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ABSTRACT :

We discuss in this report the numerical procedures which can be used to obtain
the optimal grid when solving by a finite element method a model boundary value
problem of elliptic type modelling the potential flow of an incompressible in-—

viscid fluid. Results of numerical experiments are presented.
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I, INTRODUCTION

Most boundary value problems of Mathematical Physics are solved by either finite

difference or finite element methods ; both methods use a discretization mesh and

for practical problems whose geometry is complicated, the grid corresponding to
the mesh shows also a high degree of complication. A natural question which arises

then is how to choose the discretization grid, for a given number of nodes, in

order to minimize some functional of the error of approximation ; it is clear that

a great deal of such functionals exist and the choice of one of them, in view of

obtaining significant results is by itself a non trivial problem.

The Optimal grid problem is a complicated problem mainly for the two following

reasons

[:] It is a nonlinear problem even if the partial differential equation modelling
the problem under consideration is linear. It means that the optimal grid is

a function of the data producing a given solution.

The exact solution is not known in general and the main difficulty in this

Optimal grid problem is to find an error functional and a methodology of
solution able to overcome this major difficulty (in view of some studies it
is of course always possible to solve a problem with a very high accuracy
using an highly refined - and therefore very costly - discretization grid,
and then consider this solution as a reference solution, playing the role

- of the exact solution in the remaining part ot the study).

In this report we shall consider as a model problem the solution of a Poisson equation
on a domain with a re-entrant corner. Such problems occur in Fluid Dynamics when

considering the potential flows of incompressible inviscid fluids. Using a finite

element approximation of this test problem we shall describe a numerical procedure

to obtain the grid (or triangulation) which minimizes the truncation error

2...1/2
e, _ luy ull’Q - (fﬂ |V (u-u) [ “dx)
where u (resp. uh) is the exact (resp. approximate) solution. Numerical experiments
will show how the mesh has to behave in the neighbourhood of the re-entrant corner

if one wishes to minimize the above truncation error.



2. FORMULATION OF A MODEL PROBLEM.

2
Let © be a bounded domain of R whose boundary 3 is denoted by I' in the following.
We suppose that I' =T ul, , with Ponrl=ﬂ@meFig. 2.1 below) i we shall suppose

that dl'> 0, where dI' is the superficial measure of T.
r _ e
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Figure 2.1

We consider on £ the Poisson problem

S -AY = £ in Q,
(2.1)
(W'Fo = 8 *

where f,go,gl are sufficiently smooth.
Let x = {xl,xz} be the generic point of RZ, we use the notation dx = dxldxz. Let

1
* introduce the (classical) space H () defined by

i@ = (4]0, 2
1

, 2 < 2@)
%
and Vo<:H](Q) defined by
v - {[¢cH (@ , $=0 on T} .

Multiplying by ¢ the first equation in (2.1) and using Green's formula we obtain

I VWeVo dx =  f¢ dx  YoeV .
Q IQ



In fact it can be proved that (2.1) has a unique solution which is also the solu-

tion of the linear variational equation

Find welﬂ(sn,w|r _ g
(o]

o ? such that .

(2.2)

f VieVd dx = J fo dx + J gl¢ dar V¢<§VO,
Q Q I

and conversely (see e.g. LIONS-MAGENES [11], NECAS [2], ODEN-REDDY [3]for such

equivalence results).

The variational equation (2.2) 1is actually equivalent to the following problem

from the Calculus of Variations

Find Ve H (), ‘plr - g,, such that
0

(2.3)
1
LI sI(9) YoeH (D, oL = 8
l"O o
where
1 2
J($) = 5-[ |Vvo|“dax - f f¢ dx - f g ¢ dl .
Q Q P]
Example : The problem below is a particular problem (2.1) with @ as shown on Fig.
and-
Ay = 0 in Q,
(2.4)
:¢|F =0, %%1T as shown on Fig. 2.2

0 I

2.

2
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Figure 2.2

The Poisson problem (2.4) can be viewed as modelling the potential flow of an

>
incompressible, inviscid fluid, in the cavity § ; the flow velocity v is given by

-
v = VY. We shall give in Sec. 6 the results of numerical experiments concerning

problem (2.4).

3. = FINITE ELEMENT APPROXIMATION OF THE MODEL PROBLEM.

