G. Rounding error analysis of algorithms for com-
puting means and standard deviations. Tech. Rep. No. 284, Decpt. of

Mathematical Sciences, The Johns Hopkins University, Baltimore, Md., April
1978.

[3] Hanson, R.]J. Stably updating mean and standard deviations of data. CACM
18,8(Aug. 1975), 458.

[4] Tsao, N. On “accurate” evaluation of extended sums, manuscript, Dept. of
Computer Science, Wayne State University.

[5] West, D.H.D. Updating mean and variance estimates: an improved method.
CACM 22,9(Sept. 1979), 532-535.

. [8] Youngs, E.A., and Cramer, EM. Some results relevant to choice of sum and
sum-of-product algorithms. Technometrics 13{Aug. 1975), 458.

18

