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Abstract.

L(m,n) 1is the set of integer m-tuples (al,.gl.gm) with
0 < al <...< a < n, ordered by a < b when a, < b, forall i
R. Stanley conjectured that L(m,n) 1s a symmetric chain order for

all (myn) . We verify this by construction for m =4 .
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L(m,n) is defined as the lattice formed by order ideals in the
direct product of two chains with m and n elements, respectively.
Equivalently, it is the collection of integer sequences a = (al”"“am>
satisfying O < aq < .00 < a <n, withordering a < b when a; < bj
for all i . The correspondence is simple. If the chain elements are

Xy <L .. K< xm and yl <. .. < yn , then the number of elements paired

with X, in the ideal corresponding to a is n-a, . In other words, the

antichain generating the ideal is {(Xl’yn-a1>""’(Xm’yn-ang}

Clearly, the rank of element a is 7. a,l, the rank of the entire
m+n

lattice is mn , and the cardinality of the lattice is | m ) For

any element a , we define its conjugate a* = (n—am,. . .ﬂbal>. Note
KK , ,

that a = a . The ranks of an element and its conjugate sum to mn ,

so the sizes of the ranks are symmetric about the middle. Using complex
algebraic methods, R. Stanley [3] proved the sizes of the ranks are also
unimodal. These are necessary conditions for a stronger property he
conjectured also holds. He conjectured that L(m,n) is a symmetric
chain order. A symmetric chain order is one whose elements can be
partitioned into chains which are saturated (skip no ranks) and symmetric
about the middle rank. The conjecture is clear when m = 1 or m = 2
Lindstrém [2] provided an inductive construction to verify it for m = 3
Here we give a construction somewhat different from his which verifies
the conjecture when m = k4

Let S(m,n) , the "shell" of L(m,n) , be those elements which begin
with 0 or end with n . When these are removed from L(m,n) the
remainder is isomorphic to L(m,n-2) . The conjecture holds trivially

when 2 =1 , and L(m;0) can be defined as having a single element.



So, providing a symmetric chain decomposition of S(m,n) proves the
conjecture by induction. We use this approach here for L(L,n) .
Unfortunately, when m 1is odd and n is even the rank sizes in S(m,n)
are not unimodal. So, for that case Lindstr8m was forced to strip off
two shells for his induction. For m = 4 this difficulty does not
arise. It is possible that ILindstr®¥m's construction generalizes for

odd m and this does so for even m . When m and n both exceed 2 ,
L(m,n) is not an LYM-order, so Griggs' sufficient conditions for a

symmetric chain order [1] cannot be applied.
Theorem. L(4,n) 1is a symmetric chain order.

It suffices to give a symmetric chain decomposition of S(4,n) .
The chains will be of two types, Cij and Dib for suitable values
of i and Jj. The chains are clearly saturated, so two steps will

complete the proof.

(1) No element appears in more than one chain.

(2) The number of elements in the construction is the size of S(m,n)

Each chain is composed of six segments, with the top element of
one segment and the bottom element of the next identical. Throughout
a given segment only one position in the integer sequence changes.
Table 1 explicitly defines the chains and gives the ranks where the
changes between segments occur.

Segments must have length at least 0 . That is, top and bottom
elements may be identical, but the top element must not have rank below

the bottom element. Examining the lengths of segments and ensuring that
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we have legal elements at the bottom of Cib and the top of Dij
yields necessary conditions on i and j . We claim the desired
decomposition is obtained by taking all chains for which these necessary

conditions are satisfied.
S(k,n) = {Cij: 312 <n, 1 >0, j > O}LJ{Dij: 31423 < n-3 , 1 >0, J > 0)

Figure 1 gives S(4,7) explicitly as an example.
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Outline of Proof. To show the elements are all distinct, we express

the D-chains in terms of the C-chains and then restrict our
attention to the C -chains. Let Lfg be the element of gj' of rank r ,
L

similarly for D.r. .  We claim that chain D, . is the conjugate of
1) i,Jj-1

chain C.l 3 when the top and bottoms elements of the latter are removed.
J

. r * bn-r . .
That is, (D. . = C, . . It suffices to perform the conjugation on
1, J_l 1,J
the transition elements between segments of Di -1 They become the
sy - .
transition elements of Ci 3 Note the top and bottom elements of C.l 3
J . 2

are unaffected and are conjugates of each other. Whenever Di 3-1 exists,
5 J-
Ci. exists. The affected Cib are those where 3j>0 and 3i+2j <n .

