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Abstract.

The study of constructing reliable systems from unreliable components
goes back to the work of von Neumann, and of Moore and Shannon. The present
paper studies the use of redundancy to enhance reliability for sorting and
related networks built from unreliable comparators. Two models of fault-
tolerant networks are discussed. The first model patterns after the concept
of error-correcting codes in information theory, and the other follows the
stochastic criterion used by von Neumann and Moore-Shannon. It is shown,
for example, that an additional k(2n-3) comparators are sufficient to render
a sorting network reliable, provided that no more than k of its comparators

may be faulty.
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1. Introduction.

Consider sorting networks that are built from comparators, where each
comparator is a 2 input - 2 output device capable of sorting two numbers
(Figure 1). It is of interest to construct sorting networks for n inputs
using a minimum number of comparators (see Knuth [4]). The problem seems
to be difficult, and so far no networks substantially better than Batcher's
sorting networks (Batcher DJ) are known for general n. In this paper we
look into this problem in a new setting. Suppose that some of the comparators
are potentially faulty, how can we construct economic networks that still
sort properly ? We shall assume that, for a faulty comparator, the inputs
are directly output without a comparison (Figure 2).

The study of constructing reliable systems from unreliable components
goes back to the work of von Neumann U], and Moore and Shannon B].
Currently, the subject of fault-tolerant computing is an active area of
research (see, e.g. [6]). The present paper studies the use of redundancy
to enhance reliability for a particular problem, similar in spirit to the
work on switching networks by Moore and Shannon p].

From the standpoint of analysis of algorithms, our models resemble
the problem of sorting with unreliable comparisons. In that direction, a

study of binary search with allowance for unreliable comparisons was done
in P].

2. Definitions and Notations.

An n-network o 1is a finite sequence of the form [H.:jll[iZ:jZ]"'[ir:jr]’

where each pair [izzj2 , with 1<i <j,€n, is called a comparator. Any input
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Figure 1. A comparator.
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Figure 2. A faulty comparator.



> n
vector X = <x1,x2,...,xn> e R 0of n real numbers is transformed into an
> n :
output vector y g R° Dby the network O, as described below. Associate
, .. , n n
with a comparator [1,J] the mapping from R to R defined by
<K sXpyenesX > I:i:jI = <xi,xé,...,x1_'l>,

where x, = X = max {x.,x.}.
L 1)

, if 2 ¢ {i,j}, and xi = min {xi,xj} , x3
The network @ then defines a mapping from R" into R" by successively
applying the mappings induced by [ :3,], [i,:3,], - - . . and [i :j ]. In
-> n -> ->
other words, for any x € R, the output ¥y = xa is defined by
+-(0) =~
x ‘=X,
) »(-1)p. .
X = x [12:_]2’], for 1 € 2 <r ,
and ;a = }-;(r)
We shall represent an n-network O as shown in Figure 3, where from
left to right each comparator [igzjgj is drawn as a vertical bar connecting
. ->
the 1 -th and the j -th lines. We input x = <X1,x2,...,x > from the left
n
erld, with line i carrying X.l. As a comparator [iQI:jl] is passed, the
smaller of the two incoming numbers moves to the upper line iR,’ and the

larger to the lower line j,Q, (see Figure 4 for an example). Thus, between

the 2-th and the (#+1)-st comparators, the number carried by line i is

the i-th component of the vector ;( 9’), In particular, (;a), is the
1
number found on line i at the right end of o . We call ;(2) the 2-th

s
state vector of input X relative to o .

->
A vector X = <X_,X_,...,x > 1is sorted if x, €x, € ...£x . A
172 n E— 1 2 n

sorting network for n elements, or an n-sorter, i{g5 an n-network a such that,

} > n g
for any input x ¢ R, the output vector Xo jis sorted. For instance, the

network in Figure 3 is easily seen to be a 4-sorter. For each n, let S(n)
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3rd line V. : T _I
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Figure 3. A 4-network a = [1:3][2:4] [1:2][3:4][2:3].
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Figure 4. For input vector X = <7,10,2,8>, one has x(1)=<2,10,7,8>,
>
;(2)= <2,8,7,10>, and output ;d = x(4)= <2,7,8,10>,



denote the minimum number of comparators required by any n-sorter. It is
known [4] that, for large n, we have n log,n ¢ S(n) < % n(logzn)2 .