3.1. Triangulation of §i. Fundamental discrete spaces.

2
For simplicity we shall suppose that £ is a bounded polygonal domain of R (as

in the example of Sec. 2). To approximate (2.1) we shall use a finite element

method. Let introduce a family (G of triangulations of £ obeying the following

h)h

properties

(1) T%l is a finite collection of triangles,

(ii) LJ T =0 (0 : closure of R),
Te tL

(iii) If T,T'et% with T # T' we only have the following possibilities

(a) TnT'=¢,
(b) T,T' have a common vertex and only one,

(c) T,T' have a common side and only one.



As usual we denote by h the maximal side length in Eh.
- 1
We define now from t% an approximation Vh of H () by

o_ .
vy o= {ople, e @, d)hITe PVYTeE )
as usual

P] = space of the polynomials in x

1% of degree =1,

To approximate VO we make the natural simplifying assumption

(3.1) The points of I' at the interface of T F] are vertices of T?h,
]

and

We define then an approximation VO of Vo by

h

VOh = {¢h|¢he Vh , ¢h = 0 on Fo} .

The two spaces Vh and Voh are finite dimensional spaces and

dim (V,) = number of vertices in t%,

dim (V) = dim (V) - number of vertices on [y, including the nodes at
oh h

the interface of I'o and Fl'

From a computational point of view it is essential to have convenient vector basis

for V, and VO

h in this direction let us define

h i

Zh = {P|PeQ, P vertex offh} .

L, = {P|PeL, B¢ It

(then dim(Vh) = Card(Zh), dim(Voh) = Card(Zoh)).

To each Pe Zh we associate a function w defined by
P

(3.2)
wp(P) = l,wP(Q) =0 VQe Zh’ Q+#P.
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Then /Bh = {wP}Pe Zh (resp. Boh _ {WP}PE Zoh ) is a basis of Vh (resp oh) and

if ¢he Vh (resp. Voh) we have the expansion

(3.3) ¢ = ¢, (P)w
h PezZ h P
h
(resp.
(3.4) ¢ = 1 ¢, (Pywp)
Pe X
oh

3.2 The approximate problem.

We suppose in this sub-section that g, is continuous, that f,g] are pilecewise
continuous and that their possible discontinuity lines or points are supported
by sides or vertices of‘fil.

We define V CVh by

gh

Ven = {Cbhld)he Vi 0, (®) = g (P) YPe T _n zh} )

To approximate (2.1) we approximate in fact the variational problem (2.2) by

Find lj)he Vgh such that

(3.5)

where fh and 8y are (for exemple) piecewise linear approximations of f and g

It can be proved (see e.g. [3], [4], [5]) that (3.5) has a unique solution,

it can be also proved (see again [3]-[5]) that under reasonable assumptions on

£, g,» 8 and the family (th)h we have

(3.6) lim ||y, -y =0,
o B2

3.7) lim |y, -p|, o = O
oo g

2 1/2.
where, for d)eH], |¢|1’Q = |V¢| dx) / .
IQ
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3.3. Formulation of the approximate problem as a linear system.

From a computational point of view it is more convenient to formulate (3.5) as a

linear system. We observe that (3.5) is clearly equivalent to

Find whe \ such that

gh
(3.8)

f th'VwP dx = J fthdx + J g]thdT Y Wp e@oh.
Q Q 1

Using the expansion

(3.9 ¥, = V@wp  + I 8 (Qu,

r
Qe Zoh Q eZhnAo

of wh’ we can express (3.8) (and equivalently (3.5)) as a linear system in the

wh(Q) ,Qe Zoh , whose matrix is symmetric and positive definite ; this system is

QeZZ ¥y (@ JQVWQ-VWde = fothdx + fr g, Vpdx - QeZznT g,(Q vaWQ.vWde ,
(3.10) oh 1 h o

for all Pe Zoh .
To solve (3.10) we can use either direct methods (Gauss, Cholesky, etc...) or

iterative (S.0.R., Conjugate Gradient with or without scaling, etc...).

From a computational point of view it is fairly easy to compute the right hand side

and the matrix coefficients of the linear system (3.10) for the following reasons

- Since Wp is piecewise linear VP, its gradient is a piecewise constant vector ;

- SlnceTfh and 8 are piecewise linear, fth and fhglh

- The support ﬁf of Vs where QP = {x|xe Q, wP(x)# 0}, consists of the union of

are piecewise quadratic.
those triangles of t% with P as one of their vertices.
From these properties the various integrals required by (3.10) have to be done

each time on a very small number of triangles and the integrand is,on each triangle,

a low degree polynomial whose integration can be easily carried out exactly.
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4. Formulation of the Grid Optimization problem.

The Grid Optimization problem will be considered for a family of triangulations
with
- the same topology,

- the same number of vertices.

