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Abstract.

The study of constructing reliable systems from unreliable components

goes back to the work of von Neumann, and of Moore and Shannon. The present

paper studies the use of redundancy to enhance reliability for sorting and

related networks built from unreliable comparators. Two models of fault-

tolerant networks are discussed. The first model patterns after the concept

of error-correcting codes in information theory, and the other follows the

stochastic criterion used by von Neumann and Moore-Shannon. It is shown,

for example, that an additional k(2n-3) comparators are sufficient to render

a sorting network reliable, provided that no more than k of its comparators

may be faulty.
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1. Introduction.

Consider sorting networks that are built from comparators, where each

comparator 1s a 2 input = 2 output device capable of sorting two numbers

(Figure 1). It is of interest to construct sorting networks for n inputs

using a minimum number of comparators (see Knuth [4]. The problem seems

to be difficult, and so far no networks substantially better than Batcher's

sorting networks (Batcher [1]) are known for general n. In this paper we

look into this problem in a new setting. Suppose that some of the comparators

are potentially faulty, how can we construct economic networks that still

sort properly ? We shall assume that, for a faulty comparator, the inputs

are directly output without a comparison (Figure 2).

The study of constructing reliable systems from unreliable components

goes back to the work of von Neumann [7], and Moore and Shannon [5].

Currently, the subject of fault-tolerant computing is an active area of

research (see, e.g. [6]). The present paper studies the use of redundancy

to enhance reliability for a particular problem, similar in spirit to the

work on switching networks by Moore and Shannon [5].

From the standpoint of analysis of algorithms, our models resemble

the problem of sorting with unreliable comparisons. In that direction, a

study of binary search with allowance for unreliable comparisons was done

in [2].

2. Definitions and Notations.

An n-network qo is a finite sequence of the form [4 31] [i,:3,] oo [i :3.].

where each pair [1:3], with 1<1 <j on, is called a comparator. Any input
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Figure 1. A comparator.
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Figure 2. A faulty comparator.
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vector xX < SKiaXpsee aX > e R of n real numbers 1s transformed into an
> n :

output vector y ¢ R by the network QO, as described below. Associate

{ x n n

with a comparator [1,3] the mapping from R to R defined by
eo, = < |] ! LICXysXgyeeerX 2 [1:3 X3¥ga eee sX ,

' — 1 : 3 ! = | } ! —

where xX =x) if & 4 {i,3}, and x: min tx; ,x.) , Xs max tx; x 0s

The network ao then defines a mapping from RD into rR" by successively

applying the mappings induced by [i,:3,], [i,:3,], . . . . and [i_:3_]. In
> n > ->

other words, for any x € R', the output y = xo is defined by

+0) =~
X =X ,

> 2) (2-1). .
X =x [,:3,] 5 for 1 € 2 <r ,

and Xo = 2(r)

We shall represent an n—-network O as shown in Figure 3, where from

left to right each comparator [ip:3g) is drawn as a vertical bar connecting
->

the 1 -th and the j -th lines. We input x = SX 9K, X > from the leftn

end, with line 1 carrying x. As a comparator [i,:3,] is passed, the

smaller of the two incoming numbers moves to the upper line ig, and the

larger to the lower line Ig (see Figure 4 for an example). Thus, between

the 2-th and the (#+1)-st comparators, the number carried by line i is

a (4) | > |
the 1-th component of the vector x . In particular, (xa) is the

1

number found on line 1 at the right end of aq . We call (8) the 2-th
—3

state vector of input xX relative to qo .

->

A vector X ¥ <X_,X,,...,x > 1s sorted if x, € x. € ...£€ X . A
1° 2 n —_— 1 2 n

sorting network for n elements, or an n-sorter, is an n-network a such that,

“> n =>
for any input x € R , the output vector Xo is sorted. For instance, the

network in Figure 3 1s easily seen to be a 4-sorter. For each n, let S(n)
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1st line

2nd line

3rd line

4th line

Figure 3. A 4-network a = [1:3] [2:4] [1:2] [3:4] [2:3].

