ON THE AVERAGE-CASE COMPLEXITY OF SELECTING THE k-th BEST

by

Andres C. Yao and F. Frances Yao

STAN-CS-79-737
April 1979

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

*
On The Average-case Complexity of Selecting the k-th BestJ

*/
Andrew C. Yao— and F. Frances Yao

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

Let \-;'k(n) be the minimum average number of pairwise comparisons
needed to find the k-th largest of n numbers (k > 2) , assuming
that all n! orderings are equally likely. D. W. Matula proved that,
for some absolute constant c , {/’k(n)—n < ck log lognasn=-=
In the -present-paper, we show that there exists an absolute constant

c' > 0 such that Vk(n)—n >c'k log lognas n »» , proving a

conjecture of Matula.

Keywords: algorithm, average-case, binary tree, comparison, complexity,

decision tree, selection.

*
—/ This research was supported in part by National Science Foundation
grants MCS-72-03752 A03 and MCS-77-05313.

+
J Part of this work was done while this author was visiting Bell Laboratories,
Murray Hill, New Jersey 07974.

1. Introduction.

The problem of selecting the k-th largest in a set of n numbers
by pairwise comparisons has been a subject of considerable interest
(e.g. Knuth [6][8]). Two particularly interesting situations are the
fixed-k case (n - ») and the median-finding problem (k = [n/27) .
Let Vk(n) denote the complexity of selection in the worst case, and
_/’k(n) the average-case complexity assuming that all n! permutations

*
are equally likely. Table 1 summarizes the known results.—/

fixed k (n - =) mediani/
() Vk(n)-;p = (k-1) lg n + £(k) >n > Vn/2(n) > l.75nﬂ
V., (n
8 [2] [4] [5] [10] [10] [11]
_ ckln 1ln n > \—/'k(n)—n > 2 1.5n > \ /2(n) > 1.375n
¥, (n) &
[9] [1]

Table 1. A summary of known results on selection problems.

- As seen from the table, no good lower bound is known for the fixed-k

behavior of Vk(n) . It is not even known whether \-fg(n)-n - ® as
n - o [6][8]. Sobel conjectured [8] V.(n)-n to be of the order log n ,

2

as is true in the worst-case complexity, But in 1973, Matula [9] devised

an elegant algorithm which finds the k-th largest using n+ck(ln 1n n)

*
Y In this paper, we use 1g to stand for logarithm with base 2.

+
J These results have generalizations for the case k = an with any
fixed 0 < a <1

2/ An improved lower bound of (11/6)n was claimed in [12].

comparisons on the average; and he conjectured that the k(1n 1n n)

term cannot be further reduced. 1In this paper, we prove that

Vk(n)-n > c'k(ln 1n n) , thus confirming the conjecture. As a result,
thn-n is determined to within a constant factor asymptotically.

Main Theorem. For every integer k > 2 , there exists a number Nk

such that ¥, (n)-n > 2 k(ln Inn - 1nk - 9) for ann n>N_ .

In Section 2 some basic concepts are introduced, In Section 3 we
illustrate certain aspects of the proof by showing a weaker form of the
theorem in the case k = 2 , under a severe "regularity" constraint on
the class of allowed algorithms. 1In Section % we examine the difficulties
encountered in extending the discussion to include non-regular algorithms,
We then introduce some new concepts and prove a crucial result (the
Limited-Anomaly Theorem) to prepare for the proof of the Main Theorem,

which is completed in Section 5.

2. The Accounting Schemes.

An algorithm for selecting the k-th largest of n (distinct)
elements X = {x_l_,xz,...,xn} is a binary decision tree T [8].

Associated with each internal node v 1s a comparison between two

elements X X We will say " v compares X Xj ", and use the
notation comp(v) = (Xi :Xj) . The branching at v is determined by
whether Xy < XJ’ or Xy >x.J . By analogy with a tennis tournament

that selects the k-th best of n players, we will freely use in this

paper descriptions such as " Xy defeats x, " (if X > X.

J J)'

" Xy is undefeated (so far) ", etc.

Any particular ordering ¢ satisfied by the input, i.e.,
XU(l) >x0(2)>,,. Ma® xU(n) , determines a path from the root to a
leaf in T . Let 8(0) denote the sequence of internal nodes on this
path; and let s(0) = |S(G)| , the number of comparisons made. The

average cost of T is

COST(T) =

IS

5 s(o) . (2.1)
ag

The average-case complexity \7k(n) of selecting the k-th best of n
is the minimum cost COST(T) among all decision trees. Without loss
of generality, we consider only algorithms that make no redundant
comparisons (i.e., comparisons whose results can be deduced from
comparisons made previously).

Let T be any algorithm. We consider two types of non-crucial
comparisons: for each input ordering ¢ , let Sl(G) be the set of
comparisons made by T in which the loser has been defeated previously,

and 82(0) the set of comparisons involving at least one player ranking

in the top k-1 . We shall write si(o) = |si(o)| (i = 1,2) . Note

that a comparison can be in both Sl(G) and 82(0) As each player

except the top %k must encounter a first defeat, we have

s(o) > n-k+sl(o) (2.2)
Also, because each player not in the top k must lose to some player
ranking below the top (k-1) , we have
s(9) > m-k+s,(0) (2.3)
Formulas (2.1), (2.2), (2.3) lead to
1
COST(T) >n - k +;;Z s, (o) (2.4)
. O- e
and
(2.5)

F I (s(9)*sy(0)

n

COST(T) > n - k +

(2.5) into another form. For each internal

We will transform
node v , let q.(v) (i = 1,2) be the probability that comp(v) is

if we let r(v) = {0] s(0) contains v} and

in 8,(0) . Precisely,
Fi(v) = {o|oer(v), comp(v) e 8; o)} (1 = 1,2) , then
(Ir; (v) |
%) = Ir(v) |

" We define further
a(v) = q;(v) + o, (v)

and

a(o) = > q(v) .

