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Abstract

In the QZ algorithm the eigenvalues of Ax = NBx are computed
a~ ~ ~ ~
via a reduction to the form Ax = ABx where A and B are

upper triangular. The eigenvalues are given by Ai = aii/‘bii .

It is shown that when the pencil K-8 is singular or nearly

~
singular a value of %i may have no significance even when 84

~

and bii are of full size.






1 INTRODUCTION

In a recent paper L 51 we discussed the derivation of the Kronecker
canonical form (K.c.f.) of the N matrix A-'B (usually referred to as a linear

pencil) using the system of differential equations
Bx = Ax + f(t) (1.1)

as the motivation. A related and in some respects more detailed treatment
has been given by van Dooralt 1] though there a direct attack was made on

the derivation of the Kronecker canonical form.
In recent years the generalized eigenvalue problem
Au = A\Bu (1.2)

has been the subject of intensive research. The importance of this problem
stems primarily from the fact that if A and u are an eigenvalue and

eigenvector of (1.2) then

X =ue7\t (1.3)
is a solution of the homogeneous system

Bx = Ax . (1.4)

One of the most effective methods for dealing with the generalized eigenvalue
problem is the QZ algorithm developed by Moler and Stewart[:Aj . This

reduces B and A simultaneously to triangular matrices B and I such that

B = QBZ and K = QAZ , (1-5)

where Q and Z are derived as the product of elementary unitary transformations.

The problem

~ ~

Av = \Bv (1.6)
is therefore'equivalent®'to (1.2) in that the eigenvalues are the same and
corresponding u and v are such that u = Zv. If there are no zero values of

~
bii then the eigenvalues are given by

A = “a’_li/t”:ii . (1.7)



A zero value of b.li presents no special problem unless the corresponding
gii is also zero; 1t merely implies that the corresponding xi is infinite.

It is simpler to regard such an infinite eigenvalue as a zero eigenvalue of

Bu = phu . (1.8)
However, 1f for any wvalue of i we have 511 = %&i = 0 then
0 = det(AAB) = det Q(AAB)Z = det O det(A-\B) det(Z) (1.9)

and hence det(A-\B) = 0 since Q and Z are unitary. Conversely if det(A-'B) =

and XJA§ is an equivalent triangular pencil then since det(K—%ﬁ) = TT(gii;Xﬁii)

this cannot give the null polynomial unless E&i = bii = 0 for at least one i.

2 THE KRONECKER CANONICAL FORM

Kronecker's canonical form applies to general pencils A-AB where A and B

may be rectangular matrices. The pencil is said to be sinqular if either

(i) m # n

or (ii) m = n and det(A-2\B) = 0.

Otherwise the pencil is said to be reqular; note that regular pencils

4~
necessarily involve square matrices. The pencil A-AB is said to be strictly
equivalent to A-AB if there exist non-singular matrices P and Q (not

necessarily unitary) such that
- 1 = pag , B - PRQ . (2.1)

In the remainder of this paper we shall omit the qualification 'strictly'

since we shall not be concerned with any broader concept of equivalence.

~ N
Kronecker showed that A-'B could be reduced to an equivalent A-AB in which

the A and B are of block diagonal form, the blocks in A and B being conformal.

The blocks in the K.c.f. are of three types. In general there will be a

number of blocks of each type in the K.c.f.

, , .. r
(i) Those corresponding to elementary divisors of the form (aJK) where
~ ~
a is finite (possibly zero). For these the blocks in A and B are Jr(a) and

Ir respectively where Jr(a) is the elementary Jordan matrix of order r

0



associated with a and Ir is the identity matrix of order r., These blocks are
said to correspond to finite elementary divisors of A-AB., They are of course
square and of dimension r X r, For reasons which become obvious when we
discuss the other blocks it is often more convenient to think in terms of the
homogeneous pencil pA-AB and of the e;gmentary divisor (auJK)r rather than

(oc-')\)r.

T
(ii) Those corresponding to elementary divisors p of the homogeneous
pencil pA-A\B. For these the blocks in % and B are Ir and Jr(O) respectively.
Notice that the identity matrix is now in i and the elementary Jordan matrix

is in ﬁ. These blocks are said to correspond to infinite elementary divisors.

Again they are square.

