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Abstract.

Extending a result of Borodin, et. al. [1], we show that any

branching program using linear queries " 7‘Kixi:c " to sort n numbers
;-

iy 0 M){&XN must satisfy the time-space tradeoff relation TS = Q(ng)

!

The same relation is also shown to be true for branching programs that

n

uses queries " min R = ? where R is any subset of {xl,xg,...,xn} .
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1. Introduction.

A fundamental problem in low-order computational complexity is the
problem of sorting n numbers XqsXpyeeos X . In the standard decision
tree model (see Knuth [5]), it is well known that # n log n comparisons
Xi :Xj are necessary and sufficient in the worst case. This model assumes
that all the test information can be retained, but does not address the
question of space needed to store the information. Recently, Borodin,
et. al. [1] studied "branching programs" for sorting which incorporate
the concept of storage requirements. It was shown [1] that any branching
program using "J% :xj " to sort n elements must satisfy the time-space
tradeoff relation TS = Q(ne) , and that this bound can nearly be
achieved. One open problem raised there is whether the same tradeoff
relation also holds for programs with queries other than " X, Xy ",
The case of linear queries " Z)Kixi: c " is of special interest [2][7],

1

both because it deals with the question whether arithmetic helps in a
purely discrete problem and because linear queries are natural in problems
such as network flows, bin packing, and finding shortest paths. The main
purpose of the present paper is to prove a tradeoff TS =§Xn2) for
branching programs with linear queries (Theorem 2). An intermediate step
is to establish this tradeoff for programs employing only queries of the
form "which element is the smallest in R?", which may be of interest by
itself (Theorem 1).

There 1is an extensive literature on time-space tradeoffs for general
computations. We refer the readers to [1] where further references can be

found; however, their understanding is not necessary for this paper.



2. Model and Results.

In this section we review the essence of the branching-program model
and state the results to be proved in this paper. The readers are
referred to [1][6] for more motivations and discussions of this model.

Let n be a positive integer. We consider programs that compute

an output vector for any input vector X = (}L_L’XE’”"XH) in some input

domain D . A tree program (or, decision tree) T is a rooted tree with

* Ead
each internal node Vv labelled by a query—/ of x and each leaf y
labelled by an output vector gv . Every edge out of an internal node v
is labelled by a possible response to the query at v . For any input X,

the computation starts at the root, branches and traverses down the tree

according to the responses of the queries until a leaf y is reached.

The vector gW is then the output. The time required by 7 is the
maximum number of queries encountered for any ;€D . We remark that é'w
may have different dimensions for different y .

Branching programs extend the concept of tree programs. A branching
program T 1s a directed multigraph with a distinguished vertex of

indegree 0 called the source. Any vertex of outdegree 0 is a leaf,

otherwise an internal node. Each internal node v is labelled by a

query of x , and each outgoj_ng edge of v is labelled by a possible

response to the query and by an output [Tpiy3Toisys . .. ;rl’il]
(possibly empty). The last expression is to be interpreted as part of

- -

an output vector f(x) = (fl(x),fg(x),...,fm(x)) , in the sense that

*/ 1

A query of x is any function g(x) that can only take a finite number

of distinct values (or, responses).
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ﬁr(f) =1y, f:éZ) =i, . .. 'rf (x) = i, . As in tree programs,
1 2 )

the computation for any input ¥ starts at the source, traverses the

graph in a natural way until a leaf is reached. The collection of

outputs in the process gives the output vector for ¥ . The number

of components in the output vector F may depend on f, and, in general,

some components fj(x) may be unspecified in the output. We only

require that the computation halts in a finite number of steps, and

* —
that the outputs are consistent—/ for any x 1in the desired input

domain. The time required by T 1is the maximum number of queries

encountered for any XeD . The capacity required by T is defined to

be rlOgE IVlT , where V is the set of vertices of 7T that can be reached

by some Xe D ; we shall regard the capacity as the storage requirement for 7 .