Some nodes playing an important role (for example, geparation points between FO
and PI or discontinuity points of gl) are fixed. For computational purposes we
have to nﬁmber the nodes i.e. the vertices ofi%v Let Nh = Card (Zh)’ then

h .
Zh = {Pi}i=1 ; weNSenote by ai’si the two coordinates of Pi (i.e. €-= {ai,Bi})
and define 0,BeR ~ by

N N
) h _ h
o= dogdyy B =B, -

. 2N
We introduce now a subset Ef of R°'D consisting of the nodes corresponding to a
given number of nodes and, possibly, several other conditions(some nodes are

fixed, for example).

From {G,§}€ Ee we can define‘tL and therefore the approximate problem

{
,I%EV@,
(4.1)
( J th'V¢h dx = f fh¢hdx + glh¢hdF v ¢h € VOh ;
9] Q Ifl

it means that the solution of (4.1) is in fact a function of {a,B}, once f, go,g]

are given.
Following Mc NEICE-MARCAL [6] we consider the Grid Optimization problem below

‘ . 1 2
(4.2) Min -f |V (p, -v) | “dx
{g,g}eEf 2 Q h

where in (4.2), ¥ is the solution of the continuous problem and where the discrete

solution wh is a function of a,B through (4.1).

The above problem is a nonlinear, non-convex programming problem ; we shall not

discuss in this report the question of existence and uniqueness which is a non

trivial one (in fact the existence property alone is not difficult to prove,



_12_

provided that E_ is "small enough", since in that case compactness techniques

f
can usually be used).

The numerical solution of (4.2) which is a non trivial problem is considered in

Sec. b.

5. - ITERATIVE SOLUTION OF THE OPTIMIZATION PROBLEM.

In this section we shall suppose for simplicity that fh = £, 81y, = gland that
g, =0 (then Vgh = Voh). All these assumptions can be easily satisfied for the
example in Sec. 2.

5.1. Reformulation of the Grid Optimization problem.

As mentioned in Sec. 1, the fact that ¥ is not known can be a difficulty ; actually

it is not the case for‘the minimization problem (4.2). We have first

(5.1) ;—fglvwh—w)lzdx -1 jﬂlvwhlzdx - JQ T T ax + 5 IQI\'ﬂ)lzdx .

From the above assumptions on f, g, 8 and from (2.2), (4.1) we have

2
(5.2) [ VeV dx = f f, dx + J g P, dl'= J IVw | dx .
Q h Q h Fl 1™h Q h
From (5.1), (5.2) we obtain

(5.3) ;—fﬂlvwh—wlzdx --3 fﬂlvwhl fax s 4 JQIlezdx :

2
Since Iglvwl dx is independent of ﬁ%, the minimization problem (4.2) can equivalently

be written

(5.4) Min {- %—J |V¢h|2dx}
9)

(5.4) Min {—J fY, dx - f g Y. dr'y
? fa,gleg, Jo " r, 'k

where in (5.4)],(5.4)2, wh is a function of g,B through (4.1). We observe that
Y does not occur in (5.4)],(5.4)2.
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On the calculation of the derivative of the cost function.
(like steepest descent or conjugate gradient)

i.e. the

5.2.
In view of using descent methods
is of fundamental importance to have at our disposal the derivative,

it

~ o~

gradient, of the cost function with respect to {a,B}.

We just consider the cost function in (5.4)1, since the second case can be

treated in a similar way. Let define therefore

i8R,

2N
(where 4 is an open set of R containing Ef) by

‘ j(a,B8) = - H vy, | ax
T Q
(5.5)
wh function of q,B through (4.1).

We have
= 3.5y 4+ s . Lo 24x)* 8 -
5y 50+ 3 ngwh oy, dx - 5 = (J |vwh| dx) * 8o
(5.6) - - ~ R

13 2
758 <JQ |V | “dx) - 68 ;

we also have by differentiation of (4.1)

39 3
VG 3 d —— L] 0 —— L . =
IQ lPh VdDh x+ Ja ([9 th V¢hdx) 69 * 8? (JQ th V¢hdx) 6§

~

= —a— . _a_ a M
(5.7) 39 (fQ f ¢hdx) Gg + 38 ([Q f ¢hdx)o6§ + sa-( IF 8 %FD 0 ot
- ~ 1