Ve s(a)

Then

(5,(9) + 5,(0))

1

a ™

Z (e |+ o))
veT

Z |r(v){av)

v ET

= 2 2 a(v)
o VE 8(o)

>oa(o) . (2.6)
o

We obtain from (2.5) and (2.6),

COST(T) > n - k +l§ -i’l-l_ 2 a(o) . 2.7
- a o

we collect (2.4) and (2.7) in the following lemma.

Lemma 2.1.
COST(T) > n - k + i, 2 sl(o) ’ (2.8)
‘o
1 1
COST(T) >n -k +5 =5 2 a(o) . (2.9)
- Ne g

We can think of the two formulas in the above lemma as two counting

methods for the comparisons. The first one is direct counting, while the

other is distributive counting as the cost is "distributed" to the

internal nodes of the decision tree. To illustrate the utility of these

alternative counting methods, we can combine the two formulas to obtain

X

cosT (1) > n - k +IJ§- = 2 (sq(o)+a(a)) . (2.10)
)

Our aim will be, roughly speaking, to show that for any permutation 0 ,

sl(cr) + (o) > const, x k In lIn n . (2.11)

That is, for any computation sequence $(c¢) , either itself contains a
large number sl(d) of non-crucial comparisons, or it will effect a

large number a@fo) = 2 qa(v) -of non-crucial comparisons distributed
ve 5(0)

over other paths. However, in the proof we shall not be using (2.10)
and (2.11), but rather Lemma 2.1 itself, in order to obtain better

coefficients of klnlnn in the lower bounds.

Remark. The quantities s(o), Si(U),Ot(U),... all depend on T ; we

have suppressed this dependence in our notations for simplicity.

3. Regular Algorithms.

3.1 Introduction.

In this section we shall prove a weaker form of the Main Theorem for
k = 2 , under certain "regularity" constraints on the algorithms under
consideration.
We begin with a discussion about general algorithms. Let T be
any decision tree algorithm selecting the k-th largest of X = {Xl’XE""’xn}
One can view the computation process for any input ordering ¢ as
building up successively larger partial orders on X , Formally we
associate with each node v in T a partial order P(v) , which is
the transitive closure of all the relations X; > Xj obtained on the
path from the root of T to Vv (prior to performing the comparison

at v). We call comp(v) = (x ;xj) a joining comparison if X

1

and x.J belong to different connected components in P(v) . At each
leaf £, ©P(4) must contain only a single component, otherwise the
relative order of elements in different components can change the
identity of the k-th largest element. Thus, there are exactly n-1
joining comparisons comp(v) in the sequence ve S(0) for any o ;
we denote the subsequence of these nodes v by §'(0)

Clearly x 1s a maximal element in the partial order P(v) if and
only 1if x 1s yet undefeated. A component C of a partial order is
said to be anomalous if C has more than one maximal element. A maximal
element x in P(v) 1is anomalous if x 1s in an anomalous component,
and normal otherwise. A partial order is anomalous if it contains an
anomalous component. Figure 1 shows an anomalous partial order with Cl

being an anomalous component, x2 a normal element, and X1 X5 two

anomalous elements.

Figure 1. An anomalous partial order

Figure 2. Creation and removal of an anomaly.

We now define the notion of reqular algorithms, in which the choice

of a comparison comp(v) is restricted by the current partial order

P(v)

Definition 3.1. An algorithm T is regular if no joining comparison

can involve an anomalous (maximal) element.

In particular, any algorithm that removes anomalous partial order as

soon as they occur is regular. For instance, suppose the current partial
order P(v) is as shown in Figure 2 and comp(v) = (xlza%) is performed
with result X J% , thereby creating an anomalous partial order. By

choosing the next comparison to be (x, :X we can immediately remove

1 2) 14
the anomaly independent of the outcome. Matula'salgorithm [9] for
k =2 is of this type.

The rest of this section is devoted to proving the following result.

Theorem 3.1. Let T be a regular algorithm for selecting the second

largest element of {xl,xg,...,xn} . Then

COST(T)-n > %ln Inn- 6,

3.2 Some Properties of Binary Trees.

We digress to discuss some useful facts about binary trees.

Let M be a binary tree. We use MI to denote the set of internal
nodes. For each node u , we use notations father[u] , brother[u] ,
tsonful , rson[u] for the father, brother, leftson, rightson of u ,
respectively. Let D(u) be the set of internal-node-descendants of u ,

and DL(u) the set of leaf-descendants (u is also considered to be a

10

descendant of u). The weight w(u) is the number of leaf-descendants
of u ; thus w(u) = lDLhQI = |p(w)|+1 , and for any leaf u , w(u) =1

The external path length is defined as EM) = 2. w(u)

IleN&

Lemma 3.2. Let M be any binary tree with n leaves, then

EM) >n(lgn - 1)

Proof. From Knuth [7, Section 2.3.4.5 egs. (3) and (4)], one has

E(M) > n|lg n] -2n+2+2(n-1) > n(lg n - 1) . O

Let H = 2 1/i be the Harmonic numbers (see [7]). It is
1<i<n
clear that
n+l
1 1 1 1
BB = o o a2 J, x &
n'+l
therefore
n+l
Hh_Hn' > In(nTil) for n>n' >0 . (5.1)
Definition 3.2. Let M be a binary tree. A subset of nodes V is

called a cross section of M if root ¢V and the following condition

is true: For any two distinct ui,uj eV, father[ui] # father[uj]

and ui, %j have no common descendants.

