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- ABSTRACT
We explore the general framework of Modal Logic and its applicability to program
‘-;C; reasoning. We relate the basic concepts of Modal Logic to the programming
e environment: the concept of "world" corresponds to a program state, and the concept
. of "accessibility relation” corresponds to the relation of derivability between states
) during execution. Thus we adopt the Temporal interpretation of Modal Logic. The
" variety of program properties expressible within the modal formalism is demonstrated.
* The first axiomatic system studied, the sometime system, is adequate for proving total
5 correctness and ‘eventuality’ properties. However, it is inadequate for proving
63 invariance properties. The stronger nexttime system obtained by adding the next
operator is shown to be adequate for invariances as well.
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The first axiomatic system studied, thiagometime system, is adequate

for proving total correctness and 'eventuality' properties. However, it is

inadequate for proving invariance properties. The stronger nexttime system
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_53 I. THE GENERAL CONCEPTS OF MODAL LOGIC
:f In the hierarchic development of logic as a formalization tool, we
~
‘j: can observe different levels of variability. Propositional Calculus was
v developed to express constant or absolute truth stating basic facts about
{H the universe of discourse. This framework mainly deals with the question
;! of how does the truth of a composite sentence depend on the truth of its
-‘._
. constituents. In Predicate Calculus we deal with variable or relative
QA truth by distinguishing the statement (the predicate) from its arguments.
f It is understood that the statement may be true or false adcording to the
o individuals it is applied to. Thus we may regard predicates as parameter-

ized propositions. The Modal Calculus adds another dimension of variability

to the description by predicates. If we contemplate a major transition in
which not only individuals are changed, but possibly the complete structure

of basic premises and meaning of predicates, then the Modal Calculus suggests

P
LA
(R

E;f a special notation to denote this major change. Thus any chain of reasoning
t: which is valid on Earth may become invalid on Mars because some of the basic
i; concepts naturally used on Earth may assume completely different meanings

?g (or become meaningless) on Mars. Conceptually, this calls for a partition
: of the universe of discourse into worlds of similar structure. Variability
:: within a world is handled by changing the arguments of predicates, while

ig changes between worlds are expressed by the special modal formalism.

f% Consider for example the statement: "It rains today." Obviously, the
:E truth of such a statement depends on at least two parameters: The date and

W

location at which it is stated. Given a specific date to and location 20 s

P the specific statement: "It rains at Qb on t, " has propositional .
;: character, i.,e., it is fully specified and must either be true or false. We

2
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may also consider the fully variable predicate rain (&,t) : "It rains at

£ on t " which gives equal priority to both parameters. The modal
approach distinguishes two levels of variability. In this example, we may
choose time to be the major varying factor, and the universe to consist of
worlds which are days. Within each day we consider the predicate rain(®)
which, given the date, depends only on the location. Alternately, one can
choose the location to be the major parameter and regard the raining history

of each location as a distinct world.

As is seen from this example, the transition from Predicate Logic to
Modal Logic is not as pronounced as the transition from Propositional Logic
to Predicate Logic. For one thing it is not absolutely essential. We could
manage quite reasonably with our two parameter predicates. Secondly, the
decision as to which parameter is chosen to be the major one may seem

arbitrary. It is strongly influenced by our intuitive view of the situation.

In spite of these qualifications there are some obvious advantages in
the introduction and use of modal formalisms. It allows an explicity dis-
crimination of one parameter as being appreciably more significant than
all the others, and makes the dependence on that parameter implicit. Now-
adays, when increasing attention is paid to the clear correspondence between
sumtax and natural reasoning (as is repeatedly stressed by the discipline of
Structured Programming), it seems only appropriate to introduce extra
structure into the description of varying situations. Thus a clear distinc-
tion is made between variation within a state, which we express using predi-
cates and quantifiers, and variatioﬂ from one state to another, which we

express using the modal operators.

The general modal framework considers therefore a universe which con-

sists of many similar states (or worlds) and a basic accessibility relation

3
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h between the states, R(s,s') , which specifies the possibility of getting
9 from one state s into another state s' . )
iy
E Consider again the example of the universe of rainy days. There, each
4 state is a day. A possible accessibility relation might hold between two
&
& days s and s' if s' 4is in the future of s .
) The main notational idea is to avoid any explicit mention of either
S
the state parameter (date in our example) or of the accessibility relatior.
’} Instead we introduce two special operators which describe properties of
;- states which are accessible from a given state in a universe.
A
- The two modal operators introduced are O (called the necessity oper-
ator) and ¢ (called the possibility operator). Their meaning is given by
; the following rules of interpretation, informally expressed, in which we
denote by lwls the truth value of the formula w in a state s
x |ow]_ =Vs'[R(s,s') D |w|_,]
2 s s
|<>w|s = Jg'[R(s,s8') A les'] .
N Thus, DOw is true at a state s 1if the formula w 1is true at all
g
states R-accessible from s . Similarly, Ow 1s true at a state s if
{ w 18 true in at least one state R-accessible from s .
t A modal formula is a formula constructed from proposition symbols, pre-
f dicate symbols, function symbols, individual constants and individual varia-
N bles, the classic logic operators (including equality) and quantifiers, and
5 the modal operators. The truth value of a modal formula at a state in a
universe is found by a repeated use of the rules above for the modal oper-
]
: ators and evaluation of any classic (non-modal) subformula on the state
> 4
1
4
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itself. It is of course assumed that every state contains a full interpre-
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NS

tation for all the predicates in the formula.

-
»
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For example, the formula rain(2) O ¢~ rain(f) is interpreted in our

.

model of rainy days as stating: For a given day and a given location £ ,
if it rains on that day at 2 then there exists another day in the future

on which it will not rain at £ ; thus any rain will eventually stop.

