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Abstract.

L(m,n) is the set of integer m-tuples (as 0 md) with

0 < al <...<a <n, ordered by a < b whena, < b, forall 1 .

R. Stanley conjectured that L(m,n) 1s a symmetric chain order for

all (myn) . We verify this by construction for m = 4 .
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L(m,n) is defined as the lattice formed by order ideals in the

direct product of two chains with m and n elements, respectively.

Equivalently, it 1s the collection of integer sequences a = (@,.00ia )

satisfying O < aq < vee < a <n, withordering a < b when oN < o,

for all i . The correspondence 1s simple. If the chain elements are

Xy < LL. 0 < X and yy <. . . < J, then the number of elements paired

with x, in the ideal corresponding to a 1s n-a. . In other words, the

antichain generating the ideal is (Gogg Joeees (ping J]
Clearly, the rank of element a is J. ar the rank of the entire

lattice 1s mn , and the cardinality of the lattice 1s mr . For
any element a , we define its conjugate a* = (n-a_, a 0-2. ) . Note

**

that a = a . The ranks of an element and its conjugate sum to mn ,

so the sizes of the ranks are symmetric about the middle. Using complex

algebraic methods, R. Stanley [3] proved the sizes of the ranks are also

unimodal. These are necessary conditions for a stronger property he

conjectured also holds. He conjectured that L(m,n) 1s a symmetric

chain order. A symmetric chain order 1s one whose elements can be

partitioned into chains which are saturated (skip no ranks) and symmetric

about the middle rank. The conjecture is clear when m = 1 or m = 2 .

Lindstr8m [2] provided an inductive construction to verify it for m = 3 .

Here we give a construction somewhat different from his which verifies

the conjecture when m = 4 .

Let S(m,n) , the "shell" of L(m,n) , be those elements which begin

with 0 or end with n . When these are removed from L (m,n) the

remainder 1s 1somorphic to L(m,n-2) . The conjecture holds trivially

when 2 = 1 , and L(m;0) can be defined as having a single element.



So, providing a symmetric chain decomposition of S(myn) proves the

conjecture by induction. We use this approach here for L(k,n) .

Unfortunately, when m is odd and n is even the rank sizes in S(m,n)

are not unimodal, So, for that case Lindstr8m was forced to strip off

two shells for his induction. For m = 4 this difficulty does not

arise. It is possible that Lindstr8m's construction generalizes for

odd m and this does so for even m . Whenm and n both exceed2 ,

L(m,n) is not an LYM-order, so Griggs' sufficient conditions for a

symmetric chain order [1] cannot be applied.

Theorem. L(k,n) is a symmetric chain order.

It suffices to give a symmetric chain decomposition of S(k,n) .

The chains will be of two types, Cis and D.,. for suitable values
of 1 and Jj. The chains are clearly saturated, so two steps will

complete the proof.

(1) No element appears in more than one chain.

(2) The number of elements in the construction is the size of S(m,n) |.

Each chain 1s composed of six segments, with the top element of

one segment and the bottom element of the next identical. Throughout

a given segment only one position in the integer sequence changes.

Table 1 explicitly defines the chains and gives the ranks where the

changes between segments occur.

Segments must have length at least 0 . That 1s, top and bottom

elements may be identical, but the top element must not have rank below

the bottom element. Examining the lengths of segments and ensuring that
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| we have legal elements at the bottom of Syn and the top of D;
| yields necessary conditions on 1 and j . We claim the desired

decomposition 1s obtained by taking all chains for which these necessary

conditions are satisfied.

S(k,n) = {Cs 5° 3it2 <n, 1 > 0, J > 0JU {Dy 4: 53142] <n-3,1>0,3>0

Figure 1 gives S(4,7) explicitly as an example.
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Outline of Proof. To show the elements are all distinct, we express

the D-chains in terms of the C-chains and then restrict our

attention to the C -chains. Let Ch 4 be the element of Gs of rank r ,
similarly for D. . We claim that chain Di, 3-1 1s the conjugate of

chain Co : when the top and bottoms elements of the latter are removed.

