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Abstract.

H(x) , the negative logarithm of the apriori probability M(x) ,

is Levin's variant of Kolmogorov's complexity of a natural number x .

Let a(n) be the minimum complexity of a number larger than n ,

s(n) the logarithm of the apriori probability of obtaining a number

larger than n . It was known that

s(n) <a(n) < s(n) . H(Ls(n) J) .

We show that the second estimate 1s in some sense sharp.
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Let T(p) be a partial recursive function defined over binary

sequences with values among the natural numbers which 1s prefixless:

(a) If Pp; 1s a beginning segment of D, and T(p;) is defined

then T(p,) — T(p;)

and optimal:

(b) for any other prefixless p.r. function T' , there 1s a sequence

p such that T(pqg) = T'(q) for all g .

Let R(p) denote the length of the sequence p ;, 1evin introduced

the complexity

H(x) = min{2(p): T(p) = x)

as a useful variant of Kolmogorov's complexity. gee e.g. [1], also

Chaitin [2], Gacs [3].

We denote by T(p;t) a computable "approximation" of T(p) :

on some Turing machine computing T(p) , T(p;t) is T(p) if T (p)

1s computed within time t , undefined otherwise, yo yrite

H(x;t) = min{2(p): T(p;t) = x)

eo]

s(n) = - log 27 M(i) )i=n

a(n) = min, H(i) .



a(n) and s(n) , two extremely slowly (slower than any unbounded,

recursive function) growing functions, are closely related. It 1s known

that

(1) s(n) < a(n) < s(n) + H(Ls(n) J,

where < and XR denote inequality and equality to within an additive,

< and = to within a multiplicative constant.

The first inequality is trivial, the second one is well-known (see

e.g. [4]). A hint to the proof: to find a number > n , we have only

to know 28 (0) to within an error term p~s (0)

We will show that the second estimate in (1) 1s sharp.

Theorem. Let g(n) be any positive, monotone recursive function such that

-g(n

(2) soem) _
n

Then a(n) > s(n)+ g(s(n)) infinitely often.

Proof. It is well-known (see e.g. [3]) that, if p(njt) is a computable

nonnegative rational function over palrs of natural numbers, monotone in t

and 2; y(nst)< 1, i.e., for each t , j(n;t)is a semimeasure, then
n

w(nst) < M(n) |

Put

s(n;t) = 25 Mit)
i>n

sp(nyt) = 2 uit)
i>n
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m(k;t) = max{n: s(n;t) < kJ}

m (bjt) = max{n;s (n;t) < kj .
He Hb

The construction depends on n, , a fast-growing recursive sequence.

We will see at the end of the proof, how we should choose it in dependence

of g .

Let uw (130) = 0 .

Suppose that p(n;t) is already constructed. Put

k(t) = max{k > -log(l - 5, (03%): qi € [n,_ 51, n_4]

(3) am (1-8(i);)5t) > 1} .

Put n(t) = Dye (4) . Let j(t) = max{j: u(Js;t) > 0} . Put
: -n(t

(3501) = p(dst) for J # Jv)

We will show that there are infinitely many i's such that for almost

all t , (3) holds.

This implies, of course, that

am (1-g(i)) > i.

That 1s, for some n , with

i-g(i) > s (n)
v

a(n) > 1i > s (0) + g(i) > s(n) + g(i) > s(n) + &(s(n))
and the theorem will be proved.

Suppose that, on the contrary, there 1s a largest 1g among the 1

such that (3) holds for almost all t and a least ty such that (3) holds

for 19 and all t > Ty .

ly
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Under the above assumptions,

s (031) =» 1
" :

Therefore

E t
2 -n(t) .

Notation. A(tyst ) = 2.2 ’—_— 2
t =t,

te

5 (ont) t,t kB(t stor ky) = { toe [tpt], k(n) = Kb.

Lemma. There exists a triple (kyr ty5t,) with ko > k(t) ,

ts > ty > ty such that

(a) k(t) > Lo for te [t5t,] ;

. “kL
(b) 2 < A(t, t,) < 3 B(tt,5k,)

0 0

Proof. For some t , (k(ty), ty» t7) will satisfy (a) and the first

inequality of (b).

! ! 1 : H t f

Let us say that (ks ty5t,) < (kh t15t2) if kj < LN’ ty < t, <t, <8)

Let (kyr tt.) be a minimal triple < (k(t) tort") » among the
triples satisfying (a) and the first part of (b).

(A) For £5 € [ts] we have k(t) = Lo » otherwise the triple is not
minimal.

For similar reasons we have

1 1 1 : 1 !

(B) If ty < tJ < t) < t, and k(t) > ky in [£1511] then

my
\ t < .

. then B(t],t)) 2

p)
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Therefore we have

. _ kk. 1.
Aty5t,) < B(t,r tos Ky) + (1+ #{te [ty5%,]: k(t) 03 2

ye
< 2B(t»t,5k,) + 2 OJ

0)

We concentrate now on a triple (ks t15%,) < (k(ty)stmst )

satisfying (a) and (b).

Notation. For1 e [0,450] put

BE, = (te [t,t]: dn H(n;t) <i, H(n;t) < H(n;t-1)7 .

We now estimate S, = # E. from below (see (5)). Let us write

BE. = (110 %307 0000 hd where t.p. < i541 . Put tg = t-1 ’

_ - j t., .+1,t.. j |

Fig. 4 t, Let Uy the last t in | 13 1, 1341] (1f any) with
k(t) = k . If there 1s no one, Uy = ty .

u

ij-1 _
Let o.. = 2 2 n(t) y Mh... = —-log 0... Then by our

1] 1d 1]
t=1

NY Rr

algorithm we have

alm (i~g(i)) su..-1) < i .
hs 1J —

On the other hand, by the definition of Uep-g

. + } _ _

Therefore we have

} . + ~ cla

Zi .

(1) o..< pit eld)
ig =



On the other hand,

“5
o k-l < 3 2) Jom nl) oye B(t,,t.,k)

t=1% te E, J 1d 1” 20 i

—1 . .
k -1+ g(1

< S, 2 + (s;+1)2 g(1) + B(ty, tk) .

Using (b) of the Lemma,

> TPk-1 My —itg(i) i+ g(i)
5-2 < (s;+1) (2 + 2 ) < 2(s,+1) (2 )

Hence

1 yt i-eld) J5, > z*2 = ’
i = 3

that is, for i-g(i) > n, te:

_ i olsLh qt i- eld)
(5) 8; 2 °°

Put m = min{i: i-g(i) > n, +2}.
We have

0.

K “hg- .

1 > s(03t,) - s(03t,) > 2 e2 Te(simssq) +02 n
1=m tl

Eo LI
= T.27ss, - Les

n, -1 -1 ' .—i- 1 k-1 -g (1)
> >t Ls > gee JPR .
l=m 1 1=m

If ny is chosen far enough from 4 7 2 this will obviously lead
to a contradiction. =

7

!
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