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Khachian's Algorithm for Linear Programming

Peter Gdcs and Laszlo Lovasz

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

L. G. Khachian's algorithm to check the solvegbility of a system
of linear inequalities with integral coefficients is described., The
running time of the algorithm is polynomial in the number of digits
of the ceoefficients. It can be applied to solve linear programs in

rolynomial time.
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L. G. Khachian [Doklady Akademii Nauk SSSR, 1979, Vol. 24k, No. 5,
1093-1096] published a polynomial-bounded algorithm to solve linear
programing. These are some notes on this paper. We have ighored
his considerations which concern the precision of real computations,
in order to make the underlying idea clearer, on the other hand, proofs
which are missing from his paper are given in an appendix.

Let
: n
(1) a.x < bi (1= 21y.uaym, a; €2 5 bie:Z)
be & system of strict linear inéqualities with integral coefficients. We
present an algorithm which decides whether or not (1) is solvable, and

yields a solution if it is.
Define
L = 7. log (laijl+;l) + 7 log (\bili-l) + log nmt+l
i,J i

I is the space needed to state the problem.

The Algorithm,

We define a sequence XKyrKqsees € Rn and a sequence of symmetric
positive definite matrices AO’Al"" recursively as follows.
L e 3o .
X = 0, Ay= 27T . Assume that (xk,Ak) is defined. Check if X
is a solution of (1). 1If it is, stop. If not, pick any inequality

in (1) which is violated:
8% 2 By o

and set
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T
n o (Ayas)-(Aa)
= A - .
Ay o\ T e T i,
1 1

(Note that the multiplication of vector Akai with itself in the second
term results in an nxn matrix.)

In practice, we will compute only certain approximstions of X,
and Ak by decimals of a certain precision. Tt can be shown that

approximations within exp(-10nL) preserve the validity of the following

theorem,

Theorem,  If the algorithm stops, x is a solution of (1), TIf the

algorithm does not stop in 6n2L steps, then (1) is not solvable,

The first assertion is, of course, Jjust a repetition of the stopping
rule for the algorithm, To prove the crucial second statement, we shall
need a serles of lemmas, along with a geometric description of what's
happening,.

Let xo(sRn and A a positive definite matrix., Then

T,~-1
(x—xo) A (x—xo) < 1

defines an ellipsoid E = (x,A) with ceanter x . ILet 2¢R, a £ 0.

Then we shall denote by E- the ellipsoid (xé,A') » where




2 T

n A 2 (Aa)(Aa)
n2-l el aTAa

‘A'

We shall denote the semi-ellipsoid

EN {x: (x-x.)a <0}

0]
1
Let us remark (although this is not needed in the proof) that

geometrically this construction means the following. Take a hyperplane

ax =d , d< Xy s which i1s tangent to E at point y . Then

Xo-y = A Jr;__

a Aa
Now E* will be the (unique) ellipsoid which touches the hyperplane
ax = d at y and intersects the hyperplane ax = axy in the same
ellipsoid as E .

30 here came the lemmas., The first three are facts of number-
theoretic nature which probably are familiar to many people who have
investigated the complexity of algorithmic problems in linear algebra.
We use the notation [x]m = m?x X |x\2 = v/ Z] x? .

Temma 1. Every’vertex. v of the polyhedron

a.iX S bl (i =1 l)-pc,m)
x > 0
satisfies |v|m < EIyn » and its entries are rational numbers with denominator

at most EL .

Lemma 2, If (1) has a solution, then the volume of its solutions inside

the cube ]xi\ < ol g at least o 0 .



Lemma 3. Suppose that the system

L

+ - i = o as
a,x < bi 2 (i=1, sM)
has a solution. Then
aix S bi (1 - l,c--,ﬂl)
has a solution,
1 a
Temma U, 5 E, CE .
Lemma 5. K(Ea) = c(n)A(®) ,
where
2\ (1/2(r+1))
n n -(l/2(n+1
c(n) = ( = m < € .
n -1

and A(X) dis the volume of the set X .

The procf of the theorem is guite casy now. Suppose that the
procedure does not stop after k = 6n2L steps, and yet (1) is solvable.
Then by Lemma 2, the set P of its solutions x inside E. has

0
NP) 2>2-nL . By Lemma 4, P cC E_ . But by Lemma 5,

)

K(Ek) < e-(k/z(n+1)) }“(Eo) < e-(k/E(n+1)) 52 ,-nL

a contradiction.

If one would like tc decide the solvability of a system of the form

(2) aiX< b. (i=l,---,n)
then we may consider instead the system

(3) reflax < r2"p, -1 (1 =1...,0) .



By Lemma 3, this is solvable iff (2) is solvable.

If we want to solve a linear precgramming problem

maximize ch
subject to AXx < Db
x > 0

then consider the system of inequalities

¢cx = by
Ax < D

x > O
A¢y > c

vy > 0 .

This is solvable iff the original program has a feasible solution and
a finite optimum, and for any solution (x,y) of this system, x is

an optimal solution of the program.



