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Introduction

Since the early work with Perceptrons the study of learning systems has had an Important
place in artificlal Intelligence, The term Yearning’ of course covers a range of behavior. At
one extreme there is the adjustment of numerical parameters that characterises for instance
most of spatial pattern recognition [Nilsson1966]. At the other we now have programs such
as AM [Lenat1977] that not only acquire new structures but also the conceptual framework
on which to hang them. Somewhere between iies the area known as /nduction. It has two
general characteristics: its aim is to discover structured information about some collection
of entities, and the methodology employed is the analysis of many examples of the genre
called Instances. Thus learning programs such as [Quinlan1976] are not Induction systems
because the information gleaned from instances has little structure, Neither are those such
as TIERESIAS (Davis 19773 because, although they find or modify structures, they do so by
metalevei interaction with an expert rather than by the examination of instances.

As with most areas In Al, Induction systems can be divided into those that use only general
methods and so are applicable to any problem, and those designed for specific tasks. Although
it is not intended to attempt a survey here, a short discussion of a couple of existing systems
should highlight important concepts, Much more substantial pointers Into the literature may be
found in [Hayes-Roth and McDermott 1877], [Buchanan et al, 1877] and [Michalski 1978).

The work reported here was performed while the author was visiting the Computer Science
Department of Stanford University, and using facilities made available there by the Artificial
Inteltigence Laboratory and the Heuristic Programming Project,
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The earliest programs dating from the late fifties were the series of Concept Learning
Systems (CLSs), an extensive exploration of which may be found in [Hunt et al, 1 866]. They
were general-purpose programs although they found particular application in finding rules for
pattern classification. Each instance presented to them is described as a vector of discrete
values for a fixed number of attributes or properties, and ail instances must have this identi-
cat format. The output is a decision tree relating one of the attributes (normally a class) to
the values of the others. This tree is constructed top-down, starting with all Instances In a
single set and seeking successively finer partitions of this set until each block of the partition
contains only instances of a single class. More details of this approach will be given later.

A more recent system in the general-purpose category is INDUCE [Michalski 1878). Here
each instance is represented as a series of assignments of properties; for example the frag-

ment
part: = P1,color(P1): = blue, part: = P2, color(P2): = yellow

would indicate that the object being described has, among other things, a blue part and a
yellow part. instances need not ail have the same number of components or properties, so
there is quite a lot more denotational freedom than provided by the rigid vector of CLS. The
output from INDUCE is a collection of decision rules couched in a quantified multi-valued logic,
and may employ descriptors that appear nowhere in the specification of the instances such
as

if there are 3 or more red parts then It's a fire engine

Unlike CLS, INDUCE works bottom-up; starting from a collection of positive instances of a
class and one of negative (counter-)exampies it attempts to build successively more complex
descriptors that cover the positive but not the negative collections. Although this system does
Indeed seem promising, only partial impiementations of it have been developed.

There are a few systems of intermediate generality, limited either by the sort of in-
stances that can be analysed or the relations discovered. (For instance Thoth-p [Vere 1978)
is designed to study ‘before and after or sequences of snapshots to find the actions respon-
sible for the changes. The actions are represented by relational productions containing simple
sets of first-order formulae to represent context, relations destroyed and relations created,)
However most other induction programs are strongly related to some task area, The most
widely-known of these must surely be Meta-DENDRAL [Buchanan et al. 1978] which discovers
rules for identifying organic chemicals from readings of an experimental device (originally a
mass spectrometer), The instances it analyses are triples consisting of the graph of a chemical
compound, a fragment mass and its relative abundance. The rules sought are predictions of
how chemical bonds will break and atoms migrate when irradiated with high-energy particles,
In forming trial rules this system is guided by a weak model of what can and cannot happen in
the instrument; the final rules represent a much stronger model. This work is of interest on at
least three counts. The use of a weak model as a sort of plausible move generator is patently

2



70T
/--/7/
,//,////
UILI N,
0000
/////
Ve

Figure 1: A counterexample

a good idea, Sets of rules that it produced have been published as chemistry, attesting to
their power, Finally, it seems to be one of the few systems that has demonstrated en ability
to cope with large volumes of data, which is the particular concern of this paper.

