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Let xg, x|, X5, ... be a bounded sequence of points some of which may be repeated,
The problem of Rational Hermite Interpolation of type (m,n) where m + n =N is to determine
a rational function R,,,(x)=U(x)/¥(x) with deg(U)<m and deg( ¥)<n, which interpolates
an analytic; function f(x) at the first N + 1 points of the sequence. If a point x; is repeated
m; + 1 times then R, (x) should interpolate f(x) and its first m; derivatives at x;. Hermite
solved this problem for (m,n) = (N,0) by constructing the Hermite Interpolating Polynomial

Pp(x) such that

N
f) =Py = g [ (x-x)
i=0

where g(x) is analytic. The general problem of Rational Hermite Interpolation is to find all R,

satisfying m + n = N which also interpolate f(x) i.e.,

N
S =Ry = 8] (x=x) (1)

i=0
The two extreme cases for this problem have special names : When the sequence of points are
distinct it is called Cauchy Interpolation and when all the points are the same it is called Padé
Table.

A rational function R,,(x) = U(x)/V(x)is said to solve the Modified Hermite

Interpolation Problem if

N
Ux) = fVE@) m o d [ G-x) (2)

i=0
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If R,,,,,(x) solves equation (1) then equation (2) is automatically satisfied. H'owever. for some
choices of m and n equation (1) may have no solutions, and in that case there is a paramet-
erized family of solutions to equation (2). However, each solution (U(x),¥(x)) to equation
(2) then yields the same rational function. This unique function is called the (m,rr)lh Rational
Interpolant for f(x). Thus the set of rational interpolants for f(x), which is called the Rational
Interpolation Table for f(x), contains all solutions to the problem of rational Hermite interpola-
tion.

D. Warner studied this problem in his thesis [12]. In [13], he showed all solutions to
the Modified Hermite Interpolation Problem could be computed by Kronecker’s Algorithm [8].
We have independently discovered this and the result that Padé approximants can be computed
by Euclid’s Algorithm prior to the paper of McEliece and Shearer [9]. Additionally, we have
shown that Kronecker’s Algorithm and the Extended Euclidean Algorithm are virtually the
same. Our results go beyond those of [8,9] to include new computional techniques as well as
theoretical unifications.

N N

Let Uy =iEO(x—x,.) and U, =i§oa;x' be the Hermite interpolation polynomial of f(x) .
The extended Euclidean algorithm applied to Uy and U computes a sequence of quotients and
remainders according to the formula for division:

Uiy = U;_y—Q;U; together with iterations for computing the “comultipliers”:

Now, an important relation holds for each i :
and the following results can be established for the Rational Interpolation Table.
Lemma 1: Each step of the extended Euclidean computation gives rise to a unique entry (in

lowest terms) of the Rational Interpolation Table.
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Lemma 2: The rational function U;/V; obtainable via the extended Euclidean computation
yields deg(Q,) equal entries of the Rational Interpolation Table along the
(m + rz)(h anti-diagonal.

Theorem 1 (Euclid-Hermite): All entries along the (m + n)lh anti-diagonal of the Rational
Interpolation Table for the analytic function f(x) are computed uniquely by the
extended Euclidean algorithm.

Lemma 1 and 2 and Theorem 1 have their Cauchy and Padé counterparts. The Padé

Table is well known and has been extensively studied; see [3] for an excellent survey article.

As an example we state the above results in the Padé case. Let xg=x;=...=0,

N

Uy(x) = M+ and U,(x) ='_§:Oa,~xi be the first IV + 1 terms of the Maclaurin expansion of

f(x). Assuming the usual definition for the Padé Table, we have the following results:

Lemma 1P: Each step of the extended Euclidean computation gives rise to a unique entry (in
lowest terms) of the Padé Table.

Lemma 2P: The rational function U;/¥; obtainable via the extended Euclidean computation
yields deg(Q;) equal entries of the Pad¢ Table along the (m + n)th anti-diagonal.