] 2

10 os 7
: 8
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> +(1)_, :Figure 4. For input vector x = <7,10,2,8>, one has x ~'=<2,10,7,8>,
>(4

202) <2,8,7,10>, and output xa = il ). <2,7,8,10>.
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denote the minimum number of comparators required by any n-sorter. It is

known [4] that, for large n, we have n log,n £ S(n) « : n(log,n) .
Let us now consider the situation when "faulty comparators" may be

present. As the effect of having faulty comparators 1s equivalent to

deleting them from the network, an n-sorter may no longer be an n-sorter

if there are faulty comparators. Indeed, since the usual emphasis in the

design of sorting networks 1s to avoid redundant comparisons, 1t 1s expected

that every comparator is crucial 1n an efficient sorter. It 1s, therefore,

an interesting question whether economic sorting networks would have to

look quite different when some fault-tolerant properties are required.

We shall discuss two models, with different fault-tolerant criteria, in the

following sections. The first model (Section 3) patterns after the concept

of error-correcting codes in information theory, and the other (Section 5)

follows the criterion used in von Neumann [7] and Moore-Shannon [5] .

3. The k-Fault Model.

Let k > 0 be an integer. We are interested in constructing n-sorters

which can sort properly if no more than k of its comparators are faulty.

Formally, a k-tolerant n-sorter 1s an n-sorter q such that, if any k (or

fewer) of 1ts comparators are removed, the resulting n-network is still an

n-sorter. Let 5, (0) be the minimum number of comparators needed in any

k-tolerant n-sorter. Trivially S, (n) < (k+1)S(n), since we can obtain a

k-tolerant n-sorter by replacing every comparator in an optimal n-sorter

with k+l copies. Our main result in this model is the following theorem,

which states that any n-sorter can be made k-tolerant by appending to it a

network with O(kn) comparators. The rest of this section is devoted to



| a proof of Theorem 1.

Theorem 1. If 0 is an n-sorter, then there exists an n-network B with

k(2n-3) comparators, such that af is a k-tolerant n-sorter.?

Corollary. 5, (n) £ S(n) + k(2n-3).

We need the following "zero-one principle" [4].
>, -> n

Lemma 1. Let & be an n-network. If %£ is sorted for every x € {0,1},

then & is an n-sorter.

proof. See Knuth [4, Sec.5.3.4, Theorem z]. ©

Let 6 denote the n-—network [1:2] [2:3] ce [i:i+1]...[n-2:n-1] [n-1:n]

[n-2:n-1]...[i:i+1]... [1:2] (see Figure 5), and B = © the concatenation

of k such networks. Clearly, B consists of k(2n-3) comparators.

Proposition 1. Let £ be any network obtained from the n-network @B by

“p

deleting some k' comparators where k'< k. Then xf 1s sorted for any

>. n

x € {0.1}.

We shall prove Proposition 1 below. Theorem 1 then follows immediately

in view of Lemma 1.

Write § = a'B' where a’ and RB' are the networks resulting from

a and PB respectively when some a and b comparators have been removed,

> >

with a + b € k. In the remainder of this section, we will use x, y, etc.

n -> =>

exclusively for vectors in {0,1}. For any vector x, we use Xo to denote
-

the sorted vector that has the same number of O's as x. We first show that

the difference between xq and X 1s at most 2a 1n terms of their

> > > > > >

Hamming distance. (The Hamming distance D(x,y) of X and y, for X, Yy

n => > :
e {0,1}, is the number of components where x and y differ.) We then

T
We use 0B to denote the concatenation of a and B.
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Figure 5. The network 0 for six inputs.

show that the network R', with at least k-b 2 a "good" copies of 6,

can reduce that distance to zero.

Lemma 2. D ( x[i:]] , y[i:i]) <D(%, y ) for any comparator [i:]].

proof. It suffices to show that

D ( <x;,x > [1:2] , <y;»y > [1:2] ) < D ( Xj ,X > , <¥;¥5> ).
This 1s clearly true if the right hand side 1s either 0 or 2. Now, when

the right hand side is 1, that means one of {<x;,x >, <y,y.>) has exactly
one 0, and the other has either two or no O. In either case, we have

p (x[i:j] , y[i:j])=1, ©

Lemma 3. D ( x[i:]] , v) ¢D (Xx , v) + 2

proof. It suffices to prove that

D ( <x ,x.>[1:2] , YY) £ D ( <x; ax , YY) + 2,
which is obviously true. [J]



a

Lemma 4. Let a' be an n-network obtained from the n-sorter 0 by deleting

->

some a comparators. Then for any Xx,

> -»>

D ( xa' |, x ) € 2a .
-> ->

where x 1s the sorted version of x.
>(2) >

proof. Let x denote the 2-th state vector of x relative to QO as

>(L) >
defined in Section 2, and y the state vector of x relative to a' in

the corresponding interval. Then, according to Lemmas 2 and 3,

>(2) >(4)
D ( x , y ) § 2 X (the number of deleted comparators among

the first ££ of a)