)
¥ 1
Taking then ¢h=wh in (5.7), we obtain from (5.6), (5.7) that
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19 19 2
8 = -f"cf (JQ |Wlh| dx)*da + 738 (JQ IV‘Phl dx)+8B +
-3 (| fpamese - & (| v dx)-éB—L(f V. dT) « 80, —
3a )o 'R X)*0% = 3B g RN T Ba L &1%h o
a B 2 r,

- & (f g U, d0) 68
Fl

which implies that

3 _ 19 2.0 _ 9 _ 9
(5:8)) 3q = 7‘5"(JQ [0yl "a0 - 55 (JQ Bopd® - 55 (Jr B ¥pdx)
N ~ N T
o _ 13 Zaxy - & -3
(5.8), =3 =738 (JQ |V, | “dx) 5 (JQ Y dx) - 35 (JF 8, ¥, dx)
” N N T

9] 9]
Obtaining 5% and §E from (5.8)1,(5.8)2, once wh is known, is a painful task, but
without theoretical difficulty. In view of the numerical treatment of the example

of Sec. 2, we shall suppose that f=0,g1= const. and give more details about the

calculation of the above derivatives.

Let MI’MZ’MB be three points of R?, vertices of a triangle ; we suppose that the

triangle M]MzM3 1s a positive triangle (see Fig. 5.1) denoted by TO in the sequel.

M,

Figure 5.1

Let Mi = {aifbf} , i=1,2,3 ; if ¢ is a polynomial of degree <1 defined on 'h we
use the notation ¢i = ¢(Mi) , 1=1,2,3.
It is then quite easy to prove that

o 1 _ _ _
(5.9, 3§i_ 55??;7 {¢1(b2 b3)+¢2(b3 bl)+¢3(bl b2)} ,
) I
(5.9)2 ‘8';2 = W {d)l (a3-az)+¢2(al-33)+¢3(a2-a])}
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where m(To), which is the measure of To, is given by

2m(To) = al(bz—b3)+a2(b3-bl)+a3(b]—b2) =
(5.10)
= b](a3-a2)+b2(a]-a3)+b3(a2-al).
We obtain from (5.9)],(5.9)2
1 —
1

2 — 2
(5.11) V0| " ———= (6, MM+, MM, O4M M)
(2m(T ))

> >
where V2 = V-V, i.e. the inner product of V with itself. We have then from (5.11)"

since V¢ is constant over TO,

2 1 1 — — —= 2
(5.12) JT Vo[ dx = 7 (W (b MMy 1 G MM+ G M M)
o

Let ¢he Vh we have then from (5.12)

2 I | — _ 2
(5.13) IQ o | “ax = % Ztﬁ ey A1t P2rfar + P21P3rtiT + $3rfiefar)

i=1,2,3 are the vertices of T in such a

,i=1,2,3 .

where m(T) = measure of T and where PiT’

way that P]TPZTP3T is a positive triangle ; we set ¢h(PiT) = ¢iT

It follows then from (5.9)], (5.9)2,(5.]0), (5.13) that the function
2
{o,B} +I |V¢h| dx
ot B Q

is a rational function of the ai’Bi whose partial derivatives are easy to compute

from the above formulae. We observe also that, in the expansion (5.13)' the coor-
dinates of a given node occur only for those triangles with that node as a vertex ;
this property implies that most of the terms in the right and side of (5.13) do
not contain the corresponding ai,Bi and therefore their derivatives with respect

to these parameters wvanish.
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Since we supposed f=0 we Jjust have to consider now the calculation of 3% ( q)hdx),
d . 1T
3 ({I‘ lbhdx) ; consider, as on Figure 5.2, a part of Pl between the two-fixea nodes

(= 1 =
A(=P.)land B( Pj+r).

J*r

Figure 5.2

This edge AB is supported by a line whose equation is X, = mx]+Y ; We suppose,

as on Fig. 5.2, that 0<m<+®, We have then, Vd)héVh, and with ¢k = ¢(Pk)

(1+ 2)1/2 j+r-1
- - m —_— -
(5.14) JA% ¢, dr = ; kzj (O 7% (O ¥

from which we obtain that for k=j+l,...,j+r-1

f (1+m2)1/2
(5.15) == ( L ¢ dl) = ““2 2 (4 - )
aak 'ABh 2 k Tk+l

We can also use the Bk as independent variables (if AB is not supported by an

horizontal line).