=,

KA

Similarly, rain(f) O Orain(f) claims that if it rains on that day it will

-

rain everafter. Note that any modal formula is always considered with

respect to some fixed reference state, which may be chosen arbitrarily. In

our example it has the meaning of 'today'.

LT £ RS
. Y e
o et S

Consider the general formula ¢~w =~0Ow . As we can see from the

definitions this claims that there exists an accessible state satisfying ~w

v v e, .
[
LRI

if and only if it is not the case that all accessible states satisfy w .

©r

o

This formula is true in any state for any universe with an arbitrary R .

"'l

o Given a more precise definition, a universe consists of a set of states

¢ 1T
(]

(or worlds)., on which a relation R , called acceséibility relation, is de~

fined. Each state provides a domain and a first-order interpretation over
the domain to all the pfoposition symbols, predicate symbols, function

symbols, individual constants, and individual variables in the vocabulary

under consideration. A formula which is true in all states of every universe

» ¥
f

. is called valid. Thus the above formula O~w = ~0Ow is a valid formula.

‘ll “

Following is a list of some valid formulas:

hd
i

R BOAR
. [

Al*x, O~w=-~0vw.

.
L R

.‘)l".l.

This establishes the connection between 'necessity" and "possibility".
< *
_,~ A2%, n(w13w2)3(nw13nw2) s
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holds and also wl is8 true in

i.e., if in all accessible states w, Dw

1 2
ail accessible states, then v, must also be true in all of these states.
The formulas Al* and A2* are valid for any accessibility relation.
If we agree to place further general restrictions on the relation R , we
obtain additional valid formulas which are true for any model with a
restricted relation. According to the different restrictions we may impose

on R we obtain different modal systems. In our discussion we stipulate

that R 418 always reflexive and transitive.

A3%, DwDw (equivalently wDOoOow .

This formula is valid for any reflexive model. It claims for a state s
that if all states accessible from s satisfy w , then w 1is satisfied
by s itself. This is obvious since s is accessible from itself (by

reflexivity).

A4*, Ow D Oow (equivalently OOwWDOW .

This formula is valid for transitive models. The equivalent form claims
that if there exists an s2 accessible from 8, which is accessible from
s such that s, satisfies w ; then there exists an S4 accessible from

s which satisfies w . By transitivity 8, is also accessible from s

and we may take 83=8, .

Having a list of valid formulas, it is natural to look for an axiomatic
system in which we take some of these formulas as basic axioms and provide
a set of sound inference rules by which we hope to be able to prove other
valid formulas as theorems. In order to denote the fact that a formula w
is a theorem derivable in our logical system we will write }-w . This

6
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will be the case if w 1is an axiom or derivable from the axioms by a proof

using the inference rules of the system.

Axioms:
Al. |—<>~w 2 ~0w
A2, - oG >w,) D (ow, Dow,)
A3. fowDw
A4, F owdoow

The inference rules are:

R1. . If w 1s an instance of a propositional tautology, then
I-w (Tautology Rule)
R2. 1f | w;DOw, and |- Wy then |- v, (Modus Ponens)
R3. If w then |ow . (Modal Generalization)

All these rules are sound. The soundness of Rl and R2 1is obvious.
Note that in Rl we also include modal instances of tautologies, e.g.,
ow Dow . To justify R3 we recall that validity of w means that w 1is

true in all states of every universe, hence Ow 1is also valid.

This system provides a logical basis for propositional reasoning. In

the Modal Logic circles this system is known as S4 (see, e.g., [H&C]).

Some theorems which can be derived in that system are:

T1. Fwoow

T2. F n(wl A w2) Zow, A0w,
T3. - |:1(w1 D wz) D (<>w1 :)<>w2)
Téh. F 0w, v W) 20w, v Ow, .

Note that because of the universal character of O it commutes with

A , while ¢ which 18 existential commutes with v .

7




TS. |— 6(w1A w2) D Owll\ sz

Té6. |— (nwlv uwz) Do (wlv wz)
T7. - aw, AOW, DO (W, A W,)
T8. l-ow = oow

9. owz oow .

Because of these last two theorems we can collapse any string of con-
secutive identical modalities such as o0...0 or ¢...0 into a single

modality of the same type.

Since we intend to use predicates in our reasoning we have to extend
our system to include some axioms and rules involving quantifiers and

their interaction with modalities:

P1. F (Vxw(x)) D w(t)
where t is any term "free for x" in w .

P2. F (Vxow) > @Vxw) (Barcan's Formula).

The last implies the commutativity of ¥V with 0 , both having universal
character with one quantifying over individuals while the other quantifying

over states.
An additional rule of inference is:

R4. 1f | w) D w, then F w) D Vxw,

2

provided vy does not contain free occurrences of x .

Some theorems of the predicate modal system are:

T10. F (Vxow) = (oVxw)

T1l. F (3 x0w)

© Ixw) .

The system consisting of axioms Al -A4, Pl, P2, and rules Rl1- R4

has been shown to be complete (see [H&C]).
8
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In this next section we consider the application of the general modal
framework to the analysis of programs. For the class of universes which
are used there, the states in a given universe all share the same domain
D and may differ by at most the values assigned to proposition symbols
and individual variables. Such restricted universes are called D-universes.
Since in such universes the assignment to all the other symbols is common
to all states, we may associate this common part of the interpretation with
the universe itself rather than with each state. Thus, a D-universe can be
defined to consist of: The domain D , a common partial D-interpretation,
a set of states each of which gives an assignment to the rest of the propo-
sition symbols and individual variables, and an accessibility relation on
the states. Typical D domains are the domain N of natural numbers, the
domain Z of integers, the domain R of real numbers, the domain L of

lists, the domain T of trees, etc.

