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Abstract

In the QZ algorithm the eigenvalues of Ax = ABx are computed

IY ~~ ~ ~

via a reduction to the form Ax = ABXx where A and B are

upper triangular. The elgenvalues are given by A = a/b .

It 1s shown that when the pencil A - 2B is singular or nearly

singular a value of Ay may have no significance even when ass

and b.. are of full size.
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l INTRODUCTION

In a recent paper L 51 we discussed the derivation of the Kronecker
canonical form (K.c.f.) of the A matrix A-'B (usually referred to as a linear

pencil) using the system of differential equations

Bx= Ax + f(t) (1.1)

as the motivation. A related and in some respects more detailed treatment

has been given by van Dooren| 1] though there a direct attack was made on
the derivation of the Kronecker canonical form.

In recent years the generalized eigenvalue problem

has been the subject of intensive research. The importance of this problem

stems primarily from the fact that if A and u are an eigenvalue and

eigenvector of (1.2) then

t

1s a solution of the homogeneous system

Bx = Ax . (1.4)

One of the most effective methods for dealing with the generalized eigenvalue

problem is the QZ algorithm developed by Moler and Stewart | 4] . This
- reduces B and A simultaneously to triangular matrices B and A such that

~ ~

B= QBZ and A = QAZ (1.5)

where Q and Z are derived as the product of elementary unitary transformations.

The problem

~ ~r

Av = ABv (1.6)

is therefore 'equivalent'to (1.2) in that the eigenvalues are the same and

corresponding u and v are such that u = Zv. If there are no zero values of
~N

b.. then the eigenvalues are given by

A 15/ ii (1.7)
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A zero value of b. . presents no specilal problem unless the corresponding
a. is also zero; 1t merely implies that the corresponding Ay is infinite.
It 1s simpler to regard such an infinite eigenvalue as a zero elgenvalue of

~~ aad

However, if for any value of i we have ay = b, . = 0 then

0 = det(AAB) = det Q(A-AB)Z = det 0 det(A-\B) det(Z) (1.9)

and hence det(A\B)= 0 since Q and Z are unitary. Conversely if det (A-'B) = 0

and AE is an equivalent triangular pencil then since det (AF) = TT (5, Nb, .)
this cannot give the null polynomial unless EY = b.. = 0 for at least one i.

2 THE KRONECKER CANONICAL FORM

Kronecker's canonical form applies to general pencils A-AB where A and B

may be rectangular matrices. The pencil 1s said to be singular if either

(i) m # =n

or (ii) m = n and det(A\B) = 0.

Otherwise the pencil 1s said to be regular; note that regular pencils
rd ~~)

necessarily involve square matrices. The pencil A-AB is said to be strictly

equivalent to A-AB if there exist non-singular matrices P and Q (not

necessarily unitary) such that

- 1 = pao , B = PBQ . (2.1)

In the remainder of this paper we shall omit the qualification 'strictly'

since we shall not be concerned with any broader concept of equivalence.

~ ~S

Kronecker showed that A-'B could be reduced to an equivalent A-AB in which

the % and B are of block diagonal form, the blocks in A and B being conformal.

The blocks in the K.c.f. are of three types. In general there will be a

number of blocks of each type in the K.c.f.

(1) Those corresponding to elementary divisors of the form (a=) where

a is finite (possibly zero). For these the blocks in A and B are J (a) and
I respectively where J (a) 1s the elementary Jordan matrix of order r



3

associated with a and I. 1s the identity matrix of order r., These blocks are
said to correspond to finite elementary divisors of A-AB. They are of course

square and of dimension r X rr, For reasons which become obvious when we

discuss the other blocks it 1s often more convenient to think in terms of the

r

homogeneous pencil pA-AB and of the elementary divisor (op) rather than
r

r

(11) Those corresponding to elementary divisors fb of the homogeneous

pencil HA-AB. For these the blocks in %and B are I and 7.(0) respectively.
Notice that the identity matrix is now in A and the elementary Jordan matrix

is 1n B. These blocks are said to correspond to infinite elementary divisors.

Again they are square.

CL T

(iii) Elementary Kronecker blocks, usually denoted by L (Nu) and Lh 1)
These are of dimensions & x (e+1) and (+1) x n respectively. They are

adequately illustrated by L(A, 1) for which the blocks in pA-AB,A and% are

v) ~A 0 1 0) 0) 0 1 0

, and (2.2)

0 Lo =A oO 1 O oO 0 1]

respectively. There are no elementary divisors of pA-AB corresponding to

these blocks or perhaps we should say that the corresponding elementary

divisor is unity which is independent of p or A.

