UNION-MEMBER ALGORITHMS FOR NON-DISJOINT SETS

by

Yossi Shiioach

STAN-CS-79-728
January 1979

COMPUTERSCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY



Union-Member Algorithms for Non-Disjoint Sets

*
Yossi Shiloach-'/
Computer Science Department

Stanford University
Stanford, California 94305

January 1979

Abstract.

In this paper we deal with the following -problem. We are given
a finite set U = (uj, | MU@‘@ and a set o = {8}, vova8 } of subsets
of wu. We are also given m-1 UNION instructions that have the
form U'NION(Si, S,j) and mean "add the set SiU Sj to the collection
and delete s,1 and Sj ." Interspaced among the UNIONs are MEMBER(1, J)
questions that mean "does u, belong to Sj on

We present two algorithms that exhibit the trade-off among the
three interesting parameters of this problem, which are:

1. Time required to answer one membership question.

2. Time required to perform the m-1 UNIONs altogether.

5. Space .

We also give an application of these algorithms to the problem of

5-coloring of planar graphs.

Keywords. 5-coloring, height-balanced (AVL) tree, planar graphs,
trie, UNION - MEMBER algorithms.

*
-J This research was supported by a Chaim Weizmann Postdoctoral

Fellowship and by National Science Foundation grants MCS 75-22870,
MCS 77-23738.



1. Introduction.

Suppose we are given a finite set U = {ul,...,un} and a set
# = {8, ..,8 } such that S; €U for all 1< j_<m. The sets
in o are not necessarily disjoint. We are also given m-1 UNION
instructions that have the general form UNION(Si, Sj) which means:

form a new set S which is equal to SiUS;j . Assigning

min(i, J)
the index min(i, j) to the new set guarantees that we don't give it
an index of another set. Interspersed among the UNIONs are

MEMBER (i, j) questions which mean: does Uy belong to Sj ?

This problem has three interesting parameters.

1. The time required to answer a single MEMBER question.
2. The time required to perform the m-1 UNIONs altogether.

3, S-pace.

In Section 2 we shall present two algorithms that exhibit some
trade-off among these three parameters.

The first algorithm answers a membership question in O(k) time,
uses O(I°nl/k) space and requires O(I k log n) time to perform all
the UNIONs. Here I = lSl| © |82| e oMo o \Sm| El ¢!
represents the input size. A slight modification of this algorithm
requires O(I k log m) time to perform all the UNIONs. Note that k
need not be a constant. The interesting cases for this algorithm are
when 1 < k < log n

The second algorithm is designed for the case k = log n . This
algorithm uses recent results of Brown and Tarjan [BT] and improves the
time bound for performing all the UNIONs to O(I log n) . It requires

0(log n) time to answer a membership question and O(1) space,



(These bounds are also obtained by the first algorithm upon substituting
k= logn.)

In Section 3 we give an implementation of these algorithms to the
problem of coloring a planar graph with 5 colors. It yields a time
bound which has the same asymptotic behavior as the recent algorithm of

Lipton and Miller [LM] but is much simpler and faster practically.



2. Two UNION -MEMBER Algorithms.

2.1 The First Algorithm.

In the first algorithm we store each of the sets %f""%n in a
trie structure with nl/k fields per node. This data-structure is described
in detail in [K]. A slightly different presentation appears in [T].

The relevant facts about tries, as far as we are concerned, are:

1. A membership question can be answered in O(k) time.
2. Insertion takes O(k) time.

3. Each set Sj is stored in O(|Sj|'nl/k) space.

As we have mentioned before, k 1s an arbitrary positive integer which
is not necessarily independent of n

The last fact implies that the total space that we need to represent
the initial configuration is O(I-nl/k) . Basically, in order to perform
UNION(Si,Sj) we take the set that has a smaller number of elements,
say Si » and insert its elements one by one into S.J . There are,
however, three problems in this approach.

The first -problem is how to retrieve the elements of Si efficiently.
The trie structure does not support it very well and therefore each set
will also be stored as a linked list. This requires 0O(1l) space and
therefore is negligible with respect to O(I'nl/k) . The second problem
is where do we store SJ._US._;_J . This problem contains, in fact, two
sub-problems, namely where do we store the trie representation of SilJSj
and where do we store its list representation. In both cases we would
like to store the representations of SiU SJ in the space that was

occupied by the old representations of S.:L and Sj' In this way we would



not exceed the space limit of the initial configuration. Practically,
we first "clear" (see the third problem) the space that was occupied
by Si and then we insert Si's elements one by one (reading them from
the list) to the trie that represents Sg . This trie would probably
have to expand and we let it use the vacant space of Si . Obviously
it won't need more space (assuming that in the beginning we have
allocated I'Sr|nl/k to every original set Sr ; 1 <r <m, even if
its trie did not require that much space). If, when we insert an
element of Si we find that it has already been in S.J , then we delete
it from the list of Si .  Finally this list will contain the set Si- S:J
and then we just have to link it to SU'S list to yield a linked list
without repetitions of the new set SiLJSj . Note that the amount of
time involved in these manipulations is still O(k\%iD as 1f we have
just inserted the elements of Si , one by one, into SJ.