A formula w over a domain D 1s any partially interpreted modal
formula which may contain concrete predicates, functions, and individual
elements over D , as well as uninterpreted predicate symbols, function
symbols, individual constants and individual variables. A formula which is
true in all states of all D-universes for a fixed D 1is called a D-valid

formula.

The following are some examples of D-valid formulas for different D's :

Each instance of the formula schema:
A(0) A Ya[A(n) D A(n+1)]D A(k)

is an N-valid formula. This partially interpreted formula schema represents

the induction principle over the natural numbers.

9
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Similarly, each instance of the schema:
Ve [(Ve'<t) A(t') D A(t)] D A(t)

is a T-valid formula, where '<1' denotes the subtree relation between

trees. This states the complete induction principle over trees.

II. MODAL LOGIC APPLIED TO PROGRAM ENVIRONMENT

In this section we apply the general concepts of Modal Logic to situ-
ations generated by the execution of programs. To simplify the presentation
we will only consider deterministic programs. The power and elegance of the
modal method are even more pronounced in dealing with nondeterministic and

parallel programs.

For the concept of a state we will take an "execution state" which con-
sists of the current values of all program variables at a certain stage in
the execution. The accessibility relation between execution states will
represent derivability by the program's execution. We will use predicates

nd ~yantifiers to describe properties of a single state and modalities to

desc» nroperties of the execution leading from one state to another,

Let 1 consider some particular program A with n program varilables
; = yl,...,yn . Assume that the program operates err a domain D . Let
20,21,..,,2e be a set of labels, labeling every statement of the program.
20 is the single entry point and le the single exit point. An execution

state has the general structure s = <2,ﬁ> with ¢ € {20,...,2e} and

- n — .
n€D . For every input £ , the program generates an execution sequence:

0 1
0 =8 ,58 y.u.

0 0: i .
where s = <7 ,£> | and each s~ 1is an execution state.

10
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The basic accessibility relation R holds between two states <2,ﬁ5
and <2',n'> if there exists a computation path from £ to £' which

transforms n at £ to n' at &' .

With these conventions we will proceed to express meaningful proper-
ties of programs and their executions. Remember that under our rules of

the game we are never to mention R explicitly.

The formulas we will consider will use a basic vocabﬁlary which in-

cludes a set of special propositions:
atzo, atSLl, ceey atze.

each corresponding to one of the labels. In addition we will allow arbi-
trary predicates over the ; (program variables) and additional auxiliary
variables u . We assume that only the y's change from one state to
another, while the u's , being external, remain fixed. Let E denote
the fixed values of the auxiliary variables. The truth value of an atomic

formula at a state s = <%,n> is given as follows:

atJZ,i is true at s 1iff 21 =2 .

p(y,u) 1is true at s iff p(n,Z) = true .

The truth value of a non-atomic formula, possibly containing modalities,
is determined by the classic rules and the rules for interpreting modali-

ties given above.

Note that our definition of a state here conforms with the general
convention of D-universes. The specification of a state only specifies
the elements by which one state may differ from another, namely, proposi-
tions (atlo,atll,...,atle) and the values assignéd to some of the
individual free variables (yl,...,yn) .

11




L]
.._4
1N
r
153
i? 1. Invariance Properties
N3
o Consider first the class of program properties which are expressible
an by formulas of the form
"-;'
%
: In the general modal context such a formula claims that w holds true in
Qf all states R-accessible from any state satisfying Vg - In our programming
>
B context we will often take Wy as at20 A y=§& , which exactly characterizes
i the initial state, and then we have
Ii (ath A y=£) Daw .
i: Then this states that w 1s true for all states arising during execution.
- A formula of this form therefore expresses an invariance property.
’;: Samples of important properties which fall under this category are:
A. Partial Correctness. Let ¢(x) be a precondition which restricts the
o’ set of inputs for which the program is supposed to be correct, and w(§,§)
;;j the statement of its correctness, i.e., the relation which should hold
: between the input values X and the output values y . Then in order to
':: state partial correctness w.r.t. (p,)) we can write:
N
O (atly A T=% A p(X)) D o(atl, D Y(x, ) .
This claims that if the initial state satisfies the restricting preconditionm,
then in any state accessible from the initial state: 1If that state happens
= to be the exit state Ze then ©(x,y) holds between the input values X
g and the current y values. Thus this formula states that all convergent
f: p-sequences terminate in a state satisfying { , but it does not guarantee
% termination itself.
SN
q
g{ Let us consider a concrete example (a program computing x! over the
i: natural numbers):
q 12
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Program P1:

g, if ¥y > 0 then
begin 2,: (y;,¥,) + (yy=1, ¥;°Y)) 3
23: goto 21
end ;
£ : Halt.
e
The statement of its partial correctness is
= = yx!
(atR,O A Y EXA x30) D |:|(at1?,e oy, x!)
This is indeed an inherently invariant property since it 1s actually
only a part of a bigger global invariant which represents the "network of

invariants" normally used in the Invariant-Assertion Method (see [FLO]),

namely:
= . 1=
D(atko A Y =X A x30) D [(atIL1 o] y1>0 A Y,y x!) A
. f=vy!
(at:ﬁl,2 D yl>0 A Y,y x!) A
. '= '
(at:,?,3 D y120 A ¥y ¥yt x!) A

(atR,e D y1=0 A y2=x!)] .

B. Clean Behavior. For every location in a program we can formulate a

cleanness condition which states that the statement at this location will
execute successfully and generate no fault. Thus if the statement contains
division, the cleanness condition will include the clause that the divisor
is nonzero or not too small to avoid arithmetic overflow. If the statement
conta}ns an array reference, the cleanness condition will imply that the

subscript expressions do not exceed the declared range. Denoting the

13
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cleanness condition at location 1 by oy s the statement of clean

behavior is:
(ath ) A () D o(fp(ats D ay)) .