We make the following comments. If all of the blocks are of types (i) and
a ~ lag \ tad ~S

- (ii) then A and B (and hence A and B) are square. Further since det ( pA-\B)

is the product of the determinants of the diagonal blocks in MA-AB and

r

det [WI (@) AL] = (pan) (2.3)
| Tr

det [nI_J_(0)] = WU (2.4)
~ n/

we see that det (HA-AB) (and hence det (pA-)\B)) is not null. In this case then

the pencil is regular.

The blocks corresponding to infinite elementary divisors seem to be decisively

different from those corresponding to finite elementary divisors. This is

deceptive and rather unsatisfactory when we come to practical algorithms. In
~

a block of type (i) corresponding to a zero value of a the matrix A has a
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J(0) and B has an I. In a block of type (ii) LX has an 1 and B has a J (0);
this 1s quite natural 1f we think in terms of a zero elementary divisor of

B-uA, In computational terms it would perhaps be more satisfactory to make

the distinction between values for which | «l< 1 and those for whichiol > 1.

For the former we could take blocks J (a) in A and 1 in B; for the latter we
take blocks I in A and J.(8) in B where B = 1/ a. Now a = ©0 corresponds
to f = 0 and the whole range is treated in a uniform manner. Strictly speaking

if ll all, and I'B | 5 are very disparate in size then we should distinguish
between those a for which lo |< | A I/1 B I, and those for which
| al>[a L/1Bl Notice that for the standard eigenvalue problem
IIBII 5 = 111171 5 = I; since all eilgenvalues satisfy the condition | of < | a l
the second set is always empty. This pinpoints an essential difference

between the generalized problem and the standard problem. For simplicity of

notation we shall assume that | a I, and [| B11, are of comparable orders of
magnitude; this is, after all, merely a matter of scaling. Accordingly we

shall distinguish between | a |<1 andja I> 1. When m # n there must, of course,

be some rectangular blocks in 4 and T. Indeed if m < n there must be n-m

more blocks of type I, than of type L while when m > n there must be m-n
more blocks of types I, than of type L.. When m = n and det(A-\B)= 0 we have
already remarked that not all the blocks could be of type (i) and (ii). Hence

in this case too, blocks of type (111i) must occur and clearly there must be an

equal number of L, and L blocks, otherwise 4 and B would not be square.
However the dimensions of the L. blocks need bear no relation to those of the
Lt blocks.
J

It 1s well known that classical similarity theory, which 1s concerned with the

standard elgenvalue problem Au = AU, 1s dominated by the Jordan canonical form

(Joc. £.) J of A. The corresponding K.c.f. of A-AI is JAI; in this simple

case the K.c.f. never contains any blocks of type (iil). Now in numerical

linear algebra the J.c.f. is not generally regarded as quite so important for

the following reason. Elementary Jordan blocks of dimension greater than

unity can arise only 1f A has multiple eigenvalues. However, arbitrary

perturbations in A then lead, in general, to a matrix having distinct

eigenvalues and hence having a strictly diagonal J.c,f., Moreover blocks of

order greater than unity usually correspond to very sensitive eigenvalues.

Thus if the block J (a) is perturbed to
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a

p

a 1

(2.5)
E a

1

the eigenvalue becomes a + £%,

However 1t 1s salutary to remember that the use of unity elements in the

standard Jordan form is for convenience only. The matrix

a £

1

A= (2.6)

0 a

has the J.c, f.

a 1

(2.7)
0 -a

but perturbations of order £€ 1n A give perturbations of order € in the

eigenvalues. This remark 1s sometimes important 1n practice when we are

not concerned with perturbations which are arbitrarily small.

In numerical linear algebra it is the insight provided by the J.c.f. into the

perturbation of eigenvalues which 1s its more important aspect. The actual

determination of the J.c.f. plays a much less important role and indeed in

the presence of rounding errors it 1s an unattainable goal except in special

cases. An important feature 1s that i1f A has an eigenvalue a which 1s very

. sensitive to perturbations in the matrix elements, then A 1s to that extent

close to a defective matrix, 1e a matrix having a block of order greater than

unity in its J.c.f. Hence extreme sensitivity is always related to

defectiveness or near-defectiveness.

