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Abstract.

Extending a result of Borodin, et. al. [1], we show that any

branching program using linear queries " 2 Mx. ct to sort n numbers
i“

byiy 0 M){4Ml must satisfy the time-space tradeoff relation TS _ an),
The same relation 1s also shown to be true for branching programs that

uses queries "min R = ? " where R is any subset of {x5 %05 00x } .
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1. Introduction.

A fundamental problem 1n low-order computational complexity 1s the

problem of sorting n numbers XysXppeeosX In the standard decision

tree model (see Knuth [5]), it is well known that =~ n log n comparisons

Xo FX are necessary and sufficient in the worst case. This model assumes
that all the test information can be retained, but does not address the

question of space needed to store the information. Recently, Borodin,

et. al. [1] studied "branching programs" for sorting which incorporate

the concept of storage requirements. It was shown [1] that any branching

program using "x, tx. "to sort n elements must satisfy the time-space
tradeoff relation TS = Q(n®) , and that this bound can nearly be

achieved. One open problem raised there 1s whether the same tradeoff

relation also holds for programs with queries other than " x. : Xs -.

The case of linear queries " 2 A.X, c " is of special interest [2][7],
1

both because it deals with the question whether arithmetic helps 1n a

purely discrete problem and because linear queries are natural in problems

such as network flows, bin packing, and finding shortest paths. The main

purpose of the present paper 1s to prove a tradeoff TS = (n°) for

branching programs with linear queries (Theorem 2). An intermediate step

1s to establish this tradeoff for programs employing only queries of the

form "which element is the smallest in R?", which may be of interest by

itself (Theorem 1).

There 1s an extensive literature on time-space tradeoffs for general

computations. We refer the readers to [l] where further references can be

found; however, their understanding 1s not necessary for this paper.
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2. Model and Results.

In this section we review the essence of the branching-program model

and state the results to be proved in this paper. The readers are

referred to [1][6] for more motivations and discussions of this model.

Let n be a positive integer. We consider programs that compute

an output vector for any input vector x = (X53 X55 000%) in some input
domain D . A tree program (or, decision tree) T 1s a rooted tree with

each internal node Vv labelled by a query = of x and each leaf y

labelled by an output vector % . Every edge out of an internal node v
is labelled by a possible response to the query at v . For any input x ’

the computation starts at the root, branches and traverses down the tree

according to the responses of the queries until a leaf y§ is reached.

The vector \ is then the output. The time required by 7 1s the
maximum number of queries encountered for any xeD . We remark that °
may have different dimensions for different y .

Branching programs extend the concept of tree programs. A branching

program T 1s a directed multigraph with a distinguished vertex of

indegree 0 called the source. Any vertex of outdegree 0 1s a leaf,

otherwise an internal node. Each internal node v is labelled by a

query of x, and each outgoing edge of v 1s labelled by a possible

response to the query and by an output REFESRINEON coe RATE

(possibly empty). The last expression 1s to be interpreted as part of

an output vector F(x) = (£,(X)s Ep (Es 200s (X)) , in the sense that

*/ :
A query of x 1s any function g(x) that can only take a finite number

of distinct values (or, responses).
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fp (P =i, f +2) =i, . . rf (x) = i, . As in tree programs,’
the computation for any input X starts at the source, traverses the

graph in a natural way until a leaf is reached. The collection of

outputs 1n the process gives the output vector for X . The number

of components in the output vector f may depend on X , and, 1n general,

some components f, (x) may be unspecified in the output. We only
require that the computation halts in a finite number of steps, and

that the outputs are consistent =/ for any X in the desired input

domain. The time required by T 1s the maximum number of queries

encountered for any xeD. The capacity required byT 1s defined to

be [ log, aR , Where V 1s the set of vertices of 7 that can be reached

by some Xe D ; we shall regard the capacity as the storage requirement for Tt .

We now consider the problem of sorting distinct numbers XpsKpyeeesX

with branching programs and tree programs, In this case, the output

vector £ (3) 1s required to be the permutation (0;,0,,...,0,) such that
Xs <x, < ewe Xoo Let K be any set of queries. A K-branching

1 2 n

program 1S a branching program that uses queries in K only; a K-tree

program 1s defined similarly. Let Ky denote the set of queries

{x, PX, (i # §)) . Borodin, et. al. [1] showed the following interesting
result.

