
Stanford Verification Group October 1979
Report No. 13

Computer Science Department
Report No. STAN-CS-79-770

PRETTY PRINTING

by

Derek C. Oppen

Research sponsored by

National Science Foundation

COMPUTER SCIENCE DEPARTMENT

Stanford University

FR
Hl a Ag

Stanford Verification Group October 1879
Report No. 13

Computer Science Department
Report No. STAN-CS-79-770

PRETTY PRINTING

by

Derek C. Oppen

ABSTRACT

An algorithm for pretty printing is given. For an input stream of length » and an
output device with margin width m, the algorithm requires time O(n) and space O(m).
The algorithm is described in terms of two parallel processes; the first scans the input
stream to determine the space required to print logical blocks of tokens; the second
uses this information to decide where to break lines of text; the two processes
communicate by means of a buffer of size O(m). The algorithm does not wait for the
entire stream to be input, but begins printing as soon as it has received a linefull of

] input. The algorithm is easily implemented.

T his research was supported by the National Science Foundation under Contract NSF MCS
78-02835.T he views and conclusions contained in this document ate those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed or
implied, of Stanford University, or any agency of the U. S. Government.

Pretty Printing

Derek C. Oppen
Computer Science Department

Stanford University
Stanford, California 94305

Abstract

An algorithm for pretty printing is given. For an input stream of length n
and an output device with margin width m, the algorithm requires time O(n) and
space O(m). The algorithm 1s described in terms of two parallel processes; the
first scans the input stream to determine the space required to print logical blocks
of tokens; the second uses this information to decide where to break lines of text;

the two processes communicate by means of a buffer of size O(m). The algorithm
does not wait for the entire stream to be input, but begins printing as soon as it
has received a linefull of input. The algorithm 1s easily implemented.

1. Introduction

Althqugh the art of parsing is a well-researched area, its dual — “‘unparsing”

| and “pretty printing” — has not received like attention. A pretty printer takes
as Input a stream of characters and prints them with aesthetically appropriate

indentations and line breaks. As an example, consider the following stream:

var z : integer; y : char; begin z:= 1; y i= ‘a’ end

If our margin width is 40, we might want it printed as follows:

var z : integer; y : char;

begin z:=1; y= ‘a’ end

If our margin width is 30, we might want it printed as follows:

var z : integer;

y : char;
begin
T= 1;

y i= "aj
end

This research was supported by the National Science Foundation under contract MCS 78-02835.

But under no circumstances do we want to see

var z : integer; y :
char; begin z:= 1;
y :== ‘a’; end

Pretty printers are common components of Lisp environments, where trees

or s-expressions are data objects which are interactively manipulated and which

have to be displayed on a screen or on the printed page. Since the main delimiters
in Lisp are parentheses and spaces, a Lisp program or s-expression 1s visually
intolerable unless pretty printed, (See [Goldstein 1973] or [Hearn and Norman
1979) for descriptions of some pretty printers for Lisp.)

Pretty printers have generally not been very common for block-structured
languages, perhaps because, until recently, “programming environments” for such

languages did not exist. (See [McKeeman 1965], [Hueras and Ledgard 1977], [Huet
et al 1978] or [Hearn and Norman 1979] for descriptions of some implemented
pretty printers.) Happily, this situation 1s fast changing. Pretty printers are in-

tegral components of any programming environment tool. Editors, for example,
for block-structured languages benefit enormously from a pretty printer — as the

user interactively makes changes to his program text, the modified program is
pleasingly displayed. Not only does this make it easier for the user to read his

program text, but it makes it easier for him to notice such common programming |
errors as missing ends. Compilers should use pretty printers to print out error
messages in which program text 1s displayed; this would make the error much

more understandable. Pretty printers are useful in any system which prints or

displays messages or other output to the user.
Pretty printers have traditionally been implemented by rather ad hoc pieces

of code directed towards specific languages. We will instead give a language-
independent pretty printing algorithm. The algorithm 1s easy to implement and
quite fast. It 1s not, however, as sophisticated as it might be, and certainly can-

- not compete with typesetting systems (such as TEX [Knuth 1979]) for preparing
text for publication. However, it seems to strike a reasonable balance between

sophistication and simplicity, and to be appropriate as a subcomponent of editors
and the like.

“We will not discuss in detail the question of how to interface the pretty
printer described here with any specific language. In general, the pretty printer
requires a front-end processor which knows the syntax of the language, to handle
questions about where best to break lines (that 1s, questions about the inherent
block or indenting structure of the language) and to handle questions such as
whether blanks are redundant. We shall describe in section 6 two approaches we

have taken to implementing a preprocessor for pretty printing.

