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Abstract.
Given a set S of n distinct points {(Xi,yi)|o <1i<n},

the convex hull problem is to determine the vertices of the convex

hull H(S) . A1l the known algorithms for solving this problem have
a worst-case running time of cn log n or higher, and employ only

quadratic tests, i.e., tests of the form f(x,,y s X ¥ys...s Xy 15 Y1) --

with f being any polynomial of degree not exceeding 2 . 1 tpis

paper, we show that any algorithm in the quadratic decision-tree model

must make cn log n tests for some input.

Keywords: complexity, convex hull, decision tree, lower bound,

quadratic decision-tree model, quadratic test.
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1. Introduction.

Let S be a set of n distinct points in the plane. The convex
hull H(§), is the intersection of all convex sets which contain § .
It is well known (see e.g. [2]) that H(S) is a convex polygon with
all of its vertices in S . In fact, HO(S) » the set of vertices of
H(S) , is exactly {§|£e S, 17 is not a convex combinationy of the

points in S-{p}} . We are interested in the following convex hull problem:

—_ - g

Given a set S of n distinct points TopTyseeesT

determine the set of integers VS = (i\ ?ieHO(S)}, In 1972, Graham [1]

in the plane,

gave a ©(n log n) —timei/ algorithm for solving this problem. Since
then, many other algorithms have been proposed (see Shamos [2] for some
of them), all of which also have a worst-case running time cn log n
or more. An interesting open question is whether better algorithms
exist. The purpose of this paper is to show that, in the quadratic

decision-tree model, any algorithm for the convex hull problem must use

at least c¢n log n operations in the worst case.
We remark that if, in addition, the set VS is also to be ordered

as  1ys1ly .01 SO that xil,rie,. ..ﬂit are the vertices of H(S) in

consecutive cyclic order, then the sorting of n numbers can be reduced

—_ —

*
—/ A point p 1is a convex combination of the pointes T Toseees T if

there exist u, > 0 (i =1,2,...,m) such that 2 uw; = 1 and
i
P =2t
1
+
—/ We use ©(g(n)) to denote any function f(n) with the property that

c and for

clg(n) < f(n) < czg(n) for some positive constants s Gy

all sufficiently large n



to essentially this problem (see [2]). The cn log n lower bound for
sorting in rather general models is then immediately a lower bound to
that version of the convex hull problem [2].

Note that we have restricted the input points to be all distinct.
This enables us to avoid choosing among several possible definitions for
VS when some of the ?J. may be identical. The lower bound derived in
this paper of course remains true independent of the choice,

In the quadratic decision-tree model, algorithms are ternary decision
trees employing quadratic tests, i.e., tests of the form " f(zl, Zoy o zm): on"
with f being any quadratic polynomial of the input numbers Zy (see
Section 2 for more details). To the author's knowledge, all the known
convex hull algorithms can be properly modeled as quadratic decision trees.
For example, several algorithms (including that of Graham's [1]) use

basically primitive operations of the following types (Pl)-(P3). Let

;i = (Xi’yi) , 0<i<n, be the input points. (P1) linear test of
the form " 2 a; X, + fbiyi +c: 0" (P2) generation of a new point
i 1
f)‘ =2 ai;i ; (P3) for any existing points (input points or those
i

generated by (P2)) 13'1 , 52 ’ 135 , a test "Is i;l lying to the left of,

to the right of, or on the directed line from 52 to ;'53 ?" Mathematically,

(P3) is expressed as " Mﬁr%@ : 0" where A is defined by

P13 Ppp !



with f& = (pil’ piE) . As each.f& in (P3) is a linear combination of
the input points, it is easy to verify that tests of the type (PL) or
(P3) are quadratic tests. In these algorithms, operations of the type
(P2) are used only occasionally to generate points interior to the
convex hull by taking convex combinations of input points. Thus, the

running time of the algorithms is properly accounted for if one only

counts quadratic tests.



