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Let xg, Xx, X5,... be a bounded sequence of points some of which may be repeated,

The problem of Rational Hermite Interpolation of type (m,n) where m+ n= N is to determine

a rational function R,,,(x) = U(x)/ V(x) with deg(U)<m and deg( ¥)<n, which interpolates

an analytic function f(x) at the first ¥ + 1 points of the sequence. If a point x; is repeated

m; + 1 times then R, (x) should interpolate f(x) and its first m; derivatives at x;. Hermite

solved this problem for (m,n) = (N,0) by constructing the Hermite Interpolating Polynomial

Pp (x) such that

N

FG) =Py(x) = g[T (x-x))
i=0

where g(x) is analytic. The general problem of Rational Hermite Interpolation is to find all R,,

satisfying m + n = N which also interpolate f(x) i.e.,

N

fO)=R py) = gO)] (x=x)) (1)
i=0

The two extreme cases for this problem have special names : When the sequence of points are

distinct it is called Cauchy Interpolation and when all the points are the same it is called Padé

Table.

A rational function R,,(x) = U(x)/V(x)is said to solve the Modified Hermite

Interpolation Problem if

|.

:
oo Ux) =fGIV(x)m od J] x=x) (2)

i=0
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If R,,,,,(x) solves equation (1) then equation (2) is automatically satisfied. However, for some

choices of m and n equation (1) may have no solutions, and in that case there is a paramet-

erized family of solutions to equation (2). However, each solution (U(x),¥(x)) to equation

(2) then yields the same rational function. This unique function is called the (mm) Rational

Interpolant for f(x). Thus the set of rational interpolants for f(x), which 1s called the Rational

Interpolation Table for f(x), contains all solutions to the problem of rational Hermite interpola-

tion.

D. Warner studied this problem in his thesis [12]. In [13], he showed all solutions to

the Modified Hermite Interpolation Problem could be computed by Kronecker’s Algorithm [8].

We have independently discovered this and the result that Padé approximants can be computed

by Euclid’s Algorithm prior to the paper of McEliece and Shearer [9]. Additionally, we have

shown that Kronecker’s Algorithm and the Extended Euclidean Algorithm are virtually the

same. Our results go beyond those of [8,9] to include new computional techniques as well as

theoretical unifications.

N N

Let Uj = I (x—x)) and U; = Zax be the Hermite interpolation polynomial of f(x) .
The extended Euclidean algorithm applied to Uy and U; computes a sequence of quotients and

remainders according to the formula for division:

Uip1 = U;_y—Q;U; together with iterations for computing the “comultipliers”:

Wina=W,_1—QW;, andV, =V,_—-Q/V, fori> 1, where initially

Wo=1W;=0V,=0V,= 1

Now, an important relation holds for each 1 :

WU, + V;U =U,;,

and the following results can be established for the Rational Interpolation Table.

Lemma 1: Each step of the extended Euclidean computation gives rise to a unique entry (in

lowest terms) of the Rational Interpolation Table.
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Lemma 2: The rational function U,;/V; obtainable via the extended Euclidean computation

yields deg(Q,) equal entries of the Rational Interpolation Table along the

(m + ny" anti-diagonal.

Theorem 1 (Euclid-Hermite): All entries along the (m + mh anti-diagonal of the Rational

Interpolation Table for the analytic function f(x) are computed uniquely by the

extended Euclidean algorithm.

Lemma 1 and 2 and Theorem 1 have their Cauchy and Padé counterparts. The Padé

Table is well known and has been extensively studied; see [3] for an excellent survey article.

As an example we state the above results in the Padé case. Let xg =x;=...=0,

Ug(x) = x1 and U(x) = 30 be the first IV + 1 terms of the Maclaurin expansion of
f(x). Assuming the usual definition for the Padé Table, we have the following results:

Lemma 1P: Each step of the extended Euclidean computation gives rise to a unique entry (in

lowest terms) of the Padé Table.

Lemma 2P: The rational function U;/¥V; obtainable via the extended Euclidean computation

yields deg(Q;) equal entries of the Padé Table along the (m + n)™ anti-diagonal.

Theorem 1P (Euclid-Pad&): All entries along the (m + nyt" anti-diagonal of the Padé Table

for the Maclaurin series of f(x) are computed uniquely by the extended Euclidean

algorithm.

