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ABSTRACT :

We discuss 1n this report the numerical procedures which can be used to obtain

the optimal grid when solving by a finite element method a model boundary value

problem of elliptic type modelling the potential flow of an incompressible in-

viscid fluid. Results of numerical experiments are presented.
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I. INTRODUCTION

Most boundary value problems of Mathematical Physics are solved by either finite

difference or finite element methods ; both methods use a discretization mesh and

for practical problems whose geometry is complicated, the grid corresponding to

the mesh shows also a high degree of complication. A natural question which arises

then 1s how to choose the discretization grid, for a given number of nodes, in

order to minimize some functional of the error of approximation ; 1t 1s clear that

a great deal of such functionals exist and the choice of one of them, in view of

obtaining significant results 1s by itself a non trivial problem.

The Optimal grid problem 1s a complicated problem mainly for the two following

reasons :

[1] It is a nonlinear problem even 1f the partial differential equation modelling
the problem under consideration 1s linear. It means that the optimal grid is

a function of the data producing a given solution.

[2]rhe exact solution 1s not known 1n general and the main difficulty 1n this
Optimal grid problem 1s to find an error functional and a methodology of

solution able to overcome this major difficulty (in view of some studies it

1s of course always possible to solve a problem with a very high accuracy

using an highly refined = and therefore very costly - discretization grid,

and then consider this solution as a reference solution, playing the role

- of the exact solution in the remaining part ot the study).

In this report we shall consider as a model problem the solution of a Poisson equation

on a domain with a re-entrant corner. Such problems occur in Fluid Dynamics when

considering the potential flows of incompressible inviscid fluids. Using a finite

element approximation of this test problem we shall describe a numerical procedure

to obtain the grid (or triangulation) which minimizes the truncation error

ep _ luymul,o - ( Vu, uw) | Zax) 1/2{2

where u (resp. u ) is the exact (resp. approximate) solution. Numerical experiments
will show how the mesh has to behave 1n the neighbourhood of the re-entrant corner

1f one wishes to minimize the above truncation error.
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2. FORMULATION OF A MODEL PROBLEM.

2
Let {i be a bounded domain of R whose boundary of! is denoted by I' in the following.

We suppose that T =T_ ul, , with PnT =P (see Fig. 2.1 below) + we shall suppose
that dl’> 0, where dI' is the superficial measure of T.

I . SE

\

7 I T
~ [ T

f p

§70
Figure 2.1

We consider on { the Poisson problem

-Ayp = £ in Q,

(2.1)

= el ==

where £.8,:8 are sufficiently smooth.

Let x = {x ,x%,} be the generic point of R?, we use the notation dx = dx;dx,. Let
1

* introduce the (classical) space H (2) defined by

1 J d 2
H (© = (06, 2, 2c L°@)ox.’ 9x

1 2

1

and Vv, cH (§2) defined by

1

v= {¢p|de H (2) , $=0 on rb.

Multiplying by ¢ the first equation in (2.1) and using Green's formula we obtain

VipeVo dx = f¢ dx VoeV .
Y IQ
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In fact it can be proved that (2.1) has a unique solution which 1s also the solu-

tion of the linear variational equation

l

Find YeH (D,¥] = 8, > such that .
0)

(2.2)

| VpeVd dx= fo dx + g.¢ dT" VYoeV,,| 0

Q Y i»

and conversely (see e.g. LIONS-MAGENES [1], NECAS [2], ODEN-REDDY [3] for such

equivalence results).

The variational equation (2.2) 1s actually equivalent to the following problem

from the Calculus of Variations

l

Find $e H (D, vl; = 8,» such that
0

(2.3)
]

CVI) <I) YoeH (DD, dlp = 8
0

where

1 2

J) =5 | |Vo|"dx - | £¢ dx - g,4 dT .
(2 (2 I

Example : The problem below is a particular problem (2.1) with § as shown on Fig. 2.2

and-

Ay = 0 in Q,

(2.4)

| = 0, =| as shown on Fig. 2.2
iy on I lt
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Figure 2.2

The Poisson problem (2.4) can be viewed as modelling the potential flow of an
5

incompressible, inviscid fluid, in the cavity § ; the flow velocity Vv 1s given by
=

v = VW. We shall give in Sec. © the results of numerical experiments concerning

problem (2.4).

3. = FINITE ELEMENT APPROXIMATION OF THE MODEL PROBLEM.