We now consider the problem of sorting distinct numbers XpsXpyeees X,

with branching programs and tree programs, In this case, the output

- =

vector f(x) 1is required to be the permutation (01’02"”"0n) such that
Xy <X%X;< .« . .<X; . LetK be any set of queries. A K-branching
1 2 n

program is a branching program that uses queries in K only; a K-tree
program is defined similarly. Let Kb denote the set of queries
{xl : Xj (i # §)) . Borodin, et. al. [1] showed the following interesting

result.

Theorem BFKLT [1]. Any Ko-branching program for sorting n distinct

numbers in time T and capacity S requires TS = Q(n

*
In the sense that, if a fj(x) has been specified in the outputs more

than once, the values must be the same.



In this paper, we extend the above theorem to other query sets.
Let MIN denote the set of queries " Min R = ? ", where R ¢ {1,2,...,n}
is any subset and Min R = i such that ieR and Xs < Xj for all j eR,
Note that Min R can have |Rl responses, and that Xi :Xj is a special
case by taking R = ﬁ,j} .  Let LINEAR denote the set of queries

"I(7) : 0" with possible responses < , = , >, where L1(x) = Z)kixi -C
i

*
is any linear function. Our main results are the following theorems.—/

Theorem 1. Any MIN -branching program for sorting n distinct numbers

in time T and capacity S requires TS =§Xn2)

Theorem 2. Any LINEAR -branching program for sorting n distinct
. . 2
numbers in time T and capacity S requires TS = Q(n")
Before turning to the proofs in the next three sections, we list
below some useful general properties for branching programs. The proofs
can be found in [1]. Let Tt be any branching program with required time T

and capacity S

Proposition 1. s > I_log2 T .

Proposition 2  (Pippenger). There exists a branching program t' which

uses the same set of queries, computes the same function as 7 in time T

and capacity < 25 , and has the property that its vertices can be partitioned

*
—/ For convenience, we have made the assumption that all X, are distinct.

For Theorem 2, this assumption clearly only makes the result stronger.
To remove this assumption in Theorem 1, we have to define Min R when
R contains some equal elements. As long as the extension preserves
the original meaning when all elements in R are distinct, Theorem 1
of course remains true.



into T™1 sets VO’Vl""’VT such that any edge emanating from a-vertex

in A terminates at a vertex in Vi+l'

-—
Proposition 3. There is a tree program which, for each input x , uses

the same number of steps and has the same output as 7 .

We shall call the t' 1in Proposition 2 a normal form for 17 . Clearly
we need only consider branching programs in their normal forms, for the

proofs of Theorems 1 and 2.



3. Guessing Ranks in a Partial Order.

We shall develop some lemmas concerning the accuracy with which
one can guess the ranks of elements in a partial order.

We start with some conventions. A partial order P on a set

X = pﬁfxz’”"xh} is a subset of XxX such that (1) @%}xi)ﬁP

for all i , and (2) (x.

1’xj) €P and (xj,xk) € P implies (Xi,xk) eP,

i.e., it 1is "transitive". We write Xs <P ﬁ' for b%}xj)e P, or

simply }%.< x.J when P is clear from the context. Any set I < XxX

of consistent inequalities {x. < x. , x. < x. , . ..} generates a
S R B S

partial order P by taking the closure of I (i.e., adding to I all

the inequalities implied by transitivity); we often write

P ={x, <x.,, x, <x.,
: 2 9

of inequalities. For any partial order P on X , let N(P) denote

...} if P can be generated by that set

the number of linear orders on X that are consistent with P . We
shall draw partial order P sideways as in Figure 1; an arrow from b
to a means a<b in P, and we only draw a subset of arrows whose
corresponding inequalities generate P ,

Let us consider the set £(X) of all n! 1linear orders on X
as a probability space with each linear order assigned equal probability.
Let rank(xi) be the random variable whose value, for each linear order,
is equal to the number of x.J less than or equal to X - Any set of
inequalities I (or a partial order P ) induces an event on £(x) ,
and we shall use the same symbol I (or P ) to denote the corresponding
event. For example, Pr{xi < le P) will stand for