The conjunction is taken over all "potentially dangerous" locations in the

program,

For example, the program Pl above should produce only natural number
values during its computation. A cleanness condition at 22 , which is

clearly a critical point, is:
(atlo A y;30) D o(atl, D y,>0)

guaranteeing that the subtraction at 22 always yields a natural number.

C. Global Invariants. Very frequently, cleanness conditions are not

related to any particular location. More éenerally, some other properties
may be "truly” invariant independent of the location. In these cases we

speak of global invariants unattached to any particular location. The

expression of global invariance is even more straightforward. Thus to claim

for the example above that Y1 is always a natural number, we may write:
(atlo A ylzo A integer(yl)) o) u(ylao A integer(yl)) .
Another global invariant valid for this example is:
= . | =
(atly A (y;,¥5) = (x,1)) Daly,y,!=x1),
which states that everywhere in the execution yz'y1!==x! .

Similarly, to ensure subscript cleanness we may claim global invariants

of the form:

(atg; A 0(¥)) Do(0<I<N) .

14




Another example of the usage of invariants is in the context of a pro-
gram whose output is not necessarily apparent at the end of the execution;
. ) for example, a program whose output is printed on an external file during
-, the computation. Consider a program for printing a sequence of prime numbers.

Let £ be any location which contains a "print" instruction of form:

£: print(y) .

L«l._ Aosd,

Then a part of the correctness statement for such a program is:

P

Yo

l‘l"." -

D o(at D prime(y))

for all print locations £ . It indicates that nothing but primes is

printed.

R

[3

Note that this property may specify the partial correctness even of

PR
PP

continuous programs, i.e., programs which are not supposed to terminate but

- to operate continuously.

Even though our main interest in this paper is in deterministic programs,
we cannot resist illustrating the efficacy of the modal formalism for

parallel programs.

[
5 l’-_l' A _l‘

A state in the execution of two parallel processes will be structured

as: s==<21,22;ﬁ> , 1.e., 1t will contain references to locations in both

-

processes. These references are tested by the propositions atll, at22 for

v
R

.. all locations 24 and £,

*

in the two processes,

e

D. Mutual Exclusion. Let us consider first the property of Mutual Exclusion.

Let two processes P1 and P2 execute in parallel. Assume that each process

contains a section C

»
ot IRt

-

{0 i=1,2, which includes some task critical to the

o
.
e

cooperation of the two processes., For example, it might access a shared

XA
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device (such as a disk) or a shared variable. If the nature of the task is
such that it must be done exclusively by one process or the other, but never

by both of them simultaneously, we call these sections critical sectionms.

The property that states that the processes are never simultaneously execut-

ing in their respective critical sections is called Mutual Exclusion with

respect to this pair of critical sectionms.

The property of mutual exclusion for C1 and C2 can be described by:

o Wy 2 o(~ (atll A atﬂ.z))

for every pair of labels 21 € C1 and 22 € C2 . This states that it is

3
ﬁ never the case that the joint execution of the processes reaches Zl and

2 22 simultaneously. Hence, mutual exclusion is implied. In practice, one

does not have to actually consider all possible pairs li € Ci .

E. Deadlock Freedom. A standard synchronization device in concurrent

systems is the semaphore which is implemented by the atomic instructionms:

p(x): x>0+ [x+x-1]

vix): x « xt1 .

A process reaching a p(x) instruction will proceed beyond it only if
x>0 and then it will decrement x by 1 , usually setting it to 0 . No
further process may go beyond a p(x) instruction until somebody (in all

probability the process that has just decremented x ) will perform a v(x)

operation, increasing x to 1 .

A concurrent system consisting of n parallel processes is said to be
deadlocked if none of the processes can execute any further step. If we
assume that the only synchronization device in a system is semaphores, then
the only possibility for a deadlock is the situation:
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for some locations & 2 (&, belonging to process i ), where all n

1,.--,n i

of the processes in the system are currently waiting for '

p' operations

on the semaphore variables xl,...,xn (not necessarily distinct) while

xl=x2=...=xn=0 .

To exclude this possibility we can require:

A/

n n 1
ODU(/\ atliD V x>0) .

i=1 i=1
This requires that whenever all the processes are each at the 21: p(xi)
operation, 1i=1,...,n , at least one of the xi's must be positive. The
corresponding process can then proceed.

In order to completely eliminate the possibility of deadlock in the

| .

system, we must impose a similar requirement for every n-tuple of 'p

locations.

2. Eventuality Properties

A second category of properties are those expressible by formulas of
the form:

wl ) sz .

In the general context this means that if at any state 8,V is true,
there exists a state 8, » R-accessible from s1 , in which Wy is true.
In the programming context it means that if w, ever arises during

execution, it will eventually be followed by another state in which v, is

17




true. A formula of this form therefore expresses an eventuality property.

Following are some samples of properties expressible by formulas of this

form.

A. Total Correctness. A program is said to be totally correct w.r.t. a

specification ¢ ,y) , if for every input £ satisfying ¢ () , termin-
ation is guaranteed, and the final values ;-ﬁ upon termination satisfy
w(é,ﬁ) . Once more, let 20 denote the entry location and Re the exit

location of the program. Total correctness w.r.t. (@,})) 18 expressible by:
(atly A y=x A 9 (X)) DO (atd, A ¥(x,3)) .

This says that if we have an execution sequence which begins in a state
which is at location 10 and has values y=Xx satisfying ¢ , then later
in that execution sequence we are guaranteed to have a state which is at

2e and satisfies w(i,;) .

For example, the statement of total correctness of the program Pl for

the computation of x! 1is:

= =y !
(atR,o A y;=% A x30) DO(atle A Y, x!) .

