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ABSTRACT.

A variant of the singular value decomposition for orthogonal
matrices due to G. W. Stewart is discussed. It is shown to be useful
in the analysis of (a) the total least squares problem, (b) the

Golub-Klema-Stewart subset selection algorithm, and (c) the algebraic

Riccati equation.



1. Introduction.

In a recent survey article G. W. Stewart [8] presented the following

variant of the singular value decomposition (SVD):
Theorem 1.

m
If Q e R xm is orthogonal and partitioned as follows,

Q = Q‘ll k k+p=m, k>p
D1
k p
. . kxk
then there exist orthogonal Ul and Vl in R and orthogonal U2
and V2 in IRPXP such that
(1 o .0 k-
k-P E P
v o |? V.o | 0 '
1 M1t | } I AR I
0 U2 le QEI O:V2 0 s. C P
k-p p P
where
C = dlag(cl,...,cp) C1 = Cos (Si)
S = diag(sl,.. ,S_ ) 5, = sin(g.)



For notational convenience we will sometimes express the above

decomposition in the form

C., S k
ﬁTQ T o= 0 70
-SO C P
k p
where U = diag(Ui,Ug), vV = diag(Vl,Vé), Co = diag(Ik_p, C), and
SO =[0 S1] p
k-P P
T . .
Note that Ui ij Vj displays the singular values of %ﬁ. . The

quantities cl,...,cp will be referred to as the p-singular values of Q
and the entire decomposition as the p-SVD . The p-singular values of Q
are thus the singular values of Q's trailing pxp principle submatrix.
'The assumption p < k is not restrictive.

The aim of this paper is to demonstratethat the p-SVD can play a useful
role in the analysis of certain matrix computation problems. This is not
a new endeavor; Davis and Kahan [2] made use of the p-SVD in their detailed
paper about invariant subspace perturbation. Although this paper precedes
Stewart [8], it was in the latter article that Theorem 1 was first made
explicit.

We briefly indicate how Theorem 1 can be proved. For clarity, assume
p=k=3 . Let U‘T Qll Vl = diag(cl,cg, c'3) be the SVD of Qll

1
Since “Q.ll”2 < ”Q”2 = 1, it follows that cl <1



T
Let U2 be an orthogonal matrix such that the first column of Ué(Qlel)
is a non-positive multiple of e s the first column of the 3X3 identity.
Similarly, let Vé be orthogonal so that the first row of (Uinz)Vé is

a non-negative multiple of Ji . It then follows that

T T . B :
dlag(Ul,UE) Q dlag(Vl,Vg) = 00 0 c,:d x X

where a>0, r < 0 and "x" denotes an arbitrary scalar.
Since this transformed matrix is orthogonal, both row 1 and column 1
have unit 2-norm and thus, if 8y = 'l-ci then a = Sy and r = - S

This implies that f = ¢y because columns 1 and 4 must have a zero inner
product. It then follows from the unit length of row 4 and column 4 that

u,v,g,h,b,d,k, and j are all zero. This leaves us with 2 X 2 blocks —-

Q.E. D. by induction.

2. The p-SVD, Direct Rotations, and Angles between Subspaces.

In this section we relate the p-SVD to certain well known relationships
that exist between subspaces. As we mentioned, Davis and Kahan [2] used

p-SVD ideas in their study of the invariant subspace perturbations.



In their analysis of this problem, it is necessary to be able to rotate

a given p-dimensional subspace A into another p-dimensional subspace B

in the most "economical" fashion. More precisely, if

z 1w = [wll W]

n-p P n-p p

are nxn orthogonal matrices with A = Range Q%) and B = Range WE) ’
nxn

then we wish to determine an orthogonal Tmin € R that minimizes
IT - In”F subject to the constraint T Z, = W, . (Here, |EH§ = trace (CTC),
a unitarily invaniant norm. )
It is clear that any orthogonal T e I{an satisfying T Z2 = W2
must have the form
T = [wv, | W] (2,u ]szwAiT
where Ul and Vi are orthogonal matrices in I{(n—p)x(n-p) From the
identity
T 2 T 2 T T2
”Zl W2” + ”2‘2 wl”F = ”Z222 - w2w2”F
it follows that
2 ST 5 2 ST 2
It - ol = 2"t 2 - )& = 2% - )%
_ T 2
- ”U (Zl wl 1 - In P” ”Ul 1 2) “
T 2
o GV R A A i
_ 2 2
- ” l l l In—p”F + ”Z222 IE”F ’ ”F