During his visit to Stanford in the fail of 1878, Donald Michie discussed the following
chess problem. We consider an endgame situation in which the pieces have been reduced
to a black knight, a white rook and the two kings, and where it is black’s turn to move. We
wish to know whether black is safe for at least one more white move. (The complete endgame
situation is discussed fully in [Michie et al.1878].) Safety here has to do with keeping the
game alive a little longer, if black can capture the rook or achieve stalemate then the game
is drawn, the best possible outcome from black’s point of view. A more exact specification is

e If the given situation is mate then black is not safe; if it is stalemate black is safe.

¢ Otherwise, black is not safe 2-ply if he cannot capture the rook and no matter what
move he makes white can either mate him or capture the knight without stalemate
or leaving the rook en prise.

Naturally this question can be resolved easily by search. The task however was to answer it in
terms only of some static description of the initial situation. Simple tabulation of ail cases was
ruled out because, even after symmetry has been taken into account, there are nearly two
million possible configurations; the description of a situation had thus to characterise rather
than define it. At least four people attempted the problem by hand, but ail 'solutions' turned
out to contain errors resulting from plausible but unjustified assumptions. For instance it seems
reasonable to assert that black is safe at least in those cases where neither the black king
nor black knight are threatened, but Figure 1 shows a counterexample. it is not surprising then
that attempts to discover a rule using an induction system met with considerable difficulty.
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in the course of studying this and related problems, certain techniques were developed
that seemed to have more general applicability. These are introduced in the next section, A
particular induction task and algorithm are specified and two succeeding sections discuss in
some detail the experiments carried out. These and additional results are assessed in the

conclusion.

General Description of the Approach

The essence of the induction task is discovery, The data for the task is a collection of
instances or descriptions of some set of entities in terms of their properties. A rule is some
method of explaining an instance by establishing some relationship between these properties.
The induction task is to discover a rule adequate to explain each instance in the data. For
example, one common type of induction task is the discovery of a rule for classifying patterns.
The data is usuaiiy referred to as a fraining set, and one property of each instance is its class
membership. The induction task in this case is to discover a rule that relates the class of each
item in the given training set to Its other properties, and hopefully also predicts the class of
many items in the entire description space from which the training set was derived.

Several systems capable of discovering such rules to explain a set ¥ of instances were
cited in the introduction. Their workings have little in common, but it seems safe to hypothesize
that any system for this task must examine many of the instances in 9 many times, and that
the order in which instances are referenced is not fixed. This is fine so long as the size of @
does not preclude its storage in fast random-access memory, Many training sets of interest,
however, are too large to store in this way, and the performance of any induction system could
be expected to wilt if each reference to an instance required a disk operation or some such.

One way around this obstacle would be to select a manageable subset of @, form a rule
to explain this subset, and hope that the rule is also adequate to explain 9. As mentioned
above, this is a common practice in pattern recognition, but commonsense (backed by a few
experiments) indicates that, as the rule necessary to explain ¥ becomes more complex and
the training set becomes a smaller subset of 9, the probability of a rule derived to explain
the subset also being adequate for all of 9 approaches zero. As an iiiustration, consider the
problem of discovering the rules of a two-person game from examining a random sample of
moves in context. For a game such as tic-tat-toe quite a small collection of moves would
probably suffice; in the case of chess the sample would have to be enormous before there
was near certainty that each possible move pattern was represented In it, as a consequence
both of the number of such patterns and the complexity of the context affecting their legality,

Another method is to break 9 into chunks, each small enough to fit in primary memory,
and to process the chunks in a fixed sequence, This is also effective, but it requires a more
complex algorithm and may lose advantages that could have arisen from the juxtaposition of
certain instances which may now be spread over several chunks, As an analogy, if A appears
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in one chunk and A =% in another, the task of discovering B becomes more taxing than if
both the above facts had been found together,

Hunt and various co-workers [Hunt et al. 1966, Diehr and Hunt 1968] have also addressed
this problem, though from a somewhat different perspective. Suppose that memory is limited
to slots for some fixed number of instances. One method they proposed was to scan the
data base in cycles, each instance being inspected once every cycle. The instance was read
into a randomly chosen slot (thus destroying the record of any instance previously occupying
that slot) and, if the current rule was not adequate to explain this instance, a new rule was
immediately developed from only those instances currently occupying the slots. Thus many
rules could be generated in the course of a single cycle, and many cycles could be necessary
to yield a sufficiently correct rule (since this work did not require that the final rule be exact).
A more sophisticated development saved memory space by storing incomplete instances. if
the current rule explained an instance correctly, then only those of its properties used by the
current rule were stored for that instance; if the current rule was incorrect then the entire
instance was saved, Thus the available memory could at any time contain a mixture of partially
and completely specified instances. This approach was able to produce quite accurate rules
using very little memory (e.g. 95% accuracy using memory sufficient for about 5% of the data
base), However the sample problems studied were extremely simple — the data base typically
contained 266 instances, each described by four attributes, and a rule for determining the
class to which an instance belonged needed to test only one or two of the attributes. This
techniqgue does not seem to have been tested on a problem of more realistic complexity.