B. General Eventualities. Eventuality formulas enable us to express a

causality relation between any two events, not only between program initial-
ization and termination but also between events arising during the execution.
This becomes especially important when discussing continuously executing

programs, i.e., where termination is not expected. The general form of such

an eventuality is:
(atf, A vl) D 0(atl, A 2]

and it claims that whenever ¢ arises at ll we are guaranteed of event-

ually reaching g, with true. This 18 the exact formalization of the
2 ¥2

18
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basic Intermittent-Assertion statement (see [M&W]):

"If sometimes ¢_. at £ then sometimes ¢2 at 2, "

1 1° 2
Consider for example the program for printing successive prime numbers.
Under the invariance properties we expressed the claim that nothing but

primes are printed. Here we can state that the proper sequence of primes

is produced. Let
L: print(y)

be the only printing instruction in the program. Then the following two

clauses ensure the desired property:

atf DO (atd A y=2)

(atl A y=x) DO(atl A y=nextprime(x)) .

The first statement assures arrival at 2 with y being the first prime.
The second claim ensures that after any prime is printed the next prime in

sequence will eventually be printed.

Note that these statements do not guarantee that some primes are not
printed more than once or out of sequence, but they do guarantee that all
printed results are primes, and that a subsequence of the printed results

is the ascending sequence of primes.

Again, let us allow ourselves a short excursion into the world of

parallel programs.

C. Accessibility. Consider again a process which has a critical section C .

In the previous discussion we have shown how to state exclusion or protection

for that section. A related property is that of accessibility, that if a

process wishes to enter its critical section, it will eventually get there
and will not be indefinitely held up by the protection mechanism.

19
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Let 21 be a location just before the critical section. The fact that

the process 1s at 21 indicates an intention to enter the critical section.
Let 22 be a location inside the critical section. The property of accessi-

bility can then be expressed by:
atlll 3<>at2,2 :

namely, whenever the program is at £ it will eventually get to £

1’ 2’
A correct construction of critical sections should ensure these two
complementary properties: that of protection (exclusiveness) and that of

accessibility.

D. Responsiveness. Consider an example of a program modeling an operating

system. Assume that it serves a number of customer programs by scheduling
a shared resource between them. Let the customer programs communicate with
the operating system concerning a given resource via a set of boolean

i’gi} - T, 1is set to true by customer program number i to

signal a request for the resource. g4 is set to true by the operating

variables {r

system to signal that customer i 1s granted the use of the resource. The
statement that the operating system fairly responds to user requests --

responsiveness ~- is given by:

T, DOgi

i.e., whenever ri becomes true, eventually gi will turn true.

Note that since these events are global and not attached to any specific
location, they can model external events such as interrupts and unsolicited

signals,
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III. PROOF SYSTEMS

After giving some evidence of the power of the modal notation in
expressing interesting program properties, we should search next for proof
systems in which these properties can be formally established. Obviously,
the basis for all such systems will be the general S4 framework introduced
above. However, this basis must be augmented by additional axioms and
rules, reflecting the properties of the domain and the structure of the
program under consideration. These additional conditions will constrain
the accessibility relation R(s,s') to represent the relation of s'
being derivable from s by an execution of the program. This releases us
from the need to express program text syntactically in the system; instead

all necessary information is captured by the constraints on the accessibil-

ity relation as expressed by the additional axioms.

Our proof systems will therefore consist of three parts: a general
part which contains S4-like axioms, elaborating the general properties of
the relation R ; a proper part which gives an axiomatic description of the
domain; and a local part consisting of axiom schemata which generate a set
of local axioms for any particular program. The local axioms constrain the
state sequences to those considered to be execution sequences of the program

under study.

1. The sometime system.

Our simpler system, called here the sometime system, is based on S4.

A. General Part: The general part consists of the following S4 axioms:
Al. }— O~W = ~0OWw
)

A2. | D(wlDwz) D(ow,Dow

1 2
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A3, | owDw
A4, Fow Doow
P1l. | (¥x w(x)) D w(t)
where t 1is "free for x" in w .

P2. | (Vxow) D (a¥xw) .

The rules of the inference are:
Rl. If w 1is an instance (possibly modal) of a tautology,
then |—w .

R2, If I"W]_DV and | w, , then l—wz .

2
R3. If }w, then oOw.

R4, If }—wlDw » then I—wlDwa

2 2
provided vy does not contain free occurrences of x .
This system generally constrains R to be reflexive (A3) and transi-

tive (A4).

B. Proper part: The next part of the system contains a set of proper
axioms and axiom schemata. These axioms specify all the needed properties
of the domain of interest. Thus, to reason about programs manipulating
natural numbers, we need the set of Peano axioms. To reason about trees we
need a set of axioms giving the basic properties of trees and of the basic
operations defined on them. An essential axiom schema for every domain

should be the induction axiom schema. This (and all other schemata) should

be formulated to admit modal instances as subformulas. Thus the induction

principle for natural numbers is:
F A(0) A Vn[A(n) D A(n+1)] D A(K) .

A modal instance of this principle which will be used later 1is:

22




Induction Theorem:

F a(P(0) 20y) A Vn[o(P(n) D0 ,) Do(P(ntl) DOY)] Dao(P(k) DO YP) .

Similar induction theorems will exist for any other set of proper axioms

which depend on natural well-founded orderings existing in the domain.

c. Local part: The axioms and rules above represent the general framework
needed for our reasoning. Next we introduce a set of local axioms which

depend on the particular program to be analyzed.

The first axiom depends only on the identity of the program variables.
Let w be any formula which does not contain any program variables or pro-

positions atQi ,» then the following is an axiom:
Frame Axiom: | w Dow .

The justification hinges on the fact that R-related states may differ fFom

one another only in the assignments to program variables.

A second generic axiom states that every state s has exactly one

label Ri such that atR,i is true.

e
Location Axiom: |- Z atl1 =1.
i=0

We use here the abbreviation Z;)i =1 or p1+-...4-pn = 1 meaning that

exactly one of the pi's is true.