This r ion is minimized b h i U dvVv SO UT(ZT WV
expression i inimize y choosing U; and V; - Vo WV

is diagonal. (See [7]). Moreover, if

T
is the p-SVD of Q =% W , then

T o= w2t o= 2zt
min

T . T
z(z" W) dlag(VlUl,Ip) z

T
[ZlUlIZEUE] c. S UZ

and

2 2 2 T 2
I “F = ”C - Ip”F + EHS”F + HC (VEUE ) - Ip“F

I Thin™ 'n

The p-singular values {cos (91)}§=1 of 7T w provide a measure of how
different the subspaces A and B are. The 6, are referred to as the
"orinciple angles" between A and B and a stable, efficient algorithm
for their computation is given in a paper by Bjork and Golub [1]. Wedin [9]
has developed a perturbation theory for the principle angles. T . 1is

min

referred to in [2] as a "direct rotation" from A to B




3. A Wielandt-Hoffman Theorem for p-Singular Values.

If an orthogonal matrix Q is perturbed, how are its p-singular values

effected? The following theorem answers this question.

Theorem 2.

If Q and Q@ are mxm orthogonal matrices having p-singular values

{003(91)}§=l and.{cos(éi)}gzl respectively, then
- " B~ é' 1 NTE
1) [1-cos(o,-6,) 1 = 8) s (F %) <a-d}.
i=1

Proof.

If the p-SVD's of Q and Q are given by

T o - T
up 0 Y91 % |V O | % %o k
05 1 %or 190 V2 So © P
kK p
and ;
~ T ~ ~ ~ - ~ AIII
Uy © 91 G| |71 © N k
0 U U1 %o 0 Y S © P
k p

respectively, then

la -l = fueyr; - 0 CalE
' HUlsgvg - algg“g”§
* “Ugsovi - A2§0A§”§
s e - G 6 e



Now the Wielandt-Hoffman for singular values states that if the nxn
s . T S ~ \OT .
matrices R and R have SVD's U dlag(ci)V and U dlag(gi)V respectively,

then

P

A )2 12
2: (Oi‘ Gi) < I® - R”F
i=1

This result follows by applying the "original" Wielandt-Hoffman Theorem [5]

0 R 0 &
for eigenvalues to the symmetric matrices |LR 0 J and R 0r.
(These matrices have eigenvalues + ¢ and * &, respectively. ) Thus, if

= = si .= 3 §.= sin(g. th
<y cos(ei), si s:m(ei), ci cos(ei) and S 81n(el) , en

~ne
”Q - Q’”F ol

Vv
~~
[¢]
!..l

1
0>
S

no
+
N
0
]
w >
N—

N

P
uz 1 - cos(ei- ei)]
i=1

’p ~
8- 9,
82 sin® —];2—1- . O
i=1

In the next section it will be necessary to know how far a given m x n

orthogonal matrix Q 1s to the set ﬂ? defined by



i.e., the set of all mxm orthogonal matrices whose trailing pxp

principle submatrix is singular.

Theorem 3.

If QO is an mxm orthogonal matrix with p-SVD given by Theorem 1,

~

and if Q is defined by

‘ I ofo T
. U, 10 =P |Tv,'o
Q - ll O C lS ll
- - - _..4- = -
0 B - = ==X J"R" (O Ve
12 0 -S [C {
[
with
C = diag(cl,. ,C l,o)
S diag(sl,. ,sp_l,l)
then
lo - @l = minfa - 2, = Y1 - sin(ep) < 2 cos(@p)
Z € Qlll
P
Proof.

Any Z € Qg has p-singular values of the fornlfcos(%}p .,cos(e )5 0}

p-1

and so from Theorem 2,

2 [, o [ 6./
lz - ¢ >8 sin =] + 8 sin L __ ) >u@ - sin(e))
Z 5 2 - p
i=1
By setting Z = @ , the lower bound is attained. The rest of the Theorem

follows from elementary trigonometry. [



L.  Some Applications.

We now apply the p-SVD to several computational problems.