Since the K.c.f.is the generalization of the J.c.f. the comments we have made

above will obviously apply to the K.c.f. However there are new and important

considerations. As we showed in [ 5] the number of Kronecker blocks and their
dimensions are determined by considerations of rank; small perturbations in

A and B may well change the ranks of the submatrices involved.



3 REGULAR PENCILS

Our main concern in this note 1s with the relevance of the K.c.f. for the

QZ algorithm. Accordingly we concentrate on square A and B of order n and

assume for the moment that det(A\B) # 0. ie that the pencil is regular, and
T

therefore its K.,c.f. contain no L or Lb blocks. We write
r r-1

det( AB) =a) +a AN  +...+a (r<n) (3.1)
r r 1 0 ’

where a, is the first non-vanishing coefficient. Notice that r could be

zero in which case det(A-\B) = a, # 0. The equation det(A-A\B) has r finite
roots, some of which may be zero, though these should not be regarded as

special. For the homogeneous pencil we have

n-r r r-1 + 7)det( PAB) = p ( aN + a._M pte... Tah (3.2)

and det (AB) = 0 may accordingly be regarded as a polynomial equation of

degree n having n-r infinite roots. Adopting this convention there are always

n roots ay Coy _ y Oe Following the convention suggested above we may

regard these a as divided into two sets, those for which ETERS 1 and those
for which| 0, | >1, For the latter we shall work with B, = 1/a, and hence
infinities are avoided. Corresponding to each a. there 1s at least one unit

elgenvector uw. We write

= lo, |< = 1Au. oyu, (la | D , B;Au, Bu, (Te | < 1) (3.3)

Let us consider the simultaneous reduction of A and B to upper triangular

matrices A and B. This can be done entirely by unitary equivalences and it

1s upon this theorem that the feasibility of the QZ algorithm depends. We

give —an elementary proof of it which sheds light on the nature of the diagonal

elements in A and ‘B. We state the theorem in the following form.

If det (ANB) # 0 and Au = ABu has eigenvalues a. (reciprocals B.) then there
exist unitary Q and Z such that

~~ Ld

QAZ = & , QBZ = B | (3.4)

lad ~~ , ,
where A and B are upper-triangular with
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~ — = — <5. =ak , b.=k (I a, | 1) (3.5)

3 =k by = Bk (Leg >) (3.6)

and the k; are non-zero. The oy may be taken to be in any order.

The proof 1s by induction. It 1s obviously true when n = 1; we assume it 1s

true for matrices of order up to n-1 and then prove it 1s true for matrices

of order n.

Corresponding to a, we have a unit vector uy such that

Let

u, = Ze, : (3,8)

where Z, 1s unitary and e is the first column of the identity. Then

AZ, e, = a,BZe, or B,AZ.e, = Ble, . (3.9)

Writing

AZ, =G and Bz, = H (3.10)

we have

Ge, = a, He, or B,Ge, = He, . (3.11)

Now Ge, = 8, and He, = h, where &, and h, are the first columns of G and H

respectively. At least one of £1 and h is non-null, because 1f both were then

0 = det(GAH) = det(A-AB)det(Z,) (3.12)

and hence det(A\B) = 0 contrary to hypothesis. From equation (3.11) we have

certainly

hy = He, # 0 (layls 1), g, = Ge, £0 (la, > 1) . (3.13)

Let Q, be a unitary matrix such that
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where k, # 0. We have
T i Tk b

(I | ERE
2 BN ~ 2

T T
k|e opi | 8) |

Uo = QAZ= ——— |, f= QB2, - Gol >1), (3.16)
0 | A 0 | B |I 2 2

where A, and B, are square matrices of order n-1. Since

det Qqdet(A-AB)det 2, = det(Q,AZ, - NQ,BZ,)

— = - <ky (a, \)det(A,-AB,) (| ay |<)

= k, (1-g\)det(AAB,) ([a,| >1) (3.17)

it is clear that the eigenvalues of A u = AB u must be a_, « ceed OO
2 2 22 73 > mn

whatever the distribution of finite and infinite values this set may have.

From the inductive hypothesis A, and B, may be reduced to upper-triangular
form with the required diagonal elements using unitary equivalences, the

proof follows 1n the obvious way.