Theorem BFKLT [1]. Any K, -branching program for sorting n distinct

numbersin time T and capacity S requires TS = a(n) .

*/

In the sense that, if a 1,(x) has been specified in the outputs more
than once, the values must be the same.
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In this paper, we extend the above theorem to other query sets.

Let MIN denote the set of queries " Min R = ? ", where R C {1,2,...,n}

is any subset and Min R = i such that 1e€eR and Xs < x, for all Jj eR,

Note that Min R can have IR | responses, and that Xs Xs 1s a special
case by taking R = {i,j} . Let LINEAR denote the set of queries

" I(7) : 0 " with possible responses < , = , >, where I(x) = 2 hy¥y —C
1

is any linear function. Our main results are the following theorems.

Theorem 1. Any MIN -branching program for sorting n distinct numbers

in time T and capacity S requires TS = an) .

Theorem 2. Any LINEAR -branching program for sorting n distinct

2

numbers in time T and capacity S requires TS = Q(n”) .

| Before turning to the proofs in the next three sections, we list

| below some useful general properties for branching programs. The proofs

can be found in [1]. Let 7 be any branching program with required time T

and capacity S .

Proposition 1. s > [ Log, T7 .

| Proposition 2  (Pippenger). There exists a branching programt' which

uses the same set of queries, computes the same function as © in time T

and capacity < 25, and has the property that 1ts vertices can be partitioned

* For convenience, we have made the assumption that all x, are distinct.
For Theorem 2, this assumption clearly only makes the result stronger.

To remove this assumption in Theorem 1, we have to define Min R when

R contains some equal elements. As long as the extension preserves
the original meaning when all elements in R are distinct, Theorem 1
of course remains true.

5



—|

into T™1 sets ALERERFAL: such that any edge emanating from a vertex

in V, terminates at a vertex in V, ., .
1 ikl

Proposition 3. There is a tree program which, for each input x , uses

the same number of steps and has the same output as 7 .

We shall call the t' in Proposition 2 a normal form for © . Clearly

we need only consider branching programs in their normal forms, for the

proofs of Theorems 1 and 2.



by Guessing Ranks 1n a Partial Order.

We shall develop some lemmas concerning the accuracy with which

one can guess the ranks of elements in a partial order.

We start with some conventions. A partial order P on a set

X = RIFE SCRRRYE is a subset of XxX such that (1) (x,5%;) £P

for all i , and (2) (25%) eP and (x55 5) e P implies (%:5%,) cP,

i.e., it is "transitive". We write x, < X. for (x55) e P , or

simply Xx, < x. when P 1s clear from the context. Any set I C XxX

of consistent inequalities {x. < x OX < Xo ro ..} generates a
1 1 2 2

partial order P by taking the closure of I (i.e., adding to I all

the inequalities implied by transitivity); we often write

P = 5 < "5, $1 < “5 ...} if P can be generated by that set
of inequalities. For any partial order P on X , let N(P) denote

the number of linear orders on X that are consistent with P . We

shall draw partial order ©P sideways as in Figure 1; an arrow from b

to a means a <b in P, and we only draw a subset of arrows whose

corresponding 1lnequalities generate P ,

Let us consider the set £(X) of all n! linear orders on X

as a probability space with each linear order assigned equal probability.

Let rank(x, ) be the random variable whose value, for each linear order,

1s equal to the number of x. less than or equal to Xs Any set of
inequalities I (or a partial order P ) induces an event on £(X),

and we shall use the same symbol I (or P ) to denote the corresponding

event. For example, Prix, < x5 | P) will stand for

Prievent x. < x | event P} ; clearly, Prix,< x, | P) = N(Py {x, < x PAP) ,
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b

~~
d

e

Figure 1. A partial order P = {a<b, b<c, d<c, d<e, a<c} ;
note that the arrow from ¢ to a 1s not shown.



| the probability that Xs < 3 assuming all linear orders consistent
i with P equally likely. Note that for any two sets of inequalities

| iy » L , the event corresponding to IU Is 1s the event IA I, .

| Let P be a partial order on AUB where A = {ara 00050] and

| B = {Pysbps ees] are disjoint non-empty sets. We say P 1s slanted

| on (A,B) if no relation b, < a is contained in P , 2 -covered
| (OB) if a; <a, <...<a, and by <b, <.. .<Db under P ,

| and 2CS on (A,B) if P is both slanted and 2 -covered on (4, B) .