- Lemma 3.3. If V is a cross section of a binary tree M with n

leaves, then

w(u) nt+l
u%;v w(brother[u]) Z ln(»n—w*l) ?

where W = 2, w(u)
ueV

11

Proof. For each node u of M , use u' to denote brother[u] when
it exists (i.e., when u # root). Let depth(u) be the distance from
the root to a node u , with depth(root) =0, We sort the nodes in V
in decreasing order of the depth as ul,ug",...,u ;7 1.e., 1< j implies

depth(ui) > depth(uj)

Fact A. For any 1< j, ui and uJ. have no common descendants.

Proof of Fact A. The case 1 = j is trivial, as u:.'L and u.J are brothers.
Assume i < j , which implies depth(uj!_) = depth(u) > dep‘th(uj)
If u:IL and u.J have any common descendants, then ui , and hence u.1 '

must be a descendant of u, . But this is ruled out since V is a
J

cross section. |

From Fact A, we have for 1 <_i <t,

w(ul) < n- 2 w(u) = n-Wwt 2 w(u.)
i<j<t Y 1<j<i
Let W(i) =2 w(j) , then
1<j<i
w(ui) w(ui)
wiuj!_) Z n -~ WHW(i-1)
2 2 n—w+w(l‘l)'4' » it .
1<g<(uy))T

Therefore

12

Z; wiu 2 W(ui)
1 b]
uey "\ l<i<t "(9)

1
> > -
1<i<w n=-W+Jj
= H-H

Lemma 3.3 then follows from formula (3.1).

3.3 Merge-trees and the Proof of Theorem 3.1,

Let T be a regular algorithm that selects the second best of n

players. We-shall show that, for any o,

2 g(v) >lnlnn-7 . (3.2)
VE §'(0)

This immediately implies Theorem 3 .1, since by Lemma 2.1,

COST(T) >n -2+ 5 (lnlnn - 7

> n+t 51 In Inn - 6
We first state a useful fact.

Fact B. Let al,ag,...,at be positive numbers. Then

2 a; 1g a, > t(a lg 5) s

1<i<t
when a = (Z a.)/‘t
- i
i
Proof. The function x 1lg x isconvexfor x>0 . O

13

The basis for proving (3.2) is the following bound on g(v)

Lemma 3.4. Let veT and comp(v) = (x.

i :XJ.) a joining comparison

between elements in two components of sizes 15 Cy v respectively. Then

c c c, +C
. 1 2 12
g(v) __>_m1n{c Yo’ o 1o o } .

1 2 1

Proof. Recall that g(v) = ql(v)+ qQ(v) . There are four cases. If

1
of Xy x.J will be the largest of all elements with probability

X, and x:] are both undefeated, then qg(v) > (cl+c2)/n as the larger

(cl+02)/n . If neither is undefeated, then ql(v) =1 > cl/(cl+c2) .
If x; is undefeated and Xy is not, then ql(v) = (Probability that

X, > xj) > cl/(cl+c

i If xJ. is undefeated and X, is not, then

o)
ql(v) > c2/(cl+c2) by the same token. Thus the lemma is true in all

cases.

We shall now apply the lower bound on g(v) to prove (3.2). We
construct an auxiliary binary tree that represents the successive joining
operations performed in S'(0) , and then use results obtained in

Section 3.2.

Merge-tree. Let 0 be an input ordering to algorithm T . We can
construct a binary tree M(c) corresponding to 8'(0) with the following
properties.
(1) M(0) has n leaves labeled by the n input elements X = {xl,xg,...,xn}
(2) Each internal node u of M(c) corresponds to a ve8'(0); the Xy 's
that are descendants of fson[u] and rson[u] respectively form
the two components that are joined by the comparison at v .

An example of a merge-tree is shown in Figure 3.

14

Figure 3. The merge-tree M(¢) corresponding to the sequence
of joining comparisons ((J»c5 :x5) s (Xh : xg) ,

(Xlth) ’ (X6:x2) ’ (?% le>)

15

Let C(u) denote the subset of X which label the leaf-descendants
of u in M(c) . Define a function ¢ on M(G)I , the set of internal
nodes of M(c) , by letting ¢(u) = gq(v) if u corresponds to ve S'(0) .

We wish to prove the following equivalent formula of (3.2).

Z o) > Inlnn-7 . (3.3)
o
u e M()I
By Lemma 3.4, we have for each ueM(G)I,
W w w, +w,
. 1 2 1 2
p(u) > mi ’ s } ’ (3.4)
{wl +W, W+ W, n
where w; = w(Zson[u]) and W, = w(rson[u]) . Therefore, Theorem 3.1
will follow from the following result.
Lemma 3.5. Let M be any binary tree with n leaves. For each

ueM , let g(u) = min{(wl+w2)/n, wl/(wl+w2) s wg/(wl+w2)} where

Wy w(4son[u]) and W, = w(rson[u]) . Then

2 g(u >1nlnn -7
ueMI
Proof. The proof makes use of the lemmas in Section 3.2. It is given

'in Appendix A because of its length. O

3.4 Remarks.

The lower bound given in Theorem 3.1 is only about half as large as
the corresponding bound in the Main Theorem. This is due to the use of
a relatively loose bound for q(v) in Lemma 3.4. A stronger bound for
q(v) will be used in the general proof in Section 5, where the regularity

constraint is also dropped.

16

We also wish to point out that (2.8), the first formula in Lemma 2.1,
was not used in the above proof, but will be needed later in the proof for

the general case.

17

4, The Limited-Anomaly Theorem.

