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Abstract.

Let V, (n) be the minimum average number of palrwise comparisons

needed to find the k-th largest of n numbers (k > 2) , assuming

that all n! orderings are equally likely. D. W. Matula proved that,

for some absolute constant c¢ , V, (n)-n < ck log logn as n =» =

In the -present-paper, we show that there exists an absolute constant

) c' > 0 such that Vy (n)-n >c'k log log nas n »- «» , proving a

conjecture of Matula.
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1. Introduction.

The problem of selecting the k-th largest in a set of n numbers

by pairwise comparisons has been a subject of considerable interest

(e.g. Knuth [6][8]). Two particularly interesting situations are the

fixed-k case (n - «) and the median-finding problem (k = [n/27) .

Let V, (n) denote the complexity of selection in the worst case, and

v, (n) the average—-case complexity assuming that all n! permutations
Xx

are equally likely. Table 1 summarizes the known results. ~/

fixed k (n -» =) median +/

V (n)-n = (k-1) lg n + f(k) n > V (n) > 1.750 2/
y(n) RA Z Yppe\t 2

[2] [4] [5] [10] [10] [1a]

ckln In n> V,(n)-n > ? 1.5n > V_,(n) > 1.375n
- k = 'n/2 _
7, (n)

[9] [1]

Table 1. A summary of known results on selection problems.

- As seen from the table, no good lower bound 1s known for the fixed-k

behavior of v, (n) . It 1s not even known whether V,(n)-n —- © as

n-» » [6][8]. Sobel conjectured [8] V,(n)-n to be of the order log n ,
as 1s true in the worst-case complexity, But in 1973, Matula [9] devised

an elegant algorithm which finds the k-th largest using n+ ck(ln ln n)

* ]z In this paper, we use 1g to stand for logarithm with base 2.
+

Y/ These results have generalizations for the case k = an with any
fixed 0 < @ < 1 .

2/ An improved lower bound of (11/6)n was claimed in [12].
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comparisons on the average; and he conjectured that the k(lnln n)

- term cannot be further reduced. In this paper, we prove that

V, (n)-n > ¢'k(ln In n) , thus confirming the conjecture. As a result,

Vv. (n)-n 1s determined to within a constant factor asymptotically.

Main Theorem. For every integer k > 2 , there exists a number Ny

such that ¥(n)-n > 7 k(n Inn - Ink - 9) for all n > N, .

In Section 2 some basic concepts are introduced, In Section 3 we

illustrate certain aspects of the proof by showing a weaker form of the

theorem 1n the case k = 2 , under a severe "regularity" constraint on

the class of allowed algorithms. In Section 4% we examine the difficulties

encountered 1n extending the discussion to include non-regular algorithms,

We then introduce some new concepts and prove a crucial result (the

’ Limited-Anomaly Theorem) to prepare for the proof of the Main Theorem,

which is completed in Section 5.
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2. The Accounting Schemes.

An algorithm for selecting the k-th largest of n (distinct)

elements X = {x25 0005x is a binary decision tree T [8].
Associated with each internal node v 1s a comparison between two

elements Xs X.. . We will say " v compares X. Xs ", and use the

notation comp(v) = (x; PX) . The branching at v 1s determined by

whether Xs < x. or X. ZX. . By analogy with a tennis tournament
that selects the k-th best of n players, we will freely use in this

paper descriptions such as " Xs defeats X; "(if x, > X.1) :

" Xs is undefeated (so far) ", etc.

Any particular ordering ¢ satisfied by the input, 1i.e.,

X5(1) X52) ® HOE %5(n) , determines a path from the root to a
leaf in T . Let S(0) denote the sequence of internal nodes on this

path; and let s(0) = |5(9) | , the number of comparisons made. The

average cost of T 1s

COST (T) = + 2. s(o) (2.1)
n. 5

The average—case complexity v, (n) of selecting the k-th best of n

is the minimum cost COST (T) among all decision trees. Without loss

of generality, we consider only algorithms that make no redundant

comparisons (i.e., comparisons whose results can be deduced from

comparisons made previously).

Let T be any algorithm. We consider two types of non-crucial

comparisons: for each input ordering © , let 5,(9) be the set of

comparisons made by T 1n which the loser has been defeated previously,

and 5,(0) the set of comparisons involving at least one player ranking
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in the top k-1 . We shall write s; (0) = 5; (0) (i = 1,2) . Note

that a comparison can be in both 8, (9) and 5, (0) . As each player

except the top k must encounter a first defeat, we have

s(o) > n-k+ s4 (0) . (2.2)

Also, because each player not in the top k must lose to some player

ranking below the top (k-1) , we have

s(0) > n-k+ s,(0) : (2.3)

Formulas (2.1), (2.2), (2.3) lead to

1

COST(T) > n - k + =x 2, s, (0) , (2.4)
1] 0] ade

and

COST(T) > n - k + 11 2 (s,(0)+s,_(0)) (2.5)

We will transform (2.5) into another form. For each internal

node v , let qg.(v) (i = 1,2) be the probability that comp(v) is

in 8; (0) . Precisely, if we let r(v) = {0 | s(0) contains v} and

r;(v) = {o]|oer(v), camp(v) es; 0)} (1 = 1,2) , then

T.(V

a; (v) = 50]Al
+ Irv) |.