Pr{event x; < Xj\ event P} ; clearly, Pr{xi < xj| P) = N(PLJ{xi < XJE»N(P) ,



Figure 1. A partial order P = {a<b,b<c, d<c, d<e,a<c} ;

note that the arrow from ¢ to a is not shown.



the probability that Xs < X assuming all linear orders consistent
with P equally likely. Note that for any two sets of inequalities

I the event corresponding to IlU I2 is the event I.A I

10100 1Mt
Let P be a partial order on AUB where A = {a);8,...;2,} and
B = {bﬂbg,...,bm} are disjoint non-empty sets. We say P is slanted
1 canited
on (4,B) if no relation bi < a.J is contained in P , 2 -covered
(dkyB) 1fal<a.2<...<a.t andbl<b2<...<bmunderP,

and 2CS on (A,B) if P is both slanted and 2 -covered on (4, B) .

(See Figure 2.)

Let Z and W be two partial orders on AUB , where A, B are
disjoint. Suppose ZN (Ax A) = WN(AxA) and ZN(BxB) = WN(BxB) ,
i.e., Z and W are identical when restricted to either A OrB
We say that 2 is more A-selective than W if ZN(AxB) D WN (A xB)

and zZn (BxA) € WN (B xA) (see Figure 3). Intuitively, the elements

of A will be "smaller" under Z relative to B than under W . Note

that if Z is more A-selective than W , then W is more B-selective

than 2Z.

We need the following result from Graham, Yao, and Yao [A4].

Lemma 1 [4, Corollary 2 to Theorem 1]. Let Z and W be 2 -covered

partial orders on (A4,B) , and Z is more A-selective than B . Then

Pr{I | z) > Pr{I |W} for any I C Ax3B

The main results in this section are the next two lemmas. Let t > 0 ,

m>0, n=1tm, 1<k <t be integers.




&=

(a) (v)

(e)

Figure 2. (a) A slanted partial order on (A,B) ; note that
no arrow goes from A to B
(b) A 2-covered partial order on (A,B) .
(¢) A 2CS -partial order on (4,B) .

10



Figure 3. Z 1s more A-selective than W ; note that
ZN(AxB) = {a<b,a'<b, a"<b,a<b',a'<b', a"<b'}

while WN(AxB) = {a<b, a<b'}

11



Lemma 2. Let P be a 2CS-partial order on (A,B) , where
A = {al,ag,...,at} and B = {bl’be""’bm} . Then, for each k

distinct 1< il,i2,...,ik <t and each 1 < TpTpseees?y < 0,

Pr{ A (ra.nk(a:.L ) = rz) l < TI -}g

1<y<k Z I - 1<i<k "4

k
Corollary. Pr{ a (rank(a., ) = rz) |P} < (t/min rz)
£

1< 1<k ’

Lemma 3. Let P be a slanted partial order on (A,B) where \a\ =t

and |B| =m , Then, for any k distinct elements a._,a._ ,...,a. €A
1ot Tk

and any k integers 1 < TisTpseeesTy <n,

' k
Pr{ls/zsk(ra.nk(ail) = rz) ‘P:} < (t/m:;n rz) .

Proof of Lemma 2. Before proceeding with the proof we introduce some

notations involving +«, We regard the expression X < to (or

~» < X, , or ~e < X, < tw ) as an event which is certain on £(X) ,

i.e., an event that always occurs. We will also regard Xi < +o

(or =-al < X, m@ <% < +o ) as the "null" inequality when it appears

in a set of inequalities. For example, the set of inequalities (or

partial order) {x7<x r X < to o, -e < Xgo, -oo<x7<+cn, "°°<xh<x8}
means exactly the set of inequalities (or partial order) [X7 < x3 roX), < x8} .
Thus, for A = {al,ae,...,at} and B = {bl’be"”’bm} , we can write
I = {a; <b,, 8y < by, = <g, ag < +o} ¢ AxB even though the

displayed I is not exactly formally a subset of AxB .