(See Figure 2.)

Let Z and W be two partial orders on AUB , where A, B are

disjoint. Suppose ZN (Ax A) = WN(AxA) and ZN(BxB) = WN(BxB) ,

i.e., 7 and W are identical when restricted to either A OrB . |

| le say that Z is more A-selective than W if ZN (AxB) DWN(A xB) |

and Zn (BxA) € WN (B xA) (see Figure 3). Intuitively, the elements

of A will be "smaller" under 7 relative to B than under W . Note

| that 1f Z 1s more A-selective than W , then W 1s more B-selective
than Z.

We need the following result from Graham, Yao, and Yao [L4].

| Lemma 1 [4, Corollary 2 to Theorem 1]. Let Z2 and W be 2 -covered

| partial orders on (4,B) , and Z is more A-selective than B . Then

Pr{I| z) > Pr{I |W} for any I< AxB .

| The main results in this section are the next two lemmas. Let t > 0 ,

| m>0, n=1tm,1L<k <t be integers.
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A

A

B INC
B

(a) (b)

| ANB

(c)

Figure 2. (a) A slanted partial order on (4,B) ; note that

no arrow goes from A to B .

(b) A 2 -covered partial order on (A,B) .

(c) A 2CS -partial order on (A,B) .

10
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a a’ al a a! a"
A A

B b b' R b b!

Z W

Figure 3. 7 is more A-selective than W ; note that

ZN(AXxB) = {a<b,a'<b,a"<b,a<b',a'<b! , a"<b'}

while WN (AxB) = {a<b, a<b'} .
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Lemma 2. Let P be a 2CS -partial order on (A,B) , where

distinct 1 < 19dnseeerdy <t and each 1 < Ti3Tpseees Ty <n,

o.
Pr A (rank (a, ) = r,) 1? < TI —

1<1<k JJ I —- 1<ti<k "{

k

Corollary. Pr a (rank (a. ) = r,) +} < (+/min » :1<i<k { {

Lemma 3, Let P be a slanted partial order on (A,B) where \a\ = t

and |B] = m . Then, for any k distinct elements a._,a. ,...,a. cA1 1 1
1 2 k

and any k integers 1 < TisTpseeesTy <n,

k

er A (rse(ey ) = 2) | 7 < (¢/min r, ) .1<i<k I 4

Proof of Lemma 2. Before proceeding with the proof we introduce some

notations involving +e, We regard the expression Xs < to (Or

~» < X, , or -» < Xx, < to ) as an event which is certain on g£(X) ,

i.e., an event that always occurs. We will also regard Xs < +o

(or -al < X, , © < Xs < +o ) as the "null" inequality when it appears

in a set of inequalities. For example, the set of inequalities (or

partial order) {x7 <3 Xs < Hw, -o < Xp, =o < x7 < to, -@ <x) < xg }

means exactly the set of inequalities (or partial order) 1%; < x , xX) < Xq } .

Thus, for A = {aan eee,ay] and B = {P1sboseearb ] , We can write

I = {a; < b, , Bg < oy , =o < 8) a < +o} € AxB even though the
displayed I 1s not exactly formally a subset of AxB .

12
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By definition a; <a, < . oe. <a and by <b, < . oe. <b under P .

Without loss of generality, we assume that 1 <i, <1, <. . . <i <t,

<r, <r, < +. Sr.S ny, and r, > 1, for all [ . Define

condition rank (a, )= r 1s clearly equivalent to the condition
yi

b. <a. <b. where we have adopted the convention Py = -« and
J,~L 1 J,’

f I {

D1 = to , to be used throughout the proof of Lemma 2 unless specified

otherwise. We can thus further assume that Jj; <j, < «+ < Jy

We now show that P can be restricted to a standard form. For

convenience, let us use the notation ais, Cu Ie 3 Tyres ys P) for

Pr A (rank(a, ) = r,) - } .1<1<k {

Reduction 1. We can assume that P includes ay < Db. 5 ioas a, <b. .
1 91 k Yk

Proof. Otherwise, let P' = Py (a. <b. yo. oa. <b. } . Clearly,
1 d1 k Jk

0 < N(P') < N(P) . Thus,

a iy. . oi sr,...,r, 80) = NP UID. L<a.<b., . ..,b., _<a, <b,})/N(E")
1 kl k J1 1 1, J; Jie 1 Log