T
(1ii) Elementary Kronecker blocks,usually denoted by La(x,u) and Ln(l,u).
These are of dimensions € % (8+1) and (n+1)'x n respectively. They are
adequately illustrated by LZ(X,u) for which the blocks in uAJKB,ATand% are

o =A 0 1 0o 0 0 1 0
, and (2.2)
0] boo=A 0] 1 0 o 0 1
respectively. There are no elementary divisors of pA-AB corresponding to

these blocks or perhaps we should say that the corresponding elementary

divisor is unity which is independent of W or A.

We make the following comments. If all of the blocks are of types (i) and

~ ~ , ~ ~
(ii) then A and B (and hence A and B) are square. Further since det(pA-\B)
is the product of the determinants of the diagonal blocks in WA-AB and

dget [w_(0)AT] = (nadn)” (2.3)

T

W (2.4).

det [uIréer(o)]

we see that det(uﬁékﬁ) (and hence det(uAJKB)) is not null. In this case then

the pencil is regular.

The blocks corresponding to infinite elementary divisors seem to be decisively
different from those corresponding to finite elementary divisors. This is
deceptive and rather unsatisfactory when we come to practical algorithms. In

~
a block of type (i) corresponding to a zero value of a the matrix A has a



Jr(O) and 5 has an Ir' In a block of type (ii) % has an Ir and B has a Jr(O);
this is quite natural if we think in terms of a zero elementary divisor of
B-pA, In computational terms it would perhaps be more satisfactory to make
the distinction between values for which |a|$1 and those for whichi al > 1.
For the former we could take blocks Jr(a) in & and Ir in %; for the latter we

take blocks Ir in X and Jr(B) in B where B

1/@. Now a = o0 corresponds

to B = 0 and the whole range is treated in a uniform manner. Strictly speaking
if |l A”2 anderll2 are very disparate in size then we should distinguish
between those a for which Ia [éllA "2/IIB ”2 and those for which

| o L>|IA “2/]|B112. Notice that for the standard eigenvalue problem

IIBII2 = 1141 5 = 1; since all eigenvalues satisfy the condition [a[ < HA ”2
the second set is always empty. This pinpoints an essential difference

between the generalized problem and the standard problem. For simplicity of
notation we shall assume that n A "2 and ” B ”2 are of comparable orders of
magnitude; this is, after all, merely a matter of scaling. Accordingly we
shall distinguish between ia LS 1 and Mx[>1. When m % n there must, of course,
be some rectangular blocks in K andii Indeed if m < n there must be n-m

more blocks of type %Tfhan of type Lﬂ while when m > n there must be m-n

more blocks of types'% than of type L.. When m = n and det(A-\B) = 0 we have
already remarked that not all the blocks could be of type (i) and (ii). Hence
in this case too, blocks of type (iii) must occur and clearly there must be an
equal number of L8 and L: blocks, otherwise K and g would not be square.

However the dimensions of the L8 blocks need bear no relation to those of the

Lﬁ blocks.

It is well known that classical similarity theory, which is concerned with the
standard eigenvalue problem Au = Au, is dominated by the Jordan canonical form
(Juc. £.) J of A. The corresponding K.c.f. of A-AI is J-AIj in this simple
case the K.c.f. never contains any blocks of type (iii). Now in pumerical
linear algebra the J.c.f. 1s not generally regarded as quite so important for
the following reason. Elementary Jordan blocks of dimension greater than
unity can arise only if A has multiple eigenvalues. However, arbitrary
perturbations in A then lead, in general, to a matrix having distinct
eigenvalues and hence having a strictly diagonal J.c.f, Moreover blocks of
order greater than unity usually correspond to very sensitive eigenvalues.

Thus if the block Jz(a) is perturbed to




a1
(2.5)

e a

1
the eigenvalue becomes a + e?,

However it is salutary to remember that the use of unity elements in the

standard Jordan form is for convenience only. The matrix
a e
1
A= (2.6)
0 a

a 1
(2.7)
0 -a
but perturbations of order € in A give perturbations of order € in the
eigenvalues. This remark is sometimes important in practice when we are

not concerned with perturbations which are arbitrarily small.

In numerical linear algebra it is the insight provided by the J.c.f. into the
perturbation of eigenvalues which is its more important aspect. The actual
determination of the J.c.f. plays a much less important role and indeed in
the presence of rounding errors it is an unattainable goal except in special
cases. An important feature is that if A has an eigenvalue a which is very
sensitive to perturbations in the matrix elements, then A is to that extent
close to a defective matrix, ie a matrix having a block of order greater than
unity in its J.c.f. Hence extreme sensitivity is always related to

defectiveness or near-defectiveness.

