
55STL
COMPUTER SYSTEMS LABORATORY ER

STANFORD HECTRONICS LABORATORIES Nom7
DEPARTMENT OF ELECTRICAL ENGINEERING me?

STANFORD UNIVERSITY. STANFCRD. CA 94305 STAN-CS-79-7 14

-

PCFORT |

A Fortran-to-Pcode Translator

Fernando Castaneda

Frederick Chow
Peter Nye |
Dan Sleator |

Gio Wiederhold

TECHNICAL REPORT NO. 160

January 1979

This report was prepared as part of the documentation for the S-1 programming
system, under a subcontract from Lawrence Liver-more Laboratory to Stanford
University, Computer Science Department, Principal Investigator Professor Gio
Wiederhold, Contract No. LL L P09083403. Other Lawrence Livermore Labora-

tory as well as Advanced Research Projects Agency contracts have supported the
facilities at the Stanford Artificial Intelligence Laboratory, which was used in

the execution of this work. The S-l1 project is supported at Lawrence Livemore |
Laboratory of the University of California by the Department of the Navy via
ONR Order No. NOOO 14-8-F0023.

STAN- CS- 79-714

PCFORT

AFortran-to-Pcode Translator

Fernando Castaneda

Frederick Chow

Peter Nye
Dan Sleator

Gio Wiederhold

TECHNICAL REPORT NO. 160

January 1979

COMPUTER SYSTEMS LABORATORY

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305

This report was prepared as part of the documentation for the S-]
programming system, under a subcontract from Lawrence Livermore
Laboratory to Stanford University, Computer Science Department,
Principal Investigator Professor Gio Wiederhold, Contract No.
LLL P09083403. Other Lawrence Livermore Laboratory as well as
Advanced Research Projects Agency contracts have supported the
facilities at the Stanford Artificial Intelligence Laboratory,
which was used in the execution of this work. The S-1 project is
supported at Lawrence Livermore Laboratory of the University of
California by the Department of the Navy via ONR Order No. NOOOT14-
8-F0023.

PCFORT

A Fortran-to-Pcode Translator

Fernando Castaneda, Frederick Chow, Peter Nye, Dan Sleator,
and Gio Wiederhold

TECHNICAL REPORT NO. 160

January 1979

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305

ABSTRACT

PCFORT is a compiler for the FORTRAN language designed to fit as a building

block into a PASCAL oriented environment. It forms part of the programming sys-

tems being developed for the S-1 multiprocessor. It is written in PASCAL, and

generates P-code, an intermediate language used by transportable PASCAL compilers

to represent the program in a simple form. P-code 1s either compiled or inter-

preted depending upon the objectives of the programming system.

A PASCAL written FORTRAN compiler provides a bridge between the FORTRAN

and PASCAL communities. The implementation allows PASCAL and FORTRAN generated

code to be combined into one program. The FORTRAN language supported here is

FORTRAN to the full 1966 standard, extended with those features commonly ex-

] pected by available large scientific programs.

KEY WORDS: FORTRAN, S-1, PASCAL, P-code, translator, compiler

TABLE OF CONTENTS

Section Page

1. Introduction 2

1.1 Objectives and Constraints 2
1.2 Conclusion 3

2. User's Guide 4

2.1 Statements 4

2.2 Program Format °
2.3 Data Types and Constants 6

2.3.1 Data Types 6
| 2.3.2 Constants 7
2.4 Arrays and Storage Management /
2.5 Initializing Variables 8

2.5.1 General initialization rules 9

2.6.2 Initialization with character strings 9
2.5.2.1 Examples 10

2.6 Subprograms 11
2.7 User Options: the SET statement 11
2.8 Input/Output 12

2.8.1 File handling 12
2.8.2 The READ and WRITE statements 12

2.8.3 The PRINT statement 13

2.9 Miscellaneous 14

3. Overall Organization 16
3.1 Structural Scheme 16

3.2 Error Handling 16

4. Lexer 17

4.1 Summary 17
4.2 Lexeme types 18
4.3 Reading in a statement 18
4.4 Scanning the statement 19

6. Statement Classifier 21

6. Main block 22

6.1 Main procedure 22
6.2 Procedure Block 23

7. Symbol Tables 24
7.1 The structure of the tables 24

7.2 The associated routines 24

7.3 The main symbol table 25
7.4 The label number table 26

7.5 The common table 27

11

TABLE OF CONTENTS

Section Page

7.6 The external table 28
7.7 The standard function table 29

8. Processing of Declarations 30
8.1 Type-specific Declarations 30
8.2 Dimension Declaration 31

8.3 implicit Declaration 31
8.4 Common Declaration 31

8.5 Equivalence Declaration 32
8.6 External Declaration 33
8.7 The DATA Statement 33

9. Initialization of Variables 36

9.1 Procedure FILL ADDRESS INITIALIST 36
9.2 Procedure VARINITIALIZATION 36

10. Storage Allocation Structure 38
10.1 The problem 38
11.1 Partial Solution 38
1 1.2 PASCAL representation 40
11.3 The CMN Instruction 41