12



Bydefinitional<a2<. . .<atandbl<b < L. .<bmunderP

2
Without loss of generality, we assume that 1 <i; <i; <. . .<i <t,
l<ry<ry <. . .<r <n, andrzzzl.]Z for all { . Define

j/Z =T -P:}IH' for 1 < ¢ < k, then 1< 31’32"""]! <wmtl . The

condition rank(al. )= r 1is clearly equivalent to the condition
b4

b a, < bl’) , where we have adopted the convention bO = - and

. <

Iyt ‘

bnrl-l = to , to be used throughout the proof of Lemma 2 unless specified
otherwise. We can thus further assume that jl < 3‘2 < < jk .

We now show that P can be restricted to a standard form. For

convenience, let us use the notation G(ip, .. wdy 3 Tyse..sry 3 P) for

Pr{ A (rank(ai)=rz)\9} .
1< 1<k ’

Reduction 1. We can assume that P includes ay <b, 5, voes a. <Db.
1 91 o Jx
Proof. Otherwise, let P'=Py (a. <b., . . ., g. <b. ] Clearly,
1 91 x  Jk
0< N(P') < N(P) . Thus,
iy . . olsryenre ¥ = NP UD, .<a.<b., . ..,b. _<a <b,})/NE')
1 k71 k J1 1 11 Jl Ixe 1 lk Iy
> N(PU{p, ,<a, <b, , .. .,b. _;<a <b.})/N(P)
Ji7t T 9y Iy ;o9
= Ot(il,M.@ik;rl,...,rk;P) .
The validity of the lemma for P' will imply that for P . d

13



Reduction 2. We can assume that P = {al< a <b, <...<hb

p Seer S By Dy <Dy n’

a, <b.,a.<b., ... .a <Db.}.
o9y e 2 ko Ik
Proof. By Reduction 1, we can assume that P includes
a, <b., 5.0..a. <b, . Let Pl=fa,.<...<a ,b, <. . .<b,
11 iy Iy Ik 1 t° 71 m
a, <bo,.o...ay <D, } , then P' 1is more B -selective than P
109 k Ik
Let E ¢BxA denote the conditions (b‘j 1 < 2. :bj -l< By 1o

1 1 2 2
bllk‘l < aiki . Then, by Lemma 1,

Oé(il, . "ik;rl""’rk" P’Q@ = Pr{E ‘ P'}

v

Pr{E | P}

I

oc(il,o ..,ik ; rl,...,rk;P) .

Again, it is sufficient to vrove the lemma for P', ]

Henceforth we assume that P is as given in Reduction 2. Let us

denote the event b <a by E for 1 <2 < k . Then

3,71 , L
iy o 4l s 3i3P) = Pr{EJA ATy | P}
=Pr{E | PIPr{E_, | PAED ... Pr{E, | PAELA <o eAE 0]
ceo Pr{By [PAE A . . AELY (1)

14



Let us denote Pr{b. ,<a.|a.<b., a.<b., ...,a <b_ ]
BT e Ty Ty Ty

as h(il,...,ik; Jl" 5,3k, t,m) , where the dependency on t and m is

explicitly exhibited. Keep in mind that b, = += for js = m+l . By

J

s
definition,
PI‘{Ek ‘P} = h(il’..‘,ik; jl’.co,jk;t)m) . (2)
For 1 < { <k, one can show that
1 if j =1
+1
Pri{E, |PAE A...AE, 1} = x/ (3)
r

h(il’ s00) iz;jl’ ey j l;iz_i_l-l’ j £+l"'1) OtherWise

by the following argument. When ‘jl+l =1 , we must have jz = 1 and the
event Ef is thus -=o< a, o a certainty. In the other case, under

