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Khachian's Algorithm for Linear Programming

Peter Gdcs and Laszlo Lovasz

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

L. G. Khachian's algorithm to check the solvability of a system

of linear inequalities with integral coefficients is described. The ’

| running time of the algorithm is polynomial in the number of digits

of the coefficients. It can be applied to solve linear programs in

polynomial time.

- This rescarch was supported in part by National Science Foundation

grant MCS-77-25738 and by Office of Naval Research contract NOOO1lh-76-C-0330,
Reproduction in whole or in part is permitted for any purpose of the

) United States government. |
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L. G. Khachian [Doklady Akademii Nauk SSSR, 1979, Vol. 24k, No. 5,

1093-1096] published a polynomial-bounded algorithmto solve linear

| programming. These are some notes on this paper. We have ignored

his considerations which concern the precision of real computations,

in order to make the underlying l1dea clearer, on the other hand, proofs

which are missing from his paper are given 1n an appendix.

| Let

: n

| be & system of strict linear inequalities with integral coefficients. We

present an algorithm which decides whether or not (1) is solvable, and

x yields a solution if it is. |

| Define

L = 72. log (lag 1+ 1) + 22 log (fe, | +1) + log nmtl
i, 1

| I, is the space needed to state the problem,

The Algorithm.

We define a sequence Kos Xysees €R and a sequence of symmetric

positive definite matrices Ags bysens recursively as follows.
L cao :

x, =0, Aj=27T. Assume that (A) is defined. Check if x

is a solution of (1). If it 1s, stop. If not, pick any inequality

in (1) which is violated:

% 2 By

) and set |

| 2
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2 (Aa). (Aa)
I EON -B "Di i -

bevy = = k n+l Ia a ’i Be 2

(Note that the multiplication of vector Aa, with itself in the second

term results in an nxn matrix.)

In practice, we will compute only certain approximations of x

and Ay by decimals of a certain precision. Tt can be shown that

approximations within exp(-10nL) preserve the validity of the following

theorem,

Lo Theorem, If the algorithm stops, x, 1s a solution of (1), If the

algorithm does not stop in 6n°L steps, then (1) is not solvable,

The first assertion is, of course, just a repetition of the stopping

rule for the algorithm. To prove the crucial second statement, we shall .

need a series of lemmas, along with a geometric description of what's

happening,

Let x cB and A a positive definite matrix, Then

(x-x Va (xx ) <1
0 07 =

defines an ellipsoid E = (%,A) with center x . Iet aeR , a# 0,

Then we shall denote by E* the ellipsoid (pA) sy Where

: a Aa |
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2 I

- 4.2 (Aa) (Aa)
2 n+l T
n-1 a Aa

We shall denote the semi-ellipsoid

EN {x: (x-x,)a < 0} |
1

Let us remark (although this is not needed in the proof) that

geometrically this construction means the following. Take a hyperplane

ax =d, d< Xn which is tangent to E at point y . Then

XxX. =-Y = A 2 _ N
0 fT

a Aa

Now E- will be the (unique) ellipsoid which touches the hyperplane

ax = d at yy and intersects the hyperplane ax = ax in the same

ellipsoid as E .

30 here came the lemmas. The first three are facts of number-

theoretic nature which probably are familiarto many people who have

investigated the complexity of algorithmic problems in linear algebra.

fo 2
We use the notation |x| = mex X; |x| = 2 x.

Lemma 1. Every vertex v of the polyhedron

x > 0

satisfies vl < Hn » and its entries are rational numbers with denominator
at most oh .

Lemma 2. If (1) has a solution, then the volume of its solutions inside

the cube |x, | < ot is at least ohb . |

I



Lemma 3. Suppose that the system

ax < b, +27 (1 = 1,.a.,m)i i ’ ?

has a solution. Then

has a solution,

1 a

Lemma UL. 5 BE CE ‘

Lemma 5. ME?) = e(n)A(E) ,

where |

> (n-1)/2
_ { n n -(1/2(n+1))

o - (£5) = < «© .. n -1

and A(X) dis the volume of the set X.

The proof of the theorem is quite casy now. Suppose that the

procedure does not stop after k = £n°T steps, and yet (1) is solvable.

Then by Lemma 2, the set P of its solutions x inside By has

ANP) > 27h . By Lemma 4, PC E. . But by Lemma 5,

- + - + -

ME, c (k/2(nt1)) ME) ce (k/2(nt+1)) ;2ln _ ,-nL

a contradicticn.

If cone would like tc decide the solvability of a systemof the form

| then we may consider instead the system

L L :

(3) [2 lax < [2 Tb, +1 (i =1,...,0)

2



By Lemma 3, this is solvable iff (2) is solvable.

IT we want to solve a linear prcgramming problem

. T
maximize CTX

subject to Ax <b

x > 0

then consider the system of inequalities

etx = bly

Ax <b

x > 0

aly > c

y > 0 .

This is solvable iff the original program has a feasible solution and

a finite optimum, and for any solution (x,y) of this system, x is

an optimal solution of the program.