Let us now consider the situation when "faulty comparators" may be
present. As the effect of having faulty comparators is equivalent to
deleting them from the network, an n-sorter may no longer be an n-sorter
if there are faulty comparators. Indeed, since the usual emphasis in the
design of sorting networks is to avoid redundant comparisons, it is expected
that every comparator is crucial in an efficient sorter. It is, therefore,
an interesting question whether economic sorting networks would have to
look quite different when some fault-tolerant properties are required.

We shall discuss two models, with different fault-tolerant criteria, in the
following sections. The first model (Section 3) patterns after the concept
of error-correcting codes in information theory, and the other (Section 5)

follows the criterion used in von Neumann p] and Moore-Shannon E] .

3. The k-Fault Model.

Let k 3 0 be an integer. We are interested in constructing n-sorters
which can sort properly if no more than k of its comparators are faulty.

Formally, a k-tolerant n-sorter is an n-sorter @ such that, if any k (or

fewer) of its comparators are removed, the resulting n-network is still an
n-sorter. Let Sk(n) be the minimum number of comparators needed in any
k-tolerant n-sorter. Trivially Sk(n) < (k+1)S(n), since we can obtain a
k-tolerant n-sorter by replacing every comparator in an optimal n-sorter
with k+l1 copies. Our main result in this model is the following theorem,
which states that any n-sorter can be made k-tolerant by appending to it a

network with O(kn) comparators. The rest of this section is devoted to



a proof of Theorem 1.
Theorem 1. If o is an n-sorter, then there exists an n-network B with
k(2n-3) comparators, such that oB is a k-tolerant n-sorter.?
Corollary. Sk(n) € S(n) + k(2n-3).

We need the following "zero-one principle" [4]

o > n

Lemma 1. Let & be an n-network. If X§ is sorted for every x € {0 ,11,
then & is an n-sorter.
proof. See Knuth[4, Sec.5.3.4, Theorem z]. &

Let 6 denote the n-network [1:2] [2:3] c e [i:i+1]...[n—2:n—1] [n—l:n:l

- . k .

[n—Z:n-l] “ou [1:1+1] cee [1:2] (see Figure 5), and B = © the concatenation
of k such networks. Clearly, B consists of k(2n-3) comparators.

Proposition 1. Let £ be any network obtained from the n-network aB by

.-)
deleting some k' comparators where k'< k. Then x£ 1is sorted for any
> . n
x € {0.1} .
We shall prove Proposition 1 below. Theorem 1 then follows immediately

in view of Lemma 1.

Write £ = a'B' where a' and B' are the networks resulting from
a and B respectively when some a and b comparators have been removed,
. . ) ) ) > >
with a + b € k. In the remainder of this section, we will use x, y, etc.

, , n -> ->
exclusively for vectors in {0,1} . For any vector x, we use XS to denote
—)

the sorted vector that has the same number of 0O's as x. We first show that

. - ] > . . .
the difference between xo and xS is at most 2a in terms of their

> >

-> > -> >
Hamming distance. (The Hamming distance D(x,y) of x and ¥y, for X, Yy

n > >
e {0,1}", is the number of components where x and y differ.) We then

.I.

We use 0B to denote the concatenation of & and B.



Figure 5. The network 6 for six inputs.

show that the network B', with at least k-b 2 a "good" copies of 6,
can reduce that distance to zero.
Lemma 2. D ( ;[1_]] , ;[13] <D (X%, —}: ) for any comparator [i:]j].
proof. It suffices to show that
D ( <xi,xj>[1:2] , <yi,yj>[1:2] ) < D ( <xi’xj> , <yi’yj> ).
This is clearly true if the right hand side is either 0 or 2. Now, when
the right hand side is 1, that means one of {<xi,xj>, <yi,yj>} has exactly
one 0, and the other has either two or no 0. In either case, we have
D (x[i:j], y[i:j])=1, @
Lemma 3. D(;[i:j] ,Y)sD (X ,y)+2.
proof. It suffices to prove that
D ( <xi,xj>[1:2] , <yi’yj> ) ¢ D ( <xi’xj> , <yi,y:u> ) + 2,

which is obviously true. [J



Lemma 4. Let o' Dbe an n-network obtained from the n-sorter & by deleting

>
some a comparators. Then for any x,

> ->
D ( xa ,xs)€2a.

