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Abstract.

Given a set S of n distinct points { (%.5¥,) | 0 <i<n},
the convex hull problem is to determine the vertices of the convex

hull H(S) . All the known algorithms for solving this problem have

a worst-case running time of cn log n or higher, and employ only

quadratic tests, 1.e., tests of the form F(X Vr Xp Vpo eves X15 V1) ee
) with f being any polynomial of degree not exceeding 2 . 1, this

] paper, we show that any algorithm in the quadratic decision-tree model

must make cn log n tests for some input.

Keywords: complexity, convex hull, decision tree, lower bound,

quadratic decision-tree model, quadratic test.
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1. Introduction.

Let S be a set of n distinct points in the plane. The convex

hull H(S), 1s the intersection of all convex sets which contain § .

It is well known (see e.g. [2]) that H(S) is a convex polygon with

all of its vertices in S . In fact, H,(S) , the set of vertices of
— = — *

H(S) , is exactly f{p |pes, p 1s not a convex combination’ of the

points in S-{p}} . We are interested in the following convex hull problem:

Given a set S of n distinct points NEI 1 in the plane,

determine the set of integers Ve = (i | 7, eH, (8)] In 1972, Graham [1]
gave a o(n log n) -tim algorithm for solving this problem. Since

then, many other algorithms have been proposed (see Shamos [2] for some

of them), all of which also have a worst-case running time cn log n

or more. An interesting open question 1s whether better algorithms

exist. The purpose of this paper is to show that, in the quadratic

decision-tree model, any algorithm for the convex hull problem must use

at least «cn log n operations in the worst case.

We remark that if, in addition, the set Vg 1s also to be ordered

as losin only SO that I. )T, , STA are the vertices of H(S) 1n
1 2 t

consecutive cyclic order, then the sorting of n numbers can be reduced

*/ . . . . ' — — — .
A pointp 1s a convex combination of the pointes Fy ToseeesT if

there exist hy > 0 (i = 1,2,...,m) such that 2. py = 1 and
1

P= ut
1

+

Y We use 6(g(n))to denote any function f(n) with the property that

c,g(n) < f(n) < c, g(n) for some positive constants cys Cy and for
all sufficiently large n .
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to essentially this problem (see [2]). The cn log n lower bound for

sorting 1n rather general models 1s then immediately a lower bound to

that version of the convex hull problem [2].

Note that we have restricted the input points to be all distinct.

This enables us to avoid choosing among several possible definitions for

Ve when some of the Tr may be identical. The lower bound derived in
this paper of course remains true independent of the choice,

In the quadratic decision-tree model, algorithms are ternary decision

trees employing quadratic tests, i.e., tests of the form " f(z); Zp Zp) on"

with f being any quadratic polynomial of the input numbers (see

Section 2 for more details). To the author's knowledge, all the known

convex hull algorithms can be properly modeled as quadratic decision trees.

For example, several algorithms (including that of Graham's [1]) use

basically primitive operations of the following types (PLl)-(P3). Let

r, = (2,555) , 0 <1 <n, be the input points. (Pl) linear test of

the form " 2 a,x, + 2. b.y, +c: 0" (P2) generation of a new point
1 i

D > 2 a, Tr, ; (P3) for any existing points (input points or those
1

generated by (P2)) Dy , D, , Ps , a test "Is Dy lying to the left of,

; to the right of, or on the directed line from D, to Py ?'" Mathematically,
(P3) is expressed as " 8(P>EyP : 0" where pA is defined by

P13 Ppp 1

A(P1 5B, Fy) = det Psy Pos 1 ’

Pry Pzo 1
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with v, = (Ps 15 Psion) . As each p; in (P3) is a linear combination of
the input points, it is easy to verify that tests of the type (PL) or

(P3) are quadratic tests. In these algorithms, operations of the type

(P2) are used only occasionally to generate points interior to the

convex hull by taking convex combinations of input points. Thus, the

running time of the algorithms 1s properly accounted for 1f one only

counts quadratic tests.
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2. The Quadratic Decision-Tree Model.