This paper proposes another approach that does not require changes to the inductive
algorithm being used, but instead attempts to separate out a distinguished subset of @. The
whole of 9 is presumed to be able to be accessed sequentially, such as by being held on
some secondary storage medium. Note that, using buffering methodologies, it Is still possible to
examine the elements of 9 with an average access time very close to that of primary memory,
but only if we examine a large number of them and in a fixed sequence, The special subset, on
the other hand, is distinguished by our ability to reference Individual Instances in it randomly
and quickly; it is thus envisaged that this much of @ will fit into primary memory. The focus of
this paper is the development of iterative techniques for selecting from 9 the subset that can
be readily manipulated, At any time the inductive algorithm will be able to 'see' the total data
base only through this subset, which is referred to as a window.

The idea underlying the scheme is as follows. Let WC% be a window into ¥. Whatever
induction system we are using should be able to produce a rule % that explains W—if not then
it is hardly likely to be able to find one to explain 9. Unless this rule % is a case-by-case
tabulation of W (which most people would not regard as an explanation of W), it will contain
structures that also explain instances not in W, and in particular some instances in $—W. in
general % will not be sufficient to explain all of 9; % applied to 9—W wilt partition it into a
set of instances corroborating % and a set of exceptions for which % offers no explanation

5



or for which its explanation is incorrect. Now if % is viewed as an erroneous explanation
mechanism that must be debugged, then these exceptions (l.e. the bugs) would seem to
be more important than the corroborating instances, They may be discovered, of course, by
examining all instances of 9% one at a time in some arbitrary order; as noted above this can be
performed out of secondary memory without asignificant increase in the average access time.
The suggestion then is to start by selecting W at random from %, and to form a new window
from the old window and the exceptions to the rule formed to explain that window, The old rule
is then discarded, a new rule is found to explain the new window, and the process repeats
until a rule is discovered that has no exceptions and so explains all of 9. Note that only one
rule is developed on each iteration, and that the final rule is exact (although the process could
of course be halted as soon as the number of exceptions fell below some threshhold),

The most obvious way of forming a new window from the previous one and a set of ex-
ceptions would be simply to merge them. However these exceptions may be redundant in the
same sense that the original data base 9 is redundant. The window would then grow rapidly,
leading to the same sort of storage troubles that the whole approach is supposed to overcome.
instead the first method places a limit (called the exceptions limit) on the number of exceptions
that can be added to the window at each iteration. ideally this limit should be neither too high
(in which case the window grows fat) nor too low (when an inordinate number of iterations
would be required because the window changes so slowly). This question is explored later.

The first method above still suffers from the disadvantage that the size of the window
increases at each iteration, it could happen that at some stage the window occupies ail
available storage and the process must then terminate as no additional exceptions can be
incorporated, The second method forms a new window by blending instances from the old
window with exceptions in such a way that the window size remains constant. An attempt is
made to ensure that at least one instance corresponding to each subcomponent of the old
rule is included in the new window so that sections of the old rule that may be correct are
not forgotten, Here also it seems sensible to restrict the number of exceptions added at each
iteration, not to stop the window growing too rapidly, but rather to prevent the old window
being swamped, and thus essentially discarded, each iteration,

Two properties of both methods are worth noting. In each case the window changes only
-slightly when there are few exceptions to the rule derived from it. As the rule developed
from a window approaches a correct rule for all of the data base 9, the next rule is thereby
constrained to be similar. On the other hand when there are many exceptions, the window
and the rule generated from it can change more rapidly. The rate of change of the rule thus
agrees with an intuitive approach to hill-climbing. However the methods are heuristic in nature
and neither can guarantee convergence on a correct rule. The first will stop when the window
size reaches the bounds of the storage available for it, so at least it will always terminate.
The second, though, may search forever attempting to construct a window of fixed size from
which a correct rule for ail of @ can be induced, if there is no such subset of $—for instance
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if the number of subcomponents of any correct rule exceeds the number of instances allowed
in the window-then the search is doomed to failure.