2

2. Basic Notions

The basic 1dea of how a pretty printer works 1s well established 1n the folklore,

and the algorithms of which the author 1s aware all provide roughly the same set

of primitives — primitives which the algorithm described here also provides.
A pretty printer expects as input a stream of characters. A character may

be a printable character such as “a” or “3” or “&” or “,” or it may be a delimiter
such as blank, carriage-return, linefeed, or formfeed. A contiguous sequence of
printable characters (that is, not delimiters) 1s called a string. The pretty printer
may break a line between strings but not within a string.

We will differentiate between several types of delimiters. The first type of
delimiter 1s the blank (carriage returns, formfeeds and linefeeds arc treated as
blanks). The next two types correspond to special starting and ending delimiters

for logically-contiguous blocks of strings. We will denote the delimiters [and]
respectively. The algorithm will try to break onto different lines as few blocks as
possible. For instance, suppose we wish to print out f(a, b, ¢, d) + g(a, b, ¢, d) on

a display which 1s only 20 characters wide. We might want this printed as

f(a, b,¢,d)
+9(a, b,c, d)

or as

f(a, b,c, d) +

g(a, b, c, d)

but definitely not as

f(a, b,¢,d) 4 g(a,
b,

Cy

d)

We can avoid this by making f(a, b, c, d) and g(a, b, c, d) logically-contiguous
blocks; that is, by surrounding each by [and].In fact, since this expression
undoubtedly appears within some other text, we should include logical braces
around the whole expression as well:

[[fla,b,e,d)] + [g(a,b,¢c,d)]]

(You might be asking at this point why the algorithm doesn’t recognize that
parentheses are delimiters and thus that g(a, b, c, d) shouldn’t be broken if pos-

sible. But the pretty printing algorithm given here is a general purpose algorithm

3

providing primitives for pretty printing, and 1s not tailored to any particular lan-
guage. The example could have been written just as easily with two begin . . . cad
blocks.)

We will later allow refinements to the above set of delimiters, but for the

moment we will describe the algorithm using just these three. We assume that
the algorithm 1s to accept as input a “stream” of tokens, where a token 1s a string,
a blank or one of the delimiters [and J. A stream is recursively defined as follows:

1. A string 1s a stream.
2. Ifsy,....sx are streams, then [s; <blank> sy <blank> . . . < blank >

sg] is a stream

As we shall see later, this definition of an “allowable” stream 1s a little too

restrictive in practice, but makes describing the basic algorithm easier. We make

one additional assumption to simplify discussion of the space and time required

by the basic algorithm: no string 1s of length greater than the linewidth of the
output medium.

3. An Inefficient but Simple Algorithm.

We first describe an algorithm which uses too much storage, but which should

be fairly easy to understand. The algorithm uses functions Scan() and Print|).
The input to Scan() is the stream to be pretty printed. Scan() successively

adds the tokens of the stream to the right end of a buffer. Associated with each

token in the buffer is an integer computed by Scan() as follows. Associated with
each string 1s the space needed to print it (the length of the string). Associated
with each [is the space needed to print the block it begins (the sum of the lengths
of the strings in the block plus the number of blanks in the block). Associated
with each] is the integer 0. Associated with each blank is the amount of space

_ needed to print the blank and the next block in the stream (1 + the length of
the next block).

In order to compute these lengths, Scan() must “look ahead” in the stream;
it uses the buffer stream to store the tokens it has already seen. When Scan()
has computed the length ! for the token z at the left end of the buffer, it calls
Print(z, 1) and removes z and { from the buffer. The buffer is therefore a first-in-
first-out buffer.

Print() uses the length information associated with each token to decide how
to print it. If Print() receives a string, it prints it immediately. If Print{) receives
a [, it pushes the current indentation on a stack, but prints nothing. If it receives
a], it pops the stack. If Print() receives a blank, it checks to see if the next block
can At on the present line. If so, it prints a blank; if not, it skips to a new line

4

and indents by the indentation stored on the top of the stack plus an arbitrary
offset (in this case, 2).

Print() is the simpler routine so we describe it first. It uses auxillary func-
tions Output(z), which prints z on the output device, and Indent(z), which starts
a new line and indents z spaces. Print() also uses a local stack S with operations
Push(), Pop() and Top() (the latter returns the top of the stack without popping
it). It also uses the constant margin which 1s the margin width, and a variable
space which stores the number of spaces left on the present line.