The arguments in the previous section fail when algorithms are not
required to be regular. The important assertion in Lemma 3.4 is no longer
true. Consider the partial order P (v) exhibited in Figure 4, and suppose
that the next comparison v is between Xy and an anomalous maximal

element x Although the components C

- and C2 have sizes 5 and

1
102 respectively, it is intuitively clear that the probability qe(v)

is less than (5 +102)/n is unlikely to be the largest

, as max{xl,x

o}
among elements in CllJCQ . It will be seen later (Section 5.3) that,
in estimating qe(v) , one should use f(XE) , the number of elements
in P(v) that are less than (or equal to) X, but not less than any

other maximal elements, in place of the component size |Ce\ . In this

example f(x

2): L4 and thus qeﬁw > (5 + 4)/n , a much weaker lower

bound than (5 +102)/n . Therefore, two complications arise when
non-regular algorithms are considered, Firstly, it was previously possible
to attach a lower bound to g(v) which depended only on the shape of the
associated merge tree; now more details of the partial order P(v) must

be taken into account. Secondly, when comparisons involving anomalous

elements x. occur, we may obtain very weak bounds on a(v) , if f(xi)

1
is small. We shall presently prove a result to overcome the second
difficulty, by stating that comparisons involving an anomalous maximal
element Xy with a small f(xi) cannot happen too often unless CoST (T)
is large anyway.

Let P be a partial order on X = &%}xe,.“,xn} . For each Xi:

let H(Xi) be the component containing x, , and h(xi)==|H(xi)|.

For any maximal element X the fiefdom of X5 F(xi) is the set

18

A

Figure 4.

X
2
.
T

100

Difficulties caused by anomaly.

19

{xj| Xy < x; (in P), andx.J is not less than any other maximal element in P} .
We denote |F(xi) | by f(x;) . Note that F(x,) ¢ H(xi) , and the
containment is proper if and only if X, is anomalous. When X, is

anomalous, we call f@%) the anomaly degree of x.

(=3

Let T be an algorithm that selects the k-th largest of n elements.

For any internal node veT , the comparison at v , x, :x,, is said to
1 J

be anomalous of degree m if either X; Or X. has anomalous degree m .
J

Theorem 4.1 (The Limited-Anomaly Theorem). Let T be an algorithm
selecting the k-th largest of x= {xl’xe"“°xn} , and O an input
ordering. Then the number of anomalous comparisons of degree < m is

at most (2m+l)sl(o) .

Proof. We assign a weight mt+l-i to an anomalous element of degree i
for 1 <i<m, and a weight 0 to all other elements. Let E and E'

be respectively the total weight of all elements before and after a

comparison X, > xj . Then the following is true.

Lemma 4.2.

(A) E'< E+2m

(B) If xi > x.J is a first defeat, then E'f_E
i

(c) If x. > xj is a first defeat and an anomalous comparison of

degree < m , then E' < E

Proof of Lemma 4.2. It is easy to see that at most two elements will be

assigned new weights after the comparison; namely, the two maximal elements
y and z whose fiefdoms contain X and x. respectively. Since the

J
largest increase in weight for an element is from 0 to m , this proves (A4).

20

To prove (B) note that X, > xj is a first defeat implies x.J =z
After the comparison, z is no longer maximal, and F(y) « F(y)UF®.
We consider two cases according to whether z was anomalous of

degree < m before the comparison X'1> x.J .

gase (a). was anomalous of degree < m
The decrease in z's weight is from mtl- f£(z) to 0 while the
maximum increase in y 's weight is from 0 to max{0, mtl- (f(y)+ £(z))]

<mtl- f(z) . This means E' < E

gase (b). was not anomalous of degree < m .
Then z's weight does not change; y's weight has two cases:
(vl) y was anomalous of degree < m . Then y's weight strictly
decreases due to the strict increase in its anomaly degree.

(v2) y was not anomalous of degree < m . Then y's weight remains 0

This proves (B). Statement (C) follows from the analysis of Case (a)

and Case (bl) above. This proves Lemma 4.2. U

We will now complete the proof of Theorem 4.1. Statements (A) and
(B) of Lemma 4.2 imply that the total increase in weight along path §(o0)
is bounded by 2msl(0) . Since the sum of weights of the elements is
initially 0 and always non-negative by definition, the number of
comparisons n, which fits statement (C) of Lemma 4.2 is at most

3

ems. (0) . The total number of comparisons along S(0) that are anomalous

1€
of degree < m is clearly at most ns + sl(d) » and is hence bounded by

(2m+l)sl(0) . This proves Theorem 4.1. [0

21

5. Proof of the Main Theorem.

5 .1 Introduction.

We will prove the following result in this section.

18k
Theorem 5.1. Let k , n be integers with k >2 and n > Nk = (8k) '

Suppose T is an algorithm that selects the k-th largest of n elements,

and 0 any input ordering. Then @(0) > k(ln In n - 1n k - 6)
0.2

, 1if

sl(c) <n

As defined in Section 2, the quantities (o) , sl(U) depend on T .

Also note that, for n > Nk , the following inequalities hold, as can be

verified by elementary arguments.

(no'l >k 1n In n (5.1)
< nt/ (6k) > 21lgn (5.2)
Lnl/l2 > k. (5.3)

e first demonstrate that Theorem 5,1 implies the Main Theorem. If

- , , 0.2
there are more than n! xn 0.1 & satisfying sl(U) > n , then (2.8)
implies
1 -0.1 0.2
COST(T)Zn-k+—£’,—n1n n
> n-k+ k1lnlan ,

. -0.1 .

in view of (5.1). On the other hand if less than n! xn of the d's

0.2
n

satisfy sl(G) > , then (2.9) and Theorem 5.1 lead to

N

COST(T) > n - k + 5—}— (n! -n! xn % Nk(In 1n n - 1n k - 6)

K(In Inn - In k- 6 - n 01 In 1n n - 2)

Vv

i

+
rof-

22

Again, using (5.1), we obtain
COST (T) _>_n+%k(lnlnn-lnk-9).