The other axioms are local to each program. For these axiom schemata

we make the following simplifying assumptions about the program:

Assume that the program is represented as a directed graph whose nodes
are the program locations or labels, and whose edges represent transitions

between the labels. A transition is an instruction of the general form

23
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c(¥) » [y+EM1 .
c(y) 1is a condition (may be the trivial condition true) under which the
transition replacing y by f(y) should be taken. §==y1,...,yn is the

vector of program variables. We assume that all the conditions essC

oo

on transitions departing from any node are mutually exclusive and exhaustive

k

(i.e., I Ci=l ).

The role of the local axioms is to introduce our knowledge about the
program into the system. Since the system does not provide direct tools for
speaking about programs (such as Hoare's formalism), the local axioms
represent the program by characterizing the possible state transitions

under the program control.

For any transition:

@c(y) - lz+f(y) 1,

we can generate an axiom Fa . This axiom corresponds to a "forward" propa-

gation (derivation of the strongest postcondition) across the transition «
F: F [at2 A c(¥) A y=n] D O(atl' A y=f(M)) .

This axiom states: 1If at any state, execution is at £ , c(?) hold, and
the current values of y are ﬁ , then sometime later we will be at &'

with the variables y = f(n) .

A differeunt approach which suggests an alternate axiom schema is obtained

by "backward" substitution (derivation of the weakest precondition):
B: | [at2 A c(¥) A P(EGN] Do(act’ A P ,

where P(f(y)) denotes the substitution of f(y) for all free occurrences
of § in P(;) . This form of the axiom expresses the effect of the
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transition on an arbitrary predicate P (predicate transformer). It says
that if atl A c(y) and P(E(y)) hold, then we are guaranteed to even-
tually reach £' with P(y) . Fa and %1 are equivalent and can be

derived from each other.

Note that both forms ignore the fact that the 'sometime' guaranteed is
actually in the immediately next instance. This is a consequence of the
fact that we can only guarantee things eventually and have no way to formu-

late properties of the next instance.

Consider for example the following program over the integers which

raises a number x. to an integral power x

1 2 0 , assuming that (xl,x

2 2)

are the initial values of the variables (yl,yz)

Program P2:

N
v

Y

2
¥,>0 A even(yz) > [(yl,yz) < (y1 ,yzdivz)]

—>—
-8

The local backward axiom schemata corresponding to this program are:

B, : - [atSLO A P(yl,yz,l)] D<>(at!L1 A P(yl,yz,ys))

B, : F-[atll A y2=0 A P] Do(atl, A P)

3
B, : | [atl; A y,>0 A 0dd(y,) A P(y;,¥,-1,y,°¥5)] DO(atly A B(y;,¥,,¥4))

s ¢ - [atl; A y,>0 A even(y,) A P(ylz,yzg_i_zZ,y3)] D 0(atl; A P(y;,¥,5Y4))
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D. Derived rules: Before demonstrating a proof in the system we will

‘A develop several useful derived rules:

o _ ., +=PD>Q

e 00 -Generalization: —oPooqQ °

' This is obtained by application of modal generalization R3 and the use of A2.
:f'::' By substituting in the above ~Q for P and ~P for Q , we obtain:
- i : =PDQ

. 0 ¢ -Generalization: FoP>oo0Q °

The following additional rules correspond to proof rules existent in

}_“_‘Q“; most axiomatic verification systems. (In these rules interpret P D 0OQ

! and P D0Q as stating the partial and total correctness of some program
- segment respectively.)

Consequence: LPD>Q,FQD0OR,FRD S .

- =PD>OS

e

- From F RO S (using 09 -Gen.) we obtain FOR D0S which can be combined
'_ with the other premises to lead to the result.

i ) =P D>0Q, -QDOR

o Concatenation: P DOR .

P _ Here we derive }-0Q DOOR by the 00-Gen rule. We then use Theorem T9
.- :::' (R DOR) to obtain I—<>Q D 0OR . The conclusion follows by propositional
:‘:jjl: reasoning.

! A derived frame rule more appropriate to step~by-step transitions is
::}::: given by:

'y

R P D0Q

el .

. Frame Rule: F (PAw) DO(QA W

- provided w contains no program variables or proposifions at!{i .
R 26
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This rule is a simple consequence of the Frame Axiom }— w O Ow and of

Theorem T7 (I—OQ AowDo(QAaw) .

We will also need some rules for establishing the convergence of loops.
These rules will of course depend on the domain under discussion and the
induction principle provided in that domain. For the domain of natural

numbers we already mentioned the Induction Theorem:
a[P(0) DOY] A Vn [D(P(n) DOY) DO(P(ntl) DOY)] Do[P(k)D Oy] .

Using this induction theorem we can derive the following rule:

= P(0) Doy, Ho(P(n) D0¢) DO(P(ntl)D 0Y)

Induction Rule 1:

= (IkP(k)D O

This rule says that if P(0) eventually guarantees ¢ , and if for any n ,
the fact that P(n) guarantees { implies that P(n+l) guarantees V¢ ,

then if P(k) is true for some k , Yy 1is eventually guaranteed. This

-rule 1is useful for proving convergence of a loop, if for example we have a

P such that P(0) D¢y and across the loop's body P(n+l) D OP(n) ,

implying the second premise of the rule.

From this rule we can derive a more liberal form of the induction rule.