> >
by induction on £. Therefore, D(xa', xa) € 2a, and the lemma follows

-> >

since xO = X_ a

> |]Now we consider the effect of B' on xa'. The network 6 is designed

-»> ->

so that if a vector =z differs from Z only by a transposition, 1i.e.,

7 = <0,0,. ..0,...0,1,1,...,1y0..,1,...,1> (d denotes the complement of d),
->

then © can carry out the desired swap for =z. In general, ©O applied to

—>

an arbitrary vector z which 1s not sorted reduces the Hamming distance of

7 >and 2 by at least 2.

-> > > > > >

Lemma 5. D(z6 , Zz) < D(z,z_) - 2 if D(z,z_) > 0.
+(L) >

proof. Let =z denote the state vectors of z relative to 8. suppose

>

there are m O's in the components of z, the following facts can easily be

checked.

>(2) ~> >( 4

Fact A. D(2" 2) = 2X(the number of 1's in the first m components of 7 )y.
>(2) >

Fact B. D(z 2) is non-increasing as { increases.
>(m-1

Fact C. Gm ) = 1.
>(m—-1 > >proof of Fact C. Note that zm )) = max {z,,z yess yZ }. Since D(z,z )

rd m 1°72 m S

> 0, Z1sZy50 0052 CaN not all be 0. Wd
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We now prove Lemma 5. uppo = 0. >(m-1) =
P Case (l) .uppose Z +1 0 Then (z ) +1 0

>(m-1), _
and (z ) = 1 by Fact C. The m-th comparator [mim+1] willl swap the two

+>(m)
components, and hence z has one fewer 1's in the first m components

>(m-1)
than z . The lemma then follows from Facts A and B. Case (2) uppose

boo1™ 1. Then Fact C implies that “p= 1. It is easy to see that
+(2n-m-3) -+(2n-m-3(z ) = 1 and (z )y = 0. The (2n-m-2)-th comparatorm+1

[m:m+1] then swaps these two components in 7(2n-m-3) , causing >(2n-m-2)

to have one fewer 1's in the first m components than >(2n-m-3) The

lemma again follows from Facts A and B. 0

-

Fact D. Let Y be any n—network, then D(zy,z_) < D(z,2,).
> > '

Lemma 6. Assume D(z,z_) € 2a, and let B' be a network obtained from B

by deleting no more than k-—-a comparators. Then zB" = 4 .
S

(1),(2) kproof. Write B = B 8 ...8¢ ) where each g(1) is a copy of 0.
(1) (2 k : :

Let B' =v JC ) A ) such that for some 1 < 1 < 1, <oeeo< 1,5 k ,
- g) = ally) = 0 for all 2. If we write L(3) = (D2) (3) and
(0)_ ~» a. (3) =»

w = z, then as j increases, D(w »2¢) does not increase by Fact D, and

in fact decreases by at least 2 when J = Ly and pwd) 7 ) > 0 by Lemma 5. Thus
-»> > >

p(w), 20) £ 2a - 2a = 0. As ney = zR' , this implies that zB' = Z_. a
Proposition 1 1s an immediate consequence of Lemma 4 and Lemma 6. This

completes the proof of Theorem 1.
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4, Networks Related to Sorting.

The k-fault model of the previous section extends naturally to

comparator networks for other tasks, such as merging and selection.