" We define further

q(v) = a1 (V) + a, (Vv) ’

and

alo) = 22 av) .
Ve s(a)



Then

= (5,00) + 5,00) = ZT (rv) [+ |r)
YJ veT

= 2 rv) av)
v ET

= 2 2 qv)
oc VE S(0)

. oo ao) (2.6)
0

We obtain from (2.5) and (2.6),

1 1

COST(T) > n =k +75 = 2 ao) . (2.7). n.

we collect (2.4) and (2.7) in the following lemma.

Lemma 2.1.

1

COST(T) > n -k + — 2 s,(0) , (2.8)

1 1

COST(T) > n - k + = = 2. a(o) . (2.9)
- 2 Na a

_ We can think of the two formulas in the above lemma as two counting

methods for the comparisons. The first one 1s direct counting, while the

other 1s distributive counting as the cost 1s "distributed" to the

internal nodes of the decision tree. To illustrate the utility of these

alternative counting methods, we can combine the two formulas to obtain

1 1

cost (Tr) > n - k + T nr 2. (8, (0) +a(o)) . (2.10)
I)

Our aim will be, roughly speaking, to show that for any permutation 0 ,

6
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s, (9) + a(0) > const, x k In ln n (2.11)

That is, for any computation sequence S(c) , either itself contains a

large number s, (0) of non-crucial comparisons, or it will effect a

large number «Q(o) = 2 q(v) -of non-crucial comparisons distributed
ve 5(0)

over other paths. However, in the proof we shall not be using (2.10)

and (2.11), but rather Lemma 2.1 itself, in order to obtain better

coefficients of k ln ln n in the lower bounds.

Remark. The quantities s(o), 5, (0),0(0),... all depend on T ; we

have suppressed this dependence in our notations for simplicity.
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3 Regular Algorithms.

3.1 Introduction.

In this section we shall prove a weaker form of the Main Theorem for

k = 2 , under certain "regularity" constraints on the algorithms under

consideration.

We begin with a discussion about general algorithms. Let T be

any decision tree algorithm selecting the k-th largest of X = SFE NEERFE SY .
One can view the computation process for any input ordering 0 as

building up successively larger partial orders on X , Formally we

associate with each node v in T a partial order P(v) , which is

the transitive closure of all the relations Xs > x. obtained on the
path from the root of T to Vv (prior to performing the comparison

at v ). We call comp(v) = (x, X45) a joining comparison if x,

and x. belong to different connected components in P(v) . At each
leaf£ , P(Z) must contain only a single component, otherwise the

relative order of elements 1n different components can change the

identity of the k-th largest element. Thus, there are exactly n-1

joining comparisons comp(v) in the sequence ve S(0) for any 0 ;

we denote the subsequence of these nodes vv by S'(o) .

Clearlyx 1s a maximal element in the partial order P(v) 1f and

only 1f x 1s yet undefeated. A component C of a partial order 1is

said to be anomalous if C has more than one maximal element. Amaximal

element x in P(v) 1s anomalous if x 1s 1n an anomalous component,

and normal otherwise. A partial order 1s anomalous 1f it contains an

anomalous component. Figure 1 shows an anomalous partial order with Cy

being an anomalous component, x, a normal element, and xy , 5 two

anomalous elements.

8
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Figure 1. An anomalous partial order
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Figure 2. Creation and removal of an anomaly.



We now define the notion of regular algorithms, in which the choice

of a comparison comp(v) is restricted by the current partial order

P(v)

Definition 3.1. An algorithm T is regular if no joining comparison

can involve an anomalous (maximal) element.

In particular, any algorithm that removes anomalous partial order as

soon as they occur 1s regular. For instance, suppose the current partial

order P(v) is as shown in Figure 2 and comp(v) = (x) 55) is performed

with result xq x , thereby creating an anomalous partial order. By

choosing the next comparison to be (x, PX) , we can immediately remove

the anomaly independent of the outcome. Matula'salgorithm [9] for

k = 2 1s of this type.

The rest of this section 1s devoted to proving the following result.

Theorem 3.1. Let T be a regular algorithm for selecting the second

largest element of {X 0X50 000%] . Then

COST (T) —n > = In In n- 6,

3.2 SomePropertiesof Binary Trees.

We digress to discuss some useful facts about binary trees.

Let M be a binary tree. We use NM; to denote the set of internal

nodes. For each node u , we use notations father[u] , brother{u] ,

¢sonfu] , rson[u] for the father, brother, leftson, rightson of u , .

respectively. Let D(u) be the set of internal-node-descendants of u ,

and D; (u) the set of leaf-descendants (u 1s also considered to be a

10
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descendant of u ). The weight w(u) is the number of leaf-descendants

of u; thus w(u) = |D;(u)| = [D(u)|+1 , and for any leaf u , w(u) =1 .

The external path length is defined as EWM) = 2. wu) .

ue lM

Lemma 3.2. Let M be any binary tree with n leaves, then

EM) >n(lgn-1) .

Proof. From Knuth [7, Section 2.3.4.5 eqs. (3) and (4)], one has

E(M) > n|lg nj -2n+2+2(n-1) > n(lg n ~- 1) . O

Let H = 2 1/1 be the Harmonic numbers (see [T]). It is
1<i<n

clear that

n+1
1 1 1 1

- em 4 = A =

hye = omToe no2 x =n'+1l

therefore

n+l :

H =H, > n(a for n>n' >0 . (3.1)

Definition 3.2. Let M be a binary tree. A subset of nodes V 1is

called a cross section of M if root ¢V and the following condition

. is true: For any two distinct Uy 5 cV , father[u, | # father(u,]

and U, “ have no common descendants.