Appendix

Procf of Lemma 1. et v = (vl,...,vn) . By Cramer's rule, each vi

can be expressed as

1

where Di and D are determinants whose entries are 0 , 1, aij or

Hence D and Di are integers, and
bl 21,
lDl < TT (norms of row vectors)
< 2%m < 2Pm ,

and the same holds for the Di's. This implies the assertion,

Proof of Lemma 2. We may assume that (1) has a solution Xy > Cc . BSo

the polyhedron

a.Xx < b, (l = l,.--,m)

()

has an interior point. Since it contains no line, it also has a vertex

L L
v= (v ..,vn) . By Lemma 1, we know that v, < 2 /n < |27 . It

1
follows that the polyhedron (4) has an interior point =x = (xl,..;,xn)

with xj < LQLJ > and so the polytope

aiX S bi (i = l,cao,m)
(5) x > 0
L .
x, < L2 (3 =1,...5n)

has an interior point, Hence, it has ntl vertices VaressV which



are not on a hyperplane. So (5) has volume at least

11 1
i%-det e .
n. .

Yo "1 Vn

Here, by Lemma 1, we get that

b4

v L u
i 7 D, i
i

where u, is an integer vector and D, is an integer < 2L/n . 5o

1 1 1 Dl Dn
det v ] v = lD l lD | det u s e u
1 n 187 Fn 1 n

1 -nL n
2 Pl 2 n

gince the determinant in the second expression is a non-zero integer.

. 1 . )
So the volume of the polytope (5) is at least —r 2 °rn” » 270,
Proof of Lemma 3. For xean , set
Gi(x) = &8;X - by
n .
Let erzR be arbitrary.
Claim 1. There exists an xleRn such that
and
(2) The vectors {ai: Qi(xl) > 0} span every cther vector a;

To prove the claim, it suffices to show that if X does not

satisfy (2) then we can find a vector x, such that x, satisfies (1)

and Qi(xl) > 0 holds, for more indices i than Qi(xo) > 0 . Repeating



this at most m times we must obtain an x, satisfying both (1)

and (2).

Let, say gl(xo),...,ek(xo) >0, ok+l(xo),...,em(x0) <0.
Suppose that av (v > k) is not a linear combination of ByseeerBy .

Then the system of linear equations

a.y = 0 (i:l,...,k)

ay = 1

is sclvable. Let Yo be a solution and consider
X = X Tty o

where

t = max{seR: sajyo+9j <0 (J = ktl,...om)}

t is finite, in fact t < -OV .

Then by the choice of t ,

6,(x,) if 1<ic<k
o,(x,) = ta,y.+ o,(x.)
ivl o 10 Y < o if kl<i<m ,

and equality holds for at least one 1 < i <m . This proves the Claim.

Assume now that XO is such that

-L .
8.Xy < by +2 (1= 1,0..5m) ..

Let, say a,x

s%0 > bi for 1=1,...,k . Choose the labelling sc that

ayseees8,  are linearly independent but Bppqr e ® BTE spanned by
them. By the Claim, we may assume that By q2eeerdy are also spanned

by al;.-.,ar .



Now let =z be a solution of the system of linear equations

8,2 = bi (1=1,..0057) .

We show that 2z satisfies

for every 1< i<m. We know that
>
a = N.a.
. Jd J
j=1
with some real numbers Aj . In fact by Cramer's rule we also know that

M. = D,
3 DJ’/D’

where Dj and D are determinants formed by some entries of the vectors
2y and hence they are integers with absolute value less than EL/n . Now
r

S Da.z - Db.
j=1 99 *

i}

D(aiz -bi)

r
5, D.b. - Db
j=1 99

i

To estimate the right hand side, use that

I r
_Z Doy - Dby = Dj(ajxo-gj(xo)) —D(aixo-g(xo))
J:l _ J:l
r
= Do (x,)- 2 DJ.G (xo)
j=1
< p2F+ D ot o< o1,
J:l J

and since the left hand side is an integer,

I
¥ D.b. -Db, < 0 ,
j=1 99 .

which proves the assertion.

10



I (i.e., the

ellipsoid is the unit sphere about O ) and that a = (-l,O,...,O)T )

Proof of Lemma L. We may assume that Xy =0, A

since the contents of the lemma is invariant under affine transformations

of the space,

Then

and

Al diag

(n+l)2 n =1 n~=1

Suppose xaz% E . Then lx]2 <1, 1> = -aTx >0 . We have to show

that
T =1
1 '
(x xo) A T(x xo) < 1 .
But
AToael, o -l T 1-l S
(x-xo) A (x-xo) = XA Tx - 2xA Tx)t+ xTA X
_ n2—l x2 + 2ntz 2 o n+1l + 1
= 73 z 51 2 5173
n n n n
n2-l 2 2nt+2
= 5 (x7-1) + —= gl(gl-l) =1 < 1.
n n

Proof of Lemma 5. We may assume again that E i1s the unit sphere

about 0O and a = (l,O,...,O)T , since affine transformations do not

change the proportion of volumes. By a well-known formula,

»ED NOet A | (B) = Waeta' a(xm
(£7) Nreowr (E) e (E)

e -1
s (n_ )(n % . AME) = c(n).N(E) .

n+l ne_l

11



To estimate this factor use that

2 2
2 = 1+ —éL— < el/(n -1)
n -1 n -1
and
n 1 -1/(n+1)
m = l'm‘ < e

Substituting these bounds we get

c(n) < e-l/(2(n+l))