An (m,n)-merging network oq 1s an (m+n)-network such that, for any

X rR tisfy] X. € X,. € £ X and x 6 X < £ x theXe satisfying X; € X, £...8 X_ nel 4p See eS Xo

vectorXq 1s sorted. Let M(m,n) denote the minimum number of

comparators needed by a. An mf-network B (minimum-finding) for n 1nputs

> n > .

is an n-network such that, for any X € R , (xB), = min{x ,x,,...,x_}.
Let Y(n) denote the minimum number of comparators needed by B . It 1s

known that Y(n) = n-1 and

[1gm]
» nlg(m+l) 6 M(m,n) £ (n+m) ( [1gm]/2 + m/2 )

(Batcher [1, Sec.5.3.4], Floyd [4,5ec.5.3.4 Theorem F], Yao and Yao [ 8] ) .

The k-fault model for sorting networks can immediately be generalized to

these networks. Let M, (m,n) and Y, (n) denote the corresponding minimum

number of comparators for such networks with k-fault tolerance.

Theorem 1 implies immediately that

M (m,n) <¢ M(m,n) + k(2(mtn) = 3).

For Y (n), we have the following theorem.

Theorem 2. Y, (n) = (k+1)(n-1) for k 20.

proof. Let oo be any k-tolerant mf-network for n inputs. For each 7,

. , +
1 <3 <n, there must be at least k+1 comparators in @ of the form [*,3i].

Otherwise, when all comparators of the form (*,3] are faulty, the input

<Kp sXpsee eX > with xX, = 1 - JY will not have the correct output under @
Thus, Y, (n) > (k+l) (n-1). The reverse inequality follows from the fact that

k+1 .

a= RB , Where B = [n-1:n] [h-2:n-1]... [i:i+1]... [1:2], is a k—-tolerant

mf-network. [I

We use {*'3 to denote any comparator of the form i} where k=j.

10



5. The Stochastic-Fault Model.

In the preceding two sections, we discussed fault-tolerant networks

in a framework allowing at most k faulty comparators. We have seen that

the additional price paid for reliability varies with the function of the

network. For sorting or merging networks, only 0(kn) comparators are

needed in addition to the basic cost of nlog,n or higher; whereas for

minimum-finding, the extra cost is k times the original basic network.

For very large networks, the assumption of no more than k faulty

comparators may be too restrictive. It is reasonable to expect that some

fixed fraction, say 1074, of the basic units are faulty. A natural

extension of the previous model then leads to the following question.

How many comparators are needed to construct an n-sorter which remains

reliable if any 1074 of the comparators in 1t are faulty? Unfortunately,

reliable networks in this case do not exist when p ig large (n > 10%+1).

Indeed, we assert that if a fraction of 1/(n-1) of the comparators may

be faulty, then there does not exist any reliable n-sorter in this sense.

For any n-sorter &, let je {2,3,...0n} pe such that at most 1/(n-1)

of the comparators in a are of the form [*:3q, then 0 clearly will

not sort all inputs properly 1f all such comparators [*:3] are faulty

(cf. the proof of Theorem 2). In view of this fact, we will define a

more relaxed, stochastic model that 1s very similar to the models studied

in von Neumann [7], Moore and Shannon [5].

A Stochastic Model. TIet 0 <g,§ < 1 and n be an integer. An n-network

a 1s an (&,&)-stochastic n-sorter if the random n-network a', obtained

from O by deleting independently each comparator with any fixed probability
| -

8'< §, is an n-sorter with probability at least l-g.

11
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In an (€,0)-stochastic n-sorter, we shall refer to § as the fault

probability (of the comparators), and € as the failure probability (of the

network) . Let (8:9) be the minimum number of comparators required by

any (€,0)-stochastic n-sorter. Similarly, we can define (g,8)-stochastic

merging networks for m + n inputs, (€,0)-stochastic mf-networks for n

inputs, and the corresponding complexity M8) (mn), y(&:0) ny

A conventional method of achieving reliability 1s to replace a basic

component by several unreliable components which simulate the basic component

with high reliability [5] [7]. In our case, connecting in series m comparators,

each with § probability of fault, gives the effect of a single comparator

with fault probability §™, If a is an n—network with N comparators

(none are faulty), the network B obtained from a by replacing each

comparator with m comparators in series 1s called the canonical m-redundant

network of 0, The probability for B to be a network performing the same

mapping as 0 is at least (1- s™HN. which is greater than 1-€ for large

N if m > (log(N/e))/log(1/8).

Definition. For given €,6 and network a, the canonical m-redundant

network PB of @® with m chosen just large enough so that PB becomes an

(e,0)-stochastic network is called the canonical (&,&) stochastic network

simulating «d.