(a) Total Least Squares [4].

mxp

Given A ¢ R™™ ;, B e R (m > n+p) and nonsingular "weighting

matrices" D = dia,g(dl,...,dm) and T = diag(tl,...,t ), the total least

n+p
squares problem (TLS) involves minimizing

IprelrRiTl, & ¢®™, R ¢ r™P

subject to the constraint

Range (B + R) ¢ Range (A + E) .

If a minimizing E and R can be found, then any X ¢ HXP satisfying

~

(A + E)X = B + R

is a TLS solution. Note that this last equation implies

[x]

fD[AlBIT + D[ﬁlﬁ]T}T’l L =0

-1

|
P

and thus, the TLS problem involves finding the nearest matrix to D[AIB]T

that has a null space of dimension p . If

oy )7 ptalsle (o, la,) = dtaglogs ooy, )
n-p p noop



is the SVD of D[A|BIT , then

A~ . T
D[ElR]T = = .U2 dlag(cn+l’ooo,cn+P)Q2.

~ALA

The minimizing [E|R] is unique if a, > Opey - Moreover, if

;)
1 "2
Q = [glal =
%1 %) P
n P
then
X Q .
-1 IR N B - -1 .. -1 -1
T . = T %o d1ag(tn+l,...,tn+p)
P Q22
provided Q’EQ is nonsingular. In this case

. -1 .. 4 T
Xppg - diag (tl, ces ,tn) Q5%5 diag (tn+l’ .es ’tn+'p) .

Numerical difficulties arise in the TLS problem if Qg2 is close
to singularity. Consequently we are interested in how close the TLS problem

{A,B,D,T} is to a corresponding problem f{A,B,D,T} with no solution.

Theorem L.

Let A,B,D, and T be as above and suppose F = D[A|B]T has SVD

UTFQ=diag(ol,---,o ) with o > o

Y
n+ p n n+l "’ If {COS (ei)}j.:l are the

p-singular values of Q , then there exists a TLS problem f{A,B,D,T} with
no solution satisfying

Ipal3)T - pralBlTl,

< 2 cos (eP)

IoralBrl,,

10



Proof.

n+p
P

Let Q be the matrix in € closest to Q as in Theorem 3 . Now

v'ra = vT(Fa21)a - alagloyseeesoy, )

and so by defining [A|B] from

DIA|BIT QQ"

DIA|BIT = 7aQ’

~A A

we see that the TLS problenl{A,B,D;N has no solution and

Ipf&l8)T - olalslell, < fotalele, la-Gl,

The Theorem follows since ”Q-E&“F =<2 cos(ep) @D D

(b) Golub-Klema-Stewart Subset Selection [3].

Consider the problem

min|[Ax - b”2 A e B® , ber”

where A has SVD

T .
[u, 10,17 A la,Q,] = diagloy,.--s0)
r n-r r m-r
~ 0 . This implies that A is close to a rank r matrix.

and o, >> Or+l

One way of "coping" with the ill-conditioning is to minimize ”Arx--b”2



I

where Ar = Ui dlag(cl,...,cr)Ql .

This least squares problem has the solution

H

.b

[

|-

9

Q

r
X=Z
d i
i=1

where q; and uy denote the i-th columns of Q and U respectively.
A shortcoming of this approach is that the predictor Axr of b involves
all n columns of A . Since rank degeneracy implies redundancy in the
underlying linear model, it may be desirable to approximate b with r
suitably chosen columns of A .

A method for doing this is suggested in [3]. Suppose P e R™® is

a permutation matrix and that y e R minimizes ”Bly _ b”2 where

AP = [BliBQI
o n-r
If - -
Q Q r
plg = | 11 12

521 o) B-T

and

x = p(Y|*
0O|n-r

then it can be shown that

(e}
<L1”

||rx—r'xrl|2 = o, Aillalell, -



Here, the notation r, means r, = b - Az , the residual of z
Since

- - T

- ”AX - UlUl b”2 ]

it can be argued that x , vis-a-vis P , should be chosen to make this
quantity as small as possible because UlUif represents the "stable"
component of b . In [3] this task is approximately accomplished by

chosing P so that the resulting Qll is well-conditioned. This is done

by applying the Q-R with column pivoting algorithm to Ql :