Since the K.c.f., is the generalization of the J.c.f. the comments we have made
above will obviously apply to the K.c.f. However there are new and important
considerations. As we showed in [ Sj]the number of Kronecker blocks and their
dimensions are determined by considerations of rank; small perturbations in

A and B may well change the ranks of the submatrices involved.



3 REGULAR PENCILS

Our main concern in this note is with the relevance of the K.c.f. for the
QZ algorithm. Accordingly we concentrate on square A and B of order n and
assume for the moment that det(A-\B) # 0. 1ie that the pencil is regular, and

T .
therefore its K,c.f. contain no L8 or Lr blocks. We write
)

det( A\B) = aI?\r +a, 17\r_l t.o.ota (T n), (3.1)

where a, is the first non-vanishing coefficient. Notice that r could be
zero in which case det(A-\B) = a, # 0. The equation det(A-\B) has r finite
roots, some of which may be zero, though these should not be regarded as

special. For the homogeneous pencil we have

r-1

- r
det(uA—XB)=un ( aI]\r +a, N pt...tagk ) (3.2)

and det(A4%B) = 0 may accordingly be regarded as a polynomial equation of
degree n having n-r infinite roots. Adopting this convention there are always

(o4

n roots a . Following the convention suggested above we may

1’ 2’ o i 9
regard these a.1 as divided into two sets, those for which lailé 1 and those
for which \ai}>1. For the latter we shall work with Bi = 1/ai and hence

infinities are avoided. Corresponding to each ay there is at least one unit

eigenvector u.. We write

Au. = aiu.(iai]S 1) ’BiAui = Bui (|ai| < 1) . (3.3)

Let us consider the simultaneous reduction of A and B to upper triangular
matrices A andlﬁ. This can be done entirely by unitary equivalences and it

is upon this theorem that the feasibility of the QZ algorithm depends. We
give -an elementary proof of it which sheds light on the nature of the diagonal

elements in A andlﬁ. We state the theorem in the following form.

If det(A-\B) # 0 and Au = ABu has eigenvalues a. (reciprocals Bi) then there

exist unitary Q and Z such that

az = & , @z = B, (3.4)

where i and B are upper-triangular with



I3

~ — — $ .
N ai§ , bii ki (lail 1) (3.5)
3. =k .. = B.k. > .
834 i ! b11 Bl i (lall > 1) (3.6)
and the ki are non—-zero. The ai may be taken to be in any order.
The proof is by induction. It is obviously true when n = 1; we assume it is

true for matrices of order up to n-1 and then prove it is true for matrices

of order n.

Corresponding to a, we have a unit vector Uy such that

Au‘l = o,Bu, (loc,lls’l) B Au, = Bu, (]051| >1). (3.7)
Let

u, = 21e1 , (3.8)
where Z1 is unitary and € is the first column of the identity. Then

AZ e, = «BZ e, or B,AZ.e, = BZe, . (3.9)
Writing

Az, =G and BZ, = H (3.10)
we have

Ge1 = oc,]He1 or B1Ge1 = He1 . (3.11)

Now Ge1 = 8 and He1 = h1 where &1 and h1 are the first columns of G and H

respectively. At least one of g, and hl is non-null, because if both were then
0 = det(GAH) = det(A-AB)det(Z,) (3.12)

and hence det(A4XB)'E 0 contrary to hypothesis. From equation (3.11) we have

certainly
h1=He1;40(|a1l.51),g1=Ge1;40 (lcx1| > 1) . (3.13)

Let Q,| be a unitary matrix such that

QTh‘I =k1e1 (Ioc,lls‘l) , Q,'g,, = k1e1 (ch1|>1) (3.124)



where k1¥ 0. We have

T
k1 b1 W
Q.H = Q,Bz, = Q.G
1 1771 ’ 1
o I3, ] _
T
| &
Q1G = Q1AZ1 = : , Q1H -
0 I A,
I
where A2 and B, are square matrices of order n-1. Since

det Qdet(A-AB)det z, = det(Q,,AZ,' - ?\Q1BZ1)

k, (a,!—?\)det(Az—")\BZ) (| oy |<1)

k, (1~B17\)det(A2—7\B2) ([a1| >1) (3.17)

it is clear that the eigenvalues of A u = AB u must be a_, « cee o
2 2 27 73 > mn

whatever the distribution of finite and infinite wvalues this set may have.