L
PAE A...AE,; » the elements in {a, |s > 1,41}3U {bg |s > 41} have

ranks r l,...,n , and for any relative order among these elements,

+1° r 1,1+l+

the probability distribution of the linear order on

{a s8,5 00058, _13DPsb,s sasb s _4} 1s identical to that under the
1’2 1£+ll 1’2 J£+ll
partial order {a,<a, <. . . <a  .,b, <Db,<...<D. 1
1 2 llz+ll 1 2 J£+ll
a.<b.,....a. <b.,1}. (See Figure k)
% fr 9y

We now digress to derive certain properties of the function h

By Lemma 1, we have, for jk% 1,

a
1

Pr{a, <b. .|la._<b., ...,
e 9t 2 J3 k k

. <b,} > Prf{a;, <b. .|a, <bj ]},
1 J T S k

'k

¥

We emphasize that h(il""’i/z;jl’""jz;iz+1'l’j£+l'l) is

pr{b, < a. |a, <b., ,a..<b., ..., a, <b,}in A' UB', where
o Y TS B~ S Ty 9y
A' = {al,ag,...,at,} ’ B' = {bl)beyooa,bm,} with t' = il"‘l-l ]

m' = Jy417L + and where the value b is += if s = m'+l and -e
if S = O .

15



1 o) 1 k
b bJ —l b b:] -l b, u-ob l b.
91 2 ) 17T el Yk Ik
Figure 4.  The element a. divides AUB into the "left"
i+l

part f{a,se..58; 1, by .00, .} and the
1 1,717 "1 3yl

Meny " .
right" part (ail+l+l""’at , bj£+l’°”’bm} ;

the right part occupies ranks r£+l+l, r2+l+2, . . . .0,
and the actual rankings within it does not affect the

probability of the event EE .

16



which implies

Prib. . <a. \a. <Db. semsse <b, ) > Prih_<a. |la,_<b._ 1},
H1TEHOH o k9 e "

where the probabilities are taken with |A| = t and 1Bl =m . The

last inequality is clearly also true for jk =1, Therefore,

h (il)""ik; Jl) 0 *eriki t,m) S h(ik’jk; t,m) . (h’>

By definition, 1< ik <t and 1< jk < m+l , For the moment

assume that i, <t and j < mrl . LetQ1={a1<a2<. Coe <A,

k

b, <by < .ee <Db_, a,
m 1

<b.
1 2 J

) }, and @, = g U{b < aik+l} . Then Q

is more B-selective than Ql . Using Lemma 1 and the fact that the ranks

k

of all a (£ >1

’ and bs (s > Jk) are fixed under Q2 (see Figure 5),

k)

we obtain

h(ik,,jk; ik,jk) = Pr{bj g < aik l Q'g}

k
> Prib. < a. |}
> oy 5 2y I
= h(ik’jkst,m)

We now claim the inequality,

h( ) > h(ikyjki tym) , 5)

is true for all 1<1i, < t and 1< Jp <_w+l . There are three remaining

cases

17



+
1 1k 1k 1
A —— -9
B
ko] b. b
1 I m
a a. a. a
1 1y 1k+l t
A <

Figure 5. Partial orders Q’l and Q? for :'|.k < t and jk < mtl

18



Case 1. 1k <t and Jk =mtl , Define Ql and Q,2 formally as before

(see Figure 6). Utilizing Lemma 1, we obtain

D dy 3 dem) Pr{bjk_l < aikl Q)

v

Pr{b. <a. |y}
Jk-l 'J_k o]

h(ik) Jk 5 t’m)

Formula (5) follows by observing that h(ik,jk; ik,m)

; 1, 53J,) when jj = mtl (see Figure 7).

Case 2. ik =1t and ‘jk < mtl Define Ql as before. Then, as the

rank of bS is fixed at t+s for each s > jk (see Figure 8),

we have
Blipds dpd) = iy < ailel}
= h(lk) Jk 5 t7m)

Case 3. ik = t and jk =m+tl . In this case,

as observed in Case 1.