Consider the convex hull problem for a set S of n distinct input

points r= (x,,5,) , O<i<n. An algorithm T is a ternary

decision tree, with each internal node containinga quadratic test

(Xp Vr X15 975 © LX Vp) O where ff may be any polynomial of

degree at most 2 . For any given input set S , the algorithm starts

at the root, performing tests and branching accordingly until a leaf

1s reached, where the algorithm must be able to determine the set V

We denote by cost (T) the maximum number of tests made for any input.

The complexity C(n) is defined to be the minimum of cost (T) for any

such algorithm T .

The main result of this paper 1s the following theorem.

Theorem 1. There exists a constant c¢ > 0 such that, for all n > 3,

C(n) > cn log, n .
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3 Proof of Theorem 1.

Let n > 3 be an integer, and T any algorithm for the convex hull

problem with 2n input points. We shall prove that there are at least

n! distinct leaves in T . This will imply Theorem 1 by the following

argument. The height of T , 1.e., cost (T) , then must be at least

log, (a!) . This proves C(n) > log, ((n/2)}) > constant x n log, n
for all even n > 6 , which implies’ c(n) > c(2|n/2}| ) > constant x

nlog, n for all n > 6. Observing that C(n) > 0 for ne {3,451},

we can obtain Theorem 1 by choosing c¢ suitably.

The plan 1s as follows. Let ¢ be any permutation of

(n, n+l, . .. . 201), i.e., a one-to-one mapping from {n, ntl, .,., 2n-1}

onto itself. We shall associate with 0 a leaf LEAF(o) of T , and

derive some constraints on the inputs that lead to LEAF (a) . We then

show that LEAF (c) # LEAF(¢') for any distinct ¢ , ¢' . Thus, there

are at least n! leaves.

3.1 Defining LEAF (a) .

For each 0 < J <n, let

] Qs = (001 (= con 22)" + (5 - ssa 22) <c, } ’
and

Lo= {a | ve (I/4,3/8)1 »

with €, > 0 to be specified later.

Y C(n) 1s a non-decreasing function of n , since any algorithm for n+l
input points yields an algorithm of the same cost for n 1nput points

by setting r = : (7, + r+ : TEST ,
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Let us regard any input S = {ry Ty oo Th 11 as an element

in gh , the Un -dimensional Euclidean space, and write it either as

r = (Top Tyseees?s 1) or Ir = (X90 X45 V7 x 3X5 _19Yp,.1)- Define

I, to be the set of inputs r = (rgrryseeesry 1) which satisfy

r.eqQ. and r Co= Lr. + (I-27, ith ). ,3% o(ntg) = MT tt IA)T gay moan WHR Ay ey for all

O0<Jj<n. Informally, each input in I, has ros Ty) ceesr5 3S the

vertices of an approximate regular n-gon, and Tong on the line

connecting T and T(5+1) mod. n for each 0 < J <n (see Figure 1).

Note that AC ) 2 r (5+1)modn ’ r,) = 0 for all re I_, because of

the elementary identity A(pp+ (L-u)p', 2', Pp) =0 .

Choose an €n > 0 so that the following properties are true for any

(rgsrys os ron) eI, .

Property I. All the 2n points Tr, are distinct.

Property II. i,(8) = {rgsTys avert 1} :

Property III. If a point p 1s a convex combination of NEES ’

then Alp, r (+1) modr’ r.) <0 forall O<j<n.

Property IV. If 0<1# 3j<n, then AT (ng) »T(3+1) mod n’ 3) £ 0 ,

It 1s 1intultively— obvious that these properties are satisfied provided

that €, > 0 is small enough. A proof that such an €n exists will be

given 1n the Appendix.

xr

© Keep in mind that the geometric interpretation of 8(5 5,5) is the
signed "area" of the triangle P15, , where the sign is determined by
the orientation of Dy 5 Dy » Bs ("plus" if counterclockwise).
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Figure 1. The configuration of r, for an input

r = (ry rs. Th 1) ET .