3.1. Triangulation of {i. Fundamental discrete spaces.
2

- For simplicity we shall suppose that {i is a bounded polygonal domain of R (as

in the example of Sec. 2). To approximate (2.1) we shall use a finite element

method. Let introduce a family (C4 of triangulations of {I obeying the following
properties :

(1) G, is a finite collection of triangles,

(ii) U T = Q ( : closure of R),
Tet

(iii) If T,T' eG with T # T' we only have the following possibilities

(a) TnT'=0 ,

(b) T,T' have a common vertex and only one,

(c) T,T' have a common side and only one.
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As usual we denote by h the maximal side length in ¢, -
- 1

We define now from T an approximation Vo of H (2) by

@) —

Vy = {o, lo, e C@), ¢ | eP VTE} ;

as usual

P = space of the polynomials in X,,%, of degree <1.

To approximate V, we make the natural simplifying assumption

(3.1) The points of I' at the interface of L 2nd I, are vertices of C. .

We define then an approximation Von of Vv, by

Veoh = {o, [9 eV, , or = 0 on r} .

The two spaces Vy and Von are finite dimensional spaces and

dim (v,) = number of vertices in T,

dim (V .) = dim (V.) - number of vertices on I'y, including the nodes at
oh h the interface of I' and I' |

From a computational point of view it 1s essential to have convenient vector basis

for Vy and Von 7 in this direction let us define

Ly = {PlPeQ, P vertex of TJ \

2 = {Poh { [Pel , P¢ r 3

th dim(V = 1 = .(then dim( Bn) Card(Z,), dim(V_,) Card (2 ,))
To each Pe Ly we assoclate a function w defined by

P

w eV
P h'

(3.2)

wy (P) — by wp (Q) = 0 vQe 2, , Q#P.



~- 9 -

= \Y

Then 3, = twplp I (resp. B_, _ {wplp I ) is a basis of Vy (resp. oh’ and
if ¢, € Vo (resp. Vor) we have the expansion

(3.3) ¢, = } ¢,(®w,
Pe L

h

(resp.

(3.4) ¢ =} 6(Pw)
Pe X

oh

3.2 The approximate problem.

We suppose in this sub-section that g, 1s continuous, that £,g are plecewise
continuous and that thelr possible discontinuity lines or points are supported

by sides or vertices of TC. .
We define Veh © Vn by

Von = {o, lo, « Vos 0, (®) = g(P) YPe T_ nL}.

To approximate (2.1) we approximate 1n fact the variational problem (2.2) by

Find by € Veh such that
(3.5)

. — \

Ty oVey, dx = £6 dx + gp 0 df Voec V_
. 0 Q I

where fo and 8, are (for exemple) piecewise linear approximations of f and 8 -
It can be proved (see e.g. [3], [4], [51) that (3.5) has a unique solution,

it can be also proved (see again [3]1-[5]) that under reasonable assumptions on

f, g,» 8 and the family (Ty, we have

(3.6) lim [ly-v]| , = 0,
h~>0 L (2)

3.7) lim |g -y] = 0
h~>0 h LS

1 2 1/2.
where, for ¢peH , |], 5 = ( [Vo] “dx) /“.$2 IQ



—_ 10 —_

3.3. Formulation of the approximate problem as a linear system.

From a computational point of view 1t 1s more convenient to formulate (3.5) as a

linear system. We observe that (3.5) is clearly equivalent to

Find Vy € Veoh such that
(3.8)

Vi, = .by Vv, dx | £, wpdx + gy Wpd! Y Wp eB pn
$2 0 a

Using the expansion

(3.9) y= 0 Ls v, (Qw, + L i 8, (Vw,oh “ho

of bys we can express (3.8) (and equivalently (3.5)) as a linear system in the
b, (Q) , Qe Loh , whose matrix is symmetric and positive definite ; this system is

: ods Vv (Q) ROS = | pt + ! 8 pdx - 0 Lo g,(Q) RE(3.10) oh ““h"o

for all Pel .
—_— oh

To solve (3.10) we can use either direct methods (Gauss, Cholesky, etc...) or

iterative (S.0.R., Conjugate Gradient with or without scaling, etc...).

From a computational point of view 1t 1s fairly easy to compute the right hand side

and the matrix coefficients of the linear system (3.10) for the following reasons :

—- Since Wp 1s pilecewlise linear YP, its gradient is a piecewise constant vector ;

- Since’ f, and 8p, are pilecewise linear, AS and Er 81h are plecewise quadratic.
- The support Sp of Wp where 0, = {x|xe 0, wp (%) # 0}, consists of the union of

those triangles of G with P as one of their vertices.

From these properties the various integrals required by (3.10) have to be done

each time on a very small number of triangles and the integrand is,on each triangle,

a low degree polynomial whose integration can be easily carried out exactly.
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4. Formulation of the Grid Optimization problem.

