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ABSTRACT.

A variant of the singular value decomposition for orthogonal

matrices due to G. W. Stewart is discussed. It is shown to be useful

in the analysis of (a) the total least squares problem, (b) the

Golub-Klema-Stewart subset selection algorithm, and (c) the algebraic

Riccati equation.



1. Introduction.

In a recent survey article G. W. Stewart [8] presented the following

variant of the singular value decomposition (SVD):

Theorem 1.

mxm CL

If Q ¢ R 1s orthogonal and partitioned as follows,

Q 2 k k+p=m, k>pD1 > Pp

kp

: kxk

then there exist orthogonal Uy and Vy in RR and orthogonal Uy

and vy in Rr PP such that

[1 0.0] k-
k-P d

2 ni [52 _ URES I:
k-p pp Pp

where

C = diagleys...re ) Cq = COS (9, )

S = diag (sy,e..ss ) 5, = sin(g, )

and 0<8;<-.-28,< m/2 .
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For notational convenience we will sometimes express the above

decomposition in the form

T
C. S k

Ta T= | 0 |54 C p

k p

where U = diag (U,,U,), V = diag (V,,V,), Co = diag(l, C), and

5, =L0 81] 0p :
k-P P

T

ote that U, Qe 5 displays the singular values of 2 The

quantities Cree sCy will be referred to as the p-singular values of Q
and the entire decomposition as the p-SVD . The p-singular values of Q

are thus the singular values of Q's trailing pxp principle submatrix.

'The assumption p < k is not restrictive.

The aim of this paper 1s to demonstratethat the p-SVD can play a useful

role in the analysis of certain matrix computation problems. This is not

a new endeavor; Davis and Kahan [2] made use of the p-SVD in their detailed

paper about invariant subspace perturbation. Although this paper precedes

Stewart [8], it was in the latter article that Theorem 1 was first made

explicit.

We briefly indicate how Theorem 1 can be proved. For clarity, assume

= I _ 3a
p=k=3 . Let Uy U1 4 diag l(c sc,, oy) be the SVD of 1 .

since 19411, < lall,, = 1, 1t follows that cl <1 .

2



Let Us be an orthogonal matrix such that the first column of U, (QV, )
1s a non-positive multiple of ey > the first column of the 3X3 identity.

Similarly, let Vs be orthogonal so that the first row of (U7Q,,)V, is
a non-negative multiple of ey . It then follows that

Cy 0 O x) 0 0

0 c, O ib X X
diag (UF ,Ul) Q diag(v,,v.) = 00 O Cc : d x X

| r u v .f g h

0 x x : k x X

0 X X » X X

where a>0, rv < 0 and "x" denotes an arbitrary scalar.

Since this transformed matrix 1s orthogonal, both row 1 and column 1

have unit 2-norm and thus, if Sq = Vic then a = Sq and r = - Sq

This implies that f = Cq because columns 1 and 4 must have a zero inner

product. It then follows from the unit length of row 4 and column 4 that

u,v,g,h,b,d,k, and J are all zero. This leaves us with 2 X 2 blocks —-

Q.E. D. by induction.

2. The p-SVD, Direct Rotations, and Angles between Subspaces.

In this section we relate the p-SVD to certain well known relationships

that exist between subspaces. As we mentioned, Davis and Kahan [2] used

p-SVD ideas 1n their study of the invariant subspace perturbations.