Thus, the Main Theorem is true in both cases.

5.2 Some Results on Partial Orders.

Let P be a partial order on a set X = {X]_,XE,-.-,XH} . Assume
that all orderings on X consistent with P are equally likely. We are
interested in bounds on the probability of some element X, being greater
than another element Xj (or all elements in some subset). For instance,
if Xy is the unique maximal element in a component (in P) of size m ,
then the probability that X is the maximum of all n elements in X
is clearly at least m/n , and it is also not difficult to show that
Pr(xi > Xj) is at least m/(mtr-1) , if Xy is a non-maximal element
in a different component of size r , A generalization of these facts

is given below in two lemmas.

Lemma 5.2. If Xi is a maximal element, then
f(xi)
PT(X1. is the largest element in X) > '
Lemma 5.3. If X, is a maximal element, and x.J a non-maximal element

in a different component, then

f (xi)

T(x;) *B(x,) -1

Pr(xi > xj) >

23

Intuitively, the above lemmas must be true, since knowing that some
elements in F(xi) are greater than some elements outside F(Xi) should

not lower the rank of x. However, the proofs are not trivial, and are

1

given in [3] where related issues are studied.

Lemma 5.4, Suppose X is the unique element in a component ¢ of
size m, and x.J a non-maximal element in a different component C' of
size pA-m . Assume that A > 2k . Define the quantity B to be

(Pr(x; > Xj) + Pr(ma.x{xi, xj} is in the top k-1 of X)) . Then

6 > min{l-e” /D 1 o™/ 8L (vionnt 1 <t < k).

Proof. See Appendix--B. O

5.3 Lower Bounds on q&v)

Let v be an internal node in the algorithm T . Suppose v compares

Xy xj . We will give lower bounds on qz(v) in terms of component sizes

such as f(xi) ,h(xj) , etc. defined relative to P(v)

Lemma 5.5. If x; is a non-maximal element, then ql(v) > l/h(xi)
Proof. If XJ is also non-maximal, then ql(v) =1, else by Lemma 5.3,

ql(v) = Pr(x'j > xi) > f(xj)/(f(xj)+h(xi) -1) > l/h(xi) . Cl

Lerma 5.6. If both x. and x; are maximal, then qg(v) > (f(xi)+f(xj))/n

Proof. The properties of X xJ. being the largest element in X are
f(xi) f(x.)

mutually exclusive. Hence qe(v) > - + nJ by Lemma 5.2. O

2L

Lemma 5.7. If X, is a maximal element and Xj a non-maximal element,

then ql(v) > f(xi)/(f(xi)+h(xj)) .

Proof. It follows directly from Lemma 5.3. cl

Lemma 5.8. Suppose x:.L is the unique maximal element in a component C ,

and x:] a non-maximal element in & different component. If

h(xi) < nl/3 and h(xi)+h(xj) > nl-(l/6k) r then
h(x,)
i 2 1
- hzxa.i n775
Proof. Let m = h(xi) , m' = h(xj) and A = mtm' . Then by assumption
1/ -
m < n"5 and A > nl (l/6k) . (5.4)
Clearly o > 2k . By Lemma 5.4, we need only show that
l_e'km/A > 1 _m_ _ 1;2 1
Z o L n—ﬁg ’ (5.5)
and

t
. ~tm/ (A) } m 2 1
min l-e + (== > k — - 3k . (]
l<t<k{ an - " nl/® P

-X

As e f_l-x+J—2'x2 for x > 0 , we have
-km/a kom 1 [km\?
l-e , kml -)
5 (R
2
ChE o i(m
=t w27 : (5.7)

Now, from (5.k4),

G-

>|B8

<

This implies m/A < 1/2 and hence

N} —

n' > A

Using (5.8) and (5.9) in (5.7), we obtain

oo
1-eTE/A Sy -mT-(gk+1_‘_)(E)

J
m 2~ 6
> k — - 3kn
This proves (5.5).
For 1 < t <k,"~
t k-1
-tm/ A A A

l-e + (ﬁ) > <2n)

1 1
> n 6 +3E'2-(k-l)

where we have used (5.4) and the fact n > Nk

(5X) and (5.9) to obtain

t

-tm/ A Y m
l-e + (2n> > ekz

> kv

This implies (5.6) immediately. O

26

1
> @K,

We now use

(5.10)

(5.11)

5.4 Completing the Proof.

As in Section 3.3, we construct a merge-tree M(0) corresponding to
the merging process for ¢ , and assign ¢(u) = gq(v) to each ueM(G)I ,

It will be shown that, under the assumptions in Theorem 5.1,

2 o9 >k(In In n - 1n k -6). (5.12)
ueM(U)I

This would -prove Theorem 5.1, as

a(o) = 2 alv)
ve 8(0)
> Z av)
ves'(ag)
= 2 olw) .
ueM(U)I

To prove (5.12), we first partition the set of nodes in M(a) into
upper and lower parts, U= (u|w(u) > nl/5 } and L= {u|w() < nl/B} .
Let V' = (u|ue U, fson[u] e L, rsonfu] €L}, V"= {u|ueL, father[u]e U-V'] ,
and V=V yv". (These definitions are similar to those used in
Appendix A, and -properties Pl -P5 there remain true.)
We now partition V into seven disjoint parts Vl’VE’ . ..,V7 .

For each ueV , we assign u to a unique Vi according to the following

procedure, which halts as soon as u 1is assigned,

Procedure Decompose;

step 1: If there is some u'eD(u) where the joining comparison is not
between two maximal elements, then assign u to Vl .
[comment: If u is not assigned in step 1, then the joining comparison at

U creates a component C(u) with a unique maximal element;

27

recall that C(u)

consists of the x.