-> >
where xS is the sorted version of x.
>(2) > .
proof. Let x denote the f-th state vector of x relative to & as
. . . >(2) > . .
defined in Section 2, and y the state vector of x relative to a' in
the corresponding interval. Then, according to Lemmas 2 and 3,
>(L) >(R)
D ( x s Y ) € 2 X (the number of deleted comparators among

the first 2 of a)

-> >
by induction on £. Therefore, D(xa', xa) € 2a, and the lemma follows
> >
since xa = L a

—>
Now we consider the effect of B' on xa'. The network 6 is designed
. > >
so that if a vector =z differs from z only by a transposition, i.e.,
_Z = <0,0,. ..6,...O,l,l,...,T,...,l,...,1> (d denotes the complement of d),
+
then 6 can carry out the desired swap for z. In general, 6 applied to
>
an arbitrary vector z which is not sorted reduces the Hamming distance of
+
‘Z and Z by at least 2.
-> > > > > >
Lemma 5. p(z8 , zs) < D(z,zs) - 2 if D(z,zs) > 0.
>(L

->
proof. Let =z ) denote the state vectors of z relative to 8. Suppose

+
there are m O's in the components of 2z, the following facts can easily be

checked.

Fact A. D(+(2) s) 2x(the number of 1's in the first m components of z(g))
Fact B. (+('Q') s) is non-increasing as % increases.

Fact C. (;(m—l))m = 1.

>(m~ 1)) ) > >

proof of Fact C. Note that (z = max {zl,zz,...,zm}. Since D(z,zs)

>0, 2132950052 Can not all be 0. U



= +(m-1) _
We now prove Lemma 5. Case(l) .uppose Z +1 0. Then (z )m+1 =

>(m-1), _ .
(z )m = 1 by Fact C. The m-th comparator [m:m+1] will swap the two

(m)

>

components, and hence z has one fewer 1's in the first m components
+ —

than z(m 1).

T =
m+1
('Z*(Zn—m-S)

and

The lemma then follows from Facts A and B. Case(2) uppose
, , ->(Zm))
1. Then Fact C implies that ( m= 1. It is easy to see that

-> -
) = 1 and (Z(Zn-m 3))m+1 = 0. The (2n-m-2)-th comparator

m
[m:m+1] then swaps these two components in ;(Zn-m—B) , causing Z(Zn-m—-Z)

+(2n-m-3)
z .

to have one fewer 1's in the first m components than The

lemma again follows from Facts A and B. 0
> > > >
Fact D. Let Y be any n-network, then D(zy,zs) < D(z,zs).

> >
Lemma 6. Assume D(z,zs) € 2a, and let B' Dbe a network obtained from B

by deleting no more than k-a comparators. Then ZB' = ;

(1)8(2) (k) B(i)

...B , where each

S.

proof. TWrite B =B is a copy of 8.

1
( )Y(z)...Y(k) such that for some 1 < il < i2 <,..< i<k,

Let B' =y
a
w(J) - ZY(I)Y(Z)...Y(J)

Y(lﬂ,) = 8(12) =06 for all %. If we write

0)_ ~» .
w " '= z, then as j increases, D(w

and

(j) » ) .
,zs does not increase by Fact D, and

in fact decreases by at least 2 when j = 1 and D(w(j),; ) 2 0 by Lemma 5. Thus

L

D(w(k),Zs) < 2a - 2a = 0. as w¥) — 28" , this implies that 28' = ZS. 0

Proposition 1 is an immediate consequence of Lemma 4 and Lemma 6. This

completes the proof of Theorem 1.



4, Networks Related to Sorting.

The k-fault model of the previous section extends naturally to
comparator networks for other tasks, such as merging and selection.