The Grid Optimization problem will be considered for a family of triangulations

with

- the same topology, g

— the same number of vertices.

Some nodes playing an important role (for example, geparation points between r,
and I or discontinuity points of g,) are fixed. For computational purposes we
have to number the nodes i.e. the vertices of G,. Let N — Card (Z,), then
, ( 1h h h h”’= P. . ; . 1 1 = )

h TEER neydenote by a, 5B; the two coordinates of P, (i.e. P. {og ,B: 1)
and define 0,BeR = by

N N
h h

Q = «J. = . J. .~ tag dy > B Bio

: 2Np,
We introduce now a subset Ee of R consisting of the nodes corresponding to a
given number of nodes and, possibly, several other conditions (some nodes are

. fixed, for example).

From {a,B}e Ee we can define TC and therefore the approximate problem

Vv

| be Voy(4.1)

V ® = JUR Vo, dx | fy op dx + : 810,97 vo, eV op
£2 Y) r

. it means that the solution of (4.1) is in fact a function of {a,B}, once f, 8, 8
are given.

Following Mc NEICE-MARCAL [6] we consider the Grid Optimization problem below

. 1 2

(4.2) Min 5 | [VW9)| “dx
{a,BleE, 0

where in (4.2),Vy is the solution of the continuous problem and where the discrete

solution Vy is a function of a,B through (4.1).

The above problem 1s a nonlinear, non-convex programming problem ; we shall not

discuss 1n this report the question of existence and uniqueness which 1s a non

trivial one (in fact the existence property alone 1s not difficult to prove,
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provided that Ee is "small enough", since in that case compactness techniques
can usually be used).

The numerical solution of (4.2) which 1s a non trivial problem is considered in

Sec. J.

5. —- ITERATIVE SOLUTION OF THE OPTIMIZATION PROBLEM.

In this section we shall suppose for simplicity that to = f, Bin 8, and that

8, =0 (then Veh = Vy) All these assumptions can be easily satisfied for the
example 1n Sec. 2.

5.1. Reformulation of the Grid Optimization problem.

As mentioned in Sec. 1, the fact that { is not known can be a difficulty ; actually

it 1s not the case for'‘the minimization problem (4.2). We have first

1 2 2 2

(5.1) 4 MUN dx — ’ | |v, | dx - | VWVb dx + 5 IMp| “ax.y Y) {2 I

From the above assumptions on f£f, 8, 8 and from (2.2), (4.1) we have

2

(5.2) | VeVi, dx = fv dx + | gb, dl'= fy, | dx .
Y; Y; I {

From (5.1), (5.2) we obtain

1 2 1 2 1 2
(5.3) = | (VW, =p)| “dx = - = | |W, | “dx + = | |Vy|%dx .2 h 2 h 2

Y £2 $2

2 CL CL

since | lo dX is independent of C the minimization problem (4.2) can equivalently
be written

. 1 2

(5.4), Min {- 5 MN dx}
la,BleE, Q

or (from (5.2))

(5.4), Min (-| fb, dx - | gb, dl'} ,{a, B}eE Q Tr

where in (5.4), (5.4) ,, by is a function of a,B through (4.1). We observe that

Y does not occur in (5.4), (5.4) ,.
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5.2. On the calculation of the derivative of the cost function.

In view of using descent methods (like steepest descent or conjugate gradient) it

is of fundamental importance to have at our disposal the derivative, i.e. the

gradient, of the cost function with respect to {a,B}.

We just consider the cost function in (5.4), since the second case can be
treated in a similar way. Let define therefore

j +: 4>R,

Ny
(where § is an open set ofR containing E;) by

. 1 2

~~ 2 QO h
(5.5)

UR function of a,B through (4.1).

We have

65 = oso + gg = — | vp evsy ax - £2 (| vp | Zax)«60 -
oo ~ 0B < 0 h h 2 Ja h <~ ~ ~ y

(5.6) |

| 2

2 938 J [Vy| “dx+68
we also have by differentiation of (4.1)

d J
- Vé . d + — hd LJ a . } =| by Vo, X Ta ( Vig Vo, dx) Sa + 58 ( Vib Vo, dx) 6BQ ~ ‘8 = 0

(5.7) “5 ramnsa rd £  dx)eSB + o ( g 0d)0 m +o0. h ~ 9B h < do | "h ~
1

0
+ — .3B i 81 9pdl)=0B, Vo, eV p

~ ]

Taking then ¢,=¥, in (5.7), we obtain from (5.6), (5.7) that



- 14 -—

. 1 9 2 1 9 2

55 = 5 3 (| Im Za0nse + 35 (| (vue 08 +~ 0 Y

- 9S fi, dx) «da - 9 fp, dx) «SB - 9_ g PY, dI') «da -
oo h ~ aR h* “2 a0, 1h be
< {2 =< § ~ r,