Print(z,l) :
 CARCE

x string 3 Output(x); space += space . I;

z: I 3 Push(S, epace);
X = Pop (S):

x : blank = if{| > space

then space := Top(S) — 2; Indent(margin— space);
else Output(x); space == epace — 1;

Now we are ready for Scan(). It successively receives tokens from Receive()

and stores each at the right of the buffer stream, It uses a second bufier size
for storing the lengths associated with tokens as described above. It uses vari-
ables left and right for pointing at the left and right ends of these buffers (the

buffers are assumed to be of arbitrary length). It uses a local stack S with opera-
tions Push(), Pop() and Top(), and a local variable z. Finally, it uses a variable
reghtotal to store the total number of spaces needed to print all elements of the

buffer from stream[l} through stream|right).

| Scan() : local x;
forever x := Recesve{);

CAICE

x : eof= halt;

z:[[=
cases S : empty= left:= right :=rightotal:= 1;

othcrwirce = right i= right + 1;

stream|right) := z;

size|right] := —rightotal;
Push(S, tight);

z:] =
right :== right <4 1;

stream[right] == x;
size[right] := 0;
z:= Pop(S);

gtze|z] := rightotal + size|z];
if stream[z] : blank then x := Pop(S); ssze|z):= rightotal + ssze|z];
if S : empty

then until left> right do

5

Print(streamlleft), ssze|left]);
left := left 4 1;

X : blank =

right := right+4 1;

z := Top(S);

if stream[z] : blank then esze|Pop(S)]:==rightotal+ ssze|z];

stream|right)] := z; .

g1ze|right] := —rightotal;
Push(S, right);

rightotal := rightotal+ 1;

x : string 3

cases S : empty = Printz, length(z));
otherwirc =

right := right+ 1;

gtream|right] := z;

size[right] := length(z);
rightotal := rightotal + length{z);

Scan() uses the stack to keep track of occurrences of delimiters. If it receives
a [[, it stores the [[in stream|[right] and —rightotal in size[right]; when it receives
the corresponding J}, it computes the space needed for this block — it is (the cur-

rent value of) rightotal + size[right]. If Scan() receives a], the top of the stack
is either the index of the [starting the block (if the block contained no blanks),
«nd otherwise the index of the previous blank in this block and underneath that

the index of the [starting the block. In the former case, Scan() computes the
length associated with the [; in the latter, it computes the lengths associated with
the [and the blank. If Scan() receives a blank, the top of the stack contains
either the index to the start of the block or the index to the previous blank in
the block. If the latter, Scan() computes the length associated with the previous
blank.

Scan() has the nice property that it requires time linear in the length of the
stream (as does Print()). It has the undesirable property that it also requires space

linear in the length of the stream. For suppose the whole stream 1s delimited by
[and J. Then Scan $1 itad the whole stream before it computes the length of
this block. (If all blocks are small this may be considered an unimportant point.)
Another problem with Scan() is that it may have to process large amounts of
data before the first character can be printed. This 1s undesirable in an interactive

environment: we want to start printing characters as soon as possible if only to
give the user positive reinforcement.

We are now ready for the next iteration of the algorithm, which requires
space O(m) rather than O(n), that 1s, space which depends only the linewidth of

the output medium and not on the length of the input.

6

4. AR Efficient but Less Simple Algorithm.

Let us consider again the roles of Scan() and Print(). It may be helpful to
visualize them as two parallel processes communicating via the buffers stream

and size. Scan() wants to put information into the buffers on the right while
Print() wants to remove information from them on the left, That is, Scan() wants
to advance fhe cursor variable right while Print() wants to advance the cursor
variable left.

The problem is that Print() cannot use streamlleft] until size[le ft] has a
positive value. In the algorithm given in the previous section, if stream{lcft] is a

[or a blank, Scan() will not fill in stze[left] until it has seen the corresponding
] or next corresponding blank. And this holds up Print{) unnecessarily. Since |
there can only be m characters on a line, it 1s not necessary for Scan() to compute
an exact value for size[left] if size[left] is going to be greater than m. As soon
as Scan() knows that size[left] must be greater than m, it may as well make
stze[left] equal to oo. That is, as soon as the sum of the lengths of strings plus
the number of blanks between left and right in stream exceeds m, we can let
Print() advance.

Thus, Scan() and Print() needn’t get too far apart in accessing the buffers.
Allowing for the fact that stream stores occurrences of [and] as well as strings
and blanks, right — left need never exceed 3m. So, our buffer size can be linear

in m, and we never need look ahead more than 3m tokens before being able to
print something.

And we can do even better. At any moment, Print() has printed zero or more
characters on a line. All it needs to know in order to make a decision on how

to print the next block in the stream 1s whether or not the block can fit in the

remaining space on the line. So we don’t have to test whether the space required

by the elements of stream between left and right exceeds m, but rather whether
or not it exceeds the present value of space — the variable used in Print() to

store the number of spaces remaining on the present line.