The Problem Attempted

The preceeding section outlined an iterative technique for discovering a rule to explain
a data base, and two methods of forming a new window as part of this technique. The problem
chosen as a vehicle for studying them had to have a number of characteristics, First, it had
to be real, it would have been easy to create an artificlal problem by choosing a set of
‘attributes’ and arbitrarily assigning subregions of the space so created to classes. This would
inevitably build into the task preconceptions of what such a task should look like, Secondly,
a substantial data base was necessary because the techniques are primarily concerned with
problems of storage that do not arise with small training sets. The rule sought had to be non-
trivial, because difficulty could be expected to magnify the difference between a sound and
an unsound approach, But in spite of ail these the task had to be of manageable proportions.
it was anticipated that the number of trials necessary to evaluate the approach would be in
the hundreds, and although the computer facilities generously made available were substantial
they were not inexhaustible.

The task settled on was related to the chess problem posed by Donald Michie, but scaled
down in complexity. Again there are only four pieces on the board (black king and knight, white
king and rook) with black’s turn to move. The question asked is this:

Given: a position (neither stalemate nor checkmate) In which the black knight Is
pinned or skewered by the rook, or the rook has achieved alinear fork of the black
knlght and king. After black’s move, can white Immediately capture the knight without
either leaving the rook en prise or causing stalemate?

Two examples are shown in Figure 2. in the left-hand one the black king must move and,
whatever he does, the rook can then capture the knight so the knight is /ost. The right-hand
case seems simiiar, but this time the black king can move to the corner. if he does so the
rook cannot capture the knight without causing stalemate, so the knight is safe. As these
*examples show, determining whether the knight is safe or lost two-ply under these conditions
stilt requires care, Note that the original problem has been restricted in two ways, The Initial
position Is a pin, (linear) fork or skewer instead of any arbitrary configuration of the pieces;
this reduces the size of the data base. Secondly, we are ignoring the possibility that white
can mate on his next move without capturing the knight; this reduces the complexity of the

rule that must be discovered.

Fourteen quasi-geometric attributes relevant to this task were defined. Three examples
should give their flavor:
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Figure 2: Two examples of initial positions

e The distance in king moves from the black king to the white rook, with possible
values 1, 2 and more than 2. If this distance is 1 or 2 there is a possibility that the
black king can move to threaten the rook.

¢ Whether or not the black knight occupies a square one away from a corner and on
a diagonal. As Figure 2 illustrates, this can be important in deciding whether or not

black can threaten stalemate.

¢ Whether or not the black king can move so that it is next to the knight, and thus

defending it, This is the least geometric of ail the attributes, but it can still be
thought of in terms of set operations rather than search. if we denote the set of
posltions

adjacent to the black king by bk

adjacent to the white king by wk

adjacent to the black knight by bn

in the white rook's rank or file by wr

ditto but with the knight between them and the rook by shadow
then this attribute can be expressed as

bk [ bn () (—wk) [} ( (—wr)|J shadow) is non-empty

Nine of these attributes had two permissible values, five of them had three.

Ail possible initial chess positions as above were generated and the values of the fourteen
attributes plus the class (lost or safe) determined. These attributes do not define a position
uniquely: many different positions can map into a single vector of attribute values, so the
number of distinct vectors is a small proportion of the number of possible positions. Nor are
they independent: most of the 29 % 3% points in the attribute space do not correspond to any
position. in this case it was found that



e No two positions with the same vector of attribute values belonged to different
classes, so the attributes are adequate for this task. Had this not been the case,
there would have been positions for which it would not have been possible to tell
whether the knight was /ost or safe from the values of the attributes alone, and so
the task of explaining the data base would have been impossible.

e There are 1,987 distinct vectors.