2. The Quadratic Decision-Tree Model.

Consider the convex hull problem for a set S of n distinct input
points Fi = (Xi’yi) , 0<i<n. An algorithm T is a ternary
decision tree, with each internal node containing a quadratic test
f(XO’yO’xl’ Yo - - "Xn—l’yn-l) : 0 where f may be any polynomial of
degree at most 2 . For any given input set S , the algorithm starts
at the root, performing tests and branching accordingly until a leaf
is reached, where the algorithm must be able to determine the set vV
We denote by cost(T) the maximum number of tests made for any input.
The complexity C(n) 1is defined to be the minimum of cost(T) for any
such algorithm T

The main result of this paper is the following theorem.

Theorem 1. There exists a constant ¢ > 0 such that, for all n >3,

C(n) > cn log2 n



5. Proof of Theorem 1.

Let n > 3 be an integer, and T any algorithm for the convex hull

problem with 2n input points. We shall prove that there are at least

n! distinct leaves in T . This will imply Theorem 1 by the following
argument. The height of T , i.e., cost(T) , then must be at least
log5(n!) . This proves C(n) > lo%((n/E)l) > constant x n log, n

for all even n > 6 , which impliesf/ C(n) > c(2Ln/2] ) > constant x
nlog, n for all n > 6. Observing that C(n) > 0 for ne {3,4,5},

we can obtain Theorem 1 by choosing ¢ suitably.

The plan is as follows. Let ¢ be any permutation of

(n,n+l, . .. .2nl), i.e., a one-to-one mapping from {n, n+tl, .,., 2n-1}
onto itself. We shall associate with ¢ a leaf LEAF(0) of T , and
derive some constraints on the inputs that lead to LEAF(a) . We then
show that LEAF (c) # LEAF(c') for any distinct @ , ¢' . Thus, there

are at least n! leaves.

3.1 Defining LEAF (a)

For each 0 < j < n , let

and

by o= D | ve (I/4,3/8)} »

with €, > 0 to be specified later.

¥
Y C(n) is a non-decreasing function of n , since any algorithm for n+l
input points yields an algorithm of the same cost for n input points

R S B S -
by setting r == (ro+ £t et )



Let us regard any input S = {rO, rl, .. .,ren l} as an element

in E4n , the Mn -dimensional Euclidean space, and write it either as

- - -

r = (ro)rl)"')r2n_l) or r = (xo’yo)xl)yl) .o -:Xgn_l:yzn_l).Define

I, to be the set of inputs r = (ro,rl,...,r2n l) which satisfy

= )\.T. +
>\J

3 )T i1y moan ¥R Ay €Ay for all

rj € Qj and ro(n+j )

0<j<n. Informally, each input in I_ has rO’Fl’ ceeyT ) as the

T ] kg 1
vertices of an approximate regular n-gon, and r on the line

o(n+j )

connecting I-'J. and for each 0 < j < n (see Figure 1).

*(5+1) mod n

—

Note that A(ro(n_l_j )2 r (5+1) modn ’ rj)

= 0 for all re Io , because of

-

the elementary identity A(p,;'*' (I-p)p' » »', P) =0

Choose an €, > 0 so that the following properties are true for any

(ro,rl,.. "r2n-l) eI .
Property I. All the 2n points FJ. are distinct.

Property II. HO(S) = {ro,rl,...,rn l}

- -

Property III. If a point p 1is a convex combination of TysTyseeenTp 9 s

then A(D, r ?J.)go for all O<j<n .

(j+1) modr’

g —

Property IV. If 0<?2# 3j<n, then A(rc(nﬂz) ’r(j+l) modn’rj) £ 0 .

*
It is intuitively‘—/ obvious that these properties are satisfied provided

that €, > 0 is small enough. A proof that such an €y exists will be

given in the Appendix.

x/

- -

Keep in mind that the geometric interpretation of A(%’%'p'j) is the
signed "area" of the triangle 515253 , where the sign is determined by

the orientation of 13'1, 52, 13'5 ("plus" if counterclockwise).



r, rc(,?) ry
-0 -
Fo(6)
T
(8) -
0]
T
3
o r
To(9) o(1L)
—e
g “s(10) T3
Figure 1. The configuration of ?i for an input

r = (rO, I‘l, . . .,ren-:‘.)elo .