- 2 (| gp dr)-68
JB 17h ~

hd T
1

which implies that

0] _ 1 9 2 _ 0 _ 9dG8) 37 25 ( Wop" - 5 y Bopd®) ~ 35 i 8¥pd%)
Z <Q ~ ‘8 ~ I

dj _ 1 09 2 _ 9 _ 9

= = Q ~ Y ~ IF

ning 9 and 3 5.8), (5.8 byObtaining wx; and 3g from ( 8) > ( +8) once V, is known, is a painful task, but
without theoretical difficulty. In view of the numerical treatment of the example

of Sec. 2, we shall suppose that f=0, g,= const. and give more details about the
calculation of the above derivatives.

Let MyM, My be three points of R%, vertices of a triangle ; we suppose that the
triangle M MaMa 1s a positive triangle (see Fig. 5.1) denoted by I, in the sequel.

M; M,

Figure 5.1

Let M. = tag,by} , i=1,2,3 ; if ¢ is a polynomial of degree£1 defined on 'h we
use the notation 9. = o(M,) i=1,2,3.
It 1s then quite easy to prove that

(5.9) 9 __L_ {¢, (b,-b)+d, (bb )+d,(b -b,)}
"7 Ox, 2m(T) 1°72 "37772073 IOUT N20

(5.9) x J {do (ay-a,) +0, (a, -a,) +d, (a,~a,)}
i) Ox, 2m(T) T1°7372077200 30
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where m(T ), which 1s the measure of Ts 1s given by

= — + -— — —

2m(T ) a, (b, bj) a, (bg by) +aj(b, b,)
(5.10)

= b, (az-a,)+b,(a aj) +bs(a,-a,).

We obtain from (5.9), (5.9),

2 1 —> — —> 2
(5.11) Vp] "————(¢,MM+6, MM, 1 $MM)1 7273 ¥27°371 37172

(2m(T ))
0)

>2 > > To :
where V° = VeV, i.e. the inner product of V with itself. We have then from (5.11)'"

since V¢ is constant over Tyr

(5.12) Volldx= +=(6 MM, + $MM + $MM).
} T 2 (2m(T ) ) 172773 2371 371772

o 0)

Let one Vy we have then from (5.12)

(5.13) vo | Zax = + J —(4, PP rr P yr P banP Po)”
} h : 2m(T) IT "2T° 3T + *2T 3T IT + “3T 1T 2T2 c«G

where m(T) = measure of T and where Poms 1=1,2,3 are the vertices of T in such a

way that P rPorPar is a positive triangle ; we set $0, (Pp) = dsr , 1=1,2,3 .

It follows then from (5.9), (5.9),,(5.10), (5.13) that the function

2

(8) > | [Vy| “axTT £2

1s a rational function of the a. ,B. whose partial derivatives are easy to compute
from the above formulae. We observe also that, in the expansion (5.13)' the coor-

dinates of a given node occur only for those triangles with that node as a vertex ;

this property implies that most of the terms in the right and side of (5.13) do

not contain the corresponding a. ,B. and therefore thelr derivatives with respect
to these parameters vanish.



-— 16 —_—

Since we supposed f=0 we just have to consider now the calculation of = ( b dx),J : IT

38 J. b, dx) ; consider, as on Figure 5.2, a part of I between the two-fixea nodes
A(=P.)] B(=P. ).

( 5) and B( 4p)
B=P.

j+r

P.
jtr=1

Pp.LTP.
J+l

A=P.
J

Figure 5.2

This edge AB 1s supported by a line whose equation 1s X, = mx, +Y ; we suppose,

as on Fig. 5.2, that 0<m< 4%, We have then, Yo, €V, , and with bp = OCF)

(+m) HZ j+r-15.14 =m) ao - +(5.14) i" ¢, dT > x (0 417%)(& +6)
AB k=17

from which we obtain that for k=j+!,...,j+r-l

2.1/2
3 [ (1+m 9)

(5.15) »—( ,¢ dl) = “22(¢, -¢,a > .© AB h 2 k "k+l

We can also use the By as 1ndependent variables (i1f AB 1s not supported by an
horizontal line).

5.3. Aconjugate gradient algorithm for solving the Optimization Problem.

Usually the Grid Optimization problem can be reduced to a Non Linear Programming

problem of the following type

N
Find u€R such that

(5.16)

. < = N
j(u) =3(v) yveR

N 1
where j : R >*R is a C functional. Let us describe a conjugate gradient algorithm

with scaling ; we choose a Polak-Ribiére type algorithm (see POLAK L7 1) since it
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seems to be more efficient that the Fletcher-Reevesvariant (cf. POLAK [ 7 | again).