We are now ready to describe our refined algorithm. It 1s a close relative
to our previous algorithm. Print() remains the same. Scan() uses an additional

. variable le ftotal which is the total number of spaces needed to print all ele-
ments of the buffer from stream|l1] through stream|left] (analogous to rightotal
which measures from stream[1] through stream[right]). Popbottom() removes the
bottom element of the stack (so our local stack 1s no longer a true stack — we can
flush elements from its bottom). And when Scan() chooses to force output from

, the left of the stream, it does so by calling the auxillary function Advancele ft().
We implement stream and size as two arrays of size arraysize, a constant equal
to 3m, say. The variables left and right arc initially 1, pointing to the start of

1

the arrays,

Scan() : local z;

forever z := Receive();
cases

Zz : eof = halt;

z:[[=
cases S : empty =>left== right= leftotal :==rightotal := 1;

otherwise= right := if right = arraysize then 1 else right+ 1;

stream|right] := z;

gize|right] := —rightotal;

Push(S, right);

z:] =

cases S : empty 3 print(z,0);
otherwire =

right := if right = arrayssze then 1 elre right- 1;

stream|right] i= z;

size[right] := 0;

h z := Pop(S);

size[z] := rightotal + size[z);

if stream|z] : blank and =S : empty

then z:= Pop(S); size[z]:= rightotal + size[z];

if S : empty then Advanceleft(streaml|left], size[left]);
Zz : blank =

cases S : empty = left :== right:= rightotal := 1;
otherwire =

right := if rsght = arrayssze then 1 else right + 1;

z := Top(S);

if etream|z] : blank then ssze[Pop(S)] := rightotal + size[z);

gtream|right] i= z;
ssze|right) := —rightotal;

Push(S, right);

rightotal := rsghtotal + 1;

z : string =

cases S : empty = P rint(z, length(z));
otherwise =

right := if right = arrayssze then 1 else right 4 1;

stream|right] := z;

gize[right] := length(z);

rightotal := rightotal 4 length(z);
while rsghtotal — lefiotal > space do

gsze[Popbottom(}] i= 999999;

Advanceleft(stream[left], ssze|leSt);

8

Advancelef t(z,1):
if {2 0 then

Print{z,]);
cases x : blank = leftotal:=leftotal+4 1;

x : string 3 lef total := lef total -} i;

if left $£ right then
left .= if left = arraysize than lelseleft + 1;

Advanceleft(streaml|left], ssze[left]);

We have implemented the buffers in the obvious way as ring buffers. Print()
follows Scan() around the buffers (that is, left follows right), and as long as the
size of the buffers is at least 3m, Scan() will not overtake Print().

All that remains 1s to describe how to implement the local stack S. One way

is to implement it also as an array of size arraystze, with indexing variablestop
and bottom initially equal to 1, and a boolean variable stackempty initially set to

true. We implement the test S:empty as a test on the value of stackempty and
the other stack operations as follows:

Push(S,z)s
if stackempty

then stackempty:= false

else top := if top = arraysize then 1 elsetop + 1;

S[top] := =z;

Pop(S): local x;

X : = Sltop);
if bottom = top

then stackempty := true

else 7op :=if top = 1 then arrayssze else top — 1;
return z;

Top(S): return S[top];

Popbottom(S): local x;
x :=Ss [bottom];

if bottom = top

then stackempiy:= true

else bottom :== if bottormn = arraysite then 1 else bottom 1;

return Xx;

5. Modifications to the Basic Algorithm.

The algorithm actually implemented by the author 1s somewhat more sophis-

ticated. The complete algorithm 1s given in appendix A.

9

There 1s one major deficiency in the set of delimiters we chose, and that 1s
that the delimiter blank 1s not subtle enough. It needs at least three associated
parameters.

First, we want a variable offset associated with each blank instead of the

constant offset 2 used in the algorithm. This allows us to have, for example, the
following: :

cases | :...

where we have indented six characters to line up the cases. Variable offsets also

allow us the option of choosing, say, either of the following ways of indenting
begin . .. end blocks (assuming a narrow enough linewidth to force breaking):

begin

Xx: = f(z);

y: = fy)
end;

begin
| X: = f(z);

Y * = f(y);
end;

Second, we want to differentiate between two types of blanks, which we call
consistent and inconsistent blanks. If a block cannot fit on a line, and the blanks

in the block are consistent blanks, then each sub-block of the block will be placed
on a new line. If the blanks in the block are inconsistent, then a new line will be

forced only if necessary. The reason for this differentiation 1s that we may prefer

J begin
x .-.- flz);)
Yo. fy);
z= f(2);

w= f(w);
end;

to

begin
z:= f(z); Y= f(y);

z:= f(z); W:= f(W),
end;

10

but prefer

locals x, vy, 2, w,
g,b,¢,d;

to

localr x,

Y

2

w,

a,

b,

¢,

d;

(assuming again that the linewidth 1s sufficiently narrow to force breaking). That
1s, for begin . . . end blocks we may prefer consistent breaking, but for declaration

lists we may prefer inconsistent breaking.

Finally, we want to be able to parameterize the length of each blank. A
blank of length zero (that 1s, an invisible blank) 1s useful when one wants to insert
a possible line break but print nothing otherwise.