The data base (hereafter referred to as pf&s) was taken as this entire collection of nearly
two thousand instances, Since it is complete, any rule that explains it gives a precise answer
to the question posed above. The complexity of an exact rule couched in terms of these
attributes is brought out by the Appendix, which gives a full specification of the attributes
and the simplest known correct rule in the form of a decision tree.

it is important to reaiise that the game of chess has no central role in this evaluation,
but merely serves as the source of a non-trivial task that can readily be understood by human
beings. Neither the induction algorithm nor the iterative technique being investigated have
anything pertaining to chess associated with them. As far as the programs are concerned,
this is a task of inducing a complex class-prediction rule from a data base of two thousand
elements described by fourteen other attributes. Any task of similar dimensions would be
handled similarly, whether it arose in the context of anaiysing bubble-chamber photographs
or picking the winner of the Melbourne Cup.

The induction Algorithm Used

The iterative technique proposed earlier is clearly not tied to any one induction algorithm.
its only interaction with the latter is to provide a subcollection of instances and to receive back
a rule adequate to explain the subcollection. It should be possible to replace the algorithm used
in this set of experiments with another and obtain comparable resuits. in fact the algorithm
used here is a simple and unsophisticated relative of Hunt's CLS. The virtues of our version
lie in the direction of compactness and efficiency rather than ‘intelligence', so if anything a
more advanced algorithm should give better results.

CLS-like systems require that each instance be specified in the same fairly rigid format.
We imagine some fixed list of attributes each having a (usually small) finite number of permis-
sible values. For example color of eyes might be an attribute with permissible values blue,
green, brown, black and other. A rule will relate one of these attributes to values of the others,
The attribute so distinguished is normally called a class from the fact that this approach was

developed in a pattern-recognition context,

Suppose we have a collection € of instances whose class we wish to relate to the other
attributes, Three cases arise, if C is empty then we can offer no explanation of it, if ail
members of C are of the same class we can relate them to this class without further testing.
Otherwise we select some attribute A whose permissible values are Ay, Ag,. ... Ay (say) and
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partiton C into subcoiieotions Cy, Cy,...Cn Where €4 contains the members of C that have value
A4 of L. Graphically we have a structure

test
attribute
A
|
| | | |
-T Jiz Ala ce An
Cs Cy C3 co Cn

where each branch corresponding to a value of A contains a subcollection of instances, We
then do the obvious recursive thing of applying the same process to each C4 In turn. The result
is a tree, Each internal node causes us to branch on the value of some attribute, Each leaf is
either null because no instances in the training set correspond to it, or contains a collection of
instances of a single class which we will call the assigned class of that leaf, This tree is itself
the rule that we seek, because it maps any instance to a leaf which either has an assigned

class or is null.

The trick building this tree is in deciding at each stage which attribute 4 to branch on.
Certain attributes can immediateiy be exclued from consideration. if ail but one of the C;'s
are empty then it would be pointless to select this attribute; this filter automatically prevents
testing the same attribute twice. There is still quite a scope for choice, which can be made
in many ways. As originally suggested by Hunt, we could use a system of costs: measurement
costs for determining the value of an attribute, and misclassification costs estimated by a
type of lookahead procedure. Using this approach we would select that attribute for which
the sum of these costs was minimal, and so hope to build a minimum-cost rule. Alternatively
we could use task-specific information to reject or suggest possible attributes in context,
For example we could reject as unlikely the testing of whether the knight could flee before
seeing whether it could capture the rook, or we might suggest that it is a good idea to start by
finding whether the king is in check, Such a knowledge-based approach would use plausibility
to guide the rule construction in much the same way that Meta-DENDRAL uses a weak model
of its task domain to guide the construction of a strong one, and would tend to produce a rule
that a human being might find easy to understand.

For these experiments, though, we used a much more straightforward task-independent
heuristic aimed at giving a simple rule. (The choice of simplicity as the goal was made because
such a rule is more likely to be general, and so cover instances not included in the window from
which it was formed.) Suppose as above that we are considering attribute A as the next test.
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If we select it, we will be left with the residual task of building trees for each of the €4 and we
would like some predictor for the complexity of these subtrees. Each €; is a collection of some
number s; of Instances of class safe and /; of class lost. If either of these numbers Is zero
then the tree for the branch containing C; will be a leaf. If the number In either class Is small
then we would expect that it would not take many more tests to separate these instances
from the rest. After some trial and error we found that an estimate of the complexity of the

tree required for C; as
\/mlnlmum(s;,l‘)

appears to work quite well, The total complexity of all residual subtrees If A Is selected is
then the sum of these measures over the collections C;. At any stage, the attribute selected
as the next node on the tree is one that minimizes this estimated total residual complexity,
and so the selection method is akin to a I-step lookahead. (Some additional experiments are
currently being performed using an information-theoretic model of complexity.)