From the inductive hypothesis A2 and B2 may be reduced to upper-triangular

form with the required diagonal elements using unitary equivalences, the

proof follows in the obvious way.

Notice that the o could have been listed in any order and would then occur
in that order in the triangular matrices. Corresponding to each infinite o,
we work with a zero Bi and hence obtain a zero diagonal element?:.Li in ﬁ.

We cannot have a zero gﬁi coupled with a zero’%ii; this is because k.1 # 0

which is itself a consequence of the regularity of the pencil.

4 —-SQUARE SINGULAR PENCILS

Suppose now that det(A4kB) = 0, so that the pencil A-AB is singular. Let us
attempt to follow through the proof of the simultaneous reducibility of A and
B to triangular form. If now oy is any number whatever we have det(A—a1B) =0,
and hence there is a non-null unit vector u,| such that
= < = < . )
Au, oc,IBu,I(Ioc1| 1) or B Au, Bu,l(loc,ll 1) (4.1)

The argument proceeds as before until we reach the comment that "at least

one of the vectors 9 and h1 must be non-null". We can no longer make this



assertion since it depended on the hypothesis det(AJAB) # 0.

If nevertheless one or other (or both) is non-null, then exactly as before
we have a reduction to one or other of the forms (3.15) or (3.16) with
k, # 0. Clearly det(A,\B,) = 0, since if not this would imply det(A-\B) £ 0.

Hence in this case an arbitrary o, would satisfy det(A2—a B.) = 0 and we can

2 22

continue with the next step of the reduction.

When, on the other hand, both g]and h1 are null we have

Az, = , BZ, = (4.2)
Since equations (4.2) imply that

0 = det Z, det(A-2\B) = 0 {det(Az-wz)} (4.3)
we cannot claim that det(Azéth) = 0 in this case. It may or may not be true.

Notice though that the first stage of the reduction has already assured final

triangular forms in which 511 = %11 = 0.

If we think of the reduction to triangular form as taking place in n-1 stages
then there must be at least one stage at which the current reduced matrices
have §£i = %ii = 0, since if we could complete the reduction without this
happening it would imply det(AéKB) # 0. Notice that if at any stage we

reach matrices A and Br such that det(ArJABr) f 0 then from that stage

onwards we cannot choose the values of a; arbitrarily.

The above discussion gives some insight into the degree of arbitrariness of
the ratios of the ﬁﬁi and‘%;i that can arise when det(A-\B) = 0. Not only
must % and B have gii = %ii = 0 for at least one i, but it appears highly
probable that there will be some non-zero pairs §3j and %jj (which are not in

any sense small) with arbitrary ratios.

We have not quite proved this because although a1 was indeed arbitrary, and
could in particular have been taken to be zero or infinity, when k1 is zero
we do not obtain non-zero values for the 1,1 elements of the reduced A and B.

~
However, 1t 1is easy to see that when g&% = bii for some i, then in general we
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can have non-zero diagonal elements 533 and %ﬁﬁ with arbitrary ratios.

Consider, for example, the two triangular matrices

‘ "o b b b, |
Y %2 By Py | 11 12 13 14
: 0 b b
0 %23 %y 23 21 )
A= » B = b,, b 4.4
%33 33 °n
b
44 a4
- | . .
for which a22 = b22 = 0. If all the other elements in the upper-triangles
are full sized numbers it might be thought that aii/Pij (i =1, 3,4) are

necessarily bona fide eigenvalues, or at least have some meaningful
S —————

relationship with the problem Au = ABu.

However let us consider the matrices AR12 and BR12 where R12 is a rotation
in the (1,2) plane. In the regular case this transformation certainly leaves

the eigenvalues unaltered. The matrices AR12 and BR12 are of the form

2l Bl Ay 2y by, v, by by,
0 %23 %4 0 b,y b241
833 %y and b33 b34 (4.5)
. "4 P44
where -
‘ 219 = #1° " 32 ® al, = a,,5 + 2,0 1&
bl = b c=b,s b, = Db,s + byoe ] (4.6)

where ¢ and s are the cosine and sine associated with the rotation.