Let QO=QOXle'"XQn-lXAOXAlX"'XAn-l‘ One can regard
any input reIU as, alternatively, an element qe:Q,0 . This establishes
a one-to-one correspondence between the elements of I, and the elements

bn [o]

of Q,0 . For any function f on E , let us denote by f the
: . . o]
function on Q  induced by f , i.e.' f[ (XO:YO:...,Xn,l:yn_l:m.ﬁ..;kn_l)

is equal to f(XO’yO’xl’yl’ “"XEn-l’yEn-l) with

= . .+ l' N . = -
Loard) = A% N%(341) moan Y Yo(ney) = M¥5T (IA4)Y(541) modn

for O0<j<n. Clearly, if f is a polynomial, so is f[c] , 1n

(o]

which case we shall regard f as defined over the whole E5n .

Lerma 1. There exists a leaf 10 and a non-empty open set Q' C Qo

such that all inputs ge Q@ will lead to ¢

0.
Proof. For each leaf 7 , denote by A(l) the set of inputs in Qc
that lead to £ . Let L be the set of leaves £ with A(R) # 9 .
Clearly,
QG el

Each A(l) can be written as QUnB(z)’ where

@0 g191(a) >0, ..., (@)>0j.

i JJ

B(1) = {qlquBH;szfi<q)=o, : ..,fgfi

g }
The functions f[ ] 3 g50§
J

2,1 are polynomials induced by the quadratic
2

polynomials T used at internal nodes along the path from the

g
0, gg,g

may be trivial in that they are satisfied by all ge E3n . We claim that,

2,17 gf)j

:
root to £ . Some of the constraints f[%(q) =

i (q) > 0 in (1)

after removing the trivial constraints from the formulas in (1), there is



some B(lo) (lzoeL) that is defined only by inequalities. Otherwise,
all B(R) (£eL) would be of measure zero, implying that the open set

Q = UA(R) c U B(L) is of measure zero, which is impossible.
le L leL

Clearly A(lo) = QN B(/ZO) is open and non-empty. The lemma follows

by choosing Q' = A(IZO) . O

Let us choose a leaf Iy as in Lemma 1, call it LEAF(0) and
denote the open set Q' as Q& . Now every input set S = {r‘o,r.l,...,rgn_lg
corresponding to an input in Q) has Vg = {0,1,...,n-1} (by

Property II). It follows that all the input sets S = {ro,rl,...,r2n l}

that lead to LEAF(0) have VS ={0,1,...,n-1} .

3.2 Constraints on the Inputs Leading to IEAF(o).

Let the set of constraints on the inputs leading to LEAF(o) be

fi(on yo) XlJ le "'ngn_l)ygn_l) = O l S_ 1 S_ a 4 (2)

and

83 (X2 Vo X2 Vs o 00 %0y 19 Von 1)
By the definition of Q , we have, for each 1 < i < a,

fgo](q) = 0 for all ge Q]

The next lemma then implies that each fi can be written as a linear

— —

combination of A(r s r ) »0<J<n ., To simplify

o(n+3)? T(5+1) modn * Tj
notations, we shall write Alr,0,J] for A(;o(mj ) ) ;(j+l)modn’ z—"j)

from now on. Keep in mind that Alr,0,j] = O for all re I .

Lemma 2.  Let f(XO:YO;Xl:yl; eeesXy 13¥p, 1) be a polynomial of at

most degree 2 . If f[o](q) = 0 for all ge Qy r then
f = 2 g.A[r,0,3] for some constants €, .
0<j<n J

10



Proof. Write

1 (2)
f= > aMx,  x . 2 8, %X _, L \Y .
+ 2 a.(j.)y Ny .\ + > bgl)x S (X T nseeesXx N )
Oﬁifjéﬂ o(nti)”o(nt+j) o<j<n j To(n+tj)"iro’Yo n-1""n-1
(2)
+ .
o<ten P3 Totnrs)®3Fo¥or e 1oV y)