That 1s, (07 4) = hs . 1t suffices to perform the conjugation on
the transition elements between segments of Dy 51 They become the

transition elements of C4, 3 Note the top and bottom elements of Cy 5

are unaffected and are conjugates of each other. Whenever Di 4-1 exists,

Ca 4 exists. The affected Cys are those where J>0 and 3i+2]j <n .
Distinctness now reduces to showing:

(la) The elements of u{ciyl are all distinct.

(Ib) The chains C.o and Ci, (n-31)/2 are self-conjugate.

(lc) There are no conjugate pairs among the elements of ULC 5) ’
where 0 < j < (n-31)/2 , other than the tops and bottoms of

chains.

(lb) 1s seen immediately by conjugating the transition elements in those

chains. The other two statements require eliminating a large number of

easy cases.

To show we have the correct number of elements, we proceed by

induction. Simple counting verifies it for small n . In general, the

size of 8(myn) is |L(myn)| - |L(myn-2)| . so,

sony] = (0) = (8) = dime) (nn)

This 1s the sum of a familiar sequence. Indeed,

5(b,n) | - [8(n-1)| = (o1)°
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Now we examine the changes in the construction between n-1 and n ,

For all values of i and J such that Gyr or D.. existsin the
construction for n-1 , a similarly indexed chain exists 1n the construction

for n . Subtracting ranks, the number of elements in Qe 1s

L(n-3i-j)+1, and the number in Ds is 4(n-3i-j)-5 . Eachof these
chains has 4 more elements than the similarly indexed chain in 8S(4%,n-1) ,

if that chain exists. We will see there 1s a Cy for every element of

the middle rank which begins with 0 and a D.. for every such element
whose first position 1s not zero.

The chains which arise newly when n 1s reached are those Cy for

which 3i+2j = n and those Dy 3 for which 3%it2j= n-3 . For each value

of 1 from 0 up to Ln/3 | or Ln/3|-1 , depending on parities, there

will be one new Gy orD.., q but not both.
Verifying that the construction picks up the proper number of elements

reduces to:

(2a) Computing (and multiplying by 4) the number of chains in the

construction for S(4,n-1) -- that is, the sum of the number

of solutions to 3it2j < n-1 and 3it2j <n-4 .

(2b) Computing the total number of elements in new chains.

(2c) Verifying the sum of new elements in (2a) and (2b) 1is (m+1)° .

(2b) breaks into cases depending on the parity of n , and (2a) does the

same with the parity of | n/3 | , so (2c) requires six cases, depending

on the congruence class of n modulo 6 .

Details of Step 1. If (la) does not hold, suppose a = CL; = Cres . We
have a number of cases to consider, depending on which segment contains a
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| in each of the two chains. Let FC, denote segment 7p in Ci 5 . |
- Equating the descriptions of the segments in Table 1 give us a number

of linear relationships between 1, J, k, and ¢ . If a comes

from Fe, and Pe, » equating the positions which do not change in
that segment implies 1 =k and J = f/f in all six cases, by straight-

forward subtraction of equalities.

By symmetry we may assume a occurs in a lower numbered segment

in Cis than in Cr . We allow the transition elements between segments

to belong to either segment. So, if a 1s in Fe, and Cy, y WE may
‘assume a 1s not the top element of Fe, nor the bottom element of
Rey , else we have a case with smaller g-p . In particular, the

| rank of the top element in Fey 4 must be strictly greater than the
rank of the bottom element in °C, .

| | Suppose gq = ptl . This comparison of ranks yields a strict

inequality when a particular linear function is applied to (i,j) and

to (X,¢) . Whenever gq = p+tl two positions in the elements remain

constant from the bottomof segment p to the top of segment gq . This

expresses two positions of a as identical linear functions of (1,3)

and (k,Z) . In all five cases, we readily get the same linear function

we obtained by considering ranks, but with equality this time.

If the first position of a is nonzero, a can occur only in

segments 5 or 6 . If it is zero, a occurs in segment L or below.