Notice that the x, could have been listed in any order and would then occur

in that order in the triangular matrices. Corresponding to each infinite 5

we work with a zero B. and hence obtain a zero diagonal element? in B.
We cannot have a zero a. coupled with a zero b,j this is because k. 4 01

which 1s itself a consequence of the regularity of the pencil.

4 —SQUARE SINGULAR PENCILS

Suppose now that det(A-\B) = 0, so that the pencil A-AB is singular. Let us

attempt to follow through the proof of the simultaneous reducibility of A and

B to triangular form. If now ty is any number whatever we have det (A—c,B) = 0,
and hence there 1s a non-null unit vector u, such that

A _ < = B <1). .Uy or, Bu, (fol 1) or B Au, u, (Fal 1) (4 1)

The argument proceeds as before until we reach the comment that "at least

one of the vectors op and h, must be non-null". We can no longer make this
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assertion since it depended on the hypothesis det (A-)\B) # 0.

If nevertheless one or other (or both) isnon-null, then exactly as before

we have a reduction to one or other of the forms (3.15) or (3.16) with

k, £ O, Clearly det (4,-)\B,) = 0, since if not this would imply det (A-\B) # 0.
Hence in this case an arbitrary 0, would satisfy det (A, ~a,B,) = 0 and we can
continue with the next step of the reduction.

When, on the other hand, both g, and h, are null we have

TT - T
0 | a 0 | vp |

AZ = = °

: : BZ. Ts] (4.2)0 A2 0 5,

Since equations (4.2) imply that

0 = det 2, det (A-\B) = 0 [aet(a,28,) | (4.3)

we cannot claim that det (A -\B,) = 0 in this case. It may or may not be true.
Notice though that the first stage of the reduction has already assured final

triangular forms in which 3, = 1b, = 0.

If we think of the reduction to triangular form as taking place in n-1 stages

then there must be at least one stage at which the current reduced matrices

Fad Ag ' ' ' ' '

have a. = bs = 0, since 1f we could complete the reduction without this
happening it would imply det (A-\B) # 0. Notice that if at any stage we

] reach matrices A and B. such that det(A AB) # 0 then from that stage
onwards we cannot choose the values of ay arbitrarily.

The above discussion gives some insight 1nto the degree of arbitrariness of

the ratios of the a, and b, , that can arise when det(A-\B)= 0. Not only
must A and B have a. = b.. = 0 for at least one 1, but it appears highly

probable that there will be some non-zero pairs a and bl (which are not in
any sense small) with arbitrary ratios.

We have not quite proved this because although a, was 1ndeed arbitrary, and

could in particular have been taken to be zero or infinity, when k, is zero
we do not obtain non-zero values for the 1,1 elements of the reduced A and B.

However, it 1s easy to see that when a. = b. , for some 1, then in general we
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can have non-zero diagonal elements 9 5 and b.. with arbitrary ratios.
Consider, for example, the two triangular matrices

a BS b b b 1no Fz M3 yn 11 "12 P13 Puy
. 0 b b

0 “23 Boy 23 “24 |
A= Wa |» B= boob (4.4)

33 34 33 34
b

“44 44

for which 80s = by, = 0. If all the other elements in the upper-triangles

are full sized numbers it might be thought that a/b; (1 = 1, 3,4) are
necessarily bona fide eigenvalues, or at least have some meaningful

relationship with the problem Au = ABu.

However let us consider the matrices AR, and BR, where Ro 1s a rotation
in the (1,2) plane. In the regular case this transformation certainly leaves

the eigenvalues unaltered. The matrices AR), and Br, , are of the form

al al a, a oy . b
11 12 13 14 bl, bls bys 14

a b

0; 253 o4 0 by 24 |
o a and b 5 (4.5)
33 34 33 34

a b
44

where

- ' -— ' -a,.s + a,.c

1 = 1° 7 %2 F 12 = 911 12 | (1.6)4.6
rt = —_ ! = s + b,.C

Dlg = Pyq0 = Pyp 8 blo = Pqy 12°

where ¢ and s are the cosine and sine assoclated with the rotation.