The zero diagonal elements persist and we now have

1
811 Bqq0T3 8
= . (4'7)
] -
bly  Dyqe-P, s

Unless a11/a12 = b11/b12 the right-hand side of (4.7) can take any given

value by a suitable choice of c¢ and s; in particular it can be made to take
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the value zero or infinity. Similarly if we pre-multiply by a rotation in
the (2,3) we can produce values of a§3 and b§3 having arbitrary ratios. By
pre-multiplication with more complex matrices (they need not, of course, be
unitary) one can produce equivalent triangular matrices A' and B' with

al, = b! = 0 and having an arbitraryvalue of

22 = P9y 24/ 4y

The apparently well-determined ratios are therefore of no true significance.
Note however that if the zero elements a22 and b22 are replaced by non-zero
elements, however small, the pencil A-AB becomes regular and now has four
eigenvalues given by the four ratios aii/bii' In practical applications of
the QZ algorithm one will rarely obtain an exactly zero pair of a{{ and biq

i
However if aii = 81 and b.1.1 = 82 perturbations —81 in A and -82 in B will
give a singular pencil. This means that if the original data were not exact
or if the rounding errors are involved in the execution of the QZ algorithm,
the emergence of-a negligible pair of Eéi and'%;i will usually imply that
even those eigenvalues based on apparently satisfactory pairs of %&. and%. .

JJ
may be of little true significance.

So far we have merely shown that when det(A-\B) = 0 the ratios gai/gii cannot

be taken at their face wvalue. A natural question to ask is the following.

Suppose the Kronecker canonical form really does have a regular part; this
will correspond to true elementary divisors, finite and/or infinite. Will

equivalent triangular % and B give the corresponding eigenvalues?

It is easy to see that they will not necessarily do so. Consider for example

a pencil A-AB with the K.c.f.

21010 Rk !
o200 |

_ _

A=t o ols ol 2" | . (4.8)
o ofofo. 0

This is obviously singular, the elements in its K,c.f, corresponding to an
Lo’ and LZ and elementary divisors (ZJA)2 and (3-h). However, multiplying
A and B on the right with a matrix which permutes columns 1, 2, 3, 4 to

2, 3,4, 1 respectively the matrices become
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1 0
0 2 0 0
010 013 and | | g g | 1 . (4.9)
010 ofo] olo oo

The matrices are still upper-triangular but all diagonal elements are zero.
Examination of the diagonal elements gives no indication of the perfectly
genuine elementary divisors. If we consider A and B in the form given in
(4.9) it is obvious that non-zero perturbations 8]. 82, 83,84 in the
diagonal element of A and non-zero perturbations n1,n2,n3,n4 in the
diagonal element of B make the pencil A-AB regular, with eigenvalues Si/ni.
Indeed provided we do not have g.=m; = 0 for any value of i we can permit
zero values among the Si and nj and these merely lead to zero and infinite

eigenvalues respectively.

This means, somewhat disappointingly that when det(AJKB) = 0 even quite

respectable elementary divisors may be completely destroyed by arbitrarily
small perturbations. Clearly when A-AB is not exactly singular but merely
very close to singular small perturbations may cause the eigenvalues to move
about almost arbitrarily. However the situation is not quite as bad as this.

Consider the matrices

(4.10)

>
Il
w
Il

which correspond to a singular pencil but with a true elementary divisor 2-\

and an eigenvalue of 2. Consider now the neighbouring problem with
I L PP
A= , B= (4.11)
1] 1]
3 4 N3 Ty

=

for which

det(AB) = [(2+8,‘) - (1"'111))\] (84—7147\) —(82—1)27\,)(83—1']37\), (4.12)
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For almost all small perturbations Ei and ni the equation det(KJAB) =0
Only very special perturbations affect
= 0 then the roots are 82/n2 and

has a root which is wvery close to 2.
this root at all seriously, eg if 84 = n4 =

83/n3 and these values may be arbitrarily different from 2.
In examples 1 and 2 we have

NUMERICAL EXAMPLES

5
The points discussed in the previous section are illustrated by the performance

of the QZ algorithm on a number of simple examples.
taken a pair of matrices A and B of order four and have applied the QZ algorithm

to A and B themselves

(1)
(ii) to AP and BP
(iii) to PAP and PBP

where P |3 mutdtién matrix

|

The

v}
L1
When A-A\B is a regular pencil the eigenvalues are identical for all three

but when A-A\B is a singular pencil we shall expect some (or all)
eigenvalues to be quite different for the three cases.