The third problem is the initialization of our data-structure and
the clearance of spaces of sets that disappear such as Si before.
The solution to Exercise 2.12 in [AHU] allows us to avoid the initialization
and therefore the clearance too. The implementation of this trick
requires an extra O(I) space and its time is also dominated by the
overall bound of 0(I-k+log n) . It is quite straightforward and we
shall leave the details to the reader.

So far we have shown that our data structure enables us to answer a
membership question in O(k) time and that we don't use more than

O(Irﬁ/k)space in the whole algorithm. Let's show now that the time

required to -perform all the UNIONs is O(I k log n) ,



Let G = (V,E) be the bipartite graph defined by

v="VUsS ; E = {(uz,sj): uzesj,lng_n,lgjsm} .
Let’s consider a UNION(Si, Sj) in which 8; is inserted into S. .
Henceforth we shall assume that the new set will have the name of the

accepting set, S.J in this case.

Let's consider all the edges of G that are incident with Si

If (uz, Si) is such an edge and u, € S, too, we say that the edge

2 J

(uz,Si) disappears when UNION(Si, Sj) is performed. However, if
ul;‘f Sj then (uz, Si) does not disappear but Jjust changes its "neme"
to (uz, Sj) . Thus, original edges of the graph can either disappear
or change their names. One can easily see that the inherent complexity
of the algorithm is in making edges disappear and in changing their names.
These two operations take Of(k) time and therefore can be regarded as
elementary operations. We then have to show that the number of elementary
operations is O(I log n)

Let's consider UNION( Si’ Sj) again. The number of edges that
disappear 1is lSiﬂSj| and the number of edges that change their name
is |Si - Sj | . If l Si - Sj | < | Si N Sj | we will charge the disappearing
edges also for the time involved in changing the name of the others;
yet each edge that disappears will still be charged for at most one edge
that changed its name. Since |E| < 1 and each edge disappears at most
once, the total number of elementary operations that will be charged on
the accounts of disappearing edges will be O(1) . The accounts of edges
that change their names are charged only when ‘Si =S 3 \ > l Si N S,j‘ .

since |8, | |s

,j| this implies that \Si U Sj | > % 8, . Thus, each

edge can be charged for changing its name. at most 1085/2 n times, and this



yields the desired result. (Note that an edge can change its name more
than logB/2 n times.)

A slight modification of the algorithm above yields a total time
of O(I k log m) for performing all the UNIONs.

Let an original set denote a set that is an element of p . If,

when we perform UNION(Si,Sj), we insert the one that contains a smaller
number of original sets into the one that contains more original set,

then we can easily get the bound above.

2.2 The Second Algorithm.

In this case we set k = log n . Thus, we are interested in an
algorithm that answers a membership question in O(log n) time, uses
linear space and is as efficient as possible. Every data structure
(including the previous one) that supports search and insertion in
logarithmic time and linear space can meet these requirements with a
total time of 0O(I log2 n) for executing all the UNIONs. (One log
term comes from the cost of a basic operation in the data structure
and another one comes from the fact that an edge can be charged 0(log n)
times for changing its name.) The following algorithm uses a recent
result of Brown and Tarjan [sr] that enables us to knock down one log
term bringing the total time down to O(I log n)

This time we shall keep each set in a height-balanced (AVL) tree and
not as a list. These trees will, however, represent sorted lists in the
sense that if we traverse them in inorder, the indices of the ui'S will
be strictly increasing (see [BT]). We also use an auxiliary space of

size n . In order to perform UNION(Si,Sj) in which Si should be



inserted into Sj (i.e., |Si | < ‘Sj | ), we first read s; from its
tree in inorder and put it as a sorted list in the auxiliary space.

Then we insert Si 's elements one by one in increasing order, into S, 's
tree, allowing it to expand into the space occupied by Si 's tree

(which we don't need any more). As we have mentioned before, there is

a nifty trick that allows us to use this "dirty" space without cleaning
it up first. From the same reason, we don't have to clear the auxiliary
space and it can be used for all the UNIONs.

An AVL tree supports a search in log time and occupies linear
space. Thus, we just have to show that the time bound for carrying out
all the UNIONs is O(I log I)

At this point we have to turn to Brown and Tarjan's paper [BT].
This paper deals with fast merging algorithms. Using AVL trees to
represent the sets in a sorted inorder manner, the authors were able
to insert the elements of the smaller set, say Si , one by one to the
tree of the larger set, say S. in time of O(\Si\(l + log |SJ.| - log ‘Si|)) ,

The resulting tree represents SiUs in a sorted inorder manner and

J
therefore can be reused later.

In order to establish an O(I log I) time bound for our algorithm
we shall use the same graph G as before and charge the operations to its
edges. If |Siﬂsj‘ > \Si-sj\ we charge each of the disappearing
edges by 2(1 + log \SJ. | - log ‘Si|) < 2 log n+tl . An edge can disappear
at most once and therefore this account will not cause any trouble. When
85 -SJ.| > ‘Sins,jl we charge each edge by 1+ log \SJ.\ - log |Si| .