Distinctness now reduces to showing:

(1a)  The elements of LJ{Cij} are all distinct.

(Ib)  The chains C.

0 and Ci,(n-Bi)/E are self-conjugate.

(1c) There are no conjugate pairs among the elements of U{Cij} s
where 0 < j < (n-3i)/2 , other than the tops and bottoms of

chains.

(lb) is seen immediately by conjugating the transition elements in those
chains. The other two statements require eliminating a large number of
easy cases.

To show we have the correct number of elements, we proceed by

induction. Simple counting verifies it for small n . In general, the
size of S(m,n) is |L(mn)| - |L(myn-2)| . so,
n+h n+2 +1) (n+2) (2nt
lsn)| = (L) - () = .(nj£6)( 3)

This is the sum of a familiar sequence. Indeed,

|s(n) | - |s(byn-1) | = (n+1)?



Now we examine the changes in the construction between n-1 and n ,
For all values of i and j such that %h' or Dﬁg exists in the
construction for n-1 , a similarly indexed chain exists in the construction
for n . Subtracting ranks, tbe number of elements in %b' is
4(n-3i-j)*+1 , and the number in Dij is 4(n-3i-j)-5 . Each of these
chains has 4 more elements than the similarly indexed chain in S(h,n—l) )
if that chain exists. We will see there is a Cij for every element of
the middle rank which begins with 0 and a D.:L.J for every such element
whose first position is not zero.

The chains which arise newly when n is reached are those %J' for
which 3%i+2j = n and those Dij for which 3i+2j = n-3 . For each value
of i from 0 up to |n/3| or Ln/B_J-l , depending on parities, there
will be one new %ﬁ' orD..lj but not both.

Verifying that the construction picks up the proper number of elements

reduces to:

(2a) Computing (and multiplying by 4) the number of chains in the
construction for S(4,n-1) -- that is, the sum of the number
of solutions to 3it2j < n-1 and 3i+2j < n-4

(2b) Computing the total number of elements in new chains.

(2¢) Verifying the sum of new elements in (2a) and (2b) is (n+l)2 )

(2b) breaks into cases depending on the parity of n , and (2a) does the
same with the parity of |n/3] , so (2¢c) requires six cases, depending

on the congruence class of n modulo 6 .

Details of Step 1. If (la) does not hold, suppose a = qff = Ciz . We

have a number of cases to consider, depending on which segment contains a




in each of the two chains., ILet Pcij denote segment p in Cij .

Equating the descriptions of the segments in Table 1 give us a number
of linear relationships between i, j, k, and ¢ . IT a comes

from PCij and » equating the positions which do not change in

b

“ks
that segment implies 1=k and J = ¢ din all six cases, by straight-
forward subtraction of equalities.

By symmetry we may assume a occurs in a lower numbered segment

We allow the transition elements between segments

Po .
1

in Cij than in Ckz .

to belong to either segment. So, if a 1s in and qu!Z s We may

assume a 1s not the top element of Pcij nor the bottom element of

q

C else we have a case with smaller g¢g-p . In particular, the

b

kg’
rank of the top element in Cij must be strictly greater than the
rank of the bottom element in quz .

Suppose g = ptl . This comparison of ranks yields a strict
inequality when a particular linear function is applied to (i,j) and
to (k,£) . Whenever q = p+tl two positions in the elements remain
constant from the bottom of segment p to the top of segment ¢ . This
expresses two positions of a as ldentical linear functions of (1,3)
and (k,¢) . In all five cases, we readily get the same linear function
we obtained by considering ranks, but with equality this time.