problems,
'alleged'
For convenience of presentation and of comparison
This effectively

of the
computations were performed on KDF9 which is a binary floating-point computer
11.7
which are, in any case, of negligible

with a 39 digit mantissa.
we give only ten decimal digits although 239 = 10

suppresses the effect of rounding errors,
significance in most of these examples.
EXAMPLE |

4 3 2 5 31 3 4
6 2 7 3 3 3 5
2] B=lo0o 0 3 =
31 3 5

11

5 3
The matrix A is singular and the matrix B is non-singular and well-conditioned
We give the values of the diagonal elements &, .

with respect to inversion.
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and/%ii of the triangular matrices produced by the QZ algorithm and the

ratios gii/gii for each of the cases (i), (ii) and (iii).

~
a. .
11

-2.7009 9793610—11
+1.3391 280801d+1
+1.5125 582901d+0
+2,9622 1797910-1

24

ii

-5.9674 3949110—12
+1.3391 2808O1d+1
+4.7223 0885210—1
+9.4880 0152610—1

A,
11
-2.4209 14657, ,-12
1.3391 28080, 5+1
4.7223 08852, -1

9.4880 0152510—1

Case (i)

Matrices A and B themselves

Case

~
b. .
11

+6.6666 66667, 1
+9. 3367 272171d+0
+2.2688 37435, 5+0
+1.2745 75935, 5+0

(ii) Matrices AP and BP

Case

(iii)

o

ii
+6, 6666 6666710-1
+9, 3367 272161d+o
+2,0319 035481d+o
+1.4232 002291d+0

Matrices PAP and PBP

~
b. .
11

+6, 6666 6666710—1
+9.3367 27216, 5+0
+2,0319 03548, 5+0
+1,4232 00229, 5+0

~
A =B/

-4.0514 96904, ,=11
+1.4342 58546, +0
+6,6666 66667, =1
+2.3240 81208, -1

-8.9571 5923710—12
+1.4342 585461d+0
+2, 3240 8120710—1
+6, 6666 6666710—1

A= aﬁi/gii

-3.6313 7198510—12
+1.4342 585461d+0
+2, 3240 8120810—1
+6, 6666 6666710—1

In each case one of the elements a;i is negligible and the three sets of

eigenvalues agree almost to the working accuracy.

One of the eigenvalues

is negligible which is to be expected since A is singular and of rank three

and B is non-singular.

and all residuals were negligible.

The computed vectors were also in very close agreement
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EXAMPLE2
4 3 2 5 [ 2 1 3 4 ]
6 4 2 T '3 3 3 5 |
Yl a2 2 BT ol o0 o3 2|
5 3 2 6 3 135 J

The matrix A is identical with that in example 1 while B differs from that

in example 1 only in its (1,1) element and is now singular. Further it may
be verified that det(AJAB) = (0 so that the pencil A-AB is singular. The
computed results for the three cases are as follows. Since some of the a.ii
and some of the 'alleged' )j are now complex the layout is slightly different

for cases (i) and (iii).

Case (i) Matrices A and B themselves

o

ii

+1.9332 249531O+0

+3.7405 52679, ,-10

+3.2187 03829, -1 + (1.9076 5439710—1)1
+4.7604 90373, -2 = (2.8214 37099, -1)i

+8, 0090 3613910—1
+1.8743 35717, 5+0

B
+2.4138 04758, 5+0
+1.9956 6846310—10
+4.6918 93487, ,~1
+6.9393 50421, (=1

+6.8601 38319,,-2 + (4.0658 51884, -1 )i
+6.8601 38319, (=2~ (4. 0658 5188410-1)1



Case (ii) Matrices AP and BP
g, Py
+4,1298 405011d+0 +6.2714 9090310+O
+1.7169 30977, 410 +1,1900 6839810—10
-1, 8933 16041, -1 +5.3216 43685, -1
-2.8853 9781110—1 +2, 8902 7174710—1
Case (iii) Matrices PAP and PBP

~
a, .
11

+6.2346 91954, 5= F (2.2113 9625810-1)i
+9.9724 17516, =10 - (3.5371 38152, 5=10)i

+4.1156 63077, ;=1
-1.9986 46939, 5~1

o= 8L/

i ii

o~
. = "a..
A 1 11

i

+6.5851 01637, -1
+1.4427 16217, 5+0
-3.5577 65520, /-1
~9.9831 36757, ,~1

.