In their analysis of this problem, it 1s necessary to be able to rotate

a given p-dimensional subspace A into another p-dimensional subspace B

in the most "economical" fashion. More precisely, 1if

7 = (2, | z,] Wo = [w, | Ww,]
n-p p n-p p

are nxn orthogonal matrices with A = Range (z,) and B = Range (W,) ,

then we wish to determine an orthogonal T_.  € R™" that minimizes
2 T

[T - Ll subject to the constraint T Z, = W, . (Here, Ici = trace (CC),
a unitarily invaniant norm. )

| nxn

It is clear that any orthogonal T e¢ R satisfying T Zp, = [US

must have the form

T= wv. wilzulzrs w zz
11 2 1'1 2

where U; and V., are orthogonal matrices in R (n-p)x (n-p) . From the
identity

T 2 T 2 T 2

12] Wl 5 + {Fn Wo ll — 1z,7, B UAL

it follows that

2 ~T 7° 2 ST 2

TT 2 T,. T 2
= - +

Jug(zg wy )vy = 1 lly + 0p (2g Wp) Hl
T 2 T 2

+ -

[CATAFS A A =

SN [SRC VA I FAFA [i A OY
171 1°71 n-p"'F 2 2 2 2'F 22 “p'F
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| Thi i nimi V. SO ul(zt Ww, )V1s expression 1s minimized by choosing Uy and 1 Vm WY

FC 1s diagonal. (See [T]). Moreover, if

B uv. o YF [ziw, zfwl[v, o c. st

K Es HK | [5 |T T

0 Us | Zo, Wy Z, Ww, 0 Vs, -S4 C

75 Ww

is the p-SVD of Q = 4 W , then

; r= wu 2b = z¢ztwzt
: min

~ T T T

= z(z~ W) diag (Vy03,1) 2
fC T T,T

[2,0 12,0] “0 > | EdT_T- -34 C Vos

| and

2 2 2 T 2
3 — = —- , Is -— *

| Im TI = le) + als + fle (Ruy) - 15

| T
| The p-singular values feos (8)15_; of 2° w provide a measure of how
1 different the subspaces A and B are. The 6, are referred to as the

"orinciple angles" between A and B and a stable, efficient algorithm

i for their computation is given in a paper by Bjork and Golub [1]. Wedin [9]

has developed a perturbation theory for the principle angles. Tin 1s

i referred to in [2] as a "direct rotation" from A to B .



5. A Wielandt-Hoffman Theorem for p-Singular Values.

If an orthogonal matrix Q is perturbed, how are its p-singular values

effected? The following theorem answers this question.

Theorem 2.

If Q and Q are mxm orthogonal matrices having p-singular values

p ~ )qP
fcos (6.034 and {cos(6.)}. respectively, then

P P A
~ = EP LY NIE

by [1 - cos (6, - 0) 1 = 8) Sin ——5 =) < Q - Qll% ‘
i=1 i=1

Proof.

If the p-5VD's of Q and @ are given by

uu o 1% | V. 0 | cst k

EE SELo Yj fo1 or 19 V5 “So © d

kK p

and

~ TT A A A - ~ A
C k

~ ~ ~ ”~ 4 ~
© D1 pod 10 V5 o © F

kp

respectively, then

~ 0 BN T AOA oT 2
la - ally = uC; - C57

TT ~ STAT 2
-+ _10,857, - UpSoVally

+ -108077 - UpSo¥alls

+ - .luc vy u, C Volz
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Now the Wielandt-Hoffman for singular values states that if the nxn

~ . T ~ . N ~T
matrices R and R have SVD's U diag(o, JV and U diag (8 )V respectively,
then

- 2 “ne
) (0-8) < Ir - RI
i=1

This result follows by applying the "original" Wielandt-Hoffman Theorem [5]
ro. 1 T

| 0 RY 4 0 Rfor eigenvalues to the symmetric matrices E 0 | an Rog.
(These matrices have eigenvalues + op and * &., respectively. ) Thus, if

Cc, = cos (8), S, = sin(e, ), Cs = cos (g. ) and 5, = sing, ) , then

P

“ne ~ 2 ~N2

lo - AR > 2) (e,- 80% + Gs, - 5)
i=1

P ~~

= 5 [1 - cos (8, - 6;)]
i=1

| D .
0.- 9.