By the same reasoning as before, an edge will be charged by this amount

when changing its name at most 1083/2 n times. That takes care of



the 1 and we are left with 1log |Sj | - |Og lSil . Let (uIZ’ Si) be

an edge which has just been charged by this amount and changed its name
to (uz:Sj) . Since sets keep growing all the time, the next time that
our edge will be charged when changing its name from (u ,

y)
This time it will be charged by

S_) to
b

(uj 8,) we will have s | > 1551
log |Sq| - log |SP| » and together with the previous amount it will sum
up to

log |Sq| - log |§p| log |Sj| - log |Si| < log |Sq|

This argument shows that all these amounts form kind of a telescoping
series bounded by log n . Summing everything up, an edge can

be charged once by 2(1 + logsj| - log |Sil) for some Si’sj cUu
and can accumulate at most 2 log n from charges that are made when it

changes its name. Since |E| < I , the proof is complete,



3. An Application to 5-Coloring of Planar Graphs.

In a recent paper, R. J., Lipton and R. E. Miller [IM] present an
O(n log n) algorithm for 5-coloring a planar graph with n vertices.
However, the constant factor which they provide is derived from the
recurrence relation T(n) = T(Mn) + O(n log n) in which A can achieve
values which are very close to 27/28 and the multiplicative constant
of n log n 1is not very small either. Even if it is just 2 , it would
yield T(n) ~ 56 n log n , while for all practical purposes
56 > log n

Lipton and Miller's algorithm follows the lines of the constructive
proof of the $-color theorem which is given in [H]. There is, however,
a much simpler (and constructive) proof of the 5-color theorem which
follows the lines of [0] and can be utilized by the algorithms above,

The proof proceeds by induction on n and the basis for the induction
is trivial. Thus, let's assume that any planar graph with at most n-1
vertices is b5-colorable, and let G be a planar graph with n vertices,
Obviously, if G contains a vertex of degree S_h we are done. If not,
there exists a vertex, say v, , of degree 5 . Let VojseeesyV be v 's

1 5 o)

neighbors. At least two of them, say vy and vy , are not adjacent to

each other. We now contract vO , Vl , and Vv, into one vertex Ve s

2
yielding a planar graph G' that has n-2 vertices. Let's consider a
5=-coloring of G' in which Vy has color #1 and v, , vu , and VS has

colors #3, 4, and 5, respectively. Now, we can color G by 5 colors

assigning color #1 to vy and v and color #2 to v The proof is

2 (O

complete.

10



When one tries to extract an algorithm out of this proof, it seems
that two operations have kind of a contradictory nature. One is the
contraction of two vertices into one (contraction of three vertices can
be regarded as two such steps), and the other is to determine whether
two vertices are adjacent or not. Data structures that support fast
adjacency tests, such as an adjacency matrix, usually require a lot of
space and have poor performance in making contractions. Other data
structures that support contractions in short time require too much

time for adjacency tests. At this point, our algorithms get into the

picture.
Let V be our universal set and let ={Sl,..an} where Si
is the set of vertices adjacent with Ve s 1<i<n. In these terms,

it is easy to see that contraction of Ve and v.J into one vertex
transforms to UNION(Si,Sj) and an adjacency test of A and v.J
transforms to MEMBER(i,j) . Obviously, the UNION- MEMBER routine is

only a part of the 5-coloring algorithm. We have to store and update

the degrees of the vertices, delete vertices of degree < L , and record
some information that will enable us to expand the graph back from one
"big" vertex (or 5 "big" vertices) to its original size and also trace
the 5-coloring back from the smallest graph to the original one. Thus,

a lot of details should be accomplished if one attempts to design a
complete 5-coloring algorithm out of these ideas. However, the
UNION - MEMBER routine is the core of such an algorithm and the most
time-consuming part of it. All the other things can be done in linear time
and space. Both UNION-MEMBER algorithms yield an O(n log n) time bound
for the coloring algorithm, and the second one yields linear space too.

We believe that the constant factor here is much lower than the one in [LM]
and that the algorithm is conceptually simpler,

11



References

[AHU] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass,, (1974).

[BT] M. R. Brown and R. E. Tarjan, "A Fast Merging Algorithm,"
Stanford Computer Science Department Report STAN%X%77-625(1977L
(to appear in Journal ACM).

[H] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., (1969).

[K] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and

Searching, Addison-Wesley, Reading, Mass., (1973).
[IM] R. J. Lipton and R. E. Miller, "A Batching Method for Coloring

Planar Graphs," Information Processing Letters 7, 4 (1978), 185-188.

[0] 0. Ore, The Four Color Problem, Academic Press, (1967).

[T] R. E. Tarjan, "Storing a Sparse Table," Stanford Computer Science

Department Report STAN-CS-78-683, (1978).

12