It follows from the preceding discussion that, for fixed €, 6, an

arbitrary network & with N comparators may be simulated by 1ts canonical

(e,0)~-stochastic network which is of size O0(Nlog,N). It is of interest to

study the optimality of this basic strategy for enhancing reliability. As

this method exploits redundancy in a primitive way, it is also not surprising

that more efficient constructions exist for many problems. We shall bear out

12



these points in the following results. The first result illustrates

the optimality of the canonical construction for minimum-finding.

Given n > 1 and m > 0, let m, = | (m+i-1)/(n-1)] for 1 € 1 < n.

The m.'s form a partition of m into n-1 almost equal parts in that

> m, =m and m,-m, | < 1 for all 1, J; they are also the unique set of
: 1 TL]
n-1 numbers satisfying these conditions (see 3, Sec.1.2.4, Ex.38]).

[] m., []
Define g (m) = I (1-8 1). It is easy to see that g. (m) is a

§ ,n lei d,n£1<n

non-decreasing function of m for fixed n and § < 1.

(g,6) _
Theorem 3. Let 0 <g, 6 < 1. Then Y (n) = m where m is the

smallest positive 1nteger satisfying Is J(m)> 1 - ¢.3

(g,06) _ t
Corollary. For any fixed 0 <g, §< 1, Y (n) = O(nlog,n) as n = ©,

m a. a'n=2 1 ™n-1
proof. The network [n-1in] [n-2:in-1] Cr [2:3] [1:2] n is

easily seen to be a valid mf-network with probability 9 5 (m), which isn
b

CL (g,0)
at least 1l-g by the definition of gs oe This proves that Y (n) <£m.3

To prove the reverse inequality, we observe that, in any (g,8)-stochastic

mf-network q for n inputs, we must have

L.

I (1-683) 31- ¢ (5.1)
24]

where oF is the number of comparators of the form [2:9] -
Fact E. Let k > 0 be an integer and 0 < d < 1 a real number. The

ky k,
expression (1-8 ")(1-§ 7), where ky and k, are non-negative integers

satisfying kot k, = k, 1s maximized when |k,- k, | § 1.

proof of Fact E. Otherwise, assume that the maximum is achieved at (k 5k)
with k, > k + 1.

1 9 Then

Co . T The @ notation means that there exist constants a, b> 0 such that

a(nlog,n) < (803 < b(nlog,n).

13



k k k.-1 k.+1
1 2 1 2

(1-65-68 7)> (1-6 )(1 = § ).

This implies

k -
1 k, ky 1 k,+1

§ +48 <3 + 0 ’

k ~
2 ky-l

or § (1L-68)<§ (1-¢8),

ko > —
or 5 kg 1,

which is a contradiction. [I

In Equ.(5.1) let g = % 2. . By repeated application of Fact E,
2¢jgn

Q.

the expression J (1-§ J) is maximized when | 2;- 2. < 1 for all
2<jgn ]

2 <1, ] <n. Therefore

“3
8s 2) zx om (1-67)

2g Jgn

> 1 - ¢.

This implies that ¢ 3 m. We have proved Theorem 3. [J

To prove the corollary, let t = log (1 ~ (1-¢) 1/(n-1), , m' = [t] (n-1)
and m" = ([t|-1)(n-1). It is easy to check that Is Lm") > 1-¢ and

S

8s Lm") < 1-¢ . The monotonicity of Is n then implies that m'" & y (&; ) (0) < m'.9 bi b

It is easy to check that, for fixed 0 <g, § < 1, we have t = O(logn) as

n » o This implies that m' = O(nlogn), m" = G(nlogn), and hence

(e,8y °° ) (0) = O(nlogn).

The canonical (g,8)-stochastic network may not always be the best

solution possible, as the following example shows.

Consider the 3-sorter qo = [2:3] [1:2] [2:3] , and its canonical

(&) —stochastic sorter RB = [2:3] [1:2] [2:3]". By definition, the value

of m is the smallest positive integer such that (1 = 1/27) > 1 - €.

14
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It follows that

m= [-log,(1 - (1-e)'/%)] .
For ¢ << 1, the total number of comparators in B is then

3m ~ 3(log,(1/e) + log,3) + 0(g).