11
+4.0831 93280, ,~1
+6.5310 85815, =10
+7.3322 18461, -1

+5.5039 91337, =1

+1.5269 15707, 5+0+ (5. 4158 5006310—1)1
+1,5269 15707, 5+0 = (5.4158 5006310—1)1
+5.6131 21184, =1
-3.6312 68322, ;1

~ lad
In each case there is a value of i for which both aii and bii are negligible
as was to be expected. Naturally there is no agreement between the Xi

computed from the ratios of these negligible quantities. However the xi

computed from the other ratios are also in total disagreement even though
(iii) each give a pair

they came from full sized gii and%. .. Cases (i) and

of complex?\i (though they bear no relation to €ach other) while case (ii)
gives four real Xi- Nevertheless all residuals were negligible to working

accuracy.
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EXAMPLE3
Case (i) For this example we took as our basic matrices
“3 1 1 o0 11 1 0
0 2 1 0 Q 1 1 0
2=l 0o 1 ol B0 o 1 o
0 0 0 O_I 0 0 0 0
- -

The pencil A-AB is obviously singular but there are three genuine elementary
divisors 3=\, 2-h and 1-A. The QZ algorithm recognised that both A and B
were upper-triangular and therefore skipped all stages in the reduction and

produced exact answers.

Case (ii) The matrices
To3 1 - 1
S0 1
A= 0 0 2 I , B= 0
0 0 0 I 0 0 0 1
0 0 0 0| O 0 o0 0
— -

were obtained by permuting columns of the basic A and B conformally. Again

the QZ algorithm recognized that the matrices were already upper-triangular
and skipped all steps. However, since all diagonal elements of the A and B
are zero it naturally decided that all eigenvalues were indeterminate and

failed to recognize the genuine elementary divisors.

Case (iii) The matrices
1 1 3 0 1 1 1 0
1 2 0 0 1 1 0 0
I 0 0 0 I 0 0 0
A=1lo 0o 0o o B=10o 0o 0o o
were again obtained by permuting the columns of the basic A and B. The QZ
algorithm now involved genuine computation with rounding errors. The

diagonal elements of the computed upper-triangular matrices and the computed

eigenvalues were
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%11 B A= B/
3.0000 OOOOO1 o+O 1.0000 OOOOO,] 0+O 3.0000 OOOOO1 o+O
1.4142 135621O+O 1.4142 135621O+O 1.0000 OOOOO1 O+0
1.41~2 135621O+O 7.0710 67812,'"O+O 2. 0000 OOOOO1O+O
0. 0000 00000 0.0000 00000 Indeterminate

The eigenvalues were given correct to working accuracy.

Case (iv) The matrices
o1 3 e 1 11 e
1 2 € 0. 1 1 2e 0
A=11 & 0o oj BT 1 3 0 0
e 0 O Oj Ae 0 0 OJ

were derived from the A and B of case (iii) by adding perturbations in the
secondary diagonal. For any non-zero value of € the matrices A and B are

= and For € = 0

11 1
,2’3 4‘
the pencil is singular but there are three true eigenvalues 3, 2 and 1.

non-singular and the eigenvalues are (exactly)

Values of € = 10—9, 10_7, 10_3 and IO-1 were tried and the results were as
follows.
e = 10"
854 i3 A = F /by
-2.0002 54759, 0—8 +0, 0000 00000 Infinite
+3.0734 7441710_4 +1.0244 82499, 0_4 +3, 0000 26277104'0
+5.7046 4352210-1 +5, 7040 492281 0—1 +1, 0001 041881O+O

+9.41 17 5458010—4 +4.7058 7729010—4 +2, 0000 OOOOO,IO+O



£
-2..0000 17373,,-6
+1.5688 66556, ~4
+6.7693 15682, 5=2
+6.0001 68768, -6

@

11

+2.5055 38348, ;=3
+3.4300 70603, ;-3
+1.1393 32748, ;-3
+1.0211 235291d+0

)

ii

+4. 3852 9009710—1
+2.2803 508501d+0
+ 1.0000 00000, ~+O
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D,
11
0. 0000 -00000
+7.9511 3664910—5
+2.2164 4980610—2