1's that label the leaves

in DL(u) .]
step 2: If UEV' , then assign u to Vé .
[comment: If u has not been assigned after step 2, then u must be
in V" and father[u] exists.]
step 3: If father[u] compares a non-maximal element in C(u) with
any element, then assign u tO V3 .
step 4: If father[u] compares the maximal element of C(u) with
another maximal element (in a different component), then
Vh if the comparison is anomalous of degree
) 1/5
assign u to at most n™”7 ,
V5 otherwise.
step 5: If father[u] compares the maximal element of C(u) with some
non-maximal element (in a different component), then
1- 1
V6 if w(father{u]) < n 6k s
assign u to 1
1-zx
1V7 if w(father[u]) > n
end Decompose.
et w, = 2 wlw (1<i<7) , and
u e V.
i
2 2 o) if ie {1,2,4} ,
ueV, u'eDd(u)
i
A, = 2 o(father[u]) if ie {(3,6,7} ,
ueV.
i
z 2 cp(u')+cp(fa‘ther[u])) if ie {5}
'ue'vi u' € D(u)

28

In analogy with discussions in Appendix A, it is not difficult to

see that V,7 is a cross section, and that
2 W, = n, 5.13
1<1<7 i ()
and
2 E(u) > ' . . 5.14
ue M(0), _15i57A1 -1

We will now find lower bounds to the Ai 's in terms of the Wi 's,
We treat first Ai for ie {1,5,6} , which are "costly" and thus

efficient algorithms should not have large Wi for these values of i

(&)
Lemma 5.9. A_1+A5+A6 > (wl+w2+w6)n
Proof. For each ueVl , some u' eD(u) has a comparison involving a
non-maximal element. Thus, by Lemma 5.5, 2 p(u') > n'l/5 . We
u' e D(u)
have
-1/3
Al > |Vl|~n / . (5.19)

Similarly, by Lemma 5.5, we have

-1
N AR (5.26)
As each ueV has w(u) <_2nl/5 , we have for ie {1,3}
1 -1/3
|Vi| > §win / . (5.17)
Formulas (5.15) - (5.17) lead to

A > ow.n 23
~ 2 1

i
1
- 1-
W.en (EE) P for ie {1,3} . (5.18)

- 1

29

For each ueV6 r we apply Lemma 5.7 to father[u] and obtain

¢(father{u]) > w(fazl(lzi[uﬁ
1
- 1- .
v ()
Thus,
1
- 1=~
b 2 X w(u>n< ﬁ)
U.€V6
1
-{1-
o
= W6n (k) . (5 19)

Combining (5.18) and (5.19), we obtain the lemma. [J

Lemma 5.10, W, < 8nll/15 .

Proof. By the Limited-Anomaly Theorem (Theorem 4,1),
1
/5‘1+ l)sl(c) < 8no’ljr ,

[v,| < (2fn

0.2

since sl(U) <n by assumption. As each ueVL has w(u) < r11/3 ,

we have

W, < |Vh|nl/5 < gntl/15 .0

W
Lemma.5.11. A2 > B—ilg n-1.,

Proof. Let ueV, . For each u' eD(u) , p(u') > w(u')/n by Lemma 5.6,

as the corresponding comparison is between normal maximal elements. Tpig

gives, by Lemma 3.2,

30

2z op(u)

u' € D(u)

thus assume that [\/5‘ >

2 oe(u)

u' € D(u)

v
|-
™

=
£,

(A%

2 p(ur) > %wu)(%lgn-l)
u' ED (u)
Therefore,
A2_>_% Z w(u)(%lgn-l)
ueV
2
W2
> 5—nlgn-l]
s
Lemma 5.12. A5 25—nlgn-l.
Proof. If |V5‘ = 0 then W5 =

O . For each ue V.,

w(u)(lg w(u) -1) ,

S

>

Thus, using Fact B in Section 3.3,

X1

Now,

and x.
J

for each ueV

, Where X5

p(u') >
ueV

sl
~ N
(&2l

il

57 let the comparison at

0 and the lemma is clearly true. We

2 w(u) 18 w(u) - W5>

(5 +20)

father[u] be between

is the maximal element of C(u). By Lemma 5.6,

31

f(xi)i-f(x.)
¢(father[u]) > J

n
w(fatherfu]) > L nl/5 if x. 1s normal,
n — n J
2
= rnl/51 if Xy is anomalous.
n
Thus,
2, o(father[u]) > |vg |/ (5.21)
ueV
5
Formulas (5.20) and (5.21) lead to
W
1 5 -4/5
> =W 1g + v |n -1 . (5.22)
A5 = n W5 lV5| | >
By standard minimization technique (e.g. S€€ the proof of Fact E in
Appendix A), (5.22) yields
1 /5y + 1, 1
A znwslg((an)n) nw5ln2_l

1
The lemma follows, noting that lgln 2+ 37=>5>0. Cl

> k 1n L
Pemma 5.13. A,z n-w7+l_3'
Proof. Let ueV7 , we write u' = brother[u] . By Lemma 5.8 and (5.3),

we have

w(u 2 1
father{ul]) > k =70~ - 3k
CP() =z wiu n?;g

> km_B%)

w(u')

As V is a cross section, we obtain from Lemma 3.3. that

32

ueV
i

nt+l
> kln w1 -3 |

We are now ready to prove (5.12), and hence Theorem 5.1. Using

Lemmas 5.9, 5.11, 5.12, 5.13 and formula (5. 14), we have

Z o oo(w) > A
1

ueM(o)I
(&)
k lg n lg n
+ +
> (W1+W5+w6)n = W, o7 w5
n+1l
TRWmIo 0
Meking use of (5.2) and (5.13)
lg n _ptl
Lo 2 T P W) ok dn o -5
u e M(U)I 7
W
lg n n+l B _ i
= (n—W,?) 5 + kln m 5 5n lg n .
From Lemma 5.10 and (5.2),
W, 11/15
L 8 n
o lgn < 5 = lg n
lgn
< 2
< l .
Therefore, (5.23) leads to
Ign n+l
Z: CP('LI) _>_ X 5n + k 1n ;C+_].- -6 ’

33

(5.23)

(5.24)

A standard minimization gives

b> kin [2Y _ ¢
- p(w) > (£)

>k (lnlnn-1nk - 6) ,

which 1is (5.12).