= 8) sin”_ . []2

i=1

In the next section it will be necessary to know how far a given m x n

orthogonal matrix Q 1s to the set a defined by

Z 7 | m-p
f= g= | Bt EE 7lz = 1, aet{z..)=0},
p 7 7 m 22

21 “224 °F |

m-p DP
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| i.e., the set of all mxm orthogonal matrices whose trailing pxp

5 principle submatrix 1s singular.

| Theorem 3.

If Q 1s an mxm orthogonal matrix with p-SVD given by Theorem 1,

and if Q 1s defined by

: I o fo T

| . Ut O0 a vto
a = ~'_ |lo c's |LL._.

: 0 'U EE Ov V
be lo os Tc ¢ 2
[

with

C = diaglcy,.. se 1,0)

S = diag(syy-« ss 1,1)

| then

| - 0 — min - 7 = 2 1 - sin
la - all; lla I Y (8) < 2 cos (8)

| Ze Q
DP

Proof.

Any 7 € a has p-singular values of the form fcos(g),. +scoslp )5 0]
and so from Theorem 2,

p-1 . 6. -6. > 6 - n/2
| jz - qf >8) sin” |=} + 8 sin” | E——] > u(1- sine )) .

— 2 2 — p

| i=]

By settingZ = @Q , the lower bound is attained. The rest of the Theorem

| follows from elementary trigonometry. I]



L. Some Applications.

We now apply the p-SVD to several computational problems.

| (a) Total Least Squares [4].

Given A ¢e R™" , B ¢ R™P (n > n+p) and nonsingular "weighting

| matrices" D = diag(dy,...,q ) and T = diag (t seen) the total least
squares problem (TLS) involves minimizing

| IprelrIT), Ee B®", rR ¢ R™P

subject to the constraint

Range (B + R) c Range (A + E) .

If a minimizing E and R can be found, then any X e¢ BXP satisfying

(A + E)X = B + R

| 1s a TLS solution. Note that this last equation implies

- [x]-1

(plAlBIT + DIEIRITIT™™ | 1 = oO
Pp

and thus, the TLS problem involves finding the nearest matrix to D[A|B]T

| that has a null space of dimension p . If

T as

[u, lu] D[A|B]T [ala] = diag (oy; SECA
| n-p p n bp
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is the SVD of D[A|BIT , then

2 n+l’ “n+p %W

The minimizing [E|R] is unique 1f a, > Cpl” Moreover, 1if

Q Q n
11 12

Q = [ola] =
D1 yf P

nl P

then

X. Q
-1 _ .-1| M12 -1 _. -1 -1

p ©)

provided Us 1s nonsingular. In this case

diag (t.,...,t ) Q -L diag (t+ tT )Ars = 1°°°°7"n 12%0 n+l n+p’ °

Numerical difficulties arise in the TLS problem if 95 1s close

to singularity. Consequently we are interested in how close the TLS problem

fA,B,D,T} is to a corresponding problem {A,B,D,T} with no solution.

Theorem U4,

Let A,B;D, and T be as above and suppose FI = D[A|B]T has SVD
T : : pb

UFQ = diaglogseees0 » with Cp > C41 ° If {cos(6,)};_; are the
p-singular values of Q , then there exists a TLS problem fA,B,D,T} with

no solution satisfying

IotalBlT - lalslT,
EE —— cos (6)

Inia lBIT)
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Proof.

A n+p

Let Q be the matrix in 2 closest to Q as in Theorem 3 . Now

T TL ATNS
UFQ = UT (FQ )Q = diagloyse..sop,)

and so by defining [AB] from

D[A[BIT = »qQ = D[A|BIT QQ

we see that the TLS problem fA,B,D,T) has no solution and

[oral81r - orallell, < (oralslef, fe-all,

The Theorem follows since la-all, =< 2 cos (8) <0 0

(b) Golub-Klema-Stewart Subset Selection [3].