Fast Computation of an arbitrary iterate of the Extended Euclidean Algorithm

The computational aspects of the problems of the previous section can be realized by

an asymptotically fast extended Euclidean algorithm. We have improved and extended the

HGCD algorithm of Aho, Hopcroft, and Ullman[1] in two significant ways. First, we have

developed an improved HGCD algorithm called EMGCD (for Extended Middle GCD).
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EMGCD produces the 2 by 3 matrix of polynomial entries

M, ( Up WwW; ) where ( 7) _ ( Wi BI )UisiWini Vig Us WiVinn U,

The cost of EMGCD is less than the cost of HGCD; however, both algorithms have an

O(N log? N) asymptotic cost. Thus U, and Uji are computed free relative to HGCD. Note

also that algorithm EMGCD computes all of U,V, and W which are the essential quantities

of the extended Euclidean algorithm. The second improvement comes from generalizing

EMGCD. We have developed algorithm PRSDC (Polynomial Remainder Sequence by Divide

and Conquer) which produces any desired iterate Mj in the PRS sequence and not just the

middle term. The cost of PRSDC is also O(N log” N)

Algorithm PRSDC has many useful applications. One example is the computation of

the greatest common divisor of two polynomials A and B. By setting Uy(x) = A(x) and

U,(x) = B(x) and specifying Uy; (x) = 0 ordeg(U;)>0 we can compute, using algorithm

PRSDC

Ux) = GCD(A(x),B (x) = W(x)A(x) + V,(x)B(x).

Another example of its utility concerns fast computational algorithms for the above Theorems.

Using algorithm PRSDC we can compute an arbitrary entry R,__ where m + n= N of the
N

Rational Interpolation Table starting with U, =1l (x—x;) and U;= the Hermite interpolation
polynomial of f(x) through these N+ 1 points. Gustavson [4] has shown, using the ideas of

Yun [14], that starting with x; 7x) ,j=0,...,m;,i=1,..k that the Hermite Interpola-

tion polynomial Pp(x) through these k distinct points can be found in O(N log N). Combining

these facts we can state the foliowing

Theorem 2 (Euclid-Hermite-Cauchy-Pade): An arbitrary entry of the Rational Interpolation

Table for the analytic function f(x) can be computed in O(N log®N) where N is

the degree of the relevant Hermite interpolating polynomial.
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Fast Toeplitz Computation

. . n n+l 2n .
For the case m = nn, equating coefficients of x, x" ',..., X™" 1n the relation for the

(n,n) Padé approximant, we get a Toeplitz system:

an a0 Yo Uy

a,, a, V, 0

where the matrix, denoted by T , is Toeplitz. The vectors u = (ugy,...,u,) and

Vv = (grr) are the coefficients of the (n,n) Padé approximant (U(x), V(x) . This fact

and the above results suggests that Euclid’s algorithm can be adapted to solve Toeplitz systems

of equations. We now state a new theorem which is a compaction of two theorems due to

Gohberg and Semencul [2]. This theorem reveals that the computation of v and #, is, in fact,

crucial.

Theorem 3 : Let the Toeplitz matrix

a, . o ap a_i

T = ( ¢ & y) @ )Arp a, °

Dn+t® . 4y

be a bordering of the Toeplitz matrix T° with one additional row and column consisting of all

T R T
the same elements except two. Suppose x = (xq,....x,,,;) and y= = (¥,,q,-.-.Yg) are

solutions of Tx = ey and 5% = e,,1 and suppose xg = Yo # 0. Then T is invertible and

it’s inverse S is formed according to the formula

X0 0. 0 Yo Yi * Vn Yn+1 0. 0 Xn+1 Xn © X|
| XxX se ° 0 se eo y eo =o ] 0 * .

S = — — n 3

Xp* X1 Xo 0 « 0 Y1 * Vnlnsi 0 « 0x,

Furthermore, suppose x and yr solve Tx = ey and TYR =e, and x53 = yg# 0 . Then

T-!'=S is given by formula (3) with x, and y, set equal to zero.
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The formula (3), for the system with 7 | was discovered by Trench [11], used by

Zohar [ 15] and given a convolutional setting by Kailath, Viera, and Morf [7]. In [7] the

formula (3) for the system with 7 is shown to be the the discrete analog of the Christoffel

Darboux formula. Suppose now that Det(7T)#0 . Ordinarily we would solve Tx =eg to see if

xg#0 . If xo = 0 then formula (3) is no longer valid. However, a_j and a5, can be chosen

so that Det(7T)#0 . Then xj = Ty, = Det(7)/Det(T)#0 . Thus we have the following

stronger result :

Corollary 1 : For solving Tz = b it 1s always possible to find x and y of formula (3) such that

Formula (3) is important because it expresses the inverse S as a product of Toeplitz

matrices. To solve Tz = b we can form four matrix-vector multiplications to affect z= Sb.