This eliminates all but three of the cases which might have C 1 = Cy,
. with (i,j) # (k,2) . The remainder we handle individually.

If a 1s in “c, and “e,, » positions 2 and 3 require
i= n-2k-f and n-i-j > n-k-f . Adding these gives n-j > 2n-5k-2¢1 >n .
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Next suppose a 1is in Ye; and °c, . Equality of the last three
positions requires k <i, n-k-f = 2itj , and n-f > 3i+j . Substituting

} for k and n~f in the equation gives 2i+]j < 2i+j . Finally, suppose a |

is in fe, | and “e,, . Comparing the top of es with the bottom of
“e,, yields nt31i > 3n-3k-54> n+3k+y or i > k . On the other hand,
the middle two positions of a remain constant in both sections, so

1 =n-2k-f and 2i+J = n-k-f . Subtraction gives itj=k or 1<k .,

(1c) also breaks into cases depending on the segments. We assume

8 = C ; = Cail , with 0 <j < (n-3i)/2 and 0 < f < (n-3k)/2 .
Here the arguments do not group together as cleanly. One element of such

a conjugate palr occurs at least as high as the middle rank in one chain.

Call this chain Cs 5 . For ease of comparison, we have recorded Cis and

Cy, in Table 2. Since 3n-3i-3j<2n, a lies in segment L , 5, or 6

of C; 5 . Since n+3k+24 <2n , a lies in segment 3 , 4 , 5, or 6 of

Cy, - Assume ae (Fe; ne,
| | We first notice p= 4 is impossible, as it would imply ( < O . We

handle the remaining cases individually. Again we equate corresponding

positions in a . The requirements on Jj and { figure prominently. |

For example, 1+J <k and 1 > kt/ give us a contradiction, as do

n-31-j < f and n-3k-f <j.
»

p=6, q= 6. a, = 2i+j = 2kt+y , a, = i<k. a = 3i+tj >3kts .
Subtracting a, implies 1 >k . So (i,3) = (k,4) , and this is the

case where the top and bottom of the chain are conjugate.

P=>, ad=2 . 8; = ity = k a, = 21+]> 2k+4 . Subtracting

. = implies 1 > kt{ .

p=6, qg=5. 8s = k>1i. a = n-3i-j=/ . Substituting for
i gives n-3k-f <j « As mentioned earlier, this is a contradiction since

both 3i+2j and 3k+2{ must be less than n .

9
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p=5,qg=6. a, = i+j= k . a, =» 2i+j = 2ktf . Subtracting

ag implies 1 =Kktf4, so J= {= 0,

aq gives 1 = k . Substituting in a, yields n-3k-¢ = J , giving the

same contradiction as in (p,q) =(6,5) .

P =5, a =4. a = n-31-J > © (equality returns us to the previous

case). a, = n-2i-j = kt{ . Subtracting a; gives 1 < k .

2 = n-i-j > 2kt{ . Subtracting a, gives 1 > k .

p=60, qg=3. Lest p-gq be smaller, the requirement on ranks is

In-3i-3j < n+t3k+3f , so n-2i-j < k+g . But 8, = n-2i-j = ktf .

Pp =5, qq =3,. ay = n-2i-j = k+g , a; =» n-i-j = 2k+g .

Subtracting 2] yields i = k ., Substituting this in the two previous

equations gives the familiar contradiction n-3i-j = f and n-3k-4 = Jj .

This completes the proof of (1).

Details of Step 2. We begin with (2a). The top element of segment L

in Cy has rank 3n-3i-2j > 2n , so every Ci; has a O in the first
position of its middle rank element. The bottom rank of segment 3 in

Dy 5 is n+3i+2J+2 < 2n-1 , so Ds 3 has a positive first position in
its middle rank element. The non-decreasing sequences of length 4 which

start with O , end In k , and sum to 2n run from (0, 2n-2k, k, k) to

(0, | (en-k)/2] , [(2n-k)/27 , k) when n > k > [2n/37 . So, we want the

number of C. : 's to be 2. k - [ (en-k)/27 +1 . Similarly,
J [2n/37 <k<n

the elements covered by D; 's run from (k, k, n-2k, n) to

11



(kx, L(n-k)/2} , T(n-k)/27T , n) for 1 < k < | n/3,, for a total of

2 L(n-k)/2]- k+1.
L<k<|n/3

On the other hand, the number of solutions to 3i+2j < n is

2. 1+ | (n-31)/2] and to 3i+2j < n-3 is
0<ign/3

> 1+ | (n-3i-3)/2] . These turn into the desired
0<igIn/3]-1
summations when i 1s set to n-k in the first case and k-1 in

the second.