The zero diagonal elements persist and we now have

' -

EIA Fa Ph
—_—— (4.7)

' -

Pl P08

Unless a,./a, = b,./ Ps the right-hand side of (4.7) can take any given
value by a suitable choice of c¢ and s; in particular it can be made to take
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the value zero or infinity. Similarly if we pre-multiply by a rotation in

the (2,3) we can produce values of a%y3 and bl, having arbitrary ratios. By
pre-multiplication with more complex matrices (they need not, of course, be

unitary) one can produce equivalent triangular matrices A' and B' with

al = Db! = ] ] t /h20 59 0 and having an arbitraryvalue of SWAIPE
The apparently well-determined ratios are therefore of no true significance.

Note however that if the zero elements 20 and bs are replaced by non-zero
elements, however small, the pencil A-AB becomes regular and now has four

eigenvalues given by the four ratios a../b,.. In practical applications of
the QZ algorithm one will rarely obtaln an exactly zero pair of a.. and b...11

However if a = e, and b.. = €, perturbations —£, in A and -£, in B will
give a singular pencil. This means that if the original data were not exact

or if the rounding errors are involved in the execution of the QZ algorithm,

the emergence of-a negligible pair of EM and b. . will usually imply that
even those eigenvalues based on apparently satisfactory pairs of a.. and%..

JJ JJ

may be of little true significance.

So far we have merely shown that when det(A-\B)= 0 the ratios a;,/b; cannoti

be taken at their face value. A natural question to ask is the following.

Suppose the Kronecker canonical form really does have a regular part; this

will correspond to true elementary divisors, finite and/or infinite. Will

equivalent triangular X and B give the corresponding eigenvalues?

It 1s easy to see that they will not necessarily do so. Consider for example

] a pencil A-AB with the K,c.f.

21 1]01]0 Rk
0 20 |o0 |

A= B = .ERIE (4.5)
Pp 0] ofo 0

This 1s obviously singular, the elements in its K,c.f. corresponding to an
T CL

Lys and L and elementary divisors (20)? and (3-h). However, multiplying
A and B on the right with a matrix which permutes columns 1, 2, 3, 4 to

2, 3,4,1 respectively the matrices become
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0) 2 1 0 0) 1 O 0

0 | 0 2 0 0) 0 1 0

0 O O 0 0 0 O 0

The matrices are still upper-triangular but all diagonal elements are zero.

Examination of the diagonal elements gives no indication of the perfectly

genuine elementary divisors. If we consider A and B in the form given in

(4.9) it is obvious that non-zero perturbations €, €o9 Eq = in the
diagonal element of A and non-zero perturbations 1s Nos N3s My AD the
diagonal element of B make the pencil A-AB regular, with eigenvalues e./n;.
Indeed provided we do not have §. = 7; = 0 for any value of 1 we can permit

zero values among the €; and nj and these merely lead to zero and infinite
elgenvalues respectively.

This means, somewhat disappointingly that when det (A-\B) = 0 even quite

respectable elementary divisors may be completely destroyed by arbitrarily

small perturbations. Clearly when A-AB is not exactly singular but merely

very close to singular small perturbations may cause the eigenvalues to move

about almost arbitrarily. However the situation 1s not quite as bad as this.

Consider the matrices

2 0 1 0

: A= , B= (4.10)
0 0 0 O

which correspond to a singular pencil but with a true elementary divisor 2-A

and an eigenvalue of 2. Consider now the neighbouring problem with

e,. +

EE EA I [AI

£ £

3 4 3 Tg

for which

det (A-\B) | (2+e,) (1+ Mm] (e A) = ( A) (e,~-n\) (4.12)e — = -— te — | Ew — »
MINE pM AEFTIN
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For almost all small perturbations e. and ns the equation det (A\B) = 0
has a root which is very close to 2. Only very special perturbations affect

this root at all seriously, eg it E, = ny = 0 then the roots are e,/n, and
ey/15 and these values may be arbitrarily different from 2.

5 NUMERICAL EXAMPLES

The points discussed in the previous section are illustrated by the performance

of the QZ algorithm on a number of simple examples. In examples 1 and 2 we have

taken a pair of matrices A and B of order four and have applied the QZ algorithm

(1) to A and B themselves

(ii) to AP and BP

(iii) to PAP and PRP

where P bly mutdtién matrix|

HORLi 0

When A-AB is a regular pencil the eigenvalues are identical for all three

problems, but when A-A\B is a singular pencil we shall expect some (or all)

of the 'alleged' eigenvalues to be quite different for the three cases. The

computations were performed on KIFF9 which is a binary floating-point computer

. with a 39 digit mantissa. For convenience of presentation and of comparison
. 11.we give only ten decimal digits although 239 = 10 [ This effectively

suppresses the effect of rounding errors, which are, in any case, of negligible

significance 1n most of these examples.