]

d(XO: Yor - - "xn-l’yn-l) ’ (L)

where Sj > t§ are linear functions and d a polynomial of degree at
most 2

o
As f[ ](q) = 0 for all qe Q. , we have

= 0 5
;M5 (5)

for all. 0 < i< j<n . We can also calculate from (4) to obtain

(W (
_ 2)
%y Gy %i47) (eymx5 0 ) 855" &y %50) (yj'y j+l)
(2) (3) o
+ aji (xj-xj+l) (yi-yi+l) +aij (yi— i+l) (yj—yj"'l) if 1<3,
agf[c] <
S - 6
axiaxj (6)
(1) 2 (@)
Payy (e )7+ 2857 (%%, ) (9570540)
(3) 2
. + eaii (yi-yi+l) if i = J ’
where we agree that x =X, , y = Y, 1in the above equation. Tt is easy

to see that, for (5) and (6) to be consistent for all qe Qc'r , one must have



B g for all i, 3,k . (7)

1J
Similarly, for all ge Q('j , one has from (4) and (7)
[o]
_oaf (D)
"t g T P ) mean) o7 e Yo
(2)
* bj (yi_y(j+l) modn)tj(XO""’yn—l> ’
for each 0 < j < n . This implies the existence of constants gJ such
that
(1) -
bj SJ. (Xo,ooo,y —l) = gj(y( J.+l) modn "yJ.) 2
and (8)
(@) - -
byt (g eees¥p q) = §j(x(j+1) modn'xj)
Formulas (4), (7) and (8) lead to
Fo= T 8% a1y moan TY3) " Yo(mg) F(3+1) moan ™ %)
0<j<n
+d(XO’ Vo2 o0 %12 yn-l)
= Z E.AlT,0,5] + A (Xs T s eeesX 155 1)
. 0<j<n J or0o’Y0 n-1’“n-1

where do(-x-o, JYO: .. ‘)Xn_l, yn_:L) a d(xo)yo) .. "Xn_l,yn_l>

0<j<n ((341)moan’s =Y (341) moan®y) .

Since flojhﬂ = 0 and Alr,o,j] = 0 for all ge Q& , we must have

doe%ﬁyo’”"xnéﬂyh-l) identically zero. This proves the lemma. [

12



We now state without proof an elementary fact, to be used in the
proof of Lemma 3 as well as in the Appendix. Let 5’,5',5",51,52, 0 **’;n

be Points in the plane.

Fact 1. TIf P = 2 xiffi with z A; = 1, then
<i<n 1<i<n
Meop'yP") = L aa(p,PhEY)
lsiSn '
Lemma 3. For any input r = (; r r ) e ELm that leads to
—emma 2 P 0?12 fon 1
LEAF(0) , Alr,o,j] =0 for all 0< j<n.

Proof. By Lemma 2, the constraints (2) and (3) on inputs leading to

LEAF(0) can be written as

z gijA[r,c,j] = 0 i=1,2...5a, (9)
0<j<n
and
gi(I‘) > O l = l,2,oon’b 7 (lo)

where gij are constants.

If the rank of the a by n matrix (gij) is n , then the
constraints in (9) force all A[r,0,3]= 0 5 and the lemma is true.
We thus assume that the rank of (gij) is less than n , in which
case there exist a non-empty Jc Ubl,.“,n-l} and constants nij

such that (9) is equivalent to

Mr;0,i] = T m. .alr, 0, 3] for ie {0,1,...,n-1}-J . (9)"

.Y
jed +J

15



Let T = (ro,rl,...,r2n l) be any input in I, - We shall construct
an input r' = (;(')’F]'_""’;én l) so that constraints (9), (10) are
satisfied but HO(S') # {r('),ri,...,rl'l_l} where S' = {r(’),ri,...,rén l} .
Thus the input set 8' leads to LEAF (a) but Vo # {0,1,...,0-1} ,

which is a contradiction. The proof of the lemma is then complete.

For each 0 < j < n , let gj be a point so that

—

Let 8 > 0 be a small number to be specified. Define

B / A(ei ’ r(i+l) modn’ I‘i) if 1led ’
B, = (12)
G nij)/ a(ey s T (14+1) mod n ’ r.) if ie{01,...,0-1}-J
Jed
Let ' = (r('),zj', e.'gs, l) , Where
ry = T, for 0<i<n ,
(13)
T =(1-B. r . €, j
L Lo (nt3) (1 BJ)rG(n+J) + BJ 3 for 0<j<n