If the first position of a is nonzero, a can occur only in

segments 5 or 6 ., If it is zero, a occurs in segment L or below.

r r

This eliminates all but three of the cases which might have Cij = Cka
with (i,J) # (k,£) . The remainder we handle individually.
- L
If a is in 2Cij and Ckl s> positions 2 and 3 require

i = n-2k-f and n-i-j > n-k-f . Adding these gives n-j > 2n-3k-24 >n .



Next suppose a is in lCij and BCkl . Equality of the last three

positions requires k <1, n-k-f=2itj, and n-f > 3it+j . Substituting

for k and n-{ in the equation gives 2i+j < 2i+j . Finally, suppose a

is in lCij and hckz . Comparing the top of lCij with the bottom of
i

Ckf yields nt3i > 3n-3k-37 > n+3k+f or 1 >k . On the other hand,

the middle two positions of a remain constant in both sections, so

n-2k-¢ and 2it+j = n-k-f . Subtraction gives i+j =k or 1i<k.

i

(1c) also breaks into cases depending on the segments. We assume

hn-r *

r )", with 0< j < (n-3i)/2 and 0 < f < (n-3k)/2 .

Here the arguments do not group together as cleanly. One element of such
a conjugate pair occurs at least as high as the middle rank in one chain.
Call this chain Cij . For ease of comparison, we have recorded Cij and
C;Z in Table 2. Since 3n-3i-3j < 2n , a lies in segment 4,5, or 6

of Cij . Since nt3k+t2y < 2n , a lies in segment 3 , 4 , 5, or 6 of

* b
. Assume ace ( Cijr\qckz) .

Cxy

We first notice p = L 1is impossible, as it would imply £ < O . We
handle the remaining cases individually. Again we equate corresponding
positions in a . The requirements on j and { figure prominently.

For example, 1it+j <k and 1 > kt/ give us a contradiction, as do

n-3i-j </ and n-3k-£ < J .

2

Subtracting a, implies i >k . So (i,j) = (k,£) , and this is the

p=6, q=6. a. = 2i+j = 2k+g . aB:i_<_k. a; = 3i+J > 3kts .

- case where the top and bottom of the chain are conjugate.

p=5, qg=5. a; = ity =k . a, = 2i+j > 2k+f . Subtracting

a3 implies 1 >ktf .

{ . Substituting for

I

p=6,qg=5. a5=k21. a, = n-3i-j
i gives n-3k-f < Jj . As mentioned earlier, this is a contradiction since

both 3it+2j and 3k+2¢ must be less than n .

9
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Pp=5,qa=6. %=i+j=k' a, = 2i+j = 2k+f . Subtracting

2
3.5 implies 1 =%kt{ , so J=1£=0.

p =6, q =4. ap = n-3i-j = £ . a, = n-2i-j = kt¥Z .  gsubtracting
& gives 1 = k . Substituting in ay yvields n-3k-f = j , giving the

same contradiction as in (p,q) =(6,5) .

P =5, q =4. ap = n-3i-j > 1 (equality returns us to the previous

case). g,

5 2 n-2i-j = k+f . Subtracting aq gives 1 < k .

a‘5 = n-i-j > 2ktf . Subtracting a, gives 1 > k

p=6, qg=3. Lest p-q be smaller, the requirement on ranks is

kn-3i-3j < n+3k+34 , so n-2i-j < k+g . But a, = n-2i-j = k+g .

P =5,q9 =3. a, = n-2i-j = k+g . 33 > n-i-j = 2k+y .
Subtracting aq yields i = k . Substitubing this in the two previous

equations gives the familiar contradiction n-3i-j = 4 and n-3k-y = j .
This completes the proof of (1).