FPO)YDOY, + P(ntl) DO vP(n))

Induction Rule 2:

— (3kP(k))D Oy

Rule 2 is more liberal than Rule 1 since it does not require us to give an
exact estimate of the number of repetitions of the loop, but allows instead
an estimate of an upper bound. We can see this by observing that in the
previous case we required that P(n+l) leads to P(n) across the loop's
body, and only P(0) ensures Y . Thus to start the argument we have to

state P(k) where we expect the loop to be executed k times. In Rule 2

27
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o
‘_ we claim that for each n , either P(n+l) implies P(n) across the loop,
T ‘ or that it establishes | and no further execution is necessary. Thus
\ P(k) ensures that either the loop is executed at most k times and ¢ is
- established on the last iteration or earlier.
™
_:;:: 2. Total Correctness — Example and Discussion
:' Let us use this system to establish the correctness of the example
’ program P2 computing x,° . We will prove that
X2
H [atR,O A (yl,yz) = (xl,xz) A x220] D<>(at:£.3 A yy=x, ),
" namely: If we are in any state at 2,0 w}i;th §=§ then there exists a
state in which we are at Ee and Y3= %
In the proof below we use the backward form of the axioms. The proof
; proceeds as follows:
> Y, X,
:::::.‘ 1. F [at2,0 A (yl,yz) = (xl,xz) A Xy3 0] > [at!l,o Ay, 0A v, Cmxg ]
v
- A Z-valid formula.

L ) y2 X Y2 x2

"'. . = 2 . =

::_:: 2. }—[atR,OAy2>OA 1y1 X, ]DO[atllA y2>0Ay3 v, X ]
i Y2_. %2

’;:i By B with P(y,,¥,,¥y5) = (3,30 A y3'y; “=%x; 7).

o y, X
:j.;: 3. F [atlo A (yl,yz) = (xl,xz) A x2>0] ») o[atzl AYy30 A yaty T=xg ]
° By Consequence 1,2,

o

L2

Denote now:

o - YV2_ %

. Q(n,y): athl A 0<y2<n AYyy TEx .

:::'.: Using Induction Rule 2, we will establish

s
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*) | (AkQk,5))D Oatt A yy=x; °) ,

X
= =g 2

where we take y = (atSLe A Y= )
Applying the Consequence Rule to 3, we have:

4, + latty A (31,7, = (x],%,) A x,3 0] D0Q(y,,¥)

which establishes 3kQ(k,y) by taking k=y, .

In order to use the Induction Rule 2, we show first Q(0,y) DOy : Note

that Q(0,y) implies ¥,=0 .

x
5. Fa,y D<>[at2,.3 A Ya=%) 2] , hence oy , by B6 and Consequences.

We now proceed to show by case analysis that

F Q(n+1,y) Doy vam,»] .

X

1 2] , hence oY ,

6. | [Q(o+l,y) A y2=0] o) <>[atIZ.3 A yy=X

by B and Consequences.,

B
7. | [Q(n+l,y) A y,>0 A 0dd(y,)] D OQ(n,y)

by BY , logic and Consequences.

8. | [Q(nt1,y) A y,>0 A even(y,)] D 0Q(n,y)
by B(s » logic and Consequences.

In the proof of 8 we use the fact that 0<y2<n+1 implies O<y,divZgn .

2

X
9. | Q@+, > ollate, A y=x; 2) v o, ]

by taking the "or" of 6, 7, 8, propositional reasoning and T4.

By the Induction Rule 2 we get from 5 and 9:
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E‘::: 10. |3kQ(k,y) D <>[at2.3A Y3= % ] .

._ Combining 4 and 10 with Concatenation and Consequences, we get: }
::‘_'.' x,
‘_::;‘_.. 11. I— [atﬂ,o A (yl,yz) = (xl,xz) A xzz 01D 0[3&3/\ Y3= % 1.

s

J This concludes the proof of total correctness of our example program.

ot Clearly, a statement of the form

[at@ A P] D O[att' A P']

N is exactly a formalization of the typical "intermittent assertion:

'- "If sometime P at % then sometime P' at 2' ."

. Thus we are justified in regarding this modal system as the most appropriate
L

formalization of the Intermittent-Assertion method.

] When we investigate the "power" of the system we find that it is adequate
. for proving valid eventualities, i.e., properties of the form:

o P D0Q

which are valid for programs over the given domain. For this reason we named
)

S this system the "sometime" system.
:::'.t- Unfortunately this system is inadequate for proving invariance properties
such as partial correctness and global properties. This deficiency is not
-7

e a flaw in the logic formalism itself, bit in the failure of the local axioms
:::::: to capture exactly the execution sequences of the given program and nothing
b

.' more. While [atg A P] DO[atg' A P'] guarantees that ¢' will be reached
:.':f- sometime in the future, we have no way to specify that g' 1s actually

',:Z.;: reached in the next immediate state. This does not hurt us when we prove

° eventualities since we do not care about intermediate states other than

J‘ those explicitly mentioned. But in order to claim invariance, we have to
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keep track of all intermediate states, and then we must be able to describe

what happens in the next immediate state.

3. The Nexttime System

In order to correct this deficiency we introduce an additional modal

operator into our system. This is the next instance operator, denoted

by O.

A semantic model for the extended system will now consist of a set of
P

states and an immediate accegsibility relation p connecting some of these

states. p corresponds to the next or immediate future relation. In any

such universe (model) we define R to be the reflexive transitive closure
of p which therefore gives it the meaning of "present or eventual future".
Semantic truth in a state 8 1in such a universe is now defined (extending

the previous definition) as:

||:Jw|s = Vs'[R(s,s') D |W|s']
|<>'w|s = 3s'[R(s,8') A ‘wls']
| Owl, = 38" [n(s,8") A |w],,]

This extended system is aptly called the nexttime system.

Following we present an axiomatic system for the 'mexttime' logic.
Where it differs very little from the 'sometime' system, we will only mark

the differences.