Theorem 1P (Euclid-Pad&): All entries along the (m + n)”1 anti-diagonal of the Padé Table
for the Maclaurin series of f(x) are computed uniquely by the extended Euclidean

algorithm.
Fast Computation of an arbitrary iterate of the Extended Euclidean Algorithm

The computational aspects of the problems of the previous section can be realized by
an asymptotically fast extended Euclidean algorithm. We have improved and extended the
HGCD algorithm of Aho, Hopcroft, and Ullman[1] in two significant ways. First, we have

developed an improved HGCD algorithm called EMGCD (for Extended Middle GCD).
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EMGCD produces the 2 by 3 matrix of polynomial entries

u. w, V.
J J J U, w. V. U
sz( ),where(j)z(j ")( 0
Uit Wi Vi Ut WiaV; U,

Jj+1

The cost of EMGCD is less than the cost of HGCD; however, both algorithms have an
O(N logzN) asymptotic cost. Thus Uj and Uj+| are computed free relative to HGCD. Note
also that algorithm EMGCD computes all of U, V, and W which are the essential quantities
of the extended Euclidean algorithm. The second improvement comes from generalizing
EMGCD. We have developed algorithm PRSDC (Polynomial Remainder Sequence by Divide
and Conquer) which produces any desired iterate M j in the PRS sequence and not just the
middle term. The cost of PRSDC is also O(NlogzN)

Algorithm PRSDC has many useful applications. One example is the computation of
the greatest common divisor of two polynomials A and B. By setting Uy(x) = A(x) and
U,(x) = B(x) and specifying Uy, (x) = 0 ordeg(U,)>0 we can compute, using algorithm

PRSDC
Up(x) = GCD(A(x),B (x)) = Wi (x)A(x) + V, (x)B(x) .

Another example of its utility concerns fast computational algorithms for the above Theorems.

Using algorithm PRSDC we can compute an arbitrary entry R
N

Rational Interpolation Table starting with Uy = g(x——xi) and U= the Hermite interpolation
1=

mn Where m + n= N of the

polynomial of f(x) through these N+ 1 points. Gustavson [4] has shown, using the ideas of

Yun [14], that starting with x,, /(j)(xi) ,j=0,...,m;,i=1,..,k that the Hermite Interpola-

tion polynomial Pp(x) through these k distinct points can be found in O(N logzN). Combining

these facts we can state the foliowing

Theorem 2 (Euclid-Hermite-Cauchy-Pade): An arbitrary entry of the Rational Interpolation
Table for the analytic function f(x) can be computed in O(N logzN) where N is

the degree of the relevant Hermite interpolating polynomial.
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For the case m = n , equating coefficients of x", x" ' ',..., x” in the relation for the

(n, n) Padé approximant, we get a Toeplitz system:

(,-)0)-C)

. . . T
where the matrix, denoted by T , is Toeplitz. The vectors u = (ug,...,u,)  and

v = (vO,...,vn)T are the coefficients of the (n,n)Padé approximant (Uj(x),V-(x)) . This fact

and the above results suggests that Euclid’s algorithm can be adapted to solve Toeplitz systems

of equations. We now state a new theorem which is a compaction of two theorems due to

Gohberg and Semencul [2]. This theorem reveals that the computation of v and u,, is, in fact,

crucial.

Theorem 3 : Let the Toeplitz matrix

a, . g a_,
~ ] ] ] &
T = ) E) @ ®

A a, .

DQp+t® o o 49y

be a bordering of the Toeplitz matrix T with one additional row and column consisting of all

T T
the same elements except two. Suppose x = (xg,...,x, ) and . Dpyps¥o)  are

solutions of Tx = ey and X - €,41 and suppose xg = ¥y #¥ 0. Then T is invertible and

it’s inverse S is formed according to the formula

X900 ¢ Oy /yo»* ¥, Yny1 0+ 0 Xpy1 Xp ®

S=._1_ _xl. . . 0 o o o _ y" o o 3 0 * o
Xo e o o 0 . ooy] . o o 0 . o o

Xp e xp X" "0 0y Y1 Yn Fn 0 - Ox

X
xl) } (3)

n+1

Furthermore, suppose x and yR solve Tx = ¢y and TyR =e, and x5 = yg# 0 . Then

T'=5is given by formula (3) with x,, and y,, set equal to zero.
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The formula (3), for the system with T , was discovered by Trench [11], used by
Zohar [ 15] and given a convolutional setting by Kailath, Viera, and Morf [7]. In [7] the
formula (3) for the system with ”7" is shown to be the the discrete analog of the Christoffel
Darboux formula. Suppose now that Det(T)#0 . Ordinarily we would solve Tx =g to see if
xg#0 . If x5 = 0 then formula (3) is no longer valid. However, a_jand aj,,; can be chosen
so that Det(?’)-—,éO . Then xg = 7]—1' = Det(T)/Det(;')aﬁ() . Thus we have the following
stronger result :
Corollary 1 : For solving Tz = b it is always possible to find x and y of formula (3) such that

xg=Jyo# 0.

Formula (3) is important because it expresses the inverse S as a product of Toeplitz

matrices. To solve Tz = b we can form four matrix-vector multiplications to affect z= Sbh.