EXAMPLE 1

4 3 2 5 3 1 3 4

6 4 2 7 3 3 3 5

A=l4 2 202» Blo 0 3 =

5 3 2 6 3 1 3 5

The matrix A 1s singular and the matrix B 1s non-singular and well-conditioned

with respect to inversion. We give the values of the diagonal elements CA
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and. of the triangular matrices produced by the QZ algorithm and the

ratios COA for each of the cases (i), (ii) and (iii).
ME

Case (1) Matrices A and B themselves

a. Pys ny =F by

-2, 1009 97936, 5-11 +6, 6666 66667, = 4.0514 96904, 4-11
+1¢ 3391 28080, +1 +9, 3367 21217, 450 +1.4342 58546, 5+0

+1.5125 58290, +0 +2, 2688 371435, 4+0 +6, 6666 66667, 0
+2.9622 17979 5 +1.2745 15935,45%0 +2, 3240 81208, 4-1

Case (ii) Matrices AP and BP

Fii Byes A= Eb

-5.9674 39491, -12 +6. 6666 66667,1 -8.9571 59237, 4-12
+1. 3391 28080, +1 +9, 3367 27216, +0 +1.4342 58546, 5+0
+4.7223 08852, 1~1 +2,0319 03548, 5+0 +2. 3240 81207, 5~1
+9. 43880 01526, ,=1 +1.,4232 00229, 5+0 +6, 6666 66667 , 1

Case (iii) Matrices PAP and PRP

Fii D5 A= 8b

-2.4209 14657, 5-12 +6, 6666 66667, 4-1 -3.6313 71985, 4-12

1. 3391 28080, +1 +9, 3367 27216, 5+0 +1, 4342 58546, 5+0
4.7223 08852, 4-1 +2, 0319 03548, 5t0 +2, 3240 81208, ,-1
9. 4880 01525, 4=1 +1,4232 00229, 5+0 +6, 6666 66667, 41

In each case one of the elements 8; 1s negligible and the three sets of
eigenvalues agree almost to the working accuracy. One of the eigenvalues

1s negligible which is to be expected since A 1s singular and of rank three

and B 1s non-singular. The computed vectors were also 1n very close agreement

and all residuals were negligible.



u

15

EXAMPLEZ

4 3 2 | 2 13 4]6 4 2 7 3 3 3 5 |
i = =

SR 000 -3 2 | .
5 3 2 6 3 13 5 |

The matrix A 1s identical with that in example 1 while B differs from that

in example 1 only in 1ts (1,1) element and 1s now singular. Further 1t may

be verified that det(A-\B) = 0 so that the pencil A-AB is singular. The

computed results for the three cases are as follows. Since some of the a.
and some of the 'alleged'A, are now complex the layout is slightly different

for cases (i) and (iii).

Case (1) Matrices A and B themselves

3. b..
11 11

+1.9332 24353, 50 +2.4138 04758, 5+0

+3.7405 52679, 4-10 +1.9956 68463, ,-10

+3,2187 03829, 4-1 + (1.9076 54397, ,=1)1 +4.6918 93487, =
+4.7604 90373, ,~2 — (2.8214 37099,,-1)1 +6.9393 50421,,~1

nt _— 3 iY
At = 8 b

+8, 0090 36139, 5-1

+1.8743 357117, 4540
+6, 8601 38319,572 + (4.0658 51884, 4-114
+6.8601 38319, ;—2— (4.0658 51884, ,=1)i
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Case (11) Matrices AP and BP

~~ O54 "1! _ xa. P34 ISAC

+4, 1298 40501, 5+O +6.2714 90903, 5+0 +6, 5851 01637, =
+1, 7169 30971, 4=10 +1, 1900 68398, ,-10 +1. 4427 16217, 5+0
-1. 8933 16041, 1 +5, 3216 43685, = 23.5577 65520, 5-1
-2.8853 97811,5~" +2. 8902 T1747, 5 -9, 9831 36757, 4"

Case (iii) Matrices PAP and PBP

py ~
a. bys

+6.2346 91954,=! F(2.2113 96258, 5=1)1 +4, 0831 93280,4-1
+9.9724 17516, ;=10 - (3.5371 38152, ;~10)i +6.5310 85815, ,=10
+4.1156 63077,4~1 +7.3322 18461,o=1