> N(PU{b, <a, <b. , .. .,b. _q<a, <b.])/N(P)
Jim hg Jk kx Jk

The validity of the lemma for P' will imply that for P . CJ



| Reduction 2. We can assume that P = fa; < 2, < bee < a,» Dy <b, < vee < ob
a, <b.,a.<b., ....a, <b,}.

| SS ES x dk

Proof. By Reduction 1, we can assume that P includes

a, <b. 5.0..a. <b, . Let Pl=fa, <...<a ,b,<. . .<b,
19 iq Ty Jy 1 t7 71 m

a, <b... ....a <b, } , then P' 1s more B -selective than P .
1 da k Jk

Let E ¢BxA denote the conditions (05,-1 1: ’ 31S 5,

by 21 < a. Then, by Lemma 1,
K k

> Pr{E | P}

Again, 1t 1s sufficient to vrove the lemma for P', u

Henceforth we assume that P is as given in Reduction 2. Let us

denote the event b < a. by EB for 1 < f < k . Then
J,~L oy J - =

ais. CL 133) 2000 335 F) = Pr{E;A... AB | P)

=Pr{E_ | PIPr{E, | PAE]... PriE, | PAELLA ceeAE 0]

coo Pr{B; | PABA.LAE} (1)

14



Let us denote Prib. <a. |a. <b. , a.< Db. ..., a, <b,
P31 i ET ER PY iy 3

as n(iyseeesik; 37/8 .*,3k). tym) , where the dependency on t and m is

explicitly exhibited. Keep in mind that b, = te for j_ = mtl . By
oJ o
S

definition,

Pr{E, | P} = LICRPPPPPE SE Jyseeesdy 3 tom) . (2)

For 1 < {<k, one can show that

1 if J =1
+1

i= —PrE, | PAE, A...AE, 1} = ™ oo CLD) etrersiee ¥ (3)q Lyseeesd 5d9900053 5 +1 2d p41 t otherwise -~¢

by the following argument. When VY = 1 , we must have J, = 1 and the

event E, 1s thus -o< ay a certainty. In the other case, under
4

PAE A... AE, 5, the elements in {a, |s > 1,113U 1b | s > J 413 have

ranks roe Cpe tloee eon , and for any relative order among these elements,

the probability distribution of the linear order on

{a 585500052; JEITR RP) SUREPPPYJ 1} 1s identical to that under the
1772 11d 12 PR

partial order {a,<a,<. . . <a, 130, <b, <...<Db. EE
1° i," 1 RE

a. <b. ,....a. <b. 1}. (See Figure 4.)
1,0 AY

We now digress to derive certain properties of the function h .

By Lemma 1, we have, for Je # 1,

Pr{a. < Db. | a. <b. ..., a <b, } > Pria, <b. .|a <bjl,
Le ht od kx Jk SE IE k

* [] - - - - - - [1
z We emphasize that h(ijs...;i,3dq50e053,51,,9-17,,9-1) is

pr{b. < a. la, <b. ,a.. <b. , ...,a <b, }in A' UB', where
LS SE: TE:My ~ S ~ tp dy

mt = J,1-t + and where the value b is +o if s = m'+l and -=

15
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a. a & 0 ad. a * & 0 Sh

a] oy tpl Tx

b. . . . b. b. b, b. eee, b.

J1 Jp=t 9, Il Jpg It Ty

Figure 4. The element a. divides AUB into the "left"
+1

1 1 1771 Jp 1

"right" part (a. geesyd b) b. PUPP o } pH~}-
Lert tT dp mn

the right part occupies ranks ONT ICY . . . . Dn,

and the actual rankings within it does not affect the

probability of the event E, .