+ Lemma 3.3. If V is a cross section of a binary tree M with n

leaves, then

w(u) n+l2 w(brother{u]) 2 1n( ZL) ?meV

where W = 2, w(u) .
ueV

11
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Proof. For each node u of M , use uw' to denote brother[u] when

it exists (i.e., when u # root ). Let depth(u) be the distance from

the root to a node u , with depth(root) = 0 , We sort the nodes in V

in decreasing order of the depth as Up sUpyeeer Uy ; l.e., 1< J implies

depth (u, ) > depth(u,) :

Fact A. For any 1 < J, ui and ug have no common descendants.

Proof of Fact A. The case 1 = J 1s trivial, as us and u. are brothers.

Assume 1 < j , which implies depth (u;) = depth (u) > depth(u,) :

If us and u. have any common descendants, then us , and hence a, ,
must be a descendant of u., . But this is ruled out since V is a

J

cross section.

From Fact A, we have for 1 <1 <t,

w(ul) < n- 2 wu) = n-W+t wu.) |.
i<j<t 9 1<j<i 9

Let W(i) = 2  w(j) , then
1<j<i

wu; ) § w(u, )
w(u) ~ n- WHW(i-1)

2 2. SEWEDTT 0 LSS1<i<w(u,) * ]

Therefore

12
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Soa |e)1 = t

uey "WU 1<i<t (ug)

1
> > —

1<j<u n=-WwtJ

= H -H I.

Lemma 3.3 then follows from formula (3.1).

3.3 Merge-trees and the Proof of Theorem 3.1.

Let T be a regular algorithm that selects the second best of n

players. We-shall show that, for any 0 ,

2 g(v) >lnlnn-7 (3.2)
VE §'(0)

This immediately implies Theorem 3 .l, since by Lemma 2.1,

1

COST(T) > n = 2 +5 (Inlnn-7)

1

> n+ 5 1ln ln n - 0

- We first state a useful fact.

Fact B. Let 8158 eesBy be positive numbers. Then

2, a; lga, > t(alga) ,
1<i<t

when a = (Z 1 )/® .: i
i

Proof. The function x lg x isconvexfor x > 0.

13
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The basis for proving (3.2) 1s the following bound on g(v) .

Lemma 3.4. Let veT and comp(v)= (x; : x4) a joining comparison

between elements 1n two components of sizes Cy 5 Cy , respectively. Then

°1 2 17%
UV)2 min gos che Te

1 2 “17% .

Proof. Recall that qg(v) = 4p (Vv) + a,(v) . There are four cases. If

x, and x. are both undefeated, then a, (Vv) > (cyte, )/n as the larger

of Xq Xe will be the largest of all elements with probability

(cyte, )/n . If neither is undefeated, then gq(v)=1 > cy/(eqte,)

If x; is undefeated and X. is not, then qq (Vv) = (Probability that
+

x, > xs) 2 c,/ (eq c,) . If x. is undefeated and x, is not, then

ay (Vv) > c,/(eqte,) by the same token. Thus the lemma 1s true in all
cases. [J

We shall now apply the lower bound on g(v) to prove (3.2). We

construct an auxiliary binary tree that represents the successive joining

operations performed in $'(0) , and then use results obtained in

Section 3.2.

Merge-tree. Let 0 be an input ordering to algorithm T . We can

construct a binary tree M(c) corresponding to §8'(0) with the following

properties.

(1) M(0) has n leaves labeled by the n input elements X = {X0% 000s} .

(2) Each internal node u of M(c) corresponds to a ve S'(0); the x, 's

that are descendants of fson[u] and rson[u] respectively form

the two components that are joined by the comparison at v .

An example of a merge-tree is shown in Figure 3.

14
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x x x

®

x

(

Figure 3. The merge-tree M(0) corresponding to the sequence

of joining comparisons (xg PX) ’ (x), : X,) ,

(xy 1%) b (x5: %,) J (x5: x9) *

15
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Let C(u) denote the subset of X which label the leaf-descendants

of u 1n M(c) . Define a function ¢ on M(0) , the set of internal

nodes of M(c) , by letting @(u) = g(v) if u corresponds to ve S'(ag) .

We wish to prove the following equivalent formula of (3.2).

Z ou) > Inlnn-7 . (3.3)
0

ue M( )1

By Lemma 3.4, we have for each ue M(9)

Ww Ww WwW, TW
1 2 1 2

pu) > MI ——>» —xo7 nr ’ (3.4)(= t, wo +, n
where Wy = w(Zson[u]) and W, = w(rson[u]) . Therefore, Theorem 3.1

will follow from the following result.

Lemma 3.95. Let M be any binary tree with n leaves. For each

ueM. , let glu) = min{ (w,+w,)/n , wy / (wy tw,) ’ Ww, / (wy tw) } where

Wy w( Zson[u]) and W, = w(rson[u]) . Then

2 g(u) >1lnlan-7.
ue M

Proof. The proof makes use of the lemmas in Section 3.2. It is given

"in Appendix A because of its length. ]

3.4 Remarks.

The lower bound given in Theorem 3.1 is only about half as large as

the corresponding bound in the Main Theorem. This is due to the use of

a relatively loose bound for g(v) in Lemma 3.4. A stronger bound for

q(v) will be used in the general proof in Section 5, where the regularity

constraint 1s also dropped.