Now we observe that the multiplication of Toeplitz matrices and the vector b given by

xg 0 - 0 Ynp1 0 ¢ 0
xl . . . yn e o . .
. 0 bO . * . 0 bO
X, '+ X3 Xg ¢ and Y1 * Inns ¢
Xnsl Xn ¢ Xy 0 ¢ Yo Vi ¢ JVn \ *
0 an an ¢ bn 0 e o . "
e w« o X, o« e ey
0 . 0 x, 0«0 y

are precisely the concatenations of the four matrices in formula (3) and clearly correspond to

polynomial multiplications. Performing multiplication modulo !

via FFT with appropriate
ordering of the coefficients X;, y;, and b;, we can easily derive the following result :
Corollary 2 : Given x and y with x5 = yp# 0, the cost of solving Tz = b by effecting
z = Sb without explicitly computing S = T~ lis O(n log n).
2n+1 n g
Let Uy(x) = x "land U)(x) = Zoaix . The polynomial U, represents the Toeplitz
1=

matrix 7. Now apply the extended Euclidean algorithm to Uy and U, . The following two

theorems demonstrate the importance of this computation and establishes a direct connection

between the Euclidean algorithm and the solution of Toeplitz systems of equations.
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Theorem 4 : Let (U i Vj, Wj) be the iterate of the extended Euclidean algorithm that com-
putes the (n, n)Padéapproximant to U; . Then Det(T)#O if and only if
deg( Uj) =n.

Theorem 5 : Let (U, Vj, Wj) and (Uj+|,Vj+|, Wj+|) be two successive extended Euclidean
iterates with deg(Uj) = n. These two extended Euclidean iterates contain all the
necessary information to compute x and y where Tx = e, and TyR =e,.
Furthermore, if Xy = 0 then the same two extended Euclidean iterates contain all
information needed to compute ;'x = ey and T:yR = ep,q With x5 = yg=1.

The solutions x and y can be expressed as linear combinations of the Vj and Vj+|
polynomials. The term “all the necessary information” means that the constants of the linear
combinations turn out to be natural by-products of the extended Euclidean algorithm. A partial
explanation of why Theorem 5 is true is the fact that the Padé Table has many relationships
(Frobenius Identities) connecting the Table entries. The condition of Theorem 5 implies that
the (n, n) and (n — 1, n+ 1) Padé approximants are computed by successive Euclidean
iterates. Theorems 4 and 5 and formula (3) provide the basis of another important application
of algorithm PRSDC. We state this application as follows:

Theorem 6 (Euclid-Toeplitz) : The complexity of solving the Toeplitz system 7z = b is at most
O(nlogzn) and the extended Euclidean algorithm can be used to effect the
solution with this complexity.

We have also established new complexity results for banded Toeplitz systems. Let 7',

be a banded Toeplitz matrix whose semi-bandwidths are b and c ie., ag=...=a,_p ;=0
. n+b+1

and @, ., =..=day, = 0 . Then by applying PRSDC to Uy(x) = x and

U,(x) = an+cxb+c +...+a,_pwecan solve Tz = d in O(n log n) + O((b + c)logz(b + ¢)).

2
The best previous result of O(nlog n) + O( (b +¢)7) is due to Jain [6] and Morf and Kailath
[10, p. 269]. Theorems 4 and 5 above are valid for the banded case. The only change in their
statements is the replacement of (n,n) with (b,n) and (n—1,n + 1) with (b—1,n + 1) .

-
Recently, Brent discovered a fast O(nlog™n) algorithm to compute x and y via a fast
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continued fraction expansion. A joint paper by him and the authors is planned to detail some
of the results described here. The best previous algorithm to solve Toeplitz systems is the

O(n2) algorithm of Trench [ 11] corresponding to the Levinson algorithm in the continuum.
The Berlekamp Algorithm, Shift register synthesis, and BCH decoding

Let S(x)=s;x+ ...+ sznxz" be a given syndrome polynomial. The key equation to
finding the error location polynomial of BCH decoding is

(1 + SCNo(x)=w(x) mod (x"H

where

ax) = 1 + ioixi and w(x)=1 + jwix',

i=1 i=1

and e = deg(o) = deg(w) is small. Berlekamp’s algorithm is an O(nz) method [5] for comput-
ing a(x) and w(x) . Algorithm PRSDC also solves this problem. Let Uo(x)=x2"+I and
U,(x) =1 + S(x) . Then the iterate (Uj’ Vj, Wj) of the extended Euclidean algorithm which
computes the (n,n)Padé approximant to U, is the solution to the key equation. Also the

complexity of this problem is lowered to O(nlogzn).
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