16
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which implies

Prib. . <a. \a. <b. jemsss <b, ) > Prib_ <a. la. <b. },
Bt x 1 9% x Jk kl x Th

where the probabilities are taken with A] = t and |B] =m ., The

last 1nequality 1s clearly also true for Jie = 1 , Therefore,

ho (igseeesdy5 dp0 verde3 tom) < h(i,Jd, 5 tom) (4)

By definition, 1< 1, <1 and 1l< Jy <mtl , For the moment
» [ —_ <<

assume that i, < t and j_ < ml . Let Q; = {a; <a, < coe Say,
=

by < b, < eee < b EN < ER , and Qs QU {b, < ENE . Then Qs
1s more B-selective than & . Using Lemma 1 and the fact that the ranks

of all a, (2 > i) and LR (s > Ji) are fixed under AU (see Figure 5),
we obtain

- » . * - —_ <

<

= h(i Jy 5 tym)

We now claim the inequality,

is true for all 1< 1 <t and 1< Jie <m+l . There are three remaining

cases

17



a a a a
. _—

1 i i 1 t

| oYB

b b. b

1 Ix m

a a, a, a

1 ly 1,1 | t

A CRN TT
B +LC—0 (4

by b. bJk

Figure 5. Partial orders and Qs for Th < t and Jy < m+l .
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Case 1. Ly <t and Ip = mtl . Define Qp and Qb formally as before

(see Figure 6). Utilizing Lemma 1, we obtain

h(i, J, ; i,m) = Prib, < a. }dis Tx Bel S 8 ©

> Friby -1 < = IQ, 3

Formula (5) follows by observing that h(i dys 1m)

= h(i, Jie 3 is dy) when J, = ml (see Figure 7).

Case 2. i = t and Jie < mtl . Define AQ as before. Then, as the

rank of b, is fixed at t+s for each s > j_ (see Figure 8),

we have

k k

= h(i, Jie ; tom)

Case 3. i, = t and Jie =mtl . In this case,

as observed in Case 1.

We have thus established formula (5) in all cases.

19



a

a a
: i.

1h 1, +1
A *- C—OC—O

B *l—0C—0¢——0c—0
b
m

a a.
1 i, +1
k k

A

B ae
b
m

Figure 6. Partial orders Q; and Q, for i, <t and J, = m+l
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%1 En *1 1
A *-b——0——0-¢—0 A I

B rl CO &—e B i \
oy b by b bo

(a) (b)

Figure Te h(i, Ig 3 i,m) o h(i, Ix 3 100 Jy) when jx = ml,

as the former is the probability of b <a, in (a)
k

and the latter 1s the probability of b < a in (Db).
k

*1
k

| NLLB

by % i b.

Figure 8. The partial order QQ when t = ik and Jy < mtl
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From the definition of h , we obtain

Cos

& : )J, -1

h(i Jy sd dy) = Eyk 9k

Jy

i
k

re (
ly Ine 1

Formulas (4), (5), and (6) lead to

k “k

Formula (7) is the purpose of this digression; note that it is valid for

all permissible values of the 1's, J's, t , and m ,

We now return to formulas (2) and (3), and continue the proof of Lemma 2.

From (2), (3), and (7), we obtain (noting that in (3), Jpop = 1 implies j = 1)

A y 1

Pr 517A ( A BYY S gg— 5 for 1<i<k (8)(<s<k } {de BB Cy
Substituting (8) into (1) gives

m4ad 3eeeyl s Lag9eeeyY ; P) < ak — .

1 k’ "1 1<<k r,

This completes the proof of Lemma 2. CJ
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The Corollary follows immediately from Lemma 2 as 1, <1t for

- all £ .

] Proof of Lemma3, Let My and Ap denote the sets of all linear orders

on A and B , respective*. Then, using the Corollary to Lemma 2, we

obtain

Pr A (rank(a, ) = r,) : |1<ti<k {

= I Prix,Anrg|P} Er (| 0. emo) =T,) | PA MAA }Ay € 0p ~ 42

Ap € Ig

I +
< (77) 2Figg | FE/ Mp€ fa

Ap € Ig

Lemma % follows, as 2 Prix, A AR P} a +.

25
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Lk, Proof of Theorem 1.

The -proof follows the same general outline as the corresponding -proof

in [1], aside from stylistic changes. The main modification is in the use

| of more sophisticated results on partial orders developed in Section 3.

We begin by discussing a property of general MID-programs. Let

n>0 and 1<k, ny < n be integers, T be a MIN-branching program

of time t > 0 . Clearly, the output for any input vector (215%p0 000s)

depends only on the permutation and not the actual values. From now on,

in this section, we only consider inputs (X95 X55 000s%,) that are

permutations of (1,2,...,n) . Let us say an input permutation to be

(k,n) -respected by T, if all the output -pairs (rpip) are correct

(i.e., rank(x; ) = r, ) and if there are at least k distinct r, with
r, > ny ] Let al) be the set of input permutations (k, ng) —respected
by T .