A. General Part:

Axioms:

cl. Fo~w

c2. }o(w, dDw)) D (aw Dow,)
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C3. FowdDw

,t.

iy

'
L

ol C4. FO(~w) =~ Ow)

o .
o~

:;A.: C5. }—O(wl ) wz) ) (OwlD 0w2)

C6. |owDOw

¢7. FowdOow

f.':t;? c8 |ow>DOw) D (wDow)

. Pl. | [Vxw(x)] D w(t) where t is "free for x" in w .

o P2 b (Vxow) D @ Vxw)

. P3 | (VxOw) D O¥xw) .
E C1-C3, P1, P2 are the same as Al-A3, Pl, P2 in the 'sometime' system. C&
,:.:_:-
:{:’_-: claims the uniqueness of the next instance. C5 is the analogue of C2 for )
- the O operator. C6 claims that the next state is one of the reachable

b states. It also guarantees that each state has a successor. (In order to

*"-':
::'-'_:‘.- satisfy this requirement in the programming context we stipulate that each

b.. .~.

- exit label in the program's graph is connected to itself by a trivial

SO transition.) C7 is a weaker version of A4 (|-ow Doow) in the 'sometime'

’J:",'I

{::-:: system and can be used together with C8 to prove this as a theorem in the

;':j: 'nexttime' system. C8 is the "computational induction' axiom; it states

S,

F' that if a property is inherited over one step transition, it is invariant

R

e over any path.

‘4’_.4

.' Rules of Inference: Identical to R1-R4 of the 'sometime' system.

o

e

Lt A simple theorem of this system is:

3

§o

o T12: | Ow Dow

> W !
K’ |
obtained by negation of C6 and applications of Cl and C4. .{
TRl
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B. Proper part: Since the proper part consists solely of first-order

axioms, it is identical with the proper part of the 'sometime' system.

C. Local part: The Frame and Location Axioms remain the same. The main
difference is in the local axioms which now describe transitions between a

state and its immediate successor. For a transition
c(y) > [y+i()
@ =il
we generate the '"forward" axiom ﬁa :

Fi b latf A c(3) Ay=0]1D O(at2’ A y=E() ,

and similarly the "backward" axiom schema:

B: | [at2 A c(3) A P(E(F))] D O(atl' A B(Y)) .

By the theorem |—- Ow D 0w , we have that I— f‘a D FOL . Therefore any
proof in the 'sometime' system is automatically carried over to the 'mexttime'
system. Consequently the "nexttime' system is also adequate for proving
total correctness and other eventualities. In addition it is also adequate

for proving invariance properties.

4, Préof of Invariance

Let us consider now a typical proof of invariance. Let Q be an
inductive program property. Intuitively this means that Q 1s true of

the initial state and is preserved under any program step. Thus we have

(a) F ¢20Q

for the input predicate ¢ .
Also for any transition a: c(y) + [y« f(y)] , we have

() F oy A Qy) D i) .
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Let 2 be any label in the program and let its outgoing transitions
be oy leading to 21 respectively, Assume each transition to be

: ci(§) > [§4—?i(§)] . We have already assumed that ! ci(§) = true .

G.i.

For*any 1 we have

Flate A ey (3) A Q)] D [atg A ¢, (G) A QE,GN]

by the inductiveness of Q , i.e., (b).

F latg A ¢ (3) o QE;(¥))] D O(atty A Q(¥))
by the local backward axiom Ea
i

Combining the last two we get:
I latt A ¢, (3) A Q)] D O(att, A Q) ,
from which, by Consequence, we get:

F latt A c () A Q1)1 D0QG) .

Since the above was obtained for an arbitrary 1i we can take the

logical 'or' of all these statements over all 1i's . Using the fact that

v

iC

g = true , we obtain:
| [at2 A Q3] D Oq(y) .

Taking the disjunction over all program labels & € {20,...,2e} and using

the location axiom which states that \g/, atl = true , we get:
F Q@) > 0a(y) .

Hence by Generalization (R3)
F o > 0k .

By the induction axiom C8 we get:

F o Do) .
34
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Consider now an initial state at which we have atlo and ¢ true. By

(a) ¢ 1mplies Q , from which we conclude
F [at2y A ¢l DoQ(y) ,

which establishes the invariance of Q .

ACKNOWLEDGEMENTS: We wish to thank Bill Scherlis for his critical reading

of the manuscript.

RELATED REFERENCES:

[BUR]  Burstall, R.M. "Formal Description of Program Structurée and
Semantics of First-Order Logic'", in Machine Intelligence 5,
B. Meltzer and D. Michie (eds.), Edinburgh Press, pp. 79-98
(1970).

[CON]  Constable, R.L. "On the Theory of Programming Logic", Proceedings

of the 9th Annual Symposium on Theory of Computing, Boulder,
Colorado (May 1977).

[FLO] Floyd, R. W., "Assigning Meanings to Programs", Proc. Symp.
Appl. Math. 19, in J.T. Schwartz (ed.), Mathematical Aspects
of Computer Science, American Mathematical Society, |
Providence, R.I. (1967), pp. 19-32.

[HAR] Harel, D. '"Logic of Programs: Axiomatic and Descriptive Power",
Ph.D. Thesis, Laboratory of Computer Science, M.I.T. (May 1978).

[HOA] Hoare, C.A.R. "An Axiomatic Basis of Computer Programming', CACM,
Vol. 12, No. 10 (October 1969).

[H&C]  Hughes, G.E. and Cresswell, M.J. '"An Introduction to Modal Logic",
Methuess & Co., London (1968).

[M&W] Manna, Z. and Waldinger, R. "Is 'Sometime' Sometimes Better than
'Always'?: Intermittent Assertions in Proving Program Correctness",
CACM, Vol. 21, No. 2, pp. 159-172 (February 1978).

[(PNU] Pnueli, A. '"The Temporal Semantics of Conaurrent Programs”,

Technical Report, Tel-Aviv University (1978).

35