. 1.9986 46939, +5.5039 91337,5-1

) _ ~~A 811 ss

+1.5269 15707, 5+0+ (5.4158 50063, o=1)i
+1.5269 15707, 45+0 = (5.4158 50063, ,-1)i
+5. 6131 21184, 4=1

: -3.6312 68322, 5-1

In each case there is a value of 1 for which both 5, and b.; are negligible
as was to be expected. Naturally there 1s no agreement between the A;

computed from the ratios of these negligible quantities. However the As

computed from the other ratios are also in total disagreement even though

they came from full sized 8, and%... Cases (1) and (111) each give a pair
of complex N, (though they bear no relation to €ach other) while case (11)

gives four real Ae Nevertheless all residuals were negligible to working
accuracy.
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EXAMPLE3

Case (1) For this example we took as our basic matrices

“3 1 1 0 17 1 1 0

0 2 1 0) 0 1 1 0
A = B =

0 0 1 0) ? 0) 0 1 0 |

0 0 o of 0 0 0 oO]
The pencil A-AB is obviously singular but there are three genuine elementary

divisors 3-A, 2-h and 1-A. The QZ algorithm recognised that both A and B

were upper-triangular and therefore skipped all stages in the reduction and

produced exact answers.

Case (ii) The matrices

"0 3 1 = 1]
SEE

A = 0 0 2 , B= 0 :
0 0 0 | 0 0 0 1

0 0 0 0 | 0 0 0 0
were obtained by permuting columns of the basic A and B conformally. Again

the QZ algorithm recognized that the matrices were already upper-triangular

and skipped all steps. However, since all diagonal elements of the A and B

are zero 1t naturally decided that all eigenvalues were indeterminate and

failed to recognize the genuine elementary divisors.

Case (iii) The matrices

1 1 3 0 1 1 1 0

1 2 0 0 1 1 0 0

0 0 0 0 0 0

A=10o0o o of B=_Loo o o

were again obtained by permuting the columns of the basic A and B. The QZ

algorithm now involved genuine computation with rounding errors. The

diagonal elements of the computed upper-triangular matrices and the computed

eigenvalues were
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#11 5 Ay = Ey

3.0000 00000, +0 1.0000 00000, 4+0 3.0000 00000, +0

1.4142 13562, 4+0 1.4142 13562, 5+0 1.0000 00000, +O
1.41~2 13562, +0 7.0710 67812, 5+0 2.0000 00000, +0
0.0000 00000 0.0000 00000 Indeterminate

The eigenvalues were gilven correct to working accuracy.

Case (iv) The matrices

TT 1 3 e | 1 1 1 ¢€
1 2 € 0: 1 1 28 0

A= 11 ee 0 oj B7 I 3 0 0

e 0 0 0] AE 0 0 0

were derived from the A and B of case (111) by adding perturbations 1n the

secondary diagonal. For any non-zero value of € the matrices A and B are

non-singular and the eigenvalues are (exactly) 1, %, T and - For € = 0
the pencil 1s singular but there are three true eigenvalues 3, 2 and 1.

Values of € = 1077, 107! 1073 and 10! were tried and the results were as
follows.

e = 1077

*ii bi A= a, 1/5

-2.0002 54759, 00 +0. 0000 00000 Infinite

+3.0734 T4417, 44 + 1.0244 82499, =A +3,0000 26277, +0

+5.7046 43522, 41 +5.7040 49228, 4 +1, 0001 04188, +0
+9.41 17 54580, ,=4 +4. 7058 11290, 44 +2. 0000 00000, 4+0
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e = 107

a. Db. . A. = &../%.
11 11 1 I A

-2.0000 17373, 45-6 +0. 0000 -00000 Infinite
+1. 5688 66556, 44 +7.9511 36649, 5-5 +1.9731 34944, 5+0

+6.7693 15682, =2 +2.2164 49806, 4-2 +3. 0541 25415, 5+0
+6, 0001 68768, 4-6 +2.9992 68091, ,—6 +2. 0005 44328,+0

e = 107°

ov hd on

+ 1 os Ay - 21475; 11

+2.5055 38348, 1~3 +7.5052 69298,~3 +3.3383 72347, 41
+3.4300 70603,-3 +1.3738 11575, 45-2 +2.4967 43865,1
+1.1393 32748, 5-3 +2.2795 05214, 5-3 +4.9981 58114, 4~1