5.3. A conjugate gradient algorithm for solving the Optimization Problem.

Usually the Grid Optimization problem can be reduced to a Non Linear Programming

problem of the following type

N
Find u€R such that
(5.16)
. < N
j(u) =j(v) yveR

. N . 1 . . . . .
where j : R° *R is a C functional. Let us describe a conjugate gradient algorithm

with scaling ; we choose a Polak-Ribiére type algorithm (see POLAK [7 1) since it
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seems to be more efficient that the Fletcher-Reevesvariant (cf. POLAK [ 7 lagain).

In the sequel S is a symmetric, positive definite matrix, the scaling matrix ;

the algorithm is defined as follows
(5.17) uCeR" given,

(5.18) g° = Vj(u®) ,

(5.19) r° = s”1g°

(o} (o}

Il
o]

(5.10) w

\ n n
then for n2 0 with u, w known

find pnem.such that

(5.21)
j (gn—pnyn) <j (u-pw) v p eR,
(5.22) pht = e WP
~ N~
n+1l ., nt+l
(5.23) g = Vitu )
(5.24) rn+1 _s —1gn+l
(§ rn+l ’rn+l % ( n+l ’ n+l LN
(5 25) Y = = s
NI (8",
n+l n+l n
(5.26) W =r C YoV

N
In (5.25)" (',. ) denotes the usual scalar product of R .

The convergence of (5.17)-(5.26) is studied in [ 1 (for S=I) where sufficient condi-
tions for the convergence are given. In the particular case of problem (4.2) i.e.

the Grid Optimization problem we have used S=I, but we have the feeling that taking
for S an operator which is the discrete analogous of a suitable differential operator

can be beneficial for the convergence ; the precise choice of such an operator is not
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clear at the moment but several alternatives based on discrete second ordre elliptic

operators are under consideration.

Concerning the one-dimensional problem (5.21) we can use a dichotomy or Fibonacci

method.

In the case of the Grid Optimization problem we have to observe that each cost

function evaluation requires the solution of a discrete elliptic problem (namely

(4.1)) which is by itself a non trivial task.

6. — NUMERICAL EXPERIMENTS.

6.1. Description of the test problem.

We consider a test problem following the example of Sec. 2. We took for £ the

domain of Fig. 6.1,

(0'0.5) gg‘= 0 (3'0.5)
=0 |1 w_
Q on
(1,0)
(0,0) W
Y _
I 0
Wy
on
(]’-'5) (39_'5)
Figure 6.1

We have also shown on Figure 6.1 the boundary conditions ; in £ we have
(6.1) Ay = 0.

The initial triangulation is shown on Fig. 6.2 and contains 500 triangles and
291 nodes. We suppose that the nodes on FO, and also the corners are fixed, but

we can move all the other nodes.

We have shown on Fig. 6.3, 6.4 the equipotential lines and the stream lines,

respectively.
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6.2. Numerical results.

We have used the conjugate gradient algorithm of Sec. 5.3 to obtain the optimal
grid ; the problem under consideration is a Non-Linear Programming problem with
562 variables. The discrete elliptic problem (4.1) we have to solve several
times at each iteration has 285 unknowns ; to solve it we have used a direct

method based on Cholesky factorization.

As mentioned before we have used S=1 ; the stationarity of the iterates is obtained
in approximately 50 iterations and we have shown on Figures 6.5, 6.6, 6.7 the

computed optimal grid and the corresponding equipotential and stream lines.

The computational time for 59 iterations is 17 minutes on the computer CII IRIS 80 ;
this time include everything (i.e. printing, plotting, etc...). It is clear that the
most demanding part is the Cholesky factorization required by each cost function
evaluation. We think that using a conjugate gradient method scaled by a constant

matrix can improve substantially the computational time.

From the optimal computed grid (shown on Fig. 6.5) we observe close to the re-
entrant corner a stretching phenomenon along the stream lines for the triangles
of ﬁ% 3y far enough of this corner the triangulation is not modified. Finally the

optimalfihbehaves at what can be expected from intuition.

7. - CONCLUSION.

We-have considered in this report a procedure for computing the optimal grid in the
finite element approximation of an elliptic test problem. The extension to more
complicated problems, involving non linearities is still an open problem ; however
following also the ideas developped in MARROCCO-PIRONNEAU [8 ] and BEGIS-GLOWINSKI

[ 9] similar techniques have proved to be very useful for solving free boundary

problems and also optimum design problems in which the unknown is for example

the domain itself. At the moment, in collaboration with Avions Marcel-Dassault/

Bréguet Aviation, we are involved in an active research problem to compute airfoil
or wing section of optimal shape for the potential flow of a compressible inviscid
fluid in the transonic range, the flow being modelled by the full potential tran-

sonic equation.
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Figure 6.7
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