
UNION-MEMBER ALGORITHMS FOR NON-DISJOINT SETS

| "

| Yossi Shiioach

| STAN-CS-79-728
January 1979

COMPUTERSSCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Union-Member Algorithms for Non-Disjoint Sets

Yossi Shiloach =

Computer Science Department

Stanford University
Stanford, California 94305

January 1979

Abstract.

In this paper we deal with the following -problem. We are given

a finite set U = (uy, | ad and a set J = {8y; wea 8)} of subsets
of u. We are also given m-1 UNION instructions that have the

form UNION (S, 55) and mean "add the set S,U 5 to the collection

and delete S. and Sy." Interspaced among the UNIONS are MEMBER(i,J)

questions that mean "does wu, belong to 5, ?"

We present two algorithms that exhibit the trade-off among the

three interesting parameters of this problem, which are:

1. Time required to answer one membership question.

2. Time required to perform the m-1 UNIONs altogether.

%. Space.

We also give an application of these algorithms to the problem of

5-coloring of planar graphs.

Keywords. 5-coloring, height-balanced (AVL) tree, planar graphs,
trie, UNION - MEMBER algorithms.

2/ This research was supported by a Chaim Weizmann Postdoctoral
Fellowship and by National Science Foundation grants MCS 75-22870,
MCS 77-23738.

1

|

1. Introduction. |

| Suppose we are given a finite set U={upeeeu} and a set

| # = {8,..,8} such that 5, ¢U for all 1< j_<m. The sets
in // are not necessarily disjoint. We are also given m-1 UNION

instructions that have the general form UNTON(S,, 8.) which means:

form a new set Smin(i, 3) which 1s equal to S; US; . Assigning
the index min (i,j) to the new set guarantees that we don't give it

an index of another set. Interspersed among the UNIONs are

MEMBER(1, J) questions which mean: does Us belong to S47

This problem has three interesting parameters.

1. The time required to answer a single MEMBER question.

2. The time required to perform the m-1 UNIONs altogether.

3. S-pace.

In Section 2 we shall present two algorithms that exhibit some

trade-off among these three parameters.

The first algorithm answers a membership question in O(k) time,

uses (Tent Ey space and requires O(Ik log n) time to perform all

the UNIONs. Here I = |S] « [8] « « wo « [85| n

represents the input size. A slight modification of this algorithm

requires O(Ik log m) time to perform all the UNIONs. Note that k

need not be a constant. The interesting cases for this algorithm are

when 1 < k <log n .

The second algorithm 1s designed for the case k = log n . This

algorithm uses recent results of Brown and Tarjan [Br] and improves the

time bound for performing all the UNIONsto O(I log n) . It requires

O(log n) time to answer a membership question and 0O(1l) space,

2

| (These bounds are also obtained by the first algorithm upon substituting

k = log n.)

| In Section 3 we give an implementation of these algorithms to the

problem of coloring a planar graph with 5 colors. It yields a time

bound which has the same asymptotic behavior as the recent algorithm of

| Lipton and Miller [LM] but is much simpler and faster practically.

3

i

2. Two UNION -MEMBER Algorithms.

2.1 The First Algorithm.

In the first algorithm we store each of the sets SEITE in a

trie structure with nk fields per node. This data-structure is described
in detail in [K]. A slightly different presentation appears in [T].

The relevant facts about tries, as far as we are concerned, are:

1. A membership question can be answered in O(k) time.

2. Insertion takes O(k) time.

3. Each set 5 5 is stored in o(|, |-=™/*) space.
As we have mentioned before, k 1s an arbitrary positive integer which

1s not necessarily independent of n .

The last fact implies that the total space that we need to represent

the initial configuration 1s 0(1enY By . Basically, in order to perform

UNTON(S;, 5) we take the set that has a smaller number of elements,

say Ss s and 1nsert its elements one by one into 5 . There are,

however, three problems in this approach.

The first -problem 1s how to retrieve the elements of 5: efficiently.

The trie structure does not support it very well and therefore each set

will also be stored as a linked list. This requires O(l) space and

therefore 1s negligible with respect to oT nt’ 5 . The second problem

1s where do we store S;US4 . This problem contains, in fact, two

sub-problems, namely where do we store the trie representation of S; US

and where do we store its list representation. In both cases we would

like to store the representations of 5. U S, in the space that was

occupied by the old representations of So and Sp In this way we would

not exceed the space limit of the initial configuration. Practically,

we first "clear" (see the third problem) the space that was occupied

by S. and then we insert SH elements one by one (reading them from

the list) to the trie that represents Sy . This trie would probably

have to expand and we let it use the vacant space of Ss . Obviously

it won't need more space (assuming that 1n the beginning we have

allocated 5, nt" to every original set S, y, 1 <r <m , even if
its trie did not require that much space). If, when we insert an

element of 3, we find that it has already been in S 5 , then we delete

it from the list of S. . Finally this list will contain the set Ss So

and then we just have to link it to S's list to yield a linked list

without repetitions of the new set 5; US . Note that the amount of

time involved in these manipulations 1s still O(k|s, |) as 1f we have

just inserted the elements of Ss , one by one, into Sy

The third problem 1s the initialization of our data-structure and

the clearance of spaces of sets that disappear such as Ss before.