12. Storage Allocation pps12.1 Preprocessing equivalence groups 3
12.2 Allocating space for common areas 43
12.3 Allocating space for non-common variables 43

13. P-Code generating routines 44

14. Temporary storage management 46

16. Loading and storing variables 2
. 15.1 The procedures 416.2 Example of indirect load and store 8

16. Expression evaluation 49
16.1 Syntax 49

. 16.2 Processing identifiers 49
16.3 Example 60

17. Complex numbers 61

17.1 The complex stack 2
1 7.2 Putting complex numbers on top of CSTACK
17.3 Operations on complex numbers 52
17.4 Addition of two complex numbers 62

|i

TABLE OF CONTENTS

Section Page

17.5 Example of complex addition expression 53
17.6 Exponentiation 53
17.7 Example of complex exponentiation 65

18. The assignment statement 56

19. Subroutine and Function Statements S7

19.1 Initialization of a Segment Block S57
19.2 Subroutine Statement 58
19.3 Function Statement 58
19.4 Code Generation 58

19.6 Example 59

20. Subroutine and Function Calls 60
20.1 Function Call 60

20.2 Subroutine Call 61

20.3 Example of a function call 61
20.4 Standard Function Calls 61

21. Statement Functions 63

22. Do Loop 64
22.1 Do Loop Initialization 64
22.2 Do Loop Termination 65
22.3 DO loop example 65

23. GOTO statements and statement labels 66
23.1 unconditional GOTO: 66

23.2 computed GOTO: 66
23.3 assigned GOTO: 67

24. The arithmetic IF and logical IF Statements 63
: 24.1 logical IF 68

24.2 arithmetic IF 68

25. The PRINT statement 70

25.1 Example 71

26. FORMAT Statement Processing 72
26.1 The FORMAT Statement 72
26.2 Initialization of Formats 72

27. Read and Write Statements 74
27.1 Run-time 1/0 routines 74

27.1 .1 Initialzation of 1/0 routines 74

27.1.2 Initialization of single I/O statement 74
2 7.1.3 Data transmission 74

iv

TABLE OF CONTENTS

Section Page

27.1.4 Termination o>
27.1.5 Rewind rs

2 7.2 Compiler Routines re
27.3 Code Generated

28. The FORTRAN run-time package hi
28.1 Structure of the 1/0 package 29
28.2 Processing the FORMAT string 30
28.3 I/O management 80
28.4 Internal-external correspondence of data values 81
28.5 Output conversions of data values 82
28.6 Input conversion of data values

28. References 84

30. Appendix: Notes on running PCFORT 85

ACKNOWLEDGEMENT:

We wish to acknowledge crucial support for this work which has been received from

the Department of the Navy via Office of Naval Research Order Numbers NOOO1 4-76-
F-0023, NOOO1 4-77-F-0023, and NO0OO14-78-F-0023 to the University of California
Lawrence Livermore Laboratory (which is operated for the U. S. Department of

Energy under Contract No, W-7405-Eng-48), from the Computations Group of the
Stanford Linear Accelerator Center (supported by the U. S. Department of Energy

under Contract No. EY-76-C-03-0516), and from the Stanford Artificial Intelligence
Laboratory (which receives support from the Defense Advanced Research Projects

Agency and the National Science Foundation).

We also would like to acknowlege the invaluable assistance of Erlk Gilbert, Curt

Widdoes, and David Fuchs.

Vi

1. Introduction

The FORTRAN compiler described in this document, PCFORT, was written specifically

to serve in a PASCAL environment [JeW78], using P-Code as an intermediate pseudo

machine [NAJ76]. The need for implementationof FORTRAN these days is due to the great
volume of existing FORTRAN programs, rather than to a desire to have this language
available to develop new programs. We have hence implemented the full, but traditional
FORTRAN standard [ANS64,ANS66], rather than the recently adopted augmented FORTRAN
standard [ANS76]. Ail aspects of FORTRAN which are commonly used in large scientific
programs are available, including such features as SUBROUTINES, iabelled COMMON, and

COMPLEX arithmetic. in addition, a few common extensions, such as Integers of different
lengths and assignment of strings to variables, have been added.

7.7 Objectives and Constraints

The foremost objective in the design of this compiler is the generation of correct
code. Effects of this objective are a clean approach to the design of the compiler, the

use of PASCAL as the implementation language, and the use of a simple one-pass compiling

technique. The one-pass approach has led to two additional constraints on the source
language: variable declarations, if given, must precede all executable statements within
each program unit, and keywords must be separated from variable identifiers by a blank.

These constraints are commonly followed by programmers, but are not part of the standard.

) A pass over FORTRAN source code with a text editor can easily correct failures to obey
that constraint, since these changes do not affect the semantics of FORTRAN programs in

any way. We feel of course that such constraints are a reasonable part of any

programming environment we wish to support. PCFORT does not depend on reserved words

in its method to recognize keywords and is hence extensible to additional statement

types. Candidates for additions are several file manipulation statements, now used by

existing compilers and defined in ANS76, and other features to support real-time

operations and aspects of parallel processing.