16
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We also wish to point out that (2.8), the first formula in Lemma 2.1,

was not used in the above proof, but will be needed later 1n the proof for

the general case.

L7
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4, The Limited-Anomaly Theorem.

The arguments in the previous section fail when algorithms are not

required to be regular. The 1mportant assertion in Lemma 3.4 1s no longer

true. Consider the partial order P(v) exhibited in Figure 4, and suppose

that the next comparison v 1s between xy and an anomalous maximal

element X, Although the components C1 and C, have sizes 5 and

102 respectively, 1t 1s intuitively clear that the probability a, (v)

is less than (5 +102)/n , as max{x,,x,} is unlikely to be the largest

among elements in C, UC, It will be seen later (Section 5.3) that,

in estimating a, (V) , one should use f(x,) , the number of elements

in P(v) that are less than (or equal to) x, but not less than any

other maximal elements, 1n place of the component size Ic, In this

example f(x,) = 4 and thus a, (v) > (5 + b)/n , a much weaker lower

bound than (5 +102)/n . Therefore, two complications arise when

non-regular algorithms are considered, Firstly, it was previously possible

to attach a lower bound to g(v) which depended only on the shape of the

associated merge tree; now more details of the partial order P(v) must

be taken into account. Secondly, when comparisons involving anomalous

elements x. occur, we may obtain very weak bounds on av) , if f(x; )

1s small. We shall presently prove a result to overcome the second

difficulty, by stating that comparisons involving an anomalous maximal

element x, with a small f(x; ) cannot happen too often unless COST (T)

1s large anyway.

Let P be a partial order on X = {X,%5 005%] . For each x, ,

let H(x,) be the component containing Xo and h(x, ) = (x) |

For any maximal element Xe the fiefdom of Xs F(x;) is the set

18
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Figure 4. Difficulties caused by anomaly.
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1%; X, < Xx. (in P), andx : is not less than any other maximal element in P} .

We denote F(x, ) | by f(x.) . Note that F(x) - H(x, ) , and the

containment 1s proper 1f and only if x, 1s anomalous. When X, is

anomalous, we call f(x, ) the anomaly degree of X.

Let T be an algorithm that selects the k-th largest of n elements.

For any internal node veT , the comparison at v , Xs x , 1s said to

be anomalous of degree m 1f either x, or x. has anomalous degree m .

Theorem 4.1 (The Limited-Anomaly Theorem). Let T be an algorithm

selecting the k-th largest of X= {Xr %50 —_— x] , and 0 an input

ordering. Then the number of anomalous comparisons of degree < m 1S

at most (2mtl)s, (0) .

Proof. We assign a weight m+l-1 to an anomalous element of degree 1

for 1 <1 <m, and a weight 0 to all other elements. Let E and E?'

be respectively the total weight of all elements before and after a

comparison X. > x . Then the following 1s true.

Lemma 4.2.

(A) E'< E+2m .

(BY If X. > Xo 1s a first defeat, then ER! < E .

(c) If x. > % 1s a first defeat and an anomalous comparison of
degree < m , then E' < E .

Proof of Lemma 4.2. It 1s easy to see that at most two elements will be

assigned new weights after the comparison; namely, the two maximal elements

y and z whose fiefdoms contain Xs and x. respectively. Since the

largest increase 1n weight for an element is from 0 to m , this proves (A).

20
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To prove (B) note that x, > Xs 1s a first defeat implies Xe, = Z
After the comparison, z is no longer maximal, and F(y) « F(y)UF®.

We consider two cases according to whether z was anomalous of

degree < m before the comparison X. > X.o

gase (a). was anomalous of degree < m .

The decrease in z's weight 1s from mtl- f(z) to 0 while the

maximum increase in y 's weight is from 0 to max{0, mtl- (f(y)+ £(z))]

<mtl- f(z) . This means E'< E .

ase (b). was not anomalous of degree < m .

Then z's weight does not change; y's weight has two cases:

(bl) y was anomalous of degree < m . Then y's weight strictly

decreases due to the strict increase 1n its anomaly degree.

(b2) y was not anomalous of degree < m . Then y's weight remains 0 .

This proves (B). Statement (C) follows from the analysis of Case (a)

and Case (bl) above. This proves Lemma 4.2.

We will now complete the proof of Theorem 4.1. Statements (A) and

(B) ofLemma 4.2 imply that the total increase in weight along path S(o0)

is bounded by ems, (0) . Since the sum of weights of the elements is

initially 0 and always non-negative by definition, the number of

comparisons ng which fits statement (C) of Lemma 4.2 1s at most

ems. (0) . The total number of comparisons along S(0) that are anomalous

of degree < m 1s clearly at most ng + 8,(9) 5 and 1s hence bounded by

(2mtl)s, (0) . This proves Theorem 4.1. [J
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5. Proof of the Main Theorem.

5 .1 Introduction.

We will prove the following result in this section.

18k

Theorem 5.1. Let k , n be integers with k >2 and n > N, = (8k)

Suppose T 1s an algorithm that selects the k-th largest of n elements,

and 0 any input ordering. Then Q(¢) > k(ln Inn -1n k - 6) , if

s, (0) < p02

As defined in Section 2, the quantities a(o) , s,(9) depend on T .