We have thus established formula (5) in all cases.

19



i, 1k+l
A *E—0 0L —0t—06——0—8

Figure 6. Partial orders @ and Q, for i, <t and j, = m+1

20



1 ':Lk ik
A *——t—0Cc—8 A H4¢—\
B *rs—oC—o&—o B
by Py by Py P
(a) (b)

Figure T. h(ik, jk; ik,m) = h(ik, jk; ik,jk) when 4k = mtl ,

as the former is the probability of bm <8y in (a)
k
and the latter is the probability of bm < ay in (b).
k
%
k
A
B
b. b
bl Jy m

Figure 8. The partial order Ql when t = ik and jk < mtl .
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From the definition of h , we obtain

.
lk Jk2
g1
Bl dsted) = ZTE35oTy

gL

1y

T IR - (6)

Formulas (4), (5), and (6) lead to

. . : ] ——.—-——*k
h(ll,...,lk; Jl)---:JkSt:m) < ik+jk—l (7)

Formula (7) is the purpose of this digression; note that it is valid for
all permissible values of the i's, j's, t, and m ,
We now return to formulas (2) and (3), and continue the proof of Lemma 2.

From (2), (3), and (7), we obtain (noting that in (3), ‘j1+1 = 1 implies jz =1)

i i
N7 £ B3
Pr EllP/\( A E ) S - for 1 <1<k . (8)
1<s<k J Lovde H T2
Substituting (8) into (1) gives
il
CX(i ,.o-,i ;I‘,...,I‘ ;P) S b
1 K371 K 1< T

This completes the proof of Lemma 2. d

22



The Corollary follows immediately from Lemma 2 as i, <% for

4
all [ .

Proof of Lemma 3, Let AA and AB denote the sets of all linear orders

on A and B , respective*. Then, using the Corollary to Lemma 2, we

obtain

Pr{ A (ra.nk(ai)=r£)|P}
1<t1<k '

1

2 Priy, A )\BlP} Pr{ A (:r-a.nk(za.:.L )=r£)|P/\ A A Ag }

1<i<k L
Ay €0, S
g€ lp
I -
< min r ) Z PI‘{)‘AA)‘B ‘ P} .
g€ lp
Lemma 3 follows, as 2 Prid, A Ay | P} .1 . O
)\A’XB

23



L, Proof of Theorem 1.

The -proof follows the same general outline as the corresponding -proof
in [1], aside from stylistic changes. The main modification is in the use
of more sophisticated results on partial orders developed in Section 3.

We begin by discussing a property of general MID-programs. Let
n>0 and 1<k, n, < n be integers, T be a MIN-branching program
of time t > 0 . Clearly, the output for any input vector Gﬁfxe’”"xn)
depends only on the permutation and not the actual values. From now on,

in this section, we only consider inputs (lexgy--':xn) that are

permutations of (1,2,...,n) . Let us say an input permutation to be
(k,no) -respected by T, if all the output -pairs (rpip) are correct
(i.e., rank(xi ) = r, ) and if there are at least k distinct rz with

i
r, >ny . Let a(7) be the set of input permutations (k,no) -respected
by T

. k

Lemma k. |a(t) | < n ((t+k)/no)
Proof. The lemma is trivially true when t+k > n . We shall, therefore,

assume t+k < n .