Let Q; = QQ XQ Xv ex Quy Xx hy xX Ay xox Aygo One can regard

any input rel as, alternatively, an element qe Q . This establishes

a one-to-one correspondence between the elements of I, and the elements

Ln [0]
of Qs . For any function f on E , let us denote by f the

[a]
. ' ' L>¥J

function on Q, induced by £ , 1.e.’ f (X45 Jor... 2%,.1° Yn_1? eee)

is equal to £(X5 Yq X15 V7 cousXy 13Von 1) with

= ALXLt (L-nL)X, d on o= Ay. t+ (I-).)y,.Xamri) = M557 LE A%(G40) moan #4 Varney) = A35F (105)¥ (541) modn

for O<j<n. Clearly, if f is a polynomial, so is glo] , 1n

[0] ohwhich case we shall regard Tf as defined over the whole

Lemma 1. There exists a leaf ly and a non-empty open set Q' C Q

such that all inputs qe Q' will lead to Ly

Proof. For each leaf [ , denote by A(l) the set of inputs in Q,

that lead to £ . Let L be the set of leaves [ with A(R) # 0 .

Clearly,

Q = U AlL) .
fel,

Each A(l) can be written as Q, NBL) , where

_ n, Jol, [0] [0] [0]

B(1) = {a]aeP; £y,1(a)=0s5 wus Ta, (W0 8am(2) >0, ’ €4,p (2) > 0]
(1)

[0] [o] |
The functions t, i? g, ] are polynomials induced by the quadratic4 p

polynomials t, ir 9 ; used at internal nodes along the path from the2 b

]

root to £ . Some of the constraints 7! (a) = 0, 51% (a) > 0 in (1)2 J

may be trivial 1n that they are satisfied by all ge Pt . We claim that,

after removing the trivial constraints from the formulas in (1), there is



some B(4,) (2, €L) that is defined only by inequalities. Otherwise,
all B(R) (ZelL) would be of measure zero, implying that the open set

Q = UA(R) cU B(L) is of measure zero, which 1s impossible.
7 el lel

Clearly ACL) = QN B(4,) 1s open and non-empty. The lemma follows

by choosing Q' = AL) . OO

Let us choose a leaf lo as in Lemma 1, call it LEAF(0) and

denote the open set Q' as Qs . Now every input set S = {Ti Trees 13

corresponding to an input in Q! has Vg = {0,1,...,n-1} (by

Property II). It follows that all the input sets S = {Tor Tyrenesty 1}

that lead to LEAF(0) have Ve = {01,...,n-1}

3.2 Constraints on the Inputs Leading to LEAF(0).

Let the set of constraints on the inputs leading to LEAF(o) be

£3 (Xr Yop Xp Vp em eaXpn 10¥p 3) =O tsise, (2)

and

By the definition of Q; , we have, for each 1 <_1 < a,

[o] _
] £. (q) = O for all ge Q .

The next lemma then implies that each £. can be written as a linear

combination of AIG (nt 3) , T (541) nodnn rs) , 0 <j<n ., To simplify

notations, we shall write A[r,o0,j] for AC" ) 2 * (541) mod n’ rs)
from now on. Keep in mind that Al[r,0,J] = 0 for all rel .

Lemma 2. Let £(%X0s Yr X15 ME ceesXy 1290p 1) be a polynomial of at

most degree 2 . If ell) = 0 for all ge Qb , then
f = 2. E.A[T, 0,j] for some constants E.

0<j<n 9 J

10



Proof. Write

1) (2)f = 2 ne x N's 2 a,7’x y+ Nn + . . .
ocicycnid Ot )To(arg) +oSA a(t) o(ng)

1)Tay yo pT dW s(x yx yo)
0<i<jof o(n+i)’o(n+y) 0<j<n 9 o(n+j) jr 0°70 n-1’"n-1

| 2) |+ 2. b y AE (XT eeesX 25y 2)
0<j<n j “o(nti) 3+70°70 n-1’Jn-1

= A(X Ys oo 3X 10,1) b (4)

where 8; » t3 are linear functions and d a polynomial of degree at
most 2 .