This completes the proof of the Main Theorem. O

34

Appendix A: Proof of Lemma 3.5.

The lemma is clearly true when n <_8 . We shall thus assume that

n >8 ., Note that, in this range,

nl/5 > max(%lg n, -élln 1n n}) (A.1)

We say a node ueM; to be of' category 1 if g(u) = min{wl,we}/(wlwg),

and of category 2 otherwise. For a node u to be of category 1, we must

have
i +
mln{wl,w2} W,
— J
wi—w 2 n
implying
w(u) = Wy tw, > MG: . (A.2)

Let us divide the set of nodes of M into an upper part U and a
lower part L according to whether or not w(u) > nl/3/2 .Asn>38,
the root must be in U and all leaves are in L , Now consider the set

V' of lowest nodes in U , i.e.,

V' = {Uluevu, tson[u]l 8L , rson(ul e L} ,
and the set V" defined by

V' = {u|uel, father[u] eU-V'} .
An alternative characterization of V"' is given by

V' = {u| uelL, father[u] ¢ U, brother[u] ¢ U}

Let V=V'|yV'. The following simple properties are easy to check.

35

Pl:

P2:

P3:

P4:

P5:

vy

V' and V" are disjoint.

Any two distinct nodes in V have no common descendants.

Any two distinct nodes in V" have distinct fathers; furthermore,

the set {father[u] | ueV"} is disjoint from the union of descendants
ofnodesin V.

V" 1is a cross section of M .

The family of sets {DL(u) | we vV} forms a partition of the leaves

of M.

We partition V = V' yvV" into Vi (1 < i< 4) as follows. The set

is simply V' . Sets V2) V3 ’ Vb, are given by

v, = {UJU e V", father[u] is of category 2} ,

V5 = {u| ue V", father[u] is of category 1, w(father[u]) < ng/ﬁ} '
Vh = {u ‘ ue V", father[u] is of category 1, w(father[u]) > ne/B} .

The definitions are illustrated in Figure 5.

Let W, = 2, w(u) for 1 <i<UL . Define

u € Vi
rAl 2 r o elu)
= uevy u' e D(u)
4 Ay = 2 (2 g(u') + g(father[u]))
u € VQ u' € D(u)
Ay o= 2 g(father[u]) i=3,h .
L uev,

As an immediate consequence of property P, we have

Z Ll_wl = n o (AOB)
1<ik<

36

v"

Figure 5. A schematic illustration of sets U,L,V'=Vl,

AA V2 UV3 UVl+ 3 nodes in V', V" are labeled as

v' , v', respectively.

37

Now, from properties P1-P3, we have

Z > 2. A . (A.4)
UEMI - liishAl

Our plan is to first derive lower bounds to Ai in terms of g.CT , and

then apply (A.4) to prove Lemma 3.5.

Fact C. If w(u)<'\/-r?, then 2z gu) > % w(u)(lg w(u)-1)
u' eD(u)
Proof. We may assume that ueMI , as the assertion is clearly true

when u 1is a leaf. Now each u' eD(u) must be of category 2

(w(u') < «/E) , and hence g(u') = w(u')/n . Using Lemma 3.2, we have

Y oegw) == T w)

u' eD(u) " urenq

AV

w(u)(lg w(u-1) . 0O

jul
Fact D. Ay >_—§nlg n -2

Proof. Each ursV:L satisfies w(u) < 2(nl/3/2) <__«/;1. , and hence from

Fact C,

2 z slu')

uev, u'eD(u)

!

w(u) (1g w(u) - 1)

%
™
Bl

uev

Sl

2. w(u) lg w(u) -1
ueV_.L

38

As w(u) >_nl/5/2 (since ueU), we have

A:L>E w(u)(ilgn—l)-l
-~ n 3
uE€v,
L
> Kll lgn-2 |
- 5n &
Wy
= -
Fact E. A2 > n lgn-~-3,
Proof. The statement is obviously true when |V2 | =0 . TWe shall. thus

assume that |Vg| >0 . For each ueV, , g(father[u]) = w(father[u])/n
> l/(2n2/5) , since father[u] is of category 2 and is in U . Making
use of Fact -‘C, we have

A, = L 2 glw) + Z g(father[ul])

ueV, u'eD(u) u eV,

[a4

> X 1'7(—11)1 (u) - 1) + |v 1
wiv, »ceremae Rl e

We now use Fact B to obtain

A
A2 z—n-lgT\E—l--l‘*'g?]B— (AoS)

The right hand side expression d(IVzl) achieves its absolute minimum

over |V2l € [0,0) at \Vgl = 2‘/«12/(1:1]‘/5 In 2) , where

W W
_ 2 1ln 2 1/5 - 1 2
a(fvy) = — 1g(—-—2 D) -l s =
W
2
Z%lgn-j

39

Thus, formula (A.5) implies

W

Ay > zolen-3 ’ (A.6)

proving Fact E. [0

The derivation of (A.6) from (A.5) is a standard argument, and similar
derivations will henceforth be referred to as "by standard minimization
technique" with details omitted.