An (m,n)-merging network ¢ 1is an (m+n)-network such that, for any

> m+n

i i RS RS
xg R satisfying X < x2 < xm and X 41 6 xm_'_2 < X, the
vector Xoq 1is sorted. Let M(m,n) denote the minimum number of
comparators needed by a. An mf-network B (minimum-finding) for n inputs

is an n-network such that, for any ; € Rn, (;3)1 = min{xl,xz,...,xn}.
Let Y(n) denote the minimum number of comparators needed by B . It is
known that Y(n) = n-1 and
5 nlg(m+1l) 6 M(m,n) £ (n+m) ( rlgm]/z + m/2 [lgm.l)
(Batcher [1, Sec.5.3.4], Floyd [4,Sec.5.3.4 Theorem F], Yao and Yao[8] ) .
The k-fault model for sorting networks can immediately be generalized to
these networks. Let Mk(m,n) and Y, (n) denote the corresponding minimum
number of comparators for such networks with k-fault tolerance.
Theorem 1 implies immediately that
Mk(m,n) < M(m,n) + k(2(m*+n) - 3).
For Yk(n), we have the following theorem.
Theorem 2. Yk(n) = (k+1)(n-1) for k 20.
proof. Let o be any k-tolerant mf-network for n inputs. For each j,
1 <j €£n, there must be at least k+1 comparators in O of the form l-_"‘,j:]..1~
Otherwise, when all comparators of the form [*,j] are faulty, the input
<x1,x2,...,xn> with XQ, = 1 - S,Qj will not have the correct output under & .
Thus, Y, (n) > (k+1) (n-1). The reverse inequality follows from the fact that
a= Bk+1, where B = [n-l:n] [n—Z:n-l]... [i:i+1]... [1:2], is a k-tolerant

mf-network. [

¥ We use [‘«":i— to denote any comparator of the form [i:} where k=j.

10



5. The Stochastic-Fault Model.

In the preceding two sections, we discussed fault-tolerant networks
in a framework allowing at most k faulty comparators. We have seen that
the additional price paid for reliability varies with the function of the
network. For sorting or merging networks, only 0(kn) comparators are
needed in addition to the basic cost of nlogzn or higher; whereas for
minimum-finding, the extra cost is k times the original basic network.

For very large networks, the assumption of no more than k faulty
comparators may be too restrictive. It is reasonable to expect that some

fixed fraction, say 10_4, of the basic units are faulty. A natural
extension of the previous model then leads to the following question.

How many comparators are needed to construct an n-sorter which remains
reliable if any 10_4 of the comparators in it are faulty? Unfortunately,
reliable networks in this case do not exist when p is large (n > 104+1).
Indeed, we assert that if a fraction of 1/(n-1) of the comparators may
be faulty, then there does not exist any reliable n-sorter in this sense.
For any n-sorter &, let j € {2,3,...n} be such that at most 1/(n-1)
of the comparators in a are of the form D:j1, then 0 clearly will
not sort all inputs properly if all such comparators [*:j] are faulty
(cf. the proof of Theorem 2). In view of this fact, we will define a
more relaxed, stochastic model that is very similar to the models studied
in von Neumann [7], Moore and Shannon [5].

A Stochastic Model. Let 0 <g, 8§ < 1 and n be an integer. An n-network

a 1s an (&, &)-stochastic n-sorter if the random n-network a', obtained

from @ by deleting independently each comparator with any fixed probability

§' < 8, is an n-sorter with probability at least l-g.

11



In an (€,8)-stochastic n-sorter, we shall refer to & as the fault

probability (of the comparators), and € as the failure probability (of the
€,8
S( ’ )(m

network) . Let be the minimum number of comparators required by
any (€,8)-stochastic n-sorter. Similarly, we can define (g,8)-stochastic
merging networks for m + n inputs, (€,8)-stochastic mf-networks for n

€8y, & m).

inputs, and the corresponding complexity M
A conventional method of achieving reliability is to replace a basic
component by several unreliable components which simulate the basic component
with high reliability [5][]]. In our case, connecting in series m comparators,
each with § probability of fault, gives the effect of a single comparator

with fault probability §™, If a is an n—network with N comparators

(none are faulty), the network B obtained from a by replacing each

comparator with m comparators in series is called the canonical m-redundant

network of O, The probability for B to be a network performing the same
mapping as O is at least (l- Gm)N, which is greater than 1-€ for large
N if m > (log(N/e))/log(1l/$).