[0] _ :
As ff" (q) = 0 for all ge QL, we have

2? = 0 (5)
OA;OA

for all. 0 <1 < Jj<n . We can also calculate from (4) to obtain

(1) (2)_ - + ; -

| (xy X01)(X5=X5 0) 3535 Ky %547) (¥; Yse1)

(2) (3)+ - ~ - - : . .

a3 (Ry x Yi) Yay (09340) (9579500) if 1 <3,

52elo] } “
ON; OM;

| (1) 2 (2)- + - -

20,57 (xy =%; 0)" + 2253 (yxy 0) (V3)

(3) 2 oo
+ ca. (V5=¥5,7) if 1 =J3 ,

where we agree that X =% rr ¥, = Yi in the above equation. It is easy

to see that, for (5) and (6) to be consistent for all ge Qs , one must have

11



ayy) = 0 for alli, j,k . (7)

Similarly, for all ge Q) , one has from (4) and (7)

[0]
_oaf 0 (1)

0 = Shs = by (x (5+) mod nS 3X0? #2 V1]
(2)

+ - oe 00P35 "Wi (541) moan)ty(Ko? oe 2 ¥n1)

for each 0 < j <n . This implies the existence of constants ¥ such
that

(1) _
byes grees¥n1) = 8500 541) moan Vy)

and (8)

(2) _
b to Bgs eves 5) ” 85 (X51) mod n ~ ¥3/ .

Formulas (4), (7) and (8) lead to

= . . - e) = n . - xX.t Z 5503) i541) moan 73)“ Vo(ntg) ¥(5+1) moan ~ Fy)
O0<j<n

+d(%,s Jo? EPR SRT Vpo1)

= 2 g.Alr,0,J] + Ad (x.y yeeesX  25YV. 4)
; 0<j<n J or0O7Y0 n-1’“n-1

where do (X53 Jo? o« 2X 10 Vp.1) a A(X Yop « 3X 19Y, 7)

2 (x, . V. =Y,. X.)
0<j<n (j+1) mod n’ j (+1) mod nj’ .

Since ¢l 7} (q) = 0 and Alr,o,j] = 0 for all ge Qg , we must have

An (Xp Vg ee esX 15¥, 1) identically zero. This proves the lemma. U

12
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We now state without proof an elementary fact, to be used in the

proof of Lemma % as well as in the Appendix. Let sD" 5D" PsP, 0 #2
be Points in the plane.

Fact 1. If P = 2 A.D. with b> A. = 1 , thena . iti . 1
1<i<n 1<i<n

s(;p's2") = Zz apo(esptet)
1<i<n |

Lemma 3. For any 1nput r = (zr r r ) € Thi that leads to—_— = 0’"1’“"*’“on 1

LEAF(0) , A[lr,o0,3] =0 for all 0< j<n.

Proof. By Lemma 2, the constraints (2) and (3) on inputs leading to

LEAF(0) can be written as

O0<j<n

and

g(r) > 0 i = 1,2,...5b , (10)

where E13 are constants.

If the rank of the a by n matrix (8; 4) is n , then the
constraints in (9) force all A[r,o,j]l= 0 , and the lemma is true.

We thus assume that the rank of (& 3) is less than n , in which

. case there exist a non-empty JC {0y1,...,n-1} and constants 5
such that (9) is equivalent to

jed

15



Let r = (rgsTyseeesTy 1) be any input in I. . We shall construct

an input r' = (rlsryseeest) 1) so that constraints (9), (10) are

satisfied but H,(8") {rloriseeesr) 1] where S' = {rloriseeerrl 13 i

Thus the input set §' leads to LEAF (a) but Ve # {0,1,...,0n-1} ,

which is a contradiction. The proof of the lemma 1s then complete.

