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Abstract.
H(x) , the negative logarithm of the apriori probability M(x) ,
is Levin's variant of Kolmogorov's complexity of a natural number x .
Let a(n) be the minimum complexity of a number larger than n ,
s(n) the logarithm of the apriori probability of obtaining a number
larger than n . It was known that
s(n) < a(n) < s(n) . H(Ls(n) ] )

We show that the second estimate is in some sense sharp.
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Let T(p) be a partial recursive function defined over binary

sequences with values among the natural numbers which is prefixless:

(a) If P, 1is a beginning segment of p, and T(pl) is defined

thenT(pg) = T(pl)
and optimal:

(b) for any other prefixless p.r. function T' , there is a sequence

p such that T(pg) = T'(q) for all g .

Let R(p) denote the length of the sequence p , levin introduced

the complexity
H(x) = min{2(p): T(p) = x)

as a useful variant of Kolmogorov's complexity., gee e.g. [1], also
Chaitin [2], Gacs [3].

We denote by T(p;t) a computable "approximation" of T (p)
on some Turing machine computing T(P) , T(p;t) is T(p) if T(p)
is computed within time t , undefined otherwise, | yrite

H(x3t) = min{f(p): T(p;t) = x)

1

M(x) =2'H(x) o M(x3t) =2'H(X5t)

s(n) = - log( I M(d) )
1=n

a(n) = mini>n H(i)



a(n) and s(n) , two extremely slowly (slower than any unbounded,
recursive function) growing functions, are closely related. It is known
that

(1) s(n) < a(n) < s(n) + H(Ls(n) J ,

where < and X denote inequality and equality to within an additive,
< and = to within a multiplicative constant.

The first inequality is trivial, the second one is well-known (see
e.g. [4]). A hint to the proof: to find a number > n , we have only
to know 2°° (0) to within an error term 27° (n)

We will show that the second estimate in (1) is sharp.

Theorem. Let g(n) be any positive, monotone recursive function such that
n

Then a(n) > s(n)+ g(s(n)) infinitely often.

Proof. It is well-known (see e.g. [3]) that, if p(n;t) is a computable

nonnegative rational function over pairs of natural numbers, monotone in t

and 2, y(n3t) < 1, i.e., for each t , p(n;t) is a semimeasure, then
n

w(nst) < M(n)

Put
s(n;t) = 25 M(ijt)
i>n
su(nst) = _2 w(ist)
i>n



m(k;t) = max{n: s(n;t) < k}

m (bst) = max{n;s (n;t) < k}
m m

The construction depends on n , a fast-growing recursive sequence.
We will see at the end of the proof, how we should choose it in dependence
of g .

Let p(n30) =0

Suppose that p,(n;t) is already constructed. Put

k(t) = max{k > -log(l - su(O;t)): i e [nk_2.+l, n’k-l]

(3) a(m (1-g(i);t)3t) > 1} .

Put n(t) = Dy (1) Let j(t) = max{j: p(j;t) > 0} . Put
WG e)r1se) = 2
p(I501) = p(dst)  for 3 # j(t)

We will show that there are infinitely many i's such that for almost
all t , (3) holds.
This implies, of course, that
am (i-8(1)) > 1
That is, for some n , with

i-g(i) > su(n)

a(n) > i > s L§Ln)+ g(i) > s(n) + g(i) > s(n) + &(s(n))

and the theorem will be proved.
Suppose that, on the contrary, there is a largest io among the i

such that (3) holds for almost all t and a least t such that (3) holds

0

for 1 and all t > t

0 o



Under the above assumptions,

SM(O;t) - 1
Therefore
¥ o) | o
E t
2 -n(t)
Notation. A(tl,'t ) = 22
_— 2
t=t,
£
Bt ,tsk.) = 2 {2'n(t)- t e [tst], k(t) = ky}
l, 2, 0 H € l) od v 0 .
Lemma. There exists a triple (kO’tl’tQ) with k) > k(to) ,
t2 > tl zto such that
(a) k(t) > ko for te [tl,te] ;
g1
() 2 < A(tl,te) < 3 B(tl,tg,ko).

Proof. For some to , (k(to), to, tO) will satisfy (a) and the first
inequality of (b).

Let us say that (ko’tl’te) < ( ('),tj'_,t' if k! < k tr < ¢

2) 0-="0" "1 1
Let (kO’t]_’tE) be a minimal triple < (k(to), to,to) » among the

i
Sty St

triples satisfying (a) and the first part of (b).

(A) For t5 € [tl’te] we have k(t) = ko » otherwise the triple is not

minimal.
For similar reasons we have

1 1 1 1
(B) If t., < t!@ < t2 < t2 and k(t) > ko in [ti’tg] then

1=" =2
) 0
1 1
then B(tl’te) < 2 .



Therefore we have

i
0
. = k .
_nko
0]
We concentrate now on a triple (k,tl,tz) < (k(to),to,t )
satisfying (a) and (b).
Notation. For i € [nk-l’nk] put
B, = {t e [tl’tg]: dn H(n;t) < i, H(n;t) < H(n;t-1)} .
We now estimate .s:.L = # Ei from below (see (5)). Let us write
Ei = {til’tiE""’tigi’ where t.:L.J < tij+l . Put tiO = tl-l s
= = i ..t .. i i
tisi+l t2 . Let u.l:J the last t in ['le l’t13+l] (if any) with
k(t) = k . If there is no one, u.l.J = t'l'J .
u
ij-1
-n(t) - _ g
Let 1%" = 5 2 , kij = -log i3 - Then by our
t=1t .,
ok

algorithm we have
am (i-g(i)) su.-1) < i
B 1d -
On the other hand, by the definition of Uay s

Oc(J(tij+l) ;uij—l) > i .

Therefore we have

>
1

iJ. S(J(tij-l-l) ;ui:]_l 2 1-g(1) )

A

()4) o 2'i+ g(l)



On the other hand,

2'“1:-1

Using (b) of the Lemma,
“Og-1 My —i+g(d) -i+g(i)
%.2 < (s (2 Fre ) < 2(sy+1)(2 )
Hence
g tive®)
S, > =2 - ’
i =3

t
< = o) |5 )

t=t0 tGEi

. ) )
-i+g(i
R ko4 (s;+1)2 g(i) | B(tl,tgyk) )

that is, for i-g(i) > nk{L+2 :

(5) s, > T

1

Put mk = min{i: i

We have
Ly -
0:t O:t > 2 2 '(S.—S._ ) + 2 * 8
1 > s(0s5t,) S<’l>“1—mk+l i7i-1 e
nk nk—l —l-l
- T.27 s, - T2 © sy
ZL=IIlk i=mk
nk-l -n Oy .
—i- 1 k-1 -g(i)
> 2t s > ge2 AR :
. 1 i =
l=1'ﬂk m‘k

to a contradiction

- +1i - g(3)
an-l i_g(d

_g(i) > nk-l+2} ¢

C

+ chij + B(tl’tz’k)

If 0y is chosen far enough from My_q 7 this will cbviously lead

14
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