Definition. For given €, § and network a, the canonical m-redundant
network B of @ with m chosen just large enough so that B becomes an

(e,8)-stochastic network is called the canonical (&,&)-stochastic network

simulating Q.

It follows from the preceding discussion that, for fixed €, 6, an
arbitrary network 0 with N comparators may be simulated by its canonical
(e,8)-stochastic network which is of size O(NlogzN). It is of interest to
study the optimality of this basic strategy for enhancing reliability. As
this method exploits redundancy in a primitive way, it is also not surprising

that more efficient constructions exist for many problems. We shall bear out

12



these points in the following results. The first result illustrates
the optimality of the canonical construction for minimum-finding.
Given n > 1 and m > 0, let m, = L(m+i-1)/(n-1)_l for 1 € i < n.

The mi's form a partition of m into n-1 almost equal parts in that

z m, =m and jm.= mJl ¢ 1 for all i, j; they are also the unique set of
i
n-1 numbers satisfying these conditions (see [.3, Sec.1l.2.4, Ex.38J).
_ m,
Define g 1_l(m) - @I (1-§1). It is easy to see that 8s 1_I(rn) is a
) 3

1g¢i<n
non-decreasing function of m for fixed n and § < 1.

m where m is the

Theorem 3. Let 0 <g, 6 < 1. Then Y(E’(S)(n) =

smallest positive integer satisfying g n(m); 1 - €.
3

$

Corollary. For any fixed 0 <g, § < 1, Y(s’a)(n) = G(nlogzn) as n -+ °°.t

™ . R I L o
proof. The network [n-l:n] [n-Z :n—l] [2.3] [1:2] is

(m), which is
Y(8,6)

easily seen to be a valid mf-network with probability gG 0
3

at least 1l-g by the definition of . This proves that (n) <m.

&g,
To prove the reverse inequality, we observe that, in any (g,8)-stochastic
mf-network g for n inputs, we must have
2

m (1-6873)31- ¢, (5.1)
2

where lj is the number of comparators of the form [*:jl.

Fact E. Let k > 0 be an integer and 0 < § < 1 a real number. The
ky ky
expression (1-§ ")(1-§ °), where kl and k2 are non-negative integers
satisfying k1+ k2 = k, is maximized when |k1— k2| < 1.
proof of Fact E. Otherwise, assume that the maximum is achieved at (kl’kZ)

with k1 > k2+ 1. Then

T The @ notation means that there exist constants a, b >0 such that

a(nlogzn) < Y(e’szn) < b(nlogzn).

13



k
(1 -¢sH1 -6

This implies

k k k,-1 k,+1
1 2 1 2
§ +§8 <38 +36 ,
k k-1
or 62(1—6)<61 (1-¢8),
or k2>kl -1,

which is a contradiction.

In Equ.(5.1) let g =3 &. . By repeated application of Fact E,
2¢jgn

the expression [ (1-§ J) is maximized when lﬂ,i- 9,.| < 1 for all
2¢jgn J
2y 1, j ¢ n. Therefore

%5
() > m (1-¢67)
n .
2¢ Jgn

&s,

>1 - ¢.

This implies that g » m. We have proved Theorem 3. I

1/(n—1)), o' = I—t-l(n—l)

To prove the corollary, let t = 1og6(1 - (1-¢)
and m" = (Lt_l-l)(n-l). It is easy to check that g6 n(m') > 1-e and

"o Y(E’G)(

-~

g n(m") < 1-€ . The monotonicity of 950 then implies that m
3

s
It is easy to check that, for fixed 0 <g, § < 1, we have t = O(logn) as
n > o This implies that m' = O(nlogn), m" = ©(nlogn), and hence
19 (a) = o(nlogn).

The canonical (g, 8)-stochastic network may not always be the best
solution possible, as the following example shows.

Consider the 3-sorter q = [2:3] [1:2] [2:3], and its canonical
(&) —stochastic sorter R = [2:3]m[1:2]m[2:3]m. By definition, the value

of m is the smallest positive integer such that (1 - 1/2m)3> 1 - €.