In the sequel S 1s a symmetric, positive definite matrix, the scaling matrix ;

the algorithm 1s defined as follows

(5.17) uC eR" given,

0) ., 0
(5.18) g = Vi(u’) ,

0) -1 o
(5.19) r =S g

(5.10) wo = r°

n n

then for n2 0 with u, w known

find PER such that
(5.21)

. , Nn n . , Nn n

j(u-p w)<j(u-pw)ypceR,

+1
(5.22) Ut = Wp Wh

~ N~

n+1 . , n+l

(5.23) g =Vitu )

+1 -1 n+l
(5.24) Pog Tg

ntl n+l n ntl n+l n

(S r s RY ) (g » IL -r )
(5.25) Y = =F ,

n+l n n n n

(S r,r) (g »r)

n+l n+l n

(5.26) Ww =r } Yo+1¥ )

N

In (5.25)' (*,® ) denotes the usual scalar product ofR .

The convergence of (5.17)=(5.26) is studied in [ l (for S=1) where sufficient condi-

tions for the convergence are given. In the particular case of problem (4.2) 1.e.

the Grid Optimization problem we have used S5=I, but we have the feeling that taking

for S an operator which 1s the discrete analogous of a suitable differential operator

can be beneficial for the convergence ; the precise choice of such an operator 1s not
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clear at the moment but several alternatives based on discrete second ordre elliptic

operators are under consideration.

Concerning the one-dimensional problem (5.21) we can use a dichotomy or Fibonacci

method.

In the case of the Grid Optimization problem we have to observe that each cost

function evaluation requires the solution of a discrete elliptic problem (namely

(4.1)) which is by itself a non trivial task.

6. — NUMERICAL EXPERIMENTS.

6.1. Description of the test problem.

We consider a test problem following the example of Sec. 2. We took for { the

domain of Fig. 6.1,

0
(0'0.5) W 0 (3'0.5)

=0 I

v 0 oy = ]
£2 an

(1,0)

(0,0) 2
oY
— = 0 |
on

MW _
an

(1,-.5) (3,-.5)

Figure 6.1

We have also shown on Figure 6.1 the boundary conditions ; in {I we have

(6.1) AY = 0.

The initial triangulation is shown on Fig. 6.2 and contains 500 triangles and

291 nodes. We suppose that the nodes on yy and also the corners are fixed, but
we can move all the other nodes.

We have shown on Fig. 6.3, 6.4 the equipotential lines and the stream lines,

respectively.
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6.2. Numerical results.

We have used the conjugate gradient algorithm of Sec. 5.3 to obtain the optimal

grid ; the problem under consideration 1s a Non-Linear Programming problem with

562 variables. The discrete elliptic problem (4.1) we have to solve several

times at each iteration has 285 unknowns ; to solve it we have used a direct

method based on Cholesky factorization.

As mentioned before we have used S=1 ; the stationarity of the iterates 1s obtained

in approximately 50 iterations and we have shown on Figures 6.5, 6.6, 6.7 the

computed optimal grid and the corresponding equipotential and stream lines.

The computational time for 59 iterations is 17 minutes on the computer CII IRIS 80 ;

this time include everything (i.e. printing, plotting, etc...). It 1s clear that the

most demanding part 1s the Cholesky factorization required by each cost function

evaluation. We think that using a conjugate gradient method scaled by a constant

matrix can improve substantially the computational time.

From the optimal computed grid (shown on Fig. 6.5) we observe close to the re-

entrant corner a stretching phenomenon along the stream lines for the triangles

of Ty ; far enough of this corner the triangulation 1s not modified. Finally the

optimal G;, behaves at what can be expected from intuition.

7. = CONCLUSION.

We—have considered in this report a procedure for computing the optimal grid in the

finite element approximation of an elliptic test problem. The extension to more

complicated problems, involving non linearities is still an open problem ; however

following also the ideas developped in MARROCCO-PIRONNEAU [8 ] and BEGIS-GLOWINSKI

[ 9] similar techniques have proved to be very useful for solving free boundary

problems and also optimum design problems in which the unknown 1s for example

the domain itself. At the moment, in collaboration with Avions Marcel-Dassault/

Bréguet Aviation, we are involved in an active research problem to compute airfoil

or wing section of optimal shape for the potential flow of a compressible inviscid

fluid in the transonic range, the flow being modelled by the full potential tran-

sonic equation.
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