6



Appendix

Proof of Lemma 1. Let v = (Vyseeasv) . By Cramer's rule, each v.

can be expressed as

where D; and DID are determinants whose entries are 0, 1 , By 4 or 0. '

Hence D and D, are integers, and

ol > 1,

ID] < J] (norms of row vectors)

< ol /m < ol /n , :

and the same holds for the D, "=. This implies the assertion,

Proof of Iemma 2. We may assume that (1) has a solution xy >0 . So

the polyhedron

(4)
x > 0

has an interior point. Since it contains no line, it also has a vertex

V = (Vis eeasv) . By Lemma 1, we know that Ve < 2 < 2b . It

follows that the pclyhedron (4) has an interior point x = (250005)

with x < 27) » and so the polytope

(5) x > 0

L :

%s < L2 | (J = lye..50)

has an interior point. Hence, it has n+l vertices Varese Vy which

7



are not on a hyperplane, Sc (5) has volume at least

| Tr 1 1

ES det vos ‘
te Vv. V v

0 1 n

Here, by Lemma 1, we get that

v., = —
i = DY

i

where u. is an integer vector and D. is an integer < ol/n . 0
1 1 D D

i

> . 1 ! > o~nL 0| NEE | N

since the determinant in the second expression is a non-zero integer.

. 1 _ -

So the volume of the polytope (5) is at least =r 2 nL pmdlb

Proof of Lemma 3. For xeR , set

9, (x) = a, - by ‘

n :

Let Xq€R be arbitrary.

Claim 1. There exists an x, eR such that

and

(2) The vectors f{a.: 6.(x) > 0} span every cther vector a, .

To prove the claim, it suffices to show that if X does not

satisfy (2) then we can find a vector x, such that x, satisfies (1)

and 6, (x) > 0 holds, for more indices i than 0. (x,) > 0 . Repeating

8



this at most m times we must obtain an x, satisfying both (1)

and (2).

Let, say 61 (x) +050, (x) > 0, 0,41 (Xg)s e058, (25) <0.

Suppose that 5 (v > k) is not a linear combination of Byseeery
Then the system of linear equations

ay = L
V

is solvable. Let Yo be a solution and consider

where

t 1s finite, in fact t < =o, .

Then by the choice of © ,

= 8. (24) if 1<i<k ,

LoL re no < 0 if kl<i<um,

and equality holds for at least one 1 <i <m . This proves the Claim.

Assume now that x 1s such that

ax, < Db, +2" (1 = 1y...5m)iC i 7 DE

Let, say 25% >b, for 1 =1,...,k . Choose the labelling sc that

ays eees8 are linearly independent but 8472s? BE spanned by

them. By the Claim, we may assume that By pq2 ergy are also spanned

by EERE ;

9



Now let =z be a solution of the system of linear equations

We show that =z satisfies

a.z < Db,
i —- i

for every 1 <i <m. We know that

r

a. = a A:

+ j=1 99

with some real numbers Ms . In fact byCramer's rule we also know that

A, = D./DJ i/o

where D, and D are determinants formedby some entries of the vectors
: L

a, and hence they are integers with absolute value less than 27 /n . Now
r

D(asz-b,) = p2 Da.z - Db,
J=1

r

= >, D.b. - Db. .

To estimate the right hand side, use that

r r

pa Db, - Db, = p2 Dslasxy = 8.(xy)) - D(a, x = 6(x4))
J=1 oo d=1

T }

= D0. (x.)- 25 D.o.(x.)
10 5-1 J avo

r

< p2t+ ID. |27" < 1
j=1 1 |

: and since the left hand side is an integer,

r

: >> Db, -Db, < 0 , |
j=1 99 :

which proves the assertion.
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Proof of Lemma L. We may assume that x, = 0, A=71 (i.e., the

© ellipsoid is the unit sphere about O ) and that a = (=1,0,...,0)" ,

since the contents of The lemma is invariant under affine transformations

of the space,

Then

T
1

and

n° n° n°
A' = diag 5 TH) ctr THC .

(n+l) n -1 n =1

1 T

Suppose xezE, » Then |x|, <1, 1>E =-ax>0. We have to show
that

ATor=1 :
(3-2) A (x-x) < 1 . |

| But |

ATor=1 , _ T r=1 T 1-1, To or=1_,
(x-x) A (2-2) = XA Tx -2XA TX) + x TA TX]

_ n°-1 2 ence 2 _ oh + 1= 73 2 51 5 573
n n n n

n=-1 2 2ntz2
= —- (xX-1) + = gi (gm) + 1 < 1.

n n

Proof of Lemma 5. We may assume again that E 1s the unit sphere

about 0 and a = (1,0,...,0)" , Since affine transformations do not

change the proportion of volumes. By a well-known formula,

WED) = EEA (Ek) = Jaeta' A(E)
Ndet A

2 \(n-1)/2n n

n -1

| 11



| To estimate this factor use that

2 D

—— = 1+ RE < 1 (n -1)
n -1 n -1

and

n 1 -1/(n+1)
nr = tomT <¢ .

Substituting these bounds we get

c(n) < cL (2(ntl)) |
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