The solution to Exercise 2.12 in [AHU] allows us to avoid the initialization

and therefore the clearance too. The implementation of this trick

requires an extra O(I) space and its time is also dominated by the

overall bound of 0(I+k:log n) . It 1s quite straightforward and we

shall leave the details to the reader.

So far we have shown that our data structure enables us to answer a

membership question in O(k) time and that we don't use more than

o(1 nt) space in the whole algorithm. Let's show now that the time

required to -perform all the UNIONs is O(I k log n) ,

Let G = (V,E) be the bipartite graph defined by |

v = VU ; E = {(u,,8,): u,€8;,1<2<n,1<3 <n} .

Let’s consider a UNION(S, 5.) in which 8; is inserted into S., .
Henceforth we shall assume that the new set will have the name of the

accepting set, S. in this case.

Let's consider all the edges of G that are incident with Ss .

If (uw, 85) is such an edge and u, € Sy too, we say that the edge

(uy, 8,) disappears when UNION (S, , 85) is performed. However, if

u, 5 then (u, 8.) does not disappear but just changes its "name"

to (u,, 55) . Thus, original edges of the graph can either disappear
or change their names. One can easily see that the inherent complexity

of the algorithm 1s in making edges disappear and in changing their names.

These two operations take O(k) time and therefore can be regarded as

elementary operations. We then have to show that the number of elementary

operations is O(I log n) .

Let's consider UNION(5,5 55) again. The number of edges that

disappear 1s 8; N8, and the number of edges that change their name

1s |S; - J | . If | Sy - 5 | < | S; N 8 | we will charge the disappearing
edges also for the time involved in changing the name of the others;

yet each edge that disappears will still be charged for at most one edge

that changed its name. Since |E| < 1 and each edge disappears at most

once, the total number of elementary operations that will be charged on

the accounts of disappearing edges will be O(1l) . The accounts of edges

that change their names are charged only when EA = S 3 | > | Sy MN 85 | :

Since 8, | < 8,1 this implies that 184 U 7 | > 2 Ss . Thus, each
edge can be charged for changing its name. at most 1085 jo n times, and this

ylelds the desired result. (Note that an edge can change its name more

than 10g /o n times.)
A slight modification of the algorithm above yields a total time

of O(I k log m) for performing all the UNIONs.

Let an original set denote a set that 1s an element of / . If,

when we perform UNION(S;;S,) we 1nsert the one that contains a smaller
| number of original sets into the one that contains more original set,

then we can easily get the bound above.

2.2 The Second Algorithm.

In this case we set k = log n . Thus, we are interested in an

algorithm that answers a membership question in O(log n) time, uses

linear space and is as efficient as possible. Every data structure

(including the previous one) that supports search and insertion in

logarithmic time and linear space can meet these requirements with a

total time of 0(I log” n) for executing all the UNIONs. (One log

term comes from the cost of a basic operation in the data structure

and another one comes from the fact that an edge can be charged O(log n)

times for changing its name.) The following algorithm uses a recent

result of Brown and Tarjan [Br] that enables us to knock down one log

term bringing the total time down to O(I log n) .

This time we shall keep each set in a height-balanced(AVL) tree and

not as a list. These trees will, however, represent sorted lists in the

sense that 1f we traverse them ininorder, the indices of the u; 's will

be strictly increasing (see [BT]). We also use an auxiliary space of

size n . In order to perform UNTON(S;, 8) in which 8; should be

|

| inserted into S (i.e., BA | < EN y, we first read 5; from its
tree in inorder and put it as a sorted list in the auxiliary space.

Then we insert Ss 's elements one by one 1n increasing order, into 55's

tree, allowing 1t to expand into the space occupied by 8, 's tree

(which we don't need any more). As we have mentioned before, there is

a nifty trick that allows us to use this "dirty" space without cleaning

it up first. From the same reason, we don't have to clear the auxiliary

space and 1t can be used for all the UNIONs.

An AVL tree supports a search in log time and occuples linear

space. Thus, we just have to show that the time bound for carrying out

all the UNIONs is O(I log I) .

At this point we have to turn to Brown and Tarjan's paper [BT].

This paper deals with fast merging algorithms. Using AVL trees to

represent the sets in a sorted inorder manner, the authors were able

to insert the elements of the smaller set, say os , one by one to the

tree of the larger set, say $. , in time of o(s;| (2 + Log |8,] - log |8,|))

The resulting tree represents 5 U's] in a sorted ilnorder manner and
therefore can be reused later.