There 1s one other major modification that the author has found useful, espe-

cially if this pretty printer is used as the output device for an unparser. Consider

the following stream for printing out f (g(x, y)) (<blank> denotes a blank):

[7 ([9(z, <blank> y)] <blank>)]

This may result in the following output:

f (9(z, y)

)

given appropriate margin width and parameters to the delimiters. We might

instead prefer:

f(g(®
y))

even though the first 1s correct according to the algorithm (since it breaks fewer

logical blocks). We could try to stop a linebreak from occurring between the right
parentheses by sending the stream:

[7([g(z, <blank> y)]) |,

11

that 1s, by deleting the <blank> between the parentheses. But this violates the
assumptions given in section 2 on what constitutes a legal stream. The algorithm

in appendix 1 tries to handle in a reasonable fashion any sequence of tokens (if
the stream satisfies the assumptions given in section 2, the output is the same as

given by the basic algorithms). It does assume, however, that occurrences of [
and J] are balanced and that the stream begins with a | (for correct initialization).
In particular, it effectively changes (dynamically) each occurrence of | <string>
into <string> J.

6. A Preprocessor for Pretty Printing

Let us briefly consider the question of how to tailor the pretty printer to
some specific language.

The simplest way is to drive the pretty printer directly from the parse tree

produced by a parser or the parsing component of a compiler. Typically, this

component first translates the program (a stream of text) into a tree. For instance,
if the grammar for the language contains the production

<term> — <subterm> <operator> <subterm>

. the parser may generate, when parsing a + 6, the subtree consisting of a node

with three successors: the subtrees corresponding to a, + and 6. The preprocessor
to the prettyprinter then walks this tree in what might be called a “recursive
descent unparse”. For instance, when faced with our example tree for a + 6, the

unparser may first generate a [, recursively unparse the first subtree to generate
a, generate a blank, unparse the subtree for +, generate another blank, unparse
the subtree for 6, and finally generate a closing J.

Driving the pretty printer from the parse tree 1s relatively straightforward,

especially 1n languages such as Lisp where the program 1s a tree. A disadvantage
of waiting for the parse tree to be constructed 1s that pretty printing is no longer
online: the whole program must be parsed before pretty printing can begin. In

many situations this 1s no disadvantage.

. Notice that this method makes automatic use of the scanner of the parser

to resolve all such questions as whether there are redundant blanks. This 1s, of
course, a double-edged sword; the scanner component of many parsers also deletes
useful information (such as comments). We must modify the scanner to pass this
information on, and modify the parse tree to save the information.

We have used this “unparsing” approach to write a pretty printer for for-

mulas produced by the Stanford Pascal Verifier (with Wolf Polak) and for Mesa
(with Steve Wood).

12

Another approach we have used also makes use ofa scanner and a parscr for
a language, but uses the parser to drive the pretty printer directly, without using
the parse tree.

For instance, if we use a recursive descent parser, we can add code to the
syntax routines of the parser to transmit to the pretty printer the delimiters [,
<blank> and] and the other tokens.

If we are using a table-driven parser whose semantic routines are called
bottom-up, we can use a slightly different approach. First, notice that the in-
formation needed by the pretty printer can often conveniently be represented

directly in the grammar; for instance, in our example production above:

<term> — [<subterm> <blank> <operator> <blank> <subterm>]

Suppose we are using a parser generator (to generate a table driven parser). We
modify the grammar of the language to contain pretty printing information as

above, where [, <blank> and] are nonterminals mapping only to the empty
string. The semantic routines associated with these nonterminals transmit, respec-
tively, [, <blank> and] to the pretty printer. The other semantic routines
transmit to the pretty printer the other tokens in the stream. Because table-
driven parsers typically call their semantic routines in a bottom-up fashion, we
may have to modify the grammar slightly to ensure that tokens are sent to the
pretty printer in the correct order. For instance, consider the production:

<block > — begin <statementlist> end

We do not want the semantic routine associated with <statementlist > to be

called before the semantic routine for <block>, because we do not want the

tokens corresponding to <statementlist> to be printed before the begin is
printed. We can correct this by changing this production to:

<block > — <begin> < statementlist > end

<begin> — begin

so that the semantic routine corresponding to begin will be called (and “begin”

will be printed) before the semantic routine for <statementlist >.

The advantage of this variant 1s that it is very clean — the pretty printing
information for the language 1s represented in the grammar instead of being buried

.1n the code. The disadvantage is that the tables for the parser may grow because
of the additional productions. (The impact of this can be lessened to acceptable

levels by not having explicit nonterminals for [, <blank> or J, but adding code
to the semantic routines for the other nonterminals to drive the pretty printer

directly. For instance, the semantic routine corresponding to the nonterminal
<begin> above could emit the three tokens [, “begin” and <blank >.)

A pretty printer for Mesa has been implemented in this fashion by Philip
Karlton and the author.