Because of Proposition 3 in Section 2, we can assume that T is a
MIN-tree program of time t . For each leaf §y that can be reached by
some input, let P¢ be the partial order at y§ that represents all the

information gathered along the path from the root to ¢ . Then PW is

generated by a collection of inequalities {Xl < X5 for j €iRi’{li}’
i

1< i<t 1}, where min Ri = li is the response to the i-th query on

- T
the path and t? is the distance of y from the root. Clearly tw<;t

2L



Let ¢ be the set of reachable leaves § for which there are at

least k output pairs (rz,i ) with all I‘2 distinct and greater than n

1
For each § € § , define Aw = {xl |1 < i< tw}[J{x. 3X, seee3X. }  and

i ﬁ_ b lk

Bv = pafxg,...,xn} -A¢ . Clearly, both A and B, are non-empty, and

¥ Y
PW is slanted on (Aw,B¢) . Let aw denote the set of input permutations
leading to y , and ay c d@ the subset of those (k,no) —-respected
by T . By Lemma 3,
k
a' t +k k
— n —
VV‘ 0 0
Therefore,
la(t)} = T \a*'\
yed
k
t+k
< (4 z a,l
0 yed v
k
< %}E n! . 3
0
We now proceed to prove Theorem 1. Assume n > 20 . Let T be

any MIX-branching program (in normal form) for sorting n numbers with
time T and capacity S . Since 7T has to identify the element X,
with rank n , we must have T > n-1, because all other elements Xj
have to be shown less than some elements and each Min R = ? query can
only supply such a certificate for one X.J . By Proposition 1 in

Section 2 and the fact T > n-1 , we have

S > 1 . (9)
Without loss of generality, we also assume that S < n/20 , as

TS = Q(ne) otherwise.

25

0



Tet ny = fn/47 , t = Ln/20J, and g = LT/t) . As T > n-1 >

we have g > 2 . We wish to prove

s > T (a=ng)/(eD)1, (10)

which will imply the theorem by the following argument. From (10) and
the definition of g , we have S(T/t) > (n-no)g/(g+l) , implying

ST

Q(ne) and hence the theorem.

It remains to prove (10). We assume that S < r(n-no)/ (gtl) 7 and
will show that it leads to a contradiction.

Let Vz be the set of nodes on level y, O0< £<T (the root

being on level 0 ). Define V' = U V. . For each veV',
0<i<g Jt

let g be the sub-branching program rooted at v and of height < t ,
such that all nodes of T at a distance > t are chopped off and all
descendants of v at exactly a distance t are converted to leaves
of T Thus, 7T is divided by level into g+l consecutive groups,
with the j -th group being the (usually non-disjoint) union of T
VeV(j_l)t . Any path in 7 (from the root down) is divided into no
more than g+l intervals, each starting at a veV' and tracing a
path in T
Let ¢ be any input permutation. There must be n-n, distinct
output pairs (r,i) with r > ny along the path it follows in 7 .
Thus, the interval of the path between levels jt and (j+1)t for
some j must have output F(n—no)/ (g+1)1 > S such pairs. By the previous

discussions, that means the existence of a Tv with veV' that

(S,no) -respects ¢ . Therefore,
Z |s(v) | > nr, (11)
VEV!
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where B{(v) denotes the set of permutations that are (S,no) -respected

by Tv .

By Lemma L, ‘ﬁ(V)‘ < ( (t+S)/no)Sn1 . As ‘V" < QS ; L < n/20 ,

1< s<n/20, and ny > n/k , we have

T s | o< (2—(};1;—51)Sn:

veV'

L
<§n.

This contradicts formula (11). We have thus shown that (10) must be true.

This completes the proof of Theorem 1. O
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5. Proof of Theorem 2,

Let L be a LINEAR-branching program (in normal form) for sorting any
n distinct input numbers X9¥5ye005X . We shall construct a MIN-branching
program T for sorting any n distinct numbers with the same required
time and capacity. Theorem 2 then follows from Theorem 1 immediately.