Also note that, for n > I, , the following inequalities hold, as can be

verified by elementary arguments.

not > k 1n In n (5.1)

nt (Ok) > 21gn (5.2)

nt/12 > k (5.3)

lle first demonstrate that Theorem 5,1 implies the Main Theorem. If

- 0.2

there are more than n! xn 0.1 5 satisfying s, (9) > n , then (2.8)
implies

i 1 -0.1 0.2

cost (1) > n - k + = non n

> n - k + k In Inn ,

-0.1 :
in view of (5.1). On the other hand if less than n! xn of the 0's

satisfy s, (0) > nl? , then (2.9) and Theorem 5.1 lead to
-0.1

COST(T) > n - k + 7 =F (nl =n! xn )k(In In n - In k - 6)
1 -0.1

> n+zk(Inlnn-1Ink-6-n ln Inn - 2) .

22
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Again, using (5.1), we obtain

1

COST (T) >n +s k(lnlnn-1nk-09) :

Thus, the Main Theorem 1s true in both cases.

5.2 Some Results on Partial Orders.

Let P be a partial order on a set X = {(X0%55 000sX ] . Assume

that all orderings on X consistent with P are equally likely. We are

interested in bounds on the probability of some element X, being greater

than another element Xs (or all elements in some subset). For instance,

if Xo 1s the unique maximal element in a component (in P ) of size m ,

then the probability that Xs 1s the maximum of all n elements in X

is clearly at least m/n , and it is also not difficult to show that

Pr(x, > Xs) is at least m/(mtr-1) , if x is a non-maximal element
in a different component of size r , A generalization of these facts

1s given below 1n two lemmas.

Lemma 5.2. If x. is a maximal element, then

£(x;)
Pr(x, is the largest element in X) > — |

Lemma 5.3. If X. 1s a maximal element, and x. a non-maximal element
in a different component, then

f(x.)
Prix. > x.) > =

al ij’ = f(x.) +h(x,) -1
1 J
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Intuitively, the above lemmas must be true, since knowing that some

elements in F(x, ) are greater than some elements outside F(x; ) should

not lower the rank of Xo However, the proofs are not trivial, and are

given in [3] where related issues are studied.

Lerma 5.4, Suppose X. is the unique element in a component ¢ of

size m, and x a non-maximal element 1n a different component C' of

size A-m . Assume that A > 2k . Define the quantity B to be

(Pr(x; > x) + Pr(max{x,, xy} is in the top k-1 of X)) . Then

5 > min{l-e™X/8 yj_c7tm/b, (8/(en))® , 1 <t < Kk} .

Proof. See Appendix--B. U

5.3 Lower Bounds on g&v) .

Let v be an internal node in the algorithm T . Suppose v compares

Xs x . We will give lower bounds on q,(v) in terms of component sizes

such as f(x, ) » (x5) , etc. defined relative to P(v) .

Lemma 5.9. If xX, is a non-maximal element, then a (v) > 1/h(x,) .

Proof. If X] is also non-maximal, then a; (v) — 1, else by Lemma 5.3,
= . + . —ap (v) = Prix, > x) > £xy)/ (£(x;) h(x,) -1) > 1/n(x;) . C1

Lerma 5.6. If both x. and x; are maximal, then a, (Vv) > (£(x;) + £(x5))/n

Proof. The properties of Xs Xs being the largest element in X are
1 J

mutually exclusive. Hence a, (v) > — + 0 by Lemma 5.2. [

2



Lemma 5.7. Tf Xs 1s a maximal element and x, a non-maximal element,

Proof. It follows directly from Lemma 5.3. cl

Lemma 5.8. Suppose xX, 1s the unique maximal element in a component C ,

and %y a non-maximal element in & different component. If

h(x, ) < nt/3 and h(x;) + h(x,) > n1-(1/6k) r then
h(x.)

1 2 1

a(v) > Bx.) 3 7/6

Proof. Let m = h(x, ) , m' = h(x.) and A = mtm' . Then by assumption
- 1/ -

m < 077 and 4 > on (afer) (5.4)

Clearly A > 2k . By Lemma 5.4, we need only show that

-km/ A m 2 1
l-e 2 hm — = Rt ’ (9.9)m 1/6

and

-tm/ A A 5 m 2 1
min 1l-e + (2) > k= -3k 76 5041<t<k n

Ase <1 x +z xf for x > 0 , we have

~km/ A km 1 [kn\°l-e sy la =55 (5
2 3 2

op Bem 1 km
B m' Ant 2 A y (5.7)

Now, from (5.4),

m 3 Bk
= <n ‘ (5 0)
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This implies m/A < 1/2 and hence

m' > La
5 : (5.9)

Using (5.8) and (5.9) in (5.7); we obtain

“¥am/ A m ( <) m1-e > k 2 ox+ Eo (3)— m 2 A

(3 i =)> k = - 3k" n IE
- m

- 3m 2

This proves (5.9).

For 1 < t <k,~

t k-1
-tm/ A A A
we (4) 2 (3)

11

> n 6 + Bk 5 (k-1)

-( _ 2%)k> 2kn \° (5.11)

where we have used (5.4) and the fact n > N, > ELS We now use
(5X) and (5.9) to obtain

t

-tm/ A ny m
1l-e + (z) > Ly

> k=
= m

This implies (5.6) immediately. [J
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5.4 Completing the Proof.