For each 0 < j <n , let e be a point so that

Let 8 > 0 be a small number to be specified. Define

5 / ae; 5 T(1+1) mod n’ r,) if ied ,

5, = (12)

(8 2 Tis) / ale; Ti41) mod 1° r. ) if ie {0,1,...,0n-1}-J .
Jed

Let r' = (x07, 0 e.'qs, 1) , where

rl = T, for 0<i<n,
(13)

rt, o=(-B)T., .. g. for 0<j<n.L Pots) (1-64) o(nty) * Pi J

Choose d > 0 small enough so that all r} are distinct and that all the
inequalities in (10) are satisfied for r' . To show that all constraints

in (9) are satisfied, we need only check that all. equations in (9)' are

true for r' . For each 0 < 1 < n , we have

14



, . _ _ ——) + — am d —

_ _ . + ec. -— —

= Byles F(i+1) modn’ Ti) (14)

where we have used Fact 1 and the equalities A[r,0,i] = 0 . For jeJd ,

this gives Alr',0,j] = 8.For i € {0,1,...,n-1}-J , we have from (1k)

and (12)

Mrisoil = 8 To,
Jed J

= Lm alrt05]
JEJ

This proves that r' satisfies (9)'.

We have proved that r', defined by (13), satisfies constraints (9)

and (10). To finish the proof of Lemma 3, it remains to show that

Hy(S8') # {xlsriseesr! 1}. Let Jed . If HY(S') = {rlprl,...,T 1},
then rt : t be a convex combination of rt rr ' r!

S(ntg ) must be vex & 1 PY. 1s or

equivalently, a convex combination of To Tse ( since r! = r,
for 0 <i <n). By Property III, this implies

- — —

AMIS nt 3) ’ Y(5+1) mod n ’ rs) <0.

‘But, repeating the derivation of (14), we obtain

- JN SY _
“o(aeg) Tg) moan? Fy) 7 8 7 0

which is a contradiction. This proves H,(S') # {rysrise.esr) 1} and
the lemma. (J

15



3.3 Completing the Proof.

Lemma. If 04 0', then LEAF (a) # LEAF(o') .

Proof. Choose 0 < { # j < n such that o(ntj) = o'(n+tg) . Let

-— — —_ . . :
(rgpTyseeesty 4) eI, be any input leading to LEAF(c') . If

LEAF (a) = LEAF (Q) , then by Lemma 3, we have

MTs(ne3)? T(g+1) moan’ T5) = 0

i.e.,

MIG (neg) ¢ Y(5+1) mod n’ rs) = 0.

But this contradicts Property IV for I,, , O

We have demonstrated the existence of n! leaves in the algorithm T ,

This completes the proof of Theorem 1,

16
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L, Remarks.

We have proved a cn log n lower bound for the convex hull problem

in a reasonably general model, which includes all the known algorithms.

This seems to be a rare instance, in which a non-trivial lower bound 1s

obtained by exploiting the properties of quadratic tests explicitly.

We remark that quadratic or high order tests are needed to solve the

convex hull problem. In fact, there can not be any decision tree algorithm

for finding convex hulls that only use linear tests, This can be seen

from the fact that the set of equality constraints at LEAF (a) must not

be linear equations (according to Lemma 2).

It remains an open problem whether decision trees of height o(n log n)

exist when high order polynomials are permitted in the tests. We conjecture

not, even 1f no restriction 1s put on the maximum degree of the polynomials

allowed.

LT



Appendix. A Proof for the Existence of €,

In this appendix, we will prove that there exists an € > 0 such

that Properties I-IV are true for all (TgsTyseeers, 1) eI, . See

Section 3.1 for terminology. Remember that n > 35.

Let 70) = (cos end | sin 27g for 0 < Jj <n . For anyJ n n J —-

- — 2 2

vector v = (w,u) , let ||v| = Aw +u . We need to show the existence

of an SRS 0 such that Properties I-IV are true for all ENN . oT 1)
satisfying the following conditions:

[EE \- < €, for 0<i<n , (Al)

and, for each 0< J<n,

r = r. H1-3.)r .e (1/k .Pont) AT 5 (1 AIT (541) nod n for some As € (1/4, 3/k) (AR)

We need the following fact.

Fact 2. Let 0 < i,j <n and ig¢ (Jj, (jtl)modn}.Then

~(0) , (0) ~(0)
ary” Yis41)modn’3 1) < ©.