We shall now show that, there exist (&,%) —stochastic 3—-sorters using only

210g, (1/¢e) + 0(1ln 1n(3/e)) comparators. That is, the canonical construc-

tion uses nearly 50% more comparators than is necessary when € +0. The result

follows from the next theorem.

| log,(1/e) + 0(1nln(3/e))
Theorem 4. s(€:8) (3) = 2 eeA
Ser Tog, (1/8)

(,68)
proof. We first compute Y (3), which according to Theorem 3 is the

smallest m satisfying

(1 -s™2ly 2 slm2ly 5 Ce

Writing m' = [m/2], we obtain
' 1

1-8" 3 (1 -¢g)?

= 1- % c+ 0(e?)y.

This leads to

m > 2m'- 2

log, (1/e)+ 0(1)
> -_—

2 2 Log, (1/6) :

As s(€:8) (3) 5 y(€:8) (gy Lo have proved that

1 + 0(1

$C.) 3) og, (1/¢e) (1)
z log, (1/3) .

To prove the reverse inequality, we construct a 3-sorter

ay = [2:3] ([1:2] [2:3])% (Figure 6). We shall prove that, for some constant c,

the network oy with 2 = (log, (1/€) + c Inln(3/e))/ og, (1/6) is an
(e,8)-stochastic 3-sorter. This then proves the theorem.

15



Writing x for [2:3 and y for [1:2 , we can denote a, by the

string Og= YXYXY.. .XY. For added clarity, we also use the subscripted

notation Ae TYo¥ 11X20 + + ¥gYy where x. and Y-. refer to the 1-th [2:3]
and [1:9 comparators; respectively. It is easy to see that, when comparators

| are deleted, the resulting network Gy fails to be a valid 3-sorter if and
+

only if ay does not contain a.substring which belongs to yx y or xy x,
: + % x + w Co ' : :

l.e., Og ey x Uxy Ux. Thus the probability Po that ay fails 1s
+

less than P1*P, Pj where

1) Gp € ¥ x with probability

p= Ik (CUHa-eF PH (5.2)
1k +1

since we must have ay = Vi Y; ++e¥; XX; ...X; where 1 $k £1,2 J +l +2 k

< 9 $1, < . ..<1.<1, ,< .,..<1 < .| ls3sk, and 0 514 L Lis 1, £4

After simplifications, Equ.(5.2) becomes

| 2 - —(k—

pp = (10) (+1)+6" 5 ( FHa-e)fTh gtleD)
| 1<k<2+1

| 4
| = (1-8) (+1)8"

| EE _. A
| 2) Gp € Xx y with probability p, =p; = (1-8) +(2+1)+8", since network oy
| is symmetric with respect to left-right reversal.

| 3) ag € x with probability

2 k 22+1-k

py = I (1-6) §77
| 0<ksy

2+1 L k 9-

= 5 P()-8)" 677
0<kg

: = § lL



k

k

Figure 6 The network Oj in the proof
of Theorem 4.
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| Therefore Py = P;*P,*P, < 3041) 8" ] It can be verified that by choosing

) [inte/e) + 2(ininte/e))] where Inc 33,
we will have Py < 3(2+1)8% 6 €. This proves the theorem. [J

6. Concluding Remarks.

We have studied efficient ways to achieve fault-tolerant ability in

some particular problems. The canonical redundancy method sometimes yields

economic networks (as for minimum-finding in both models), but not always

(1t works poorly for sorting in both models). It would be of great interest

to find other general principles besides the canonical method.

Some related open problems:

1. For fixed eg, §, we know that c,nlogn < NATED < c,n(logn)”.
Question: Determine the order of CIS Similarly, we know that

c,nlogn < s(€:8) < c,n(logn)”, and better estimates for s{5:9) (1) are
to be found. It seems that these functions should not be O(nlogn), as

y(€:8) = O(nlogn) and minimum-finding is intuitively a much simpler

problem.

2. For fixed ¢§, determine 5 (€:8) (3) as € + 0. In particular, 1s our

construction optimal?

3. The interpretation of a network as a string , and the probability of

fault being the probability of a random substring not containing some

particular patterns gives rise to questions 1n a more general setting, which

may be of interest by themselves.
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