This Induction algorithm and the iterative technique that uses it exist as a collection of
programs written In a dialect of PASCAL for the DEC 10 [Kisicki and Nagel1876 ]. All execution
times appearing In this report are for a KL 10. The programs themselves were written with an
eye to their adaptation for other problems; copies are available from the author.

Results Using the First Method

Recall that the first technique Involved selecting a subset of 9 called the window, and
repeatedly adding to it exceptions to the rule developed to explain it, with the restriction
that no more than some fixed number of exceptions can be added at each iteration. The two
Important variables here are the size of the initial window and the exceptions limit. If these
numbers are very small then many iterations will be required to generate a correct rule; if too
large, then not only will the window grow rapidly, but the time taken by the inductive algorithm
to find a rule adequate to explain the window at each iteration will also Increase. Two examples
with the pf &s data base should illustrate this. A run was made with the initial window containing
40 instances and the number of exceptions added at each iteration limited to 20 (l.e. 2% and
1% of the data base respectively). Ten iterations were required to generate a rule correct
for all of 9. Each was fairly short since the window was small; the total time required was 6.4
seconds and the final window size was 106 instances, In contrast, when the initial window
contained 400 Instances and up to 200 exceptions could be added at each iteration (20%
and 10% respectively), only four iterations were needed. The total time however was still 4.1
seconds due to the larger initial window size, As a consequence of this larger initial window
there were fewer exceptions at each iteration and the final window contained 460 instances,
More details of these runs appear in Table 1.

A better choice for the two parameters would seem to lie somewhere between these
extremes. A number of runs was made with the initial window size ranging from 60 to 360 and
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the exceptions Hmit varying from 26 to 126. Each run was repeated 10 times with different
random choices of both the initial window and the exceptions added at each iteration (when
the number of the latter exceeded the limit). As before, three measurements are important:

The total time taken to find a correct rule; this gives a direct comparison of the
suitabllity of different combinations of the initial window size and the exceptions
limit,

The number of iterations required; this gives a feel for the rate of convergence of
the process.

The final window size; this demonstrates the reduction in random access storage
that may be achieved using the scheme.

The averages of these three measures over each group of ten runs Is shown In Tables 2a, 2b
and 2c. They indicate that, for intermediate vaiues of the initial window size and exceptions
limit, the first method exhibits quite consistent behavior. A correct rule Is typically discovered
In about 4 Iterations and 3-3.6 seconds, with the final window containing 14% -17% of the
total data base. This consistency is quite important to the usefulness of the approach. If it had
turned out that performance was very sensitive to the choice of values for the initial window
size and/or the exceptions limit, then using this method in practice would entail many trials to
find a happy combination of values. The substantial 'floor' covering most Intermediate values
of the tables is reassuring in that, If it carries over to other problems, a fairly arbitrary choice
of these parameters is likely to yield acceptable results.

Given the complexity of the rule in the appendix, taking a little over three seconds to
find It seems good, and doing so in about four iterations attests to the rapid convergence of
the scheme. But the primary justification for the approach is that It requires less fast memory,
In this case about one sixth of what would be needed to store the whole data base. To place
this figure in context (at least with respect to the induction algorithm being used), we tried
to produce a correct rule directly from large subsets of the Instances. Although more than
100 such subsets containing from 26% to 60% of the total data base were tried, In no case
was a rule found that was adequate for ail the data. This contrasts with the performance of
the iterative approach, which is able to find a correct rule each time using considerably less
space.

Another result using this method may be of interest. If the Initial window size and ex-
ceptions limit are set very low, a correct rule is (eventually) obtained with a very compact
final window. For example, one run with both of these parameters set to 1 found a correct
rule with a final window consisting of only 88 instances, or about 4% of the total data base.
This final window represents in some sense a distillation of all the pf&s data, containing as It
does all the 'special' cases and enough of the ordinary ones to indicate a correct rule. So this
techniqgue may also be an appropriate mechanism for sifting large data bases so as to build a
tutorlal collection of Important cases.
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Results With the Second Method

The second method differs from the first in the way that the new window is formed at
each iteration, The rules governing its composition are:

e The window size remains fixed.

e At least one instance corresponding to each subcomponent of the rule developed
from the old window also appears in the new one. In our case the rule Is a decision
tree, each subcomponent of which Is Identified with a leaf. As before, some leaves
are null In the sense that no instances map to them. So each non-null leaf In the old
rule Is represented In the new window by one or more of the Instances that mapped
to that leaf.

e« No more than a fixed number of exceptions can become part of the new window,
Some preliminary experiments were carried out varying this limit from 33% to 60%
of the (fixed) window size; results were quite uniform, so the higher percentage
was chosen.