T.T T
oP = 2R IR zz=-1 ,R - \
r n-r
In many applications, however, n -r << r . Since the p-SVD
. . -1 " . . . -
implies ||Q1ﬂb = ”Qggl2 , we can essentially determine P by triangularizing
the "skinny" matrix QQ thus saving work . Note, that if r = n-1 , then P
should merely interchange rows k and n of Q where qun’ =maqu |
in
1<i<n
(c) The Algebraic Riccati Equation.
nxn T
Suppose A,B,C € R are such that A= A > 0 , CT= v > o« Well-

known conditions of stabilizability and detectability [10] guarantee that if

T

©a

then there exists T,Y,ZesRnxn such that

13



where Z is nonsingular and T's eigenvalues are in the right-half-plane.
Furthermore, it can be shown that X = YZ_1 is the unique, non-negative

definite, symmetric solution to the algebraic Riccati equation

A + BX+ XBT-xcx =0

The matrix M is said to have Hamiltonian structure and in [6] the

following decomposition is proved:

T - g
Q) 91 % B A U1 %y T R
T - 7
D1 Y1 c -B %1 a1 o T
-
Q

where T 1is upper quasi-triangular, R is symmetric and Q orthogonal.
If T has its eigenvalues in the right-half-plane, then X = QllQ;i solves
the Riccati equation.

The transformation Q is said to have symplectic form. Orthogonal
symplectic matrices 'preserve Hamiltonian structure and moreover, their p-SVD

is of very special form:

Theorem 5.
91 %y T
L1 9 n

If Q =

1k



is orthogonal, then there existnxn orthogonal matrices U and V such that

T
U O Qll -QEl v 0 =

0O U QEl Qll o Vv A

where
— s * *
T = dlag(cl,...,cn) 1> 01-2' z_cn Z 0

A= diag(6y,...s6 ) R,

The proof is given in [5]. Note that A may have negative diagonal entries

and that if 61 ¥ 0 then

_ a1 i T
X = Q0] = U dlag(o'i/éi) U

(In the Riccati application, the éi are positive.)

In practice it is important to understand the significance of small 61

since the accuracy of a computed X depends on the size of 61 , In [6] this
topic is pursued. Roughly speaking, it can be shown that perturbations in A, B,
and C of order 6l can result in a Riccati equation A + BX + XBln XGX =0

that has no symmetric positive definite solution.

15



Acknowledgement.

The author wishes to thank Professor Gene H. Golub for encouraging

him to prepare this report.

REFERENCES.

[1]

(2]

[3]

(4]

[9]

[10]

Bjork, A. and G. H. Golub, 'Numerical methods for computing Angles between
Linear Subspaces", Math. Comp. 27 (1973), pp. 579-594.

Davis, C. and W. M. Kahan, "The Rotation of Eigenvectors by a Perturbation.
III", SIAM J. Numer. Anal. 7 (1970), pp. 1-46.

Golub, G. H., V. Klema and G. W. Stewart, "Rank Degeneracy and Least Squares
Problems", Dept. of Computer Science Technical Report 559, Stanford

University, Stanford, CA. (1976).

Golub, G. H. and C. Van Loan, "The Total Least Squares Problem", unpublished
manuscript.

Hoffman, A. J. and H. W. Wielandt, "The Variation of the Spectrum of a Normal
Matrix", Duke Math. J. 20, (1953),pp. 37-39.

Paige, C. and C. Van Loan, "A Hamiltonian-Schur Decomposition", Dept. of
Computer Science Technical Report TR 79-377, Cornell University, Ithaca,
New York, 1979.

SchBnemann, P., "A Generalized Solution of the Orthogonal Procrustes Problem",
Psychometrika 31 (1966), 1-10.

Stewart, G. W., "On the Perturbation of Pseudo-Inverses, Projections and Linear
Least Squares Problems", SIAM Review 19 (1977), pp. 634-662.

Wedin, Per Ake, 'A Geometrical Approach to Angles in Finite Dimensional Inner
Product Spaces; the Triangular Inequality for Angles", Institute of
Information Processing Rept. UMINF:66.78, University of Umear, Sweden (1979).

Wonham, W. M., 'On a Matrix Riccati Equation of Stochastic Control", SIAM J.
Control, 6 (1968), 681-697. —

16