In order to establish an O(I log I) time bound for our algorithm

we shall use the same graph G as before and charge the operations to its

edges. If |S; NS. > 5; = 85] we charge each of the disappearing

edgesby 2(1 + log |S; | - log [8, |) < 2 log n+l. An edge can disappear
at most once and therefore this accountwill not cause any trouble. When

8; - 85] > 5; NS; we charge each edge by 1+ log |S;] - log |s,| :
By the same reasoning as before, an edge will be charged by this amount

when changing its name at most Log; /5 n times. That takes care of

8

the 1 and we are left with log |S; | - log 15; | . Let (u,, 5;) be
an edge which has just been charged by this amount and changed 1ts name

to (u, 55) . Since sets keep growing all the time, the next time that

| our edge will be charged when changing 1ts name from (wu, 5) £0
(u,, Sq) we will have 18, > En . This time it will be charged by

log 8, | - log 1S, | » and together with the previous amount it will sum
up to

log 8, - log |8 | | log |S, - log EN < log [841

This argument shows that all these amounts form kind of a telescoping

series bounded by log n . Summing everything up, an edge can

be charged once by 2(1 + Log|$; | - log 5; 1) for some JEL c U
and can accumulate at most 2 log n from charges that are made when it

i changes 1ts name. Since IE] < I , the proof is complete,

3. An Application to 5-Coloring of Planar Graphs.

In a recent paper, R. J. Lipton and R. E. Miller [IM] present an

O(n log n) algorithm for 5-coloring a planar graph with n vertices.

However, the constant factor which they provide 1s derived from the

recurrence relation T(n) = T(M) + O(n log n) in which M can achieve

values which are very close to 27/28 and the multiplicative constant

of n logn 1s not very small either. Even 1f it 1s just 2 , 1t would

yield T(n) =~ 56 n log n , while for all practical purposes

56 > log n .

Lipton and Miller's algorithm follows the lines of the constructive

proof of the $-color theorem which is given in [H]. There is, however,

a much simpler (and constructive) proof of the 5-color theorem which

follows the lines of [0] and can be utilized by the algorithms above,

The proof proceeds by induction on n and the basis for the induction

is trivial. Thus, let's assume that any planar graph with at most n-1

vertices 1s 5-colorable, and let G be a planar graph with n vertices,

Obviously, if G contains a vertex of degree < 4 we are done. If not,

there exists a vertex, say Vo of degree 5 . Let ViseeesVe be fe 's

neighbors. At least two of them, say vy and vy , are not adjacent to

each other. We now contract Vs , vy , and Vs into one vertex Vy 7

yielding a planar graph G' that has n-2 vertices. Let's consider a

5-coloring of G' in which v, has color #1 and Vs ry and vs; has
colors #3, 4, and 5, respectively. Now, we can color G by 5 colors

assigning color #1 to vy and v, and color #2 to Vy The proof 1is

complete.

10

When one tries to extract an algorithm out of this proof, it seems

that two operations have kind of a contradictory nature. One 1s the

contraction of two vertices into one (contraction of three vertices can

be regarded as two such steps), and the other is to determine whether

two vertices are adjacent or not. Data structures that support fast

adjacency tests, such as an adjacency matrix, usually require a lot of

space and have poor performance in making contractions. Other data

structures that support contractions in short time require too much

time for adjacency tests. At this point, our algorithms get into the

picture.

Let V be our universal set and let J = {8p u8} where 8;

1s the set of vertices adjacent with Via 1 <i<n. In these terms,

1t 1s easy to see that contraction of Ve and v. into one vertex

transforms to UNION(S, 5 S,) and an adjacency test of \ and ve.
transforms to MEMBER(i,Jj) . Obviously, the UNION- MEMBER routine is

only a part of the 5-coloring algorithm. We have to store and update

the degrees of the vertices, delete vertices of degree < kb , and record

some information that will enable us to expand the graph back from one

"big" vertex (or > "big" vertices) to its original size and also trace

the 5-coloring back from the smallest graph to the original one. Thus,

a lot of details should be accomplished if one attempts to design a

complete 5-coloring algorithm out of these ideas. However, the

UNION- MEMBER routine 1s the core of such an algorithm and the most

time-consuming part of it. All the other things can be done in linear time

and space. Both UNION-MEMBER algorithms yileld an O(n log n) time bound

for the coloring algorithm, and the second one yields linear space too.

We believe that the constant factor here is much lower than the one in [LM]

and that the algorithm 1s conceptually simpler,

11

References

[AHU] A. V. Aho,J. E. Hopcroft, and J. D. Ullman,The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass,, (1974).

[BT] M. R. Brown and R. E. Tarjan, "A Fast Merging Algorithm,"

Stanford Computer Science Department Report STAN-CS-77-625 (1977),

(to appear in Journal ACM).

[H] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., (1969).

[K] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and

Searching, Addison-Wesley, Reading, Mass., (1973).

[IM] R. J. Lipton and R. E. Miller, "A Batching Method for Coloring

Planar Graphs," Information Processing Letters 7, 4 (1978), 185-188.

[0] 0. Ore, The Four Color Problem, Academic Press, (1967).

[T] R. E. Tarjan, "Storing a Sparse Table," Stanford Computer Science

Department Report STAN-CS-78-683, (1978).

12