We first chop off the " = " branches of L at all nodes. Then we

replace each internal node v of L by a new node E(v) in the following

way (see Figure 9). Let /Z(;) Z AXg F 2 %¢ 0 with
i eOl i eO2
0, N0, = o, A; > 0 for ie 0 and )y < 0 for ie 02 , be the linear
query at v . We replace it with a Min query " Min(OlLJ02)= ? "
The lOlLJ02| outgoing edges of the new node g(v) are divided into

two groups B, and B2 . Each edge in B1 corresponds to a response

1
Min(OlUOE) = 1 with ie 0;; it goes into the leftson of v , and
outputs the same output pairs as the original left-branch edge of v ,

Similarly, each edge in B

corresponds to a response 1eO2 , goes

2
into the rightson of v , and has the same output pairs, if any, of the
original right-branch edges of v in L . (By convention the left-branch
edge of v in L corresponds to the response f(x) < 0 .,) This defines 7 ,

Clearly, T has the same required time and capacity as L . It remains to

prove that 7 actually sorts, for any n distinct inputs X19Kps e X

—

For each internal node v of L , let }gv(x) : 0 be the linear query

where 2 (X) . % jp.x,-c. . Define N = min{ |, .40

v lfifnll v V,i{lkva.llku# 3o

B = 111ax{|>\v1| |>"v:L £ 0}, and y = max \cv| ; clearly M, g exist and
Vy 1 \V4

are strictly positive. Let 61,62,...,8n be defined by
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Figure 9. Transforming L into 7 ; the replacement

of v by E(v) .
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(12)

(o4
]

1 .
- -ﬁ(nﬁlsj+l| +y +1) for j=n-1,n-2, ..., 1

It is easy to check that 61< 82 < vee < 6n < 0 and hence are all
distinct.
For each internal node v in L , let ovl = {i l Mg > 0, 1< i< n}

and 0, = fi ]>‘v1 <0, 1<i<n}. Let A be the set of input vectors

x defined by:
= Xo9Xns « « X a permutation g such that x, .8 .0 XN ® .
A {( 12 %02 ’ n) ‘H P o o1 ‘. | c(n)}
Clearly, all components ¥, are distinct for any (Xl’XE"“’Xn) eph,

p—y
Lemma 5. For any Xe) and any internal node v in L, L’v(x) <0

if Min(0 U0 ) € 05 » and £ (x) > 0 if Min(0, U0 )¢ On

v1

Proof. Suppose X, = So(i) for 1< i < n . Define Q,"]a = {cr(i) ‘ ie Q‘va}

_ . . . .

for ¢ =1,2 . If M:Ln(Ole Ove) € 0y , then there exists j e O, such
oo C ,

that j 1 for all other ie Ov1UOv2 +  Thus,

i €0 i

) = T do(a) + ezo NiPo(s) T %
1 2

ﬁ >\‘V':L'6j +.E ‘)\'Vi‘.‘&,j"'l‘ - C'v' ? (13>
l€02

where 1' = ¢

We now use formula (12) in (13) to obtain

1(z) < 'n5|53+1l -7 -1 4|98 |63+1| "%

<0.
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The case when MJ.n(Oleon) € OV2 can be similarly treated. O

The above lemma implies that, for each input vector }?e A , the path
followed in T 1s exactly the image of the path followed in L . Thus,
T gives the same set of output pairs as L . As L computes the sorted
output vector E!(;Z)= (c-l(l),c-l(E),...,g_l(n)) by definition, so does 7 .
Since A contains all n! permutations, T 1is a MIN-branching program
for sorting any n distinct numbers,

We have completed the proof of Theorem 2. 0O
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6. Concluding Remarks.

In this paper we have extended the time-space tradeoff result of
Borodin, et. al. [1] to programs using linear queries. It 1s perhaps
worth noting that a major step in the proof is to show lower bounds for
programs with MIN-queries. This is a somewhat unexpected technique, as
the MIN -queries look too powerful to be used for lower bound proofs
(e.g. due to the O(n) -way branching of a MIX-query, one can sort
n elements in n-1 MIN-queries in the decision tree model). Aside
from the direct comparisons X XU" linear dqueries are the most-studied
primitives for sorting-related problems (e.g. [2][31[7]). The approach

used here offers yet another technique for dealing with such questions.

Acknowledgement. I wish to thank Nancy Iynch for critical comments
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