Lemma 4. l(t) | < ni ((t+k)/n,)" :

Proof. The lemma is trivially true when t+k > n . We shall, therefore,

assume t+k <n .

Because of Proposition 3% in Section 2, we can assume that T 1s a

MIN-tree program of time t . For each leaf § that can be reached by

some input, let 5 be the partial order at § that represents all the

information gathered along the path from the root to y . Then “4 1s

generated by a collection of inequalities Fy < 2 for j eR.,-{!;}

1< i Sn , where minR. = 1, is the response to the i-th query on

the path and by is the distance of§ from the root. Clearly byt .

2)
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Let § be the set of reachable leaves § for which there are at

least k output pairs (r,1,) with all r, distinct and greater than ny -

For each y € 3, define A = {x, |1 <i <t }uix »X, 5..05%X. } and
v ER A TR x

5 = {x5%55 000s] “8 . Clearly, both 4 and 5% are non-empty, and

Fy 1s slanted on (AB) . Let ay denote the set of input permutations

leading to § , and a, Cc ay the subset of those (yn) —respected
by T . By Lemma 3,

k
a’ t +k k

la, | < (4 ) < (5)— n — n

| 0 0

Therefore,

la) = 2 lay |
yes

k
t+k

0) yes VY

k

< (££) n . 0
0

We now proceed to prove Theorem 1. Assume n > 20 . Let T be

any MIX-branching program (in normal form) for sorting n numbers with

time T and capacity S . Since T has to identify the element xX,

with rank n , we must have T > n-1, because all other elements Xe
have to be shown less than some elements and each Min R =? query can

only supply such a certificate for one Xe, . By Proposition 1 in
Section 2 and the fact T > n-1 , we have

S > 1 . (9)

Without loss of generality, we also assume that S < n/20 , as
2

TS = Q(n~) otherwise.

25
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Let ny = n/W7 , t = Ln/20Jd, and g = LT/t] . As T > n-1 »

we have g > 2 . We wish to prove

Ss > (n-ny)/ (et), (10)

which will imply the theorem by the following argument. From (10) and

the definition of g , we have S(T/t) > (n-n,)g/ (g+1) , implying

ST = (0°) and hence the theorem.

It remains to prove (10). We assume that S < [ (n-ny)/ (gl)7 and
will show that it leads to a contradiction.

Let v, be the set of nodes on level {, O< ¢<T (the root

being on level 0 ). Define V' = | V. , For each veV',
o<j<g Jt

let Ts be the sub-branching program rooted at v and of height < t ,

such that all nodes of tT at a distance > t are chopped off and all

descendants of v at exactly a distance t are converted to leaves

of T Thus, T 1s divided by level into g+l consecutive groups,

with the j -th group being the (usually non-disjoint) union of T ,

VeViiii)t . Any path in 7 (from the root down) 1s divided into no
more than g+l intervals, each starting at a veV' and tracing a

path in Ty .

Let ¢g be any input permutation. There must be n-n, distinct

output pairs (r,i) with r > nj along the path it follows in Tt .

Thus, the interval of the path between levels jt and (j+l)t for

some j must have output [ (n-n,)/ (g+1)1 > S such pairs. By the previous

discussions, that means the existence of a Ts with veV' that

(Syn) —respects g . Therefore,

2 lev) | > no, (11)
VEV'
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where HV) denotes the set of permutations that are (8,04) —respected

by Ty .
O

By Lemma 4 |B(v)| < ( (++8)/n,)"ni . As [v'} < 2°, t < n/20 ,

1< Ss <nf20, and ny > n/k , we have
S

2(t+S

Pol |x (PEERY) aveV' 0

1
< = n. .

2

This contradicts formula (11). We have thus shown that (10) must be true,

This completes the proof of Theorem 1.
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5. Proof of Theorem 2,

Let L be a LINEAR-branching program (in normal form) for sorting any

n distinct input numbers XysXpy eee X, - We shall construct a MIN -branching

program T for sorting any n distinct numbers with the same required

time and capacity. Theorem 2 then follows from Theorem 1 immediately.