Choose & > 0 small enough so that all ;:'L are distinct and that all the
inequalities in (10) are satisfied for r' . To show that all constraints
in (9) are satisfied, we need only check that all. equations in (9)' are

true for r' . For each 0 < i < n , we have

14



- -—

a((1-84 )T, To(n+i) T Pi®1 r(1+1)modn’ r;)

Alr',0,1]

—_

(1- B Ja[ryo,i] + 5 A(e ’ r(1+l) mod n ’ rl)

(14)

P18(81 7 T(141) modn? T3)

where we have used Fact 1 and the equalities A[r,0,i]l = 0 . For jeJ ,
this gives A[r',0,3] = 8.For 1 € {0,1,...,n-1}-J , we have from (1k4)

and (12)

SZT]
jed

Alrt,o,1]

J’Z::J T]'ijA[r" 0,J]
This proves that r' satisfies (9)'.

We have proved that r', defined by (13), satisfies constraints (9)
and (10). To finish the proof of Lemma 3, it remains to show that

HO(S' # {I‘O,I’ ,...,I‘ l} Let jEJ . If HO(S') = {;('),;i’...’;;l l} ¥4

then r' . must be a convex combination of ;1 B D
o(nt+j ) 01 T P The1 o OF
equivalently, a convex combination of T, ,r 3 F (since Tl =T
0'"1 n-1 i i

for 0 < i <n ). By Property III, this implies

A( Fo(n+3) ? I'(j+l) mod n’ rj) S0
"But, repeating the derivation of (14), we obtain

A(rc5(n+3) (j+1)modn’ rj) =& >0,
which is a contradiction. This proves Hy(S') # {ro,rl,...,r 1} and

the lemma.

15



3.5 Completing the Proof.

Lemmad . If o # o', then LEAF (a) # LEAF(o') .
Proof.  Choose 0 < f # j < n such that o(n+j) = a'(n+g) . Let

(ro’rl’“"rEn-l) (—:IU, be any input leading to LEAF(c') . If

LEAF (a) = LEAF(Q) , then by Lemma 3, we have
A(ro(n+j)’r(j+l)modn’ ry) = 0,
i.e.,
AME r r) =0 .

o' (ntg) I‘(j+l)modtn’ 3

But this contradicts Property IV for I,, , O

We have demonstrated the existence of n! leaves in the algorithm T ,

This completes the proof of Theorem 1,

16



4.  Remarks.

We have proved a cn log n lower bound for the convex hull problem
in a reasonably general model, which includes all the known algorithms.
This seems to be a rare instance, in which a non-trivial lower bound is
obtained by exploiting the properties of quadratic tests explicitly.
We remark that quadratic or high order tests are needed to solve the
convex hull problem. In fact, there can not be any decision tree algorithm
for finding convex hulls that only use linear tests, This can be seen
from the fact that the set of equality constraints at LEAF (a) must not
be linear equations (according to Lemma 2).

It remains an open problem whether decision trees of height o(n log n)
exist when higﬁ order polynomials are permitted in the tests. We conjecture
not, even if no restriction is put on the maximum degree of the polynomials

allowed.

17



Appendix. A Proof for the Existence of €

In this appendix, we will prove that there exists an € > 0 such

— - -

that Properties I-IV are true for all (ro,rl,...,rzrl l)e I, - See
Section 3.1 for terminology. Remember that n > 3.

Let ?go) = (cos ?nl‘j-,, sin %E) for 0 < j < n . For any

vector v = (w,u) , let \\V\\ = '\/w2+u2 . We need to show the existence

—

—_ -
of an € > 0 such that Properties I-IV are true for all (rO,rl, . Mworgn-l)

satisfying the following conditions:

\l;J-_;I(O)HQ < e, for 0<i<n , (AL)

and, for each 0< J<n,

—

A T, +(1-

To(ntd) = MF )‘j)r(j+l) nod 1 for some )je (1/%, 3/4) . (a2)

We need the following fact.