As in Section 3.3, we construct a merge-tree M( 0) corresponding to

the merging process for ¢ , and assign ¢(u) = g(v) to each ueM(9), ,

It will be shown that, under the assumptions in Theorem 5.1,

2 o(u)> k(In In n - In k - 6). (5.12)
0ue M( ) 1

This would -prove Theorem 5.1, as

ao) = 2 av)
ve 5(0)

> 2 q(v)
ves (0)

LL o= 2 ou) .
ue M(0)

To prove (5.12), we first partition the set of nodes in M(a) into

upper and lower parts, U = (u | w(u) > nl/3 } and L = {u | wu) < nt/31 .

Let V' = (u ue U, fsonfu] ¢ L, rson[u] ¢ L}, V"= {u | ue L, father[u] e U-V'] ,

and V =V'{y Vv" . (These definitions are similar to those used in

Appendix A, and -properties Pl -P5 there remain true.)

We now partition V into seven disjoint parts Vio Vos : Vo

- For each ueV , we assign u to a unique Vi according to the following

procedure, which halts as soon as u is assigned,

. Procedure Decompose;

step 1: If there is some u' eD(u) where the joining comparison is not

between two maximal elements, then assign u to vy .

[comment: If u 1s not assigned in step 1, then the joining comparison at

U creates a component C(u) with a unique maximal element;

2
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recall that C(u) consists of the x. 's that label the leaves

in D; (u) oJ

step 2: If UEV' , then assign u to Vs .

[comment: If u has not been assigned after step 2, then u must be

in V" and father[u] exists.] .

step 3: If father[u] compares a non-maximal element in C(u) with

any element, then assign u tO Vv, .
step 4: If father[u] compares the maximal element of C(u) with

another maximal element (in a different component), then

( Vv), if the comparison is anomalous of degree2/5
assign u to at most [n™”7 ,

h Ve otherwise.
step 5: If father[u] compares the maximal element of C(u) with some

non-maximal element (in a different component), then

1 1
| Bk

Ve if w(father[u]) < n ;
assign u to 1

took

| V7 if w(father[u]) > n
end Decompose.

© Let W, = >, wi) (1 <1i< 7), and
ue V,

i

2 2 ou") if ie {1,2,4} ,
| ueV, ul e D(u)

A; = 2, o(father[u]) if ie {3,6,71 ,
ueV.

i

2 > $(u0) +o(zathertul) | if ie {5} .ueV. u' €¢ D(u)
i
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In analogy with discussions 1n Appendix A, 1t 1s not difficult to

see that Vo 1s a cross section, and that

20 W, = n, (5.13)
1<i<T

and

2 E(w) > 2 A (5.14)
ue M(0), 1<i<T

We will now find lower bounds to the A's in terms of the Ww, 's.

We treat first A, for ie {1,3,6} , which are "costly" and thus

efficient algorithms should not have large Ww, for these values of 1 .

+A +

Lemma 5.9. A A; Ar > (Wy + W, + W)n

Proof. For each ue vy , some u' eD(u) has a comparison involving a

non-maximal element. Thus, by Lemma 5.5, 2 plu’) > nL/3 . We
u' € D(u)

have

-1/3
A > Vi|-n / . (5.15)

Similarly, by Lemma 5.5, we have

-1/%

EE A 2 (5.16)

As each ueV has w(u) < 2nt/3 , we have for ie {1,3}

1 -1/3
v;l > zw, n (5.17)

Formulas (5.15) - (5.17) lead to

A. > L W.on=2/3
1 — 2 1

1

(1-7)k :

> Wen ’ for ie {1,3} . (5.18)
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For each ue Vg r we apply Lemma 5.7 to father[u] and obtain

wu)
9(father(u]) 2 w(father{u

(1-2)-( 1- }

> w(u)n ok .

Thus,

1

(1- )be > 2. w(u)n ( 6k
ue Vg

1

(2)

Combining (5.18) and (5.19), we obtain the lemma. []

Lemma 5.10, W, < Butt 10 i

Proof. By the Limited-Anomaly Theorem (Theorem 4,1),

vl < @ra21e1)s(0) < ah,

since s, (0) < n¥:? by assumption. As each ue) has w(u) < nl/3 |
we have

. Ww, < |v RE < 8ntl/15 0y= Vy =

"2
Lemma.5.11. A, > =n lgn-1,

Proof. Let ueV, . For each u' eD(u) , p(u') > w(u')/n by Lemma 5.6,

as the corresponding comparison 1s between normal maximal elements. pig

gives, by Lemma 3.2,
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1 1 !
2 ou) > % 2 wu)

u' e€ D(u) u' € D(u)

1

> = w(u) (lg w(u) -1) .

As w(u) > 2/3 , we have |

1 1

2) p(u') > sv) len -1) .
u' ED (vu)

Therefore,

A > i 2 ww 5n-1)— n 3
ueV

2

Ww, |
2 3n lg n - 1 . C]

"5
Lemma 5.12. As > syten- 1.