14
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It follows that

m = [-log,(1 - (1-)'/%)] .
For ¢ << 1, the total number of comparators in B is then

3m ~ 3(log2(1/e) + 1og23) + 0(g).
We shall now show that, there exist (&,%)-stochastic 3-sorters using only
210g2(1/€) + 0(1n 1n(3/¢c)) comparators. That is, the canonical construc-
tion uses nearly 50% more comparators than is necessary when € +~0, The result

follows from the next theorem.
logz(l/e) + 0(1nln(3/g))

logz(l/G)
(€,8) (3

Theorem 4. S(E’G)(3) = 2

proof. We first compute Y , which according to Theorem 3 is the

smallest m satisfying
1 -sm™2yq - slm2ly 5 g ¢
Writing m' =l}d21, we obtain
Lo g™ s (1)t
= 1- % e+ 0(32).
This leads to

m 3 2m' - 2

10g2(1/€)+ o(1)"
logz(l/é)

> 2

as 59:97(3) 3 v (3), we have proved that

log2(1/€)+ 0o(1)
10g2(1/6) .

8(5’6)(3) 5 2

To prove the reverse inequality, we construct a 3-sorter
= : : :3])% i 6 hall h f tant
ap [2.3]([1‘2][2.3]) (Figure 6). We sha prove that, for some constant c,

the network ¢, with & = (log2(1/€) + c 1n1n(3/e))/log2(1/6) is an

L

(e,8)-stochastic 3-sorter. This then proves the theorem.

15



Writing x for [2:‘} and y for I:l:?.I , we can denote OLQ by the
string 0= YXYXY.. .XY. For added clarity, we also use the subscripted

notation 02=y0x1y1x2y2.,.x2y2 where X. and v refer to the 1—th[2:3]

and [1:21 comparators; respectively. It is easy to see that, when comparators
are deleted, the resulting network OL,é’ fails to be a valid 3-sorter if and
+
only if oL;L does not contain a.substring which belongs to yx y or xy+x,
N 1 + * * + * N N ] . .
i.e., OLJL eyx Uxy Uzx. Thus the probability pﬁ, that OLJZ, fails 1is
less than p1+p2+p3 where
1 + * . . .
1) @y € ¥y x  with probability
b = 5ok (2;1)(1_6)k §2%+1-k (5.2)
1<kg+1
: LI
since we must have ay = y.i Yi Vi Xp Ry L where 1 €k € &1,
2 J o j+l j+2 k
< 4 < <1i. < <1, < 1, <, L.<1 < .
l\j\k,andO\l1 .. 1J 1J+1 1k\JL
After simplifications, Equ.(5.2) becomes
£ ' - ~(k—
= (10)eDes 1 Foaiet ghled)
1<kg2+1
L
= (1-6)+(2+1) ¢
' * + . A 2 .
2) ag € X y  with probability p, = P = (1-8)+(2+1)+8”, since network o,

is symmetric with respect to left-right reversal.

L

3) OL;L € x  with probability
2 -
py= I (Oa-8)f gPHE
O<ks
=¥t g (Ha-0)k st
O<ksd
= ML,

16



4

Figure 6 The network O in the proof
of Theorem 4.
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Therefore PQ = p1+p2+p3 < 3(2+1)52 . It can be verified that by choosing

where 1ln ¢ 2> 3,

In(c/e) + 2(1n1n(c/€)).‘
1n(1/8)

we will have Py < 3(2+1)62 6 €. This proves the theorem. [

6. Concluding Remarks.

We have studied efficient ways to achieve fault-tolerant ability in

some particular problems. The canonical redundancy method sometimes yields
economic networks (as for minimum-finding in both models), but not always
(it works poorly for sorting in both models). It would be of great interest
to find other general principles besides the canonical method.

Some related open problems:

M(s,é)

1. For fixed €, §, we know that c_nlogn < (n) < czn(IOgn)z.

1

(e,8)

Question: Determine the order of M (n). Similarly, we know that

clnlogn < S(E’G)(n)s czn(logn)3, and better estimates for 8(6’6)(n) are

to be found. It seems that these functions should not be O(nlogn), as
(e,8) _ . L L . .
Y (n) = O(nlogn) and minimum-finding is intuitively a much simpler
problem.
€

2. For fixed §, determine as € > 0. In particular, is our
construction optimal?

3. The interpretation of a network as a string , and the probability of
fault being the probability of a random substring not containing some

particular patterns gives rise to questions in a more general setting, which

may be of interest by themselves.
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