The number of exceptions incorporated into the new window was then the minimum of
the number of exceptions to the old rule,
half the fixed window size, and
the window size less the number of non-null leaves in the old rule

and, as before, a random subset of this size was chosen from the exceptions If there were
too many to Include them all. The instances from the old rule were also selected randomly;
first, one corresponding to each non-null leaf in the old rule, and then an appropriately sized

subset of the remainder,

The reason for developing this method was to ensure that the window would not expand
to such an extent that it overran the storage available for it. Consider for example the results
with the first method where the initial window contained 160 instances and the exceptions
limit was 76, The average final window size over the ten runs is shown in Table 2¢ as 297, but
in five of those ten cases the final window contained more than 300 instances (the maximum
. was 343). If the total space available for storing the window had been sufficient for only
300 instances, the first method using these parameter values would have been successful in
developing a correct rule in only half the trials-the others would have had to be abandoned
because of insufficient space, In contrast, if the second method were used with a window
size of 300 instances then it would always succeed, because there do exist collections of
300 instances from which It is possible to discover a correct rule.

This second method may be viewed then as containing an element of insurance, and as
such should be expected to incur some cost in terms of increased times to find a correct rule.
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As before, a number of dlfferent values of the only parameter (window size) was tried with ten
runs each; the results are summarized in Table 3. This shows that any additional cost Is slight,
as a typical run here requires about 3.5 seconds and 4 iterations. Once again the performance
of the iterative scheme Is quite stable for intermediate values (i.e. window sizes around 16%
of the total data base), but falls off rather sharply as the window size is reduced below a
comfortable level. The reason for these Increased times would seem to be that the number
of subsets of a given size from which a correct rule can be induced declines rapidly with this
size, and so the number of iterations necessary to find one of them Increases. On the other
end of the scale, however, the performance is predictable-the slow increase in time taken
represents the roughly linear additional effort required to generate a rule for a subset as the

number of Instances In it grows.

Conclusion

The pf &s data base has been explored quite extensively using these techniques. Although
It Is the largest data base for which a comprehensive investigation has been conducted, further
encouraging results have been obtained when the iterative approach has been applied to other
problems. In a recent trial, for example, another set of 20,236 instances each described by
26 attributes was analysed using the first method. A rule was found at the first attempt, using
an Initial window size of 400 and an exceptions limit of 100. Twenty Iterations were needed,
taking a total of 394 seconds, and the final window contained 2,160 instances (or about 7% of
the data base). The rule itself was roughly seven times as complex as the one for pins, forks
and skewers shown In the Appendix, If the difficulty of an induction task can be approximated
by the product

rule complexity X number of instances X number of attributes

then this problem was more than two orders of magnitude harder than pf&s. Comparison of

the time required to solve each problem suggests that it Increases only linearly with the dif-

ficulty of the Induction task, and experiments with tasks of intermediate difficulty support this

conjecture. This approach does not seem to suffer from a combinatorial explosion (such as

that noted In [Hayes-Roth and McDermott 1877]) which would prevent Its application to more
- difficult problems.

These results, together with those of the previous sections, demonstrate that it is Indeed
possible to generate a correct rule to explain a large collection of Instances, even when only
a small part of this data base can be held in random access memory. The lterative technique
discussed, coupled with either method of selecting the randomly accessible subset of the
data, seems to converge quickly. One main advantage of this lterative technique Is that It
requires little or no modilfication of whatever inductive algorithm Is being used, but only the

way In which it Is used.
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In fact the results go further than this. The pf&s induction problem used as an example
throughout this paper contains about two thousand instances. This was small enough to fit
In random access memory, so the same inductive algorithm used in the above experiments
was applied to It directly. The rule (a correct one, naturally, since it was derived from and
explained the entire data base) was obtained in 3.6 seconds. This figure Is marginally greater
than the time required in many of the trials using the iterative technique with both the first
and second window-selecting methods, and almost ail of those using intermediate values for
the parameters (for which the mean time Is 3.3 seconds with standard deviation 0.2). Thus
the techniques discussed In this paper, which may become a matter of necessity when dealing
with a large data base, may also be desirable for reasons of efficiency when dealing with a