We wish to combine the summations. Separating the 1 = 0 term

from the first and adjusting the index in the second, the total number

f(n) of chains becomes

f(n) = 1+ |n/f2] +2 2 1 +L(n-31)/21 )
1<i<n/3]

To compute the summation, we pair terms for consecutive values of i .,

If | n/3] is odd, we separate i = |n/3)| . Adding the terms for

i =2k-1 and i = 2k gives 2+ | (n-6k+3)/2} + | (n-6k)/2| = n+3-0k .

There are | n/6| pairs altogether, and 2. (n+3-6k) =
1<k<| n/6]

(n+3)Ln/6] -3| n/6] | (n+6)/6] . When {n/3 J is odd, the term

1+ L(n-3|n/3 | )/2 ] remains. This is 1 if n = 3, 4 mod 6, but

2 if n = 5 mod6 .

Summarizing, if n = r mod 6, O <r <5 , then the total number

of chains 1s

1 5 r = 0 3 1, 2

fn) = (0/2) + 2(m3) 0/6) - 6 n/6] | (m6)/6) 1 ( 8 ;r = 3,01

5 5 rT = 5

= Ln/2| + (+3) (n-1)/3 - (n-r) (n-r+6)/6+4 3 5; r=3,k

5 3 Tr =D

12



Next we consider (2b). If n 1s even, a new chain ©; ‘OCCUrS

for even values of 1 with 0 < i < | n/3J,and a new D; 5 for odd
; values of i with 1 <i <|n/3J-1 . Similarly, when n is odd we

have a new Dp for even i with 1 < i <|n/3J-1 and a new Coy
for odd i with 1< i < | n/3J.

To sum the number of elements in these chains, we can again pair

consecutive terms. For the total number g(n) of these elements, we

have

C 2 D +c

| Connie)o£ue, Poel (arbial ook, (nub2] neverg(ny =

L Pox (n-6k-3)/2 | 7 10%+1, (n-6x-3) ol 3 n odd. 0<k< | (n-3)/6 dha y (n-0k-3)/

) Since Cy; = L(n-3i-j)+1 and bh = 4(n-3i-j)-5 , this quickly becomes

1+2n+ 2 L(n-6k)+ 8 ; 1 even
1<k<| n/6]

g(n) =

2 L(n-6k)-k ; n odd
0<k< | (n-3)/6]

n+ Lh(n+2) n/6] -12| n/6] | (n+6)/6| ; nN even

h(n-1) L(n-3)/6] -12| (n-3)/6] | (n+3)/6 ; n odd

) 1+2n+2(nt+2)(n-r)/3 - (n-r) (n-r+6)/3 ; r=0,2,14

x 2(n-1) (n-r+6)/3 - (n-r)(n-r+6)/3 5 r=1315

| 2(n-1)°/3 = (nT) (n-1)/3 ; r=

13



For (2c), we need only compute Lf(n-1)+g(n) , which b&comes

| simple algebraic manipulation when we consider a particular congruence

class of n modulo 6 . Beginning with r = 1 , we easily obtain

expressions like

r= 1: L+ (n-1) (n+3) r==54: n+ 9+ (n+2) (n-4)

r=2: 2n+5+ (n-2)(n+2) r=>5: 2n+10+ (n-5)(nt+5)/3+2(n-1)(n+l) /3

r=3: L+ (n-1)(n+3) r=0: khn+17+2(n-6)(n+th)/3 +n(n-2)/3

all of which reduce to (1+1)° :

This completes the proof.
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