The structure of the compiler is derived from a FORTRAN compiler, written ‘in
FORTRAN, which was used for student programming from 1963 to 1967 at UC Berkeley

($tudent) on an IBM 7094 system. A derivative of that compiler is the PL/ACME compiler
[BRW68], a compiler for a subset of PL/1, also written in FORTRAN, with strong support for
on-line laboratory operations. Writing the new compiler in PASCAL has allowed formalization
of modular concepts used in the earlier compiler [WiB70]. The availability of recursion has
caused us to switch to the use of recursive descent as the method for compiling arithmetic

instructions, a method which copes well with some of the problems of FORTRAN syntax.

The compiler, while attempting to generate good P-Code, does no explicit
optimization of generated code. Recognition of common subexpression, for instance, will

require at least an additional pass in a compiler, Current research in the PASCAL/P-Code

project at UCSD may lead to such an optimizer operating on P-Code. The compiler is also
not aware of the register structure in the underlying machine. It is the function of a P-
Code compiler (e.g., SOPA[wag78]) or a P-Code interpreter to carry out the requested P-
machine actions in a manner which utilizes the underlying hardware effectively.

The P-Code generated is a direct derivative from the original work of associates of

N. Wirth at the ETH [NAJ75], and documented by us in an S-lI project documentation note
[9iWw77]. In our case the P-Code is compiled into machine-code for the S-I processor

1.1 Introduction 3

[FiZ78], a very high speed machine with a 36 bit word architecture, which also supports
72-bit double word, 18-bit half word, and 9-bit quarter word or byte operations. We

hence expect 4 bytes per word; that is 360-style alphabetic variables. This aspect does
not affect the PCFORT compiler Itself, but is of major concern when transporting FORTRAN

application programs, which manipulate characters, between computers, since FORTRAN
standards has ignored the Issue of character-to-.word relationships.

The associated run-time package is of course sensitive to the machine architecture.

The dependencies are easy to manage however since this package is written In PASCAL.

The P-Code generated by our PASCAL compiler is combined with the P-Code from PCFORT
prior to translation to machine code. The run-time package Is hence easily changed or

augmented by more PASCAL written routines. This approach also makes available to

PASCAL programs the FORMAT conversion routines Implemented within the FORTRAN run-
time package.

The two components which make up PCFORT, the compiler and the run-time package,
are of course constrained due to the facilities provided by the PASCAL P-Code

environment. The most serious of these is no doubt the unavailability of direct access to

files. We plan to extend our system with direct files supporting variable length records,

and at that time both FORTRAN and PASCAL will be augmented to support these features.

Another aspect of the P-code environment is that it does not provide well for

separate compilation of routines. The stack orientation of the P-Code machine further
inhibits external procedures. PCFORT will hence accept a complete set of program units

~ (the main program, any BLOCK DATA program, all SUBROUTINEs and FUNCTIONS together)

and generate a single block of executable P-Code. After translation to S-I machine code

the resulting relocatable instructions can be combined with other program units through the

use of a linking loader [kew78].

1.2 Conclusion

The PCFORT FORTRAN compiler is a building block within a PASCAL and P-Code

environment, which can take care of existing needs for the continued use of FORTRAN

coded algortthms. By bringing FORTRAN into this environment, a dichotomy of programming

. approaches can be avoided, and a more consistent approach to computing can result.

The next section specifies the FORTRAN source statements recognized by PCFORT,

and specifies in detail any differences with the standard. The remainder of this document

describes the Implementation in sufficient detail to serve ongoing maintenance and
extension needs.

2. User's Guide

This section describes the limitations and extensions of PCFORT FORTRAN in

comparison with standard FORTRAN compilers, and especially in comparision with the

FORTRAN ‘66 Standard [ANS66]. Most of the limitations are expected to be temporary.
The background for the limitations is given later in the section.

2.1 Statements

The following FORTRAN statement types have been implemented:

Declaration statements:

DIMENSION

COMMON

EQU | VALENCE
IMPLICIT

EXTERNAL

LOG [CAL
INTEGER

COMPLEX

REAL

DOUBLE PRECISION

DATA

Executable statements:

The assignment statement
ASS| GN

IF (logical and arithmetic)
GOTO (unconditional, computed, and assigned)
CALL

RETURN

PRINT

STOP

DO

READ

WRITE

REWIND

Other statements:

The statement function declaration

FORMAT

FUNCTION

SUBROUTINE

BLOCK DATA

SET

CONTINUE

END

2.1 User's Guide

Not implemented:

END FILE

BACKSPACGCE

PAUSE

ENTRY

2.2 Program Format

Some restrictions on program FORMAT are imposed by PCFORT:

Source text format:

Identifiers, including * keywords, must be separated by delimiters. For example,
"DO30I1=1,3" is illegal; it should be “