Now we observe that the multiplication of Toeplitz matrices and the vector b given by

X1 . . . Yn ° ° . )

Xp + 1 Xo ’ and Yi * Yndn+i *
XnelXn * Xy 0 Yo Vi* Jn SW
0 @ a é b, 0 *s = ° b,,
) hah xX, °® [1 [ Yi

are precisely the concatenations of the four matrices in formula (3) and clearly correspond to

polynomial multiplications. Performing multiplication modulo "+! via FET with appropriate

ordering of the coefficients x;, y;, and b;, we can easily derive the following result :

Corollary 2 : Given x and y with x5 = yg3# 0, the cost of solving Tz = b by effecting

z = Sb without explicitly computing S = Tis O(n log n).

2n+1 Zn i
Let Uplx) =x and U(x) = 2 ax . The polynomial U, represents the Toeplitz|=

matrix 7. Now apply the extended Euclidean algorithm to Uy and U, . The following two

theorems demonstrate the importance of this computation and establishes a direct connection

between the Euclidean algorithm and the solution of Toeplitz systems of equations.
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Theorem 4 : Let (Uji Vi W;) be the iterate of the extended Euclidean algorithm that com-

putes the (n, n)Padé approximant to U; . Then Det(T)#O if and only if

deg(U7) =n.

Theorem 5 : Let (Uj, Vi Ww) and Wie: Vign Wi) be two successive extended Euclidean

iterates with deg(UPh) = n. These two extended Euclidean iterates contain all the

necessary information to compute x and y where 7x= ey and TyR =e,.

Furthermore, if xg = 0 then the same two extended Euclidean iterates contain all

information needed to compute Tx = ey and ry R =e, With xg = yg =1.

The solutions x and y can be expressed as linear combinations of the V; and Vi

polynomials. The term “all the necessary information” means that the constants of the linear

combinations turn out to be natural by-products of the extended Euclidean algorithm. A partial

explanation of why Theorem 5 is true is the fact that the Padé Table has many relationships

(Frobenius Identities) connecting the Table entries. The condition of Theorem 5 implies that

the (n, n) and (n — 1, n + 1) Padé approximants are computed by successive Euclidean

iterates. Theorems 4 and 5 and formula (3) provide the basis of another important application

of algorithm PRSDC. We state this application as follows:

Theorem 6 (Euclid-Toeplitz) : The complexity of solving the Toeplitz system 7z = b is at most

O(nlog?n) and the extended Euclidean algorithm can be used to effect the

solution with this complexity.

We have also established new complexity results for banded Toeplitz systems. Let 7.

be a banded Toeplitz matrix whose semi-bandwidths are b and c ie, ag =...=a,_p ;=10

and a, .41 =... = ap, = 0 . Then by applying PRSDC to Uy(x) = x"F0+} and

U,(x) = a,, x"*¢ +...+4+a,_pwecan solve Tz = d in O(n log n) + OW(b + log? (b + ¢)).

The best previous result of O(n log n) + 0( (b +05) is due to Jain [6] and Morf and Kailath

[10, p. 269]. Theorems 4 and 5 above are valid for the banded case. The only change in their

statements is the replacement of (n,n) with (b,n) and (n—1,n + 1) with (b—1,n + 1) .

Recently, Brent discovered a fast O(nlog n) algorithm to compute x and y via a fast
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continued fraction expansion. A joint paper by him and the authors is planned to detail some

of the results described here. The best previous algorithm to solve Toeplitz systems is the

O(n?) algorithm of Trench [ 11] corresponding to the Levinson algorithm in the continuum.

The Berlekamp Algorithm, Shift register synthesis, and BCH decoding

Let S(x)=sx+...+ 55x" be a given syndrome polynomial. The key equation to

finding the error location polynomial of BCH decoding is

(1 + S(x))o(x)=w(x) mod (x2

where

a(x) = 1 + Sox and w(x)=1 + S$ w Xx
i=1 i=]

and e¢ = deg(o) = deg(w) is small. Berlekamp’s algorithm is an O(n*) method [5] for comput-

ing a(x) and w(x) . Algorithm PRSDC also solves this problem. Let Ug(x) = x2"+1 and

U,(x) = 1 + S(x) . Then the iterate (U, Vi, W;) of the extended Euclidean algorithm which

computes the (n,n) Padé approximant to U, is the solution to the key equation. Also the

complexity of this problem is lowered to O(nlog’n).
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