Proof. If Vs | = 0 then We = 0 and the lemma 1s clearly true. We

thus assume that [v | > 0 . For each ue V.,
\ 1

2 eu) > Zww(@eg wm -1) ,
u' € D(u)

) Thus, using Fact B in Section 3.3%,

2 Doo) > = T ww ww -
ueV u' ED (vu) ueV

p, d

W
1 p

> ZW. 1g (5 +20)
Us|

Now, for each nev, y let the comparison at father[u] be between

X 4 and Xs , Where Xs is the maximal element of C(u). By Lemma 5.6,
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f(x.)+ f(x.)
ther(u]) > —= Jop (fa > =

w(father[u] > Li nl/? if x. 1s normal,
n ~~ — nh J

>

1 nl/% if X. 1s anomalous.n

Thus,

2.  o(father[u}) > [v [07 (5.21)
uev

5

Formulas (5.20) and (5.21) lead to

W
1 5 -4/5

> = le 157 * Vv, |n -1 (5.22)

By standard minimization technique (e.g. See the proof of Fact E in

Appendix A), (5.22) yields

1 1/5y + L L
bs 2 Ws lela 20m) To rm mL

1

The lemma follows, noting that 1g ln 2+ 3=5>0. Cl

n+l

Lemma 5.13. A > k In now +l 3 :

Proof. Let uev, , we write u'= brother[u] . By Lemma 5.8 and (5.3),
we have

wu 2 1

o(father[u]) > pak - 3k2 wu") NIE

~ w(u') n

As vo is a cross section, we obtain from Lemma 3.3. that
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A, > k 2 a - 35Z wu
ueV

;

n+l

> kiln no +1 - 3 CO]
7

We are now ready to prove (5.12), and hence Theorem 5.1. Using

Lemmas 5.9, 5.11, 5.12, 5.13 and formula (5. 14), we have

2 ou) > 2 a
ue M(0) i

I

(1-4)kK lg n lg n+ + — + = W
> (Wy + Wy Wen =o oT Sn

n+l

Hv i
]

Making use of (5.2) and (5.13)

lg n n+l
zoel) 2 TFHgWg) +k In oT 7S

u e M(0) 1
I

W

lg n _ novi on

From Lemma 5.10 and (5.2),

W 11/15ly 8 n

lg n
< 2

= 0 715

< 1 . (5.24)

Therefore, (5.23) leads to

2 p(w) > x EE xm E26 ,ue M(o) . %
I

for somex , O0<x<n .
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A standard minimization gives

> (wu) > SHES - 69]ue M( ) 1

>k (ln Inn -1n k - 6) ,

which 1s (5.12).

This completes the proof of the Main Theorem. OJ
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Appendix A: Proof of Lemma 3.5.

The lemma 1s clearly true when n < 8 . We shall thus assume that

n >8 , Note that, in this range,

1 I

,1/3 max { 3260, Fininn) . (A.1)
We say a node ueM; to be of' category 1 if g(u) = minfw ,w,}/ (wy +w,).

and of category 2 otherwise. For a node u to be of category 1, we must

| have

min{w,, Ww, } w+ W,
Ww < n ?
1 2

implying

Let us divide the set of nodes of M into an upper part U and a

lower part L according to whether or not w(u) > a3 . As n> 8,
the root must be in U and all leaves are in L , Now consider the set

V' of lowest nodes in U , 1.e.,

V' = {Ulueu, gson[u]&L , rson[ul ¢ 1} ,

and the set V" defined by

V'" = {u]uel, father[u] eU-V'} .

An alternative characterization of V" is given by

V' = {ul ue L, father[u] ¢ U, brother{u] ¢ U}

Let V=V'yV'. The following simple properties are easy to check.
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Pl: V' and V" are disjoint.

P2: Any two distinct nodes in V have no common descendants.

P3: Any two distinct nodes in V" have distinct fathers; furthermore,

the set ({father{u] | ueV"} is disjoint from the union of descendants

ofnodesin V .

P4: V" 1s a cross section of M .

P5: The family of sets {Dy (u) | ue V} forms a partition of the leaves
of M.

We partition V = V' yVvV" into ve (1<1 <4) as follows. The set

Vy 1s simply V' . Sets Vs ’ Va / Vy, are given by

V, = {UJU e Vv", father[u] is of category 2} ,

v, = {u] ueV", father[u] is of category 1, w(father[u]) < 02/3) ,
v, = {u|uev", father[u] is of category 1, w(father[u]) > n?/3) :

The definitions are illustrated in Figure 5.

Let We = 2, w(u) for 1 <1i< 4 , Define
u € v.

Ay 2. Z  elu)
= ueV, u' e D(u)

| A, = 2, 2 g(u') + s(zstrext)u € Vs u' € D(u)

As = 2 g( father[u] ) i=3,4,
u € V.

i

As an immediate consequence of property PH, we have

1<i<h
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U

/\ /\
, V'

AN

Figure 5. A schematic illustration of sets U,L,V'=V,,

V'" = Vs vs uv, ; nodes in V' , V" are labeled as

v' , v' , respectively.
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Now, from properties P1-P3, we have

2. ww _ > 2 A. (A.4)
UE M; 1<i<h

Our plan 1s to first derive lower bounds to As in terms of u , and

then apply (A.4) to prove Lemma 3.5.

Jn , 1Fact C. If w(u)<vn, then 2. gu) > = w(u)(lg w(u)-1) .
u' eD(u)

Proof. We may assume that ue M , as the assertion 1s clearly true

when u 1s a leaf. Now each u' ¢D(u) must be of category 2

(w(u') < Vn) , and hence g(u') = w(u')/n . Using Lemma 3.2, we have

1 t
2 g(u' ) = — 2 wu)

u' eD(u) u' € D(u)

1

> = w(u)(lg w(u)-1) . O

"
Fact D. A, > —lgn- 2.