+1,0211 23529, 5+0 +1.0211 16748, 5+0 +1, 0000 06640, 5+0

e = 107

~ od =

G31 0; 5 A= E/E

+4. 3852 90097, 51 : +8, 7705 80193, 5~1 +5, 0000 00000, 4-1
] +2.2803 50850, +0 +2,2803 50850, +0 + 1, 0000 00000, 50

+ 1.0000 00000, +0 +3, 0000 00000, +0 +3. 3333 3333345"

+ 1.0000 00000, +0 +4. 0000 00000, 4+0 +2, 5000 00000, 4-1

This 1s perhaps the most interesting example. If we think of the matrices

of case (111) as the basic matrices then those of case (iv) are affected by

two sets of perturbations. First the highly specific perturbations of order

€ which we have added to the secondary diagonal. Second the perturbations

equivalent to the rounding errors made in the course of the QZ algorithms;

on KIF'G these are relative errors of the order of magnitude 2739 The

rounding errors are not randomly distributed over the whole of A and B

since the last row and column of both A and B contain only one.non-zero
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element and that is of order & When € 1s small the matrices to which the

computed results correspond may be regarded as very close to those of

case (iii). As £& becomes larger a point must be reached at which the effective

matrices behave as though they were close to an A and B with eigenvalues
1 1 1

1, 29 3 A

The results show this behaviour very clearly. When € = 1077 there are still

eigenvalues very close to 1, 2 and 3 and there is one infinite eigenvalue
-8

though this comes from an a,, which is of order 10 coupled with a zero b,..
~s ~~ ~S _ 4that b db 11 of nitude 10 ie quite small.

Notice a 809 009 @04 an 4 are a of magnitu q
With € = 107" the matrix 1s already losing touch with the original; there are

eigenvalues reasonably close to 2 and 3 but the eigenvalue 1 has been lost.

Most of the %.. and b.. are quite small.
11 11

|

With € = 10 3 we have moved decisively to the regime with eigenvalues 1, BL
* and ©, The computed values now have three figures correct and are derived~ - =

from a. and b,. which are all at least as large as 10 3, With € = 10 the
computed eigenvalues are correct to working accuracy and thea... and b,. are
of full size. As 1s to be expected all residuals corresponding to all

eigenvalues of all matrices are negligible to working accuracy.

Case (Vv) As a final example we took

1 1 3 > I 1 1 3 - 1

2 3 3 8 2 2 1 5
A = _

. 2 1 3 6 ’ B = 2) 11 4

1 L 3 5 1 1 1 3

which are derived from exact elementary transformations of the matrix of

j Th ted &.., b.. andAcase (1). e compute INT ii i were

~~ iad ~ ~~
= a../b..ii 0.5 Ay i1/ 11

+3, 1622 77660, 5+0 +3, 1622 17660, +0 +1. 0000 00000, +0

+1.0259 78352, 41 +3.4199 27841, 52 +2. 9999 99999, +0

+1,7592 67639, 5+0 +8, 7963 38193, 51 +2, 0000 00000, +0
+1.3520 61076, ,=11 +0. 0000 00000 Infinite
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The genuine eigenvalues are preserved to full working accuracy; there 1s one
~ -11

infinite eigenvalue but this is derived from an a;; ©of order 10 coupled
~

with a zero b.. and clearly shows that the pencil is singular.

GENERAL COMMENTS ’

The material presented 1n this paper should in no way be regarded as

constituting an adverse criticism of the QZ algorithm. In all of our examples,

however pathological, the QZ algorithm has given exact eigenvalues and

eigenvectors of matrices differing from A and B by perturbations of the order

of magnitude of rounding errors. In that sense it continues to give best

possible results.

Our purpose has been to expose the properties of singular pencils and their

consequences for practical algorithms. P van Dooren [1] has suggested that the
QZ algorithm should be preceded by an algorithm which extracts the singular part

(if any) of the pencil and we strongly support this recommendation. It should

be appreciated that when an attempt is made to recognize the singular part by

means of an algorithm which, in general, will involve rounding errors, decisions

concerning the ranks of matrices are necessarily involved. If van Dooren's

policy 1s adopted these decisions are made 1n the most favourable context.
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