Consider the problem

min|[Ax - pil, Ae B®, be r"™

where A has SVD

[u,|U 17 A lq ] = diaglo,ye-.s0.)1 17% 17°",
r n-r r m-r

and o.. >> Oy A 0 . This implies that A is close to a rank r matrix.

| One way of "coping" with the ill-conditioning is to minimize lax - vl],

11



_ . T

where A= U, diag (oys...50,)Q] .

This least squares problem has the solution

o ub
X = —r ) os 3

i=1

where I; and u, denote the i-th columns of Q and U respectively.

A shortcoming of this approach is that the predictor Ax of b involves

alln columns of A. Since rank degeneracy implies redundancy in the

underlying linear model, it may be desirable to approximate bp with =r

suitably chosen columns of A .

A method for doing this is suggestedin [3]. Suppose P ¢ RP 1s

a permutation matrix and that y c RT minimizes IBy - oll, where

ap = [BB]
-  n-r

If ~ ~

Q Q r

pg _ = .by Sp] BT

and

Xx = P Jr
QOin—-r

then it can be shown that

C ~

~ | r+1 ~-1

leg= me lp < SH Ia, ll,r
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Here, the notation r, means r, = b - Az , the residual of z .

Since

a A a]
X x 2 171 le ?

it can be argued that x , vis-a-vis P , should be chosen to make this

quantity as small as possible because U,Ub represents the "stable"
component of b . In [3] this task is approximately accomplished by

chosing P so that the resulting Aq 1s well-conditioned. This is done

by applying the Q-R with column pivoting algorithm to 4G :

T_T T

oP = 2[R IR] zz=-1 , rR =N
r n-r

In many applications, however, n -r << r . Since the p-SVD

1 I

implies [ES = lazAl, , we can essentially determine P by triangularizing
the "skinny" matrix % thus saving work . Note, that if r = n-1 , then P

should merely interchange rows k and n of Q where lay | —maxd. n .1

1<i<n

(c) The Algebraic Riccatili Equation.

nxn

Suppose A,B,C €¢ R are such that A'= A > 0 , l= » > o + Well-
known conditions of stabilizability and detectability [10] guarantee that if

© 4M =

C =a

: nxn

then there exists T,Y,Z ¢ R such that
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1 Y 3 Y

where Z is nonsingular and T's eigenvalues are in the right-half-plane.

Furthermore, it can be shown thatX = yz 1s the unique, non-negative

definite, symmetric solution to the algebraic Riccati equation

T
A+ BX+ XB" - xcx = 0 .

| The matrix M is said to have Hamiltonian structure and in [6] the

following decomposition 1s proved:

Pre al Je | TRY1 Go 11 "91

| 1 “nl L¢ Bl l% On :

where T is upper quasi-triangular, R 1s symmetric and Q orthogonal.

If T has 1ts eigenvalues 1n the right-half-plane, then X = A197 solves

| the Riccati equation.

The transformation Q 1s said to have symplectic form. Orthogonal

| symplectic matrices 'preserve Hamiltonian structure and moreover, their p-SVD

] 1s of very special form:

Theorem 5.

Q - n

| If Q = | HL “1%] ©

! n n

1h



is orthogonal, then there exist nxn orthogonal matrices U and V such that

Uu oO : Q Vv 0 z

| O U Aq 1 oO Vv A

where

| YT = diagloys.. 50, ) 1 >0y 2.7%" > 0, 20

. 2

A = diag(8y,...,6 ) A + 5 = 1

The proof is given in [5]. Note that A may have negative diagonal entries

and that if 6 # 0 then

a =1 _ : T
| X = Q19%7 = U diag (o,/6.) U

| (In the Riccati application, the 8, are positive.)

In practice it 1s important to understand the significance of small 6.

since the accuracy of a computed X depends on the size of 6, : In [6] this

topic 1s pursued. Roughly speaking, it can be shown that perturbations in A,B,

and C of order 81 can result in a Riccatil equation A + BX + XB. XOX = 0
that has no symmetric positive definite solution.
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