Proof. Let 6 = 2n/n . Then

cos 190 sin i 1

=(0) =(0) (0)4 . = d + + (aMr, T0341) moda’ Tj ) et cos (j+l)e sin (jtl)e 1
cos Jo sin jo 1

cos ie sin 16 1 cos jo =sin Je O

= det cos (J+l1)e sin(j+l)e 1 sin je cos jo O

cos Je sin JO 1 0 0 1

18



cos (i-j)e sin (i-j)e 1

= det cos © sin © 1

1 0 1

= ((sin ©)(cos (i-j)0 -1) - (sin (i-j)®)(cos Q-1)

= (3 cin 8 oe 3 —2 sin 4 © )
+ 2 sin =Jd g cos do) sin °2 2 2

2 . 2
. © . i=] e i=]

= i (sin 2) (stn 30) (- cot 5 cot ( 25 0) ) .

Using the properties of cot and the facts 0 < i,j <n, i ¢{j, (+1) modn} ,

one can show that

cot (35d 0) = cot (42401)2 n

< cot 2x
— n

TT

< cot =

= wh o

o 2 5 2
Note also that (sin 2) (sin( 450) > 0 « Fact 2 follows easily.

Observing Fact 2 and the continuity property of the function pA , we

h fficiently small e > 0 h that, if 7,7. ...,Tcan choose a sufficiently €n suc a 1 NEE )T

satisfy (Al), then the following conditions are true.

19



(1) all r. (0 < 1 < n) are distinct,

[] [] - » - » 14 — — — .(ii) for 0 <i,j<n and ig {j, (J+tl)modn} , Ar; F541) nod nn’ rs) <0

We will now prove that, for this choice of e , any (ry res, 00 Cop 1)

that satisfies (Al) and (A2) must have Properties I-IV. We shall freely

use Fact 1 (in Section 3.2) in the ensuing arguments.

Property IV. Let 0 </f# j.<n . Then,

MIG (nt p) » 7 (f+1) modn' Ts) ~ Abr ’ Y(5+1) mod n ’ Ts)

+ (1-

(1 A) 1) mod n ? ¥ (341) modn" Ty)

< 0 ,

because of condition (ii), the fact n > 3% , and the fact both Ag (1-2, )

are positive. This verifies Property IV.

Property I. The points ry Tiseeest, 1 are distinct by condition (1).

Property IV, together with the equalities ACIS ’ T(5+1) mod n° rs) = 0

for O<jJ<n, ensures that the points LE SUC EERRE OW 1 ore all

distinct. That, for each 0 < 3 <n, Lo (nt 3) 1s distinct from all

TosTysesesT1 follows from the fact (ne 3) 4 r, *( 541) mod n
and Property IV. This verifies Property I.

—- — —

Property II. Because of (A2), one has Hy (8) © {rgpryseeerr 1. We

now claim that each r, eH,(8) , 0 <i <n, Otherwise, we can write

20



T. = pq T + 2. Ts
1 i+1” (1i+]1)modn 0<j<n JJ

jfi, (itl) modn

= r. 4 T,. b dit j

for some uj; > 0 and x . 1 . As r, # T(i+1) modn y condition (1),

at least some os > 0 with j # i, (itl)modn . This, together with
condition (11), leads to

Mr, , T,. r.) = py a. Mr, , rr, , Tr.)
(x; 5 (i+1)modn’ “i 0<j<n H3°V 37 T(i+1) modn’ Ti

j#1i, (itl) modn

< 0 .

But this is impossible as Ar; 5 T(i41) mod n’ r.) should be 0 . Thus,

every r, must be in Hy(8S) . This proves Hy (8) = {ry ry) ¢ kg)

Property III. Let P= 2 ur with pu. > 0 and 2 w, = 1 .171 i Mi

O0<i<n 1

We have, using conditions (11),

MD, T,. , T.) = 2 uw Mr, 5 or : y TL)
(+1) modn”’ = J o<i<n iti (j+L)modn”’ ~ J

0<i<n i i (J+1)modn' J
if J, (+1) modn

< 0

for each 0 < J <n, This verifies Property III.

We have thus verified Properties I-IV for all (Tgp Tys ees Ty 1) that
satisfy (Al) and (A2). This completes the proof for the existence of an

€, > 0 with the desired property.
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