13

1. Other Pretty Printers.

As mentioned in the introduction, pretty printers are common in Lisp
environments and therefore have been fairly widely implemented, but rarely

analyzed. The following 1s a list of those algorithms known to the author; ti.»
list has been growing and 1s undoubtedly incomplete. With a few exceptions, the

analyses given below are the author's. As before, n denotes the length of the
input stream and m denotes the linewidth of the output device.

Goldstein [1973] describes various ways of implementing pretty printers for
Lisp, and gives several algorithms requiring O(n) time and O(n) space. Whit
Diffle (private communication) has an algorithm for Lisp pretty printing which

uses the notion of variable glue to put together boxes of text. Mentor, a structure-
oriented editor for Pascal, contains a pretty printer for Pascal ([Donzeau-Gouge
et al 1975}, [Huet et al 1978)]). Dick Waters (private communication) independ-
ently discovered the observations given here on how much lookahead 1s rcquircd;

he has implemented a pretty printer for Lisp which requires O(mn)time and
O(m) space. Hueras and Ledgard [1977] describe a formatting program for Pascal;
their program appears to require O(n) time and space. Greg Nelson (private
communication) has a pretty-printing algorithm which requires O(m) space and

O(n) time. Jim Morris (private communication) has an algorithm which, like the
one described here, conceptually consists of two parallel processors; it requires

O(m) space and O(mn) time, Tony Hearn and A. C. Norman [1979] have inde-
pendently discovered a similar method; their description 1s informal and their
analysis assumes that linewidth 1s constant, but if margin width 1s assumed to be

m, their algorithm appears to have the same bounds as Morris’ algorithm. Don
Knuth (unpublished memorandum) has written a pre-processor Blaise for Pascal
programs which pretty prints them using his text processor TEX.

8. In Conclusion.

The primitives described in the previous sections seem satisfactory for most

purposes. Of course, they are not perfect. For instance, we do not allow offsets
which are a function of the next block in the stream. Thus, we may get

cases 1:

J:iffz=1

then 5 :== |(2)

elie z= Q(z);

where we might have preferred to indent the cases slightly less, if we knew that
this would allow the if . . . then . . . else statement to fit on one line as follows:

14

cascs

3: if =1 then x := f(z) else x := g(z);

Another deficiency of the algorithm is that it can do nothing if there 1s not
room on the line for a string. This might happen if we have indented k spaces
and want to print a string of size greater than margin — k. The author does not

know of any simple and graceful way to solve this problem; two crude solutions
are to just wrap around the screen or else forcibly reduce the indentation just

enough to right justify the offending string.

This illustrates a general drawback of the algorithm — it does only constant
space (one linewidth) lookahead and its logic 1s not as sophisticated as it might
be.

"But hopefully the algorithm with its optional modifications strikes the right

balance between simplicity and speed on one hand, and sophistication on the
other, to be useful 1n the applications envisaged. It 1s perhaps worth repeating one

desirable feature of the algorithm — it starts printing more or less 3s soon as it
has received a linefull of input, and printing never lags more than a linefull behind
the input routine. This we consider an inportant point in “human engineering’.

It 1s also important as more systems begin to take advantage of the notion of

“delayed evaluation”, where parts of expressions may be output before the entire
expression 1s computed.

Acknowledgments

I am indebted to Philip Karlton, Don Knuth, Jim Morris, Greg Nelson, Wolf
Polak, Ed Satterthwaite, Dick Waters and Steve Wood for many stimulating con-
versations on pretty printing. In particular, I collaborated with Philip Karlton,
Wolf Polak and Steve Wood on three different pretty printers.

References

[Donzeau-Gouge et al 1975] V. Donzeau-Gouge, G. Huet, G. Kahn, B.
Lang, J. J. Levy, A structure-oriented program editor: a first step towards com-

puter assisted programming, Proceedings of International Computing Symposium,
Antibes.

[Goldstein 1973] I. Goldstein, Pretty-printing, Converting List to Linear
Structure, MIT A. I. Lab memo No. 279.

[Hearn and Norman 1979] A. C. Hearn and A. C. Norman, A One-Pass

Prettyprinter, University of Utah Report UUCS-79-112.

15

[Hueras and Lcdgard 1977] J. Heuras and H. Lcdgard, An Automatic
Formatting Program for Pascal, Sigplan Notices 12, pp. 82-84.

[Huet et al 1978] G. Huet, G. Kahn, B. Lang, The MENTOR Program
Manipulation System, Unpublished manuscript.

[Knuth 1978] D. E. Knuth, Tau Epsilon Chi — A System for Technical Text,
Report STAN-CS-78-675, Computer Science Department, Stanford University.

Appendix

The following is the augmented pretty printing algorithm implemented by

Philip Karlton and the author in Mesa (some details have been left out concerning

input/output and memory allocation). Comments are prcccdcd by two dashes;

numbers are either in octal or in binary (if followed by b) .