Details of Step 2. We begin with (2a). The top element of segment L

in Ci,j has rank 3n-3i-2j > 2n , so every Cij has a O in the first
position of its middle rank element. The bottom rank of segment 3 in
Dij is nt3it+2j+2 < 2n-1 , so Dij has a positive first position in

its middle rank element. The non-decreasing sequences of length 4 which
start with O , end in k , and sum to 2n run from (0, 2n-2k, k, k) to

(0 5 L (en-k)/2] , [ (en-k)/27 , k) when n > k > [2n/37 . So, we want the

number of C..'s to be 2. k - [ (en-k)/27 +1 . Similarly,
J [2n/37 <k<n

the elements covered by Dij 's run from (k, k, n-2k, n) to



(k, L (n-k)/2} , T(n-k)/27 , n) for L < k < | n/3,, for a total of

Z L(n-k)/2] - k+1.
1<k<n/3y

On the other hand, the number of solutions to 3i+2j < n is

> 1+ | (n-31)/2] and to 3i+2j < n-3 is
0<i<in/3] -
z 1+ | (n-3i-3)/2] . These turn into the desired

0<ig |n/5]-1

summations when i 1s set to n-k in the first case and k-1 in
the second.

We wish to combine the summations. Separating the i = 0 temm
from the first and adjusting the index in the second, the total number

f(n) of chains becomes

f(n) = 1+ |n/f2]+2 2 (1 +L(n-31)/2] ) .
1<ig|n/3]
To compute the sumation, we pair terms for consecutive values of i .
If | n/3] is odd, we separate i = | n/3| . Adding the terms for

i=2k-1 and i = 2k gives 2+ | (n-6kt3)/2 ) + | (n-6k)/2| = n+3-6k .

There are [ n/6| pairs altogether, and > (n+3-6k) =
1<k<Ln/6)

(n+3) | n/6] -3|n/6] | (nt6)/6] . When | n/3 j is odd, the term
1+ L (n-3n/3] )/2 1 remains, This is 1 if n = 3, L mod 6, but
2 if n = 5 mod 6 .
Sumarizing, if n = r mod6, O <r <5 , then the total number

of chains is

1 3 r=0,1,2
f(n) = |n/2]+2(n+3) | n/6)-6n/6] (nt6)/6]4+( 3 3r = 3,1L
5 3 r=25
1 ;3 r=0,1,2
= Ln/2y+ (n+3)(n-r)/3 - (n-r) (n-r+6)/6+4 3 5 r=3,4
5 3 r=95

12



Next we consider (2b). If n is even, a new chain C.lj ‘occurs
for even values of i with 0 < i < |n/3J,and a new Dij for odd
values of i with 1 < i < |n/3J-1 . Similarly, when n is odd we
have a new D.. for even i with 1 < i <|n/3J-1 and a new C.:L.J
for odd i with 1< i < [ n/3J.

To sum the number of elements in these chains, we can again pair

consecutive terms. For the total number g(n) of these elements, we

have
( C C ,
Cornsein ) o 2, oty (nesi ol 100k, (i o] i o even
g(nz =
Z Pk, (me6ke5)/2 1" 1C2ks1, (n-ke3) /el 3 2 04
\ s Lnes) o, "2 etz 1 Ko, (oot

Since \Cij\ = b(n-3i-3)+1 and[Dij|= 4(n-3i-3)-5 , this quickly becomes

1l+2on+ 2 L(n-6k)+ 8 5 on
1<k<Ln/6]
g(n) = 4

2 4(n-6k)-k4 ; n

. 0<k< | (n-3)/6]
1+ 2n+ b(n+2) | n/6] -12| n/6 ] | (n+6)/6 | H
4(n-1) | (n-3)/6] =12 (n-3)/6] | (n+3)/6 | 3 n
1+2n+2(nt2)(n-r)/3 - (n-r) (n-rt+6)/3 ;T
= 2(n-1) (n-r+6)/3 - (n-r) (n-r+6)/3 ;T
2(n-1)%/3 - (n-7) (n-1)/3 ;T

13
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For (2¢), we need only compute Lf(n-1)+g(n) , which b&comes
simple algebraic manipulation when we consider a particular congruence
Beginning with r = 1 , we easily obtain

class of n modulo 6

expressions like

L: kn+ 9+ (n+2)(n-L)

r=1: L4+ (n-1)(n+3) r=
r=2: 2n+5+ (n-2)(nt+2) r=5: 2n+10+ (n-5)(n+5)/3+2(n-1)(n+1)/3
r=3: L+ (n-1)(nt3) r=0: ln+17+2(n-6)(n+k)/3 +n(n-2)/3

all of which reduce to (n+l)2 .

This completes the proof.

14
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