+2,9992 6809110—6
£ = 10-3

s
b. .
11

+7.5052 69298, ;-3
+1.3738 17575, 5=2
+2,2795 05214, -3
+1.0211 16748, ;+0

€ = 10'1

o

ii

+8,7705 8019310~1
+2,2803 5085O1d+0
+3,0000 00000, +0

I~
A =8../b .
1 i1 1ii
Infinite

+3, 0541 254151O+O
+2. 0005 443281O+0

xi = aii/%jﬁ

+3.3383 12347, 51
+2, 4967 4386510-1
+4.9981 5811410—1
+1,0000 06640, ;+0

A = 58,

i i1’ Ti g

+5., 0000 0000010—1

+ 1., 0000 OOOOO1 d+0

+3.3333 33333,,5-1

10 10
+ 1.0000 OOOOO1O+O +4. 0000 OOOOO1O+O +2, 5000 0000010—1
This is perhaps the most interesting example. If we think of the matrices

of case (iii) as the basic matrices then those of case (iv) are affected by
two sets of perturbations. First the highly specific perturbations of order
€ which we have added to the secondary diagonal. Second the perturbations
equivalent to the rounding errors made in the course of the QZ algorithms;
on KDF'9 these are relative errors of the order of magnitude 2'39. The
rounding errors are not randomly distributed over the whole of A and B

since the last row and column of both A and B contain only one.non-zero
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element and that is of order & When € is small the matrices to which the
computed results correspond may be regarded as very close to those of
case (iii). As €& becomes larger a point must be reached at which the effective
matrices behave as though they were close to an A and B with eigenvalues

11 1

= = and =,
b 3y
The results show this behaviour very clearly. When € = 10'9 there are still
eigenvalues very close to 1, 2 and 3 and there is one infinite eigenvalue

. . . -8 .
though this comes from an a,, which is of order 10 coupled with a zero bii'
L L
~ - ~ -4

i that & b a and b are all of magnitude 10 ie quite small.
Notice 8003 Pppr Fyy 24 g q
With € = 107’ the matrix is already losing touch with the original; there are

eigenvalues reasonably close to 2 and 3 but the eigenvalue 1 has been lost.

Most of the éﬁi and%ii are quite small.

3

, 1
With € = 10 © we have moved decisively to the regime with eigenvalues 1, L

g and-z' The computed values now have three figures correct and are d$rived
from gii and %;i which are all at least as large as 10'3 With € = 10 the
computed eigenvalues are correct to working accuracy and the’Eii and%ii are
of full size. As is to be expected all residuals corresponding to all

eigenvalues of all matrices are negligible to working accuracy.

Case (v) As a final example we took
1 1 3 5 1 1 1 - i
A 2 3 3 8 2 2 1 5
. = 2 1 3 6 9B= 2 11 4
1 1 3 5 1 1 13

which are derived from exact elementary transformations of the matrix of

case (i). The computed /éii’ h’tl).li and 7\1 were

35 bis ISCVAT
+3.1622 77660, ;+0 +3,1622 776601 O + 1. 0000 00000, +0
+1.0259 78352, ;-1 +3.4199 27841, ;=2 +2. 9999 99999, 40
+1.7592 67639, 5+0 +8.7963 38193, -1 +2.0000 00000, +0

+1. 3520 6107610-11 +0. 0000 00000 Infinite
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The genuine eigenvalues are preserved to full working accuracy; there is one
~ -11
infinite eigenvalue but this is derived from an a;; of order 10 coupled

-~
with a zero bii and clearly shows that the pencil is singular.

GENERAL COMMENTS

The material presented in this paper should in no way be regarded as
constituting an adverse criticism of the QZ algorithm. In all of our examples,
however pathological, the QZ algorithm has given exact eigenvalues and
eigenvectors of matrices differing from A and B by perturbations of the order
of magnitude of rounding errors. In that sense it continues to give best

possible results.

Our purpose has been to expose the properties of singular pencils and their
consequences for practical algorithms. P van Dooren [1] has suggested that the
QZ algorithm should be preceded by an algorithm which extracts the singular part
(1f any) of the pencil and we strongly support this recommendation. It should
be appreciated that when an attempt is made to recognize the singular part by
means of an algorithm which, in general, will involve rounding errors, decisions
concerning the ranks of matrices are necessarily involved. If van Dooren's

policy is adopted these decisions are made in the most favourable context.
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