The pretty printer receives tokens which are records of various types. A

token of type string contains a string. A token of type break denotes an op-

tional line break; if the pretty printer outputs a line break, it indentsoffset

spaces relative to the indentation of the enclosing block; otherwiscit outputs

blankSpace blanks; these values are defaulted to 0 and 1 respectively. Tokens

of type begin and end correspond to our [and |] except that the type of breaks is
associated with the begin rather than with the break itself (the type is defaulted

toinconsi stent), and an offset value may be assocated with thebegin (the
offset applies to the whole block and is defaulted to 2). A token of typeceof

initiates cleanup. Finally, a 1 inebreak 1s a distinguished instance of break

which forces a linebreak (by setting blankSpace to be a very large integer).

PrettyPrint: DEFINITIONS =
BEGIN

—-— typos

TokenType: TYPE = {string, break, bogin, end, eof };
Tokon: TYPE = RECORDI[

SELECT type: TokenType FROM

) string =>» [string: string],
break => [

blankSpace: [0..MaxBlanks]¢« 1, —— number of spacespar blank
offset: [0..31] « 03, —— Indent for overflow linos

begin => [

offsot: [0..127] «+ 2, —— indont for this group

breakType: Break8 t inconsistent],—— default *‘*inconsistont”’’
and =>» NULL,

oof => NULL,

ENDCASE];

MaxBlanks: CARDINAL = 127;

Broaks: TYPE = {consistont, inconsistent};
LineBreak: break Token = [break[blankSpace: MaxBlanks]l];
END.

16

PrettyPrinter: PROGRAM
EXPORT6 PrettyPrint=
BEGIN

margin, space: INTEGER;

left, right: INTEGER;

token: DESCRIPTOR FOR ARRAY OF Token « DESCRIPTORCNIL, OJ;

Bize: DESCRIPTOR FOR ARRAY OF INTEGER + DESCRIPTOR[NIL, OJ;
leftTotal, rightTotal: INTEGER;

BlzeInfinity: INTEGER = 777778;
scanBtack: DESCRIPTOR FOR ARRAY OF INTEGER « DESCRIPTORCNIL, OJ;

scanStackEmpty: BOOLEAN;
top, bottom: CARDINAL;

printS8tack: PrintStack + CreatePrintBtack[63];

PrettyPrintInit: PROCEDURE[lineWidth: CARDINAL « 75]=
BEGIN

n: CARDINAL;

space + margin + lineWidth;

n t 3*margin;

top t bottom « 0;

scanBtackEmpty+ TRUE;

token «+ Memory.Got[n«SIZE[Token],nl:
size « Memory.Get[n*S8IZE[INTEGER]}, nl;

scanBtack t Memory.Get[n*SIZE[CARDINAL],nNnJ;

END;

PrettyPrint: PROCEDURE[tkn: Token] =
BEGIN

WITH t: tkn SELECT FROM

eof =>

BEGIN

IF ~~scanS8tackEmpty THEN
BEGIN

CheckStack[0];

AdvancelLeft[token[loft] ,sizelleftl]];
END;

Indent [0];

Memory .Free[BASE{[token]];

Memory .Free[BASE(size]];

Memory. Free [BABE[scanStack]];
END;

begin =>
BEGIN

IF scanStackEmpty THEN
BEGIN

leftTotal t rightTotal « 1;

left t right t 0;
END

ELSE AdvanceRight[];

token[right]« t;
sizel[right] « -rightTotal;
ScanPush[right];

17

END;

end =>

BEGIN

IF scanBtackEmpty THEN Print[t,0]
ELSE

BEGIN

AdvanceRight[];

token[right] t t;

sizel[right]« —-1;
ScanPush[right];
END;

END;

break =>»

BEGIN

TF scanStackEmpty THEN
BEGIN

leftTotal t rightTotal t 1;

left t right « 0;
END

ELSE AdvanceRight[];
CheckStack[0] ;

ScanPush [right];

token[right] t t;
slize[right]e -rightTotal;

rightTotal+ rightTotal + t.blankSpace;

END;

string =>
BEGIN

IF scanBtackEmpty THEN Print[t, t.length]
ELSE

BEGIN

AdvanceRight[];
token[right]t t;

size[right] t t. length;

rightTotal « rightTotal + t.length;

CheckBtream|[];

END;

END;

ENDCASE;

END;

Check8tream: PROCEDURE =

BEGIN -

- IF rightTotal -~ leftTotal > space THEN
BEGIN

IF —-8canStackEmpty THEN

IF loft = scanBtack[bottom] THEN

size [ScanPopBottom[]l]+ 800;
AdvancelLeft[token[left] ,sizel[left]];

IF ~~(left= right) THEN Check8tream[];
END;

END;