Fact 2. Let 0 <i,j <n and if¢ (3, (jtl)modn}.Then
2(0) , 2(0) =(0)
A<I‘"'i r(j+l)modn’ rj ) <0,
Proof. Let 6 = 2n/n . Then
cos 10 sin i® 1
=2(0)  =(0) =(0) . . .
! = + +
A(I}i T(341) modn’ rj ) det cos (j+tl)e sin (j*l)e 1
cos je sin jo 1
cos ie sin 10 1 cos jeo =~sin jo O
= det cos (J*1)e sin(j+1)e 1 sin j6 cos Jo O
cos je sin jo 1 0 0 1
e

18



cos (i-j)e sin (i-j)e 1
= det cos © sin © 1

1 0 1

((sin 8)(cos (i-j)o -1) - (sin (i-j)®)(cos Q-1)

1
—
[Ne)
n
'_l-
5
>
Q
o)
0
oy

2 .. 2
- in 2 in 123 6 i-3
= h(sn.nE) (s:.n 5 O) (- cot§+ cot(—-g—-O))

Using the properties of cot and the facts 0 < i,j <n, i {{j, (j*1) modn} ,

one can show that

i-J
cot( 5 G)

]
3
*
~
L~~~
e
=158
Y
~—

IN
0
9
I

= 'L’U'ug-e- .

2 .. 2
Note also that (sin g-) (sin(};—ag)) > 0 . Fact 2 follows easily. [J

Observing Fact 2 and the continuity property of the function A , we

—

can choose a sufficiently small ¢ > 0 such that, if 7,7 . ...,T
uffici y n u if rpx, )T

satisfy (Al), then the following conditions are true.

19



(1) all F.l(O < i < n) are distinct,

(ii) for 0<1i,j<n and if {j, (j+1)modn} , A(ri, r(j+l) modn’ Ty

— —

We will now prove that, for this choice of €, » any (ro, rys, ozergn_l)
that satisfies (Al) and (A2) must have Properties I-IV. We shall freely

use Fact 1 (in Section 3.2) in the ensuing arguments.

Property IV. Let 0 <! #3<n . Then,

— - —

A(ro(nﬂl) » T (§+1) modn’ rj) = )‘/ZA(rJZ > T(54+1) modn’ rj)

-

-

(j+1)modn’ rj)

-

*(4+1) mod n’ *

+ (1=x )

< 0 ,

because of condition (ii), the fact n >3 , and the fact both )‘/Z , (l-)\z)

are positive. This verifies Property IV.

-

Property T. The points ro, Pl""’Fn 1 are distinct by condition (i).

Property IV, together with the equalities A(ro(n+j) ’ r(j+l) mod n’ r.)=0

J
for 0<j<n, ensures that the points ;n’ﬁn+l"”’?2n , are all
distinct. That, for each 0 < j <n , ;c(n+j) is distinct from all
?O’Fl”"’?n-l , follows from the fact Fo(n+,j) # Fj , ;(j+l)modn

and Property IV. This verifies Property I.

Property II.  Because of (A2), one has HO(S)_C {rgpTyseeet, 1} . We

now claim that each rieHo(S) , 0 < i< n, Otherwise, we can write

20
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!

3, LLF,
0<j<n Jd
jfi, (i+l)modn

—-— = +
i T Mis1T (i+1)modn

e

r(i+l) mod n by condition (i),

forsomep,jzo.ande,j:l.Asf"i%
J

at least some by > 0 with j # i, (i+l)modn . This, together with

condition (ii), leads to

Ar, T, > T.) = Z wob(r, 5 T, » T)
i (i+l)modn’ "1 0<j<n s B (i+1) modn’ "1
Jj#1i, (itl)modn
< O .
But this is impossible as A(;i; F(i+l) mod n’ F-l) should be 0 . Thus,

N

every ;i must be in HO(S) . This proves HO(S) = {ro;;l; . LE A

Property III. Let pP= 2 “iFi with p. > 0 and 2 wy =1
0<i<n i

We have, using conditions (ii),

s(p » r(j"‘l) modn’ rJ) = O<Zi/<n p,iA(I‘i ) r(j+l) mod n’ I‘J)
= 2 380755 T S modnt T3

O§i<n

if 4§, (§+1) modn

<0,

for each 0 < j < n , This verifies Property III.

-

We have thus verified Properties I-IV for all (ro’rl""’FQn-l) that

satisfy (Al) and (A2). This completes the proof for the existence of an
€ > 0 with the desired property.
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