For each ueV5 uv, . w(brother[u]) > nl/5/2 > w(u) , and father[u]

is of category 1. Thus,

w(fagl(llelz)‘[u]) : (8.7)

g(father[ul])

W
Fact F. ABZE% .

Proof. For each ueV5 , wW(father[u]) < ne/5 . Using (A.7), we have

A5 = 2. g(father[u])

ueV.

3

= w(faglzi- [ul)

v
=]

| =
Gl
W

1 n+l
Fact G. Al} > l-m)lﬂmﬁ

Proof. For each ueV) , w(u) < nl/5/2 and w(father[u]) > n2/5

Using (A.7), we have

Lo

g(father[u]) W(fazr(lzl)v[u])

w(u) Lo)
w(brother[u]) w(father[u])

w(u) 1 1
w(brother[u]) - 2nl75

Thus,

B, = 2. g(father[ul)
u€V4
1 (w)
= (l ;;73) oy, TR (2.8)

As V" 1is a cross section of M by property P4, so is Vh Fact G

then follows from (A.8) and Lemma 3.3. O

We will now finish the proof of Lemma 3.5. Using Facts D - G, we

obtain from (A.4)

W, + W, W.
1l "2 1 n+l
> elw) > lgn+—-3—+ 1 - In —=— -5
ueM - on n?/3 Enl;5 o wh+l

Using (A.1l) and (A.3), we obtain then

W +W +w
1 2 3 1 n+l
2 glu) > —lgn+(l -)ln -5
ueMI 3n e 1 n Wl+ W2+ w5+1
1 n+l
> (l _7—15)(3n lg n ln-——x+l) -5, (A.9)
2n
where x= Wl+ W2+W3

41

By standard minimization technique, we obtain from (A.9)

z gl > 1-—7—1 (lnlnn-1) -5
ueMI - 2nl5
>Inlnn-7 ,

where (A.1) was used in the last step, This proves Lemma 3.5. O

Lo

Appendix B: Proof of Lemma 5.4.

Let B(t) be the quantity B when the component C' has been
sorted and xj is the t-th largest in it, Then, denoting by p(t)
the probability that x, is the t-th largest in C' under partial

J

order P , we have with m' = pA-m ,

B = Z p(t)B(t)
1<t<m’

As X is not a maximal element, Pp(l)= 0 . Therefore, the lemma would

follow, if we can show that for all 1 <t <m',

1 t'
B(t) > min {1—e-lm/A s 1-e_t m/A + (EAH) for 1<t < k} . (B.l)

Let B(t) = a,l+a2 , where

©
i

probability that X, > x.J '

1
8, = probability that max{xi,xj} is in the top k-1.
Clearly,
& = 1 - (probability Xy < x.J)
m
= 1 -
")
m
% t -t)
=t (l 'Z)<l"'A-_1)'** ([
m
t
1-11--~ .
S (a-7)
But,

43

(1-3)m O 1n(L-t/2)

A
< em(-’c/A)
Thus,
a; > l—e-‘tm/A for 1<t<m' . (B.2)
Formula (B.2) proves (B.l) for the case k < t < m'. We shall now

restrict our attention to the case 1 <1t < k' = min{k,m'+1} . In this range,

a, _ Pr(ma.x{xi,xj} is in the top k-1 of X)

Pr(the t -th largest element in CyC' 1is in the top k-1 of X)

v

= Pr(the t - argest element in Cy 1s e ¢- arges
> the t -th 1 1 in CYC' 1is the ¢-th 1 t

T}fil <k
in X)
o L) (Ea)
t<1<k (2)

Taking only the term f = t and using the assumption A > 2k , we obtain

AA-1 | At
a2 2 n n-1 n-t+l
t
> (i)
- n
A t
> (EE‘) ’ when 1 < t < k' . (B.3)

From (B.2) and (B.3), we see that for 1 < t < k'

B(t) = al + 3.2

> l-e-tm/A+(A)

2n

t

Thus, (B.l) is also true in this case.

This completes the proof of Lemma 5.4. O

44

(1]

[6]

References

R. W. Floyd and R. L. Rivest, "Expected time bounds for selection,"
Communications ACM 18(1975),165-172.

F. Fussenegger and H. N. Gabow, "Using comparison trees to derive
lower bounds for selection problems,' Proc. 17-th IEEE Symp., on
Foundations of Computer Science (1976), 178-182.

R. L. Graham, A. C. Yao, and F. F. Yao, "Some monotonicity properties
in partial. orders," to appear.

L. Hyafil, "Bounds for selection," SIAM J. on Computing 5(1976),
109-1kk,

D. G. Kirkpatrick, "Topics in the complexity of combinatorial

algorithms," Computer Science Department Technical Report TR 74 (197L4),
University of Toronto.

D. E. Knuth, "Mathematical analysis of algorithms," Information
Processing 71 (Proceedings of the 1971 IFIP Congress), North-Holland,
Amsterdam, 1972, 19-27.

D. E. Knuth, The Art of Computer Programming, Vol. 1, Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968.
D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1lst printing, 1973,
W. Matula, "Selecting the t-th best in average n+ 0(log log n)
comparisons," TR 73-9 (1973), Washington University, St. Louis.

[10] V. R. Pratt and F. F. Yao, "On lower bounds for computing the i-th

largest element," Proc. li-th IEEE Symp. on Switching and Automata
Theory (1973), 70-81.

[11] A. Schbnhage, M. Paterson, and N. Pippenger, "Finding the median,"

Jcss 13 (1976), 18L-199.

. [12] Cc. K. Yap, "New lower bounds for median and related problems,"

Computer Science Department Research Report No, 79(1976),

Yale University.

45