18

ScanPusgh: PROCEDURE[x: CARDINAL] =
BEGIN

IF scanStackEmpty THEN scan8tackEmpty+ FALSE
ELSE

BEGIN

top + (top + 1) MOD LENGTH[scanBtack];

IF top = bottom THEN ERROR 8BcanBtackFull;

END;

ecanBtack [top] t «x ;
END;

BcanPop : PROCEDURE RETURN6 [x : CARDINAL] =
BEGIN

IF scanBtackEmpty THEN ERROR ScanStackEmpty;

x + scanBtack[top];

IF top = bottom THEN scanSBtackEmpty t TRUE
ELSE top ¢ (top + LENGTH[scanSBtack] - 1) MOD LENGTH[scanStack];
END;

ScanTop: PROCEDURE RETURNS8[CARDINAL]=
BEGIN

IF scanBtackEmpty THEN ERROR BcanStackEmpty;

RETURN [scanStack [top]]
END;

BcanPopBottom: PROCEDURE RETURNS[x: CARDINAL] =
BEGIN

IF scanBtackEmpty THEN ERROR BcanStackEmpty;
x t scanBtack [bottom];

IF top = bottom THEN scanBtackEmpty t TRUE
ELSE bottom + (bottom+ 1) MOD LENGTH[scanBtack];

END;

AdvanceRight: PROCEDURE =
BEGIN

right + (right +1) MOD LENGTH[scanS8tack];

IF right = left THEN ERROR TokenQueuseFull,

END;

AdvancelLeft: PROCEDURE[x: Token, 1: INTEGER] = BEGIN

IF 1 >= 0 THEN

BEGIN

Print[x, 11];

WITH x SELECT FROM

break => leftTotal t leftTotal + blankSBpace;

Btring => leftTotal + leftTotal + 1;
ENDCABE;

IF left 7 right THEN BEGIN
left « (left + 1) MOD LENGTH[scanB8tack]:;

AdvancelLeft[token[left], size[leftl]];

END;

END;

END;

19

CheckS8tack: PROCEDURE[k: INTEGER] =
BEGIN

x: INTEGER;

IF ~sacanBtackEmpty THEN

BEGIN

x + BcanTopl];
WITH token[x] SELECT FROM .

begin =>
IF k >» 0 THEN

BEGIN

size[BcanPop[l] t size[x] + rightTotal;
CheckBtack[k -11;

END;

end => BEGIN size[BcanPop[]] + 1; CheckBtack[k + 1]; END;
ENDCASE =>

BEGIN

size[BcanPop[1] t sizelx] + rightTotal;
IF k » 0 THEN CheckBtack[k];

END;

END;

END;

PrintNewLine: PROCEDURE([amount: CARDINAL] =

BEGIN

PutChar[output, CR]; —-— output a carriage return
THROUGH [O..amount) DO PutCharloutput,.I ENDLOOP;—— indent
END;

Indent: PROCEDURE[amount: CARDINAL] =
BEGIN

THROUGH [0..amount) DO PutCharfoutput,*] ENDLOOP;—— indent
END;

—— print stack handling

—— We assume Push, Pop and Top are defined on the stack printBtack;

—— printBtack is a stack of records; each record contains two fields:
—— the integer "offset" and a flag "break" (which equal8 "fits"

- ~~ 1f no break8 are needed (the block fits on the line), or
~~ "coneietent" or °‘inconsistent’’)

PrintBtack: TYPE= POINTER TO PrintS8tackObject;

PrintStackObject: TYPE = RECORD
index: CARDINAL t O,

length: CARDINAL t QO,

itoms: ARRAY [0..0) OF PrintStackEntry];
PrintStackEntry: TYPE = RECORD [

offset: [0..127],

break: PrintStackBreak];

PrintBtackBreak: TYPE = {rits, inconsistent, coneiletent};

Print: PROCEDURE([x: Token, 1: INTEGER1l =
BEGIN

20

WITH x SELECT FROM

begin =>
BEGIN

IF 1 >» space THEN

Push[[space~-offset,
IF breoakTypo = consistent THEN conelstent ELSE inconsistent]]

ELSE Pueh[[O0, fitsell;

END;

end => Cl « Popl[l;
break =>

BEGIN

SELECT Topl[] .break FROM
fit8 =>

BEGIN

space t space-blankspace;

Indent[blankSpace];
END;

conelstent =>

BEGIN

epace t Topl] .offeet — offset;
PrintNewLine[margin-space];
END;

inconsistent =>

BEGIN

IF 1 > epace THEN
BEGIN

space « Topll.offset — offset;

PrintNewLine[margin-space];
END

ELSE

BEGIN

space +« space-blankbBpace;

Indent[blankSpace];
END;

END;

ENDCASE,;

END;

string =>
BEGIN

IF1 » epace THEN ERROR LineToolLong;

space t epace - 1;

CharIO.PutBtringloutput, stringl;
END;

ENDCABE => ERROR;

END;

END.

21