smaller one.
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initial Window Size 40 initial Window Size 400
Exceptions Limit 20 Exceptions Limit 200
iteration Window Number of Window Number of
Size Exceptions Size Exceptions
1 40 176 400 27
2 60 256 427 18
3 80 117 446 6
4 100 346 460
6 120 131
6 140 43
7 160 64
8 180 15
9 196 1
10 196 -
time: 6.4 seconds time: 4.1 seconds

Table 1: Detailed results for two extreme cases.
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initial
Window
Size 26
60 4.0
100 4.4
160 3.9
200 3.4
260 3.6
300 4.0
360 3.9
Table 2a:
initial
Window
size 26
60 8.6
100 7.1
160 6.8
200 4.8
260 4.6
300 4.6
360 4.1
initiai
Window
Size 26
60 207
100 226
160 242
200 280
260 316
300 362
360 406

Table 2c¢: Average final window size.

Average time to find correct rule

Exceptions Limit

60 76 100
4.2 4.2 4.2
3.7 3.1 3.9
3.0 3.1 3.4
3.7 3.0 3.2
3.4 3.4 3.2
3.2 3.4 3.6
3.4 3.4 3.6

Exceptions Limit

60 76 100
6.3 6.1 6.6
6.6 4.6 6.1
4.3 4.3 4.6
4.8 3.9 4.0
41 4.1 3.9
3.6 3.8 3.9
3.6 3.6 3.9

Exceptions Limit

60 76 100
248 317 376
268 294 360
269 297 321
310 312 332
352 344 366
381 387 387
417 421 412

17

126

4.3
3.6
3.8
3.2
3.3
3.3
3.7

(seconds),

126

6.6
4.0
4.8
4.0
4.0
3.8
3.9

Table 2b: Average iterations to find correct rule.

126

390
368
343
326
361

378
418



Window Size Average Time Average iterations

to Find Rule to Find Rule

200 10.1 14.0
260 4.6 6.6
276 3.4 4.1

300 3.4 41

326 3.3 3.8
360 3.4 3.6
376 3.7 3.9
400 3.6 3.6
600 3.9 3.4
600 4.6 3.4

Table 3: Average performance over ten runs using the second method.

Appendix: A correct rule for the pins, forks and skewers induction problem.

This rule Is presented as a tree turned on its side. Each interior node is an attribute name,
and the branches corresponding to the various values of the attribute appear underneath it.
Each leaf is either a class (lost or safe) or null.

The attribute names and their meanings are as follows:

distance k-n

distance k-r
distance k-wk
distance n-r
distance n-wk
distance r-wk
r threatens k
r threatens n
k can approach
k at p2
wk at p3
wk at pb
n at p4
wk next to r tine

distance in king moves from the black king to the
black knight ('3' means ‘greater than 2')

ditto black king to white rook

ditto black king to white king

ditto black knight to white rook

ditto black knight to white king

ditto white rook to white king

white rook checks black king

white rook threatens black knight

black king can move adjacent to black knight
black king is on an edge one square from a corner
white king is on an edge two squares from a corner
white king diagonally two squares from a corner
black knight is diagonally one square from a corner
white king is in a rank or file adjacent to the one
occupied by the white rook
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Rule for pins, linear forks and skewers

k can approach
distance n-wk

distance k-r
1 —+safe
[k at p2

n at pd

2] t| t—safe
fw’ost

T

t L fw’ost
n at pd

k at p2
3+ t=+] trasafe
f+lost

L fis/ost

2mrsafe
A 3+ safe

Cdistance k-r

distance r-wk
wk at p3
k at p2
1= t] ti+safe
fwlost
fwlost

2+ safe
3+ safle

1=

distance r-wk
wk at p3
k at p2

distance n-r

1/ost
2+ 2wnull
fH 3Hsaf9
f/ost
. fi=/ost
2w+/ost
3r+/ost

wk at p3
distance k-wk
[k at p2

Mwk next to r line
I [distance n=wk
tHl tHl 1+loSt

=]t t

3| t| 2

2w nuii
l_ 3+ safe
filost
L fi+/ost
3i+lost

fi/lost
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