We first chop off the " = " branches of L at all nodes. Then we

replace each internal node v of L by a new node E(v) in the following

way (see Figure 9). Let ¢(%) = 2 MEF 2 AsXs=C 0 , with
1 € 0 1€ 0,

0,N0, = 0, A; > 0 for ie 0; and Ay < 0 for ice 0, , be the linear

query at v . We replace it with a Min query " Min (0, UO,) =?"

The 10, U 0, | outgoing edges of the new node g(v) are divided into

two groups B; and B, . Each edge in B, corresponds to a response

Min (0; UO,) = 1 with ie 0,5 it goes into the leftson of v , and

outputs the same output pairs as the original left-branch edge of v ,

Similarly, each edge in B, corresponds to a response 1e0, , goes
into the rightson of v , and has the same output pairs, if any, of the

original right-branch edges of v in L . (By convention the left-branch

edge of v in L corresponds to the response 2(x) < 0.) This defines 71 ,

Clearly, T has the same required time and capacity as L . It remains to

prove that Tv actually sorts, for any n distinct inputs X19%¥py ener X, ]

For each internal node v of L , let p(x) : 0 be the linear query

where 2. (x) LE Mi®itly . Define 7 = mn {ys| | As £ 0},
B = max { | | | Ag i 0} , and y = max le, | ; clearly TM, g exist and

Vy 1 V

are strictly positive. Let 51985502458 be defined by
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i eo 0 @ J

1e0q . . Je 0,
1 2

Vv g(v)

Figure 9. Transforming L into 7 ; the replacement

of v by E(v) .
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5 = -1,
n

(12)
1 .

Dd. = = = O . + 1 for = n-1,n-2, ...,1 .

It 1s easy to check that 5, < SJ < vse < SN < 0 and hence are all

distinct.

For each internal node v in L , let O01 = {i | Nei 0, 1<1i< n}

and 0, = {i | Ag <0, 1<i<n}. Let A be the set of input vectors

x defined by:

= . e 9 .A { (95%, ’%,) | a permutation g such that xy LIN ¢ i d 5.(n)}

Clearly, all components x, are distinct for any (Xs Kp 000s) cA,

Lemma 5. For any Xe and any internal node v 1in L, £,.(x) < 0

if Min (Q 4 U 0) e 0, » and 2, (x) > 0 if Min(0_, UO ,) € Op -

_ _— . :

Proof. Suppose X, = ° 5 (4) for 1< 1 <n . Define Uo = {o(1) ie Qe}
— y : :

for a =1,2 . If Min (0 5 U 0,0) ¢ Oy + then there exists J e Ol; such
1 <7 A t t

that J 1 for all other ie 01 U 04n r Thus,

— . . - C£(x) 2 MiP (1) +. 2 Nis (1) v1 €0 1 eQ
1 2

a Mri 105 Tt 2 Agi le 18541 | I A (3)
1 ¢ 0,

where 1' = a (3) :

We now use formula (12) in (13) to obtain

1(x) < -nBd,, | -7 -1 4 |0,|p 18541 | -c,

<0.
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The case when Min (0_, UO, ,) e 0, can be similarly treated. O

| The above lemma implies that, for each input vector Xe A , the path

followed in © 1s exactly the image of the path followed in L . Thus,

T gives the same set of output pairs as L . As L computes the sorted

output vector £(%) = (6™2(1)y0 12) nro (0) by definition, so does 7 .

Since A contains all n! permutations, © 1s a MIN-branching program

for sorting any n distinct numbers,

We have completed the proof of Theorem 2. C



6. Concluding Remarks.

In this paper we have extended the time-space tradeoff result of

Borodin, et. al. [1] to programs using linear queries. It is perhaps

worth noting that a major step in the proof 1s to show lower bounds for

programs with MIN-queries. This 1s a somewhat unexpected technique, as

the MIN -queries look too powerful to be used for lower bound proofs

(e.g. due to the O(n) -way branching of a MIX-query, one can sort

n elements in n-1 MIN-queries 1n the decision tree model). Aside

from the direct comparisons X, Xo linear queries are the most-studied
primitives for sorting-related problems (e.g. [2][3][7]). The approach

used here offers yet another technique for dealing with such questions.

Acknowledgement. I wish to thank Nancy Lynch for critical comments

on an earlier draft.
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