. 1/310) < oaProof. Each ueVy satisfies w(u) < 2(n/”/2) < ¥n , and hence from

Fact C,

AL = L 2; gu")
uev, u' e D(u)

1

> Zz w(u)(lg wu) -1)
uevy

1

> = 2 wu) lg w(u) - 1.
uevy
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1/3
As w(u) > n’/-/2 (since ueU ), we have

1

AA 2 3 2 ww (Fin -1) -1—_ Nn bs
u€v,

Ll

> 1, n- 2 OJ— An = B °

Ws,

Fact ELE. A > *n 8B 3 .

Proof. The statement is obviously true when |v, | = 0 . We shall. thus

assume that Iv] > 0 . For each ueV, , g(father{u]) = w(father[u])/n
2

> 1/(2n /3) , since father[u] is of category 2 and is in U . Making

use of Fact C, we have

A, = 2 2 g(u' ) + 2 g(father[ul)
uevVy, u'eD(u) ue Vy

> 2 Tu) (1g wu) - 1) + Vl —575ue, & 23 >

We now use Fact B to obtain

W, W, |v,|
A, > —=1g == ~- 1+ (AS)
2 n A no 3

The right hand side expression al |v, |) achieves its absolute minimum

over |v, | ce [0,») at |v, | = ov, / (nt? In 2) , where
W Ww
2 ln2 1/3 1 2d = 5 jg == - 1 + — =(vy) n 5( 2 i ) + In 2 n

W
2

> =n lg n-3%
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Thus, formula (A.5) implies

Ws

proving Fact E. [J

The derivation of (A.6) from (A.D) 1s a standard argument, and similar

derivations will henceforth be referred to as "by standard minimization

technique" with details omitted.

For each eV; uv) w(brother[u]) > nt/3 Jo > w(u) , and father[u]
1s of category 1. Thus,

w(u
g(father{u]) _ (fatherly : (A.7)

’s
Fact F. > .

PCE Ay > =

Proof. For each ue Vy , wW(father[u]) < n2/3 . Using (A.7), we have

A; = 2. g(father[ul)
ueV

5

BN 5 wu
- w(father[u

uevV
5

W

z —75 +an

1 n+l
: A 1 - —_—Fact G y 2 ( 15 ) ree

Proof. For each ueV, , w(u) < 72/3 72 and w(father{u]) > 02/3
Using (A.7), we have

LO



g(father[u]) = w(FatherTal)

_ w(u 1 - w(u )~  w(brother[u w({father{u

S wu 1. 1
Z w(brother[u]) on l/?

Thus,

By = 2, g(father[u])
nev,

4

2 L- 2 TTorother] D ) (4.8)
2n uevV) u

As V" is a cross section of M by property Ph, so is vy, Fact G

then follows from (A.8) and Lemma 3.3. OJ

We will now finish the proof of Lemma 3.5. Using Facts D - G, we

obtain from (A.4)

W, + W W.
I~ 1 n+l

2 gv) > Sr lgn + 5 + 1 - nm—= 5= / -W, +

ue M, on n/> ont’? n= Wy 1

) Using (A.1l) and (A.3), we obtain then

W, + W, + w
+

2 eu) > 22 Sgn 41 - : In — oH == 2n 1 W. + W.+ W +1
ue lM e n 1 2 3

1 xX n+1

ICEL ’ (A.9)
where x= Wy + Wy TW,
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By standard minimization technique, we obtain from (A.9)

2 glu) > (737) (In Inn - 1) = 5ueM, an

> lnlnn-7 ,

where (A.1) was used in the last step, This proves Lemma 3.5. [J
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Appendix B: Proof of Lemma 5.4.

Let g(t) be the quantity B when the component C' has been

sorted and Xs is the t-th largest in it, Then, denoting by p(t)

the probability that x, 1s the t-th largest in C' under partial
J

order P , we have with m' = A-m ,

B = Zz p(t)s(t) .
1<t<m'

As x. is not a maximal element, p(l)= 0 . Therefore, the lemma would
follow, if we can show that for all 1 <t <m',

km tv-— -— 1

B(t) > min (2 /8 , 1-e t m/ A + (2) for 1 <t' << 3 (B.1)
Let B(t) = ata, , Where

a, = probability that Xs > Xd /

8, = probability that max{X,,X, is in the top k-1.

Clearly,

a, = 1 - (probability Xy < x.)

m
= 1 -

.m

£ £ _ =)
m

t
1-11 ~~ .1-2-3)

. But,
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A

< (-t/8) .

Thus,

a > 1 ~t/ 8 for 1<t<m' . (B.2)

Formula (B.2) proves (B.l) for the case k < t <m'. We shall now

restrict our attention to the case 1 << t <k' = min{k,m'+1} . In this range,

a, _ Pr(max{x;, x] is in the top k-1 of X)

> Pr(the t -th largest element in CyC' is in the top k-1 of X)

= 2 Pr(the t -th largest element in CyUC' is the ¢-th largest
t<i<k

in X)

(1) 0)_ 5° A-T t-1
n

t<i<k-k (3)
Taking only the term f = t and using the assumption A > 2k , we obtain

2 = n n—-1 n-t+1l

t

> (55)— n

A t— !> (2) » when 1 < t < k' . (B.3)
From (B.2) and (B.3), we see that for 1 < t < k'

t

> 1- ees (4) .— 2n

Thus, (B.l) 1s also true in this case.

This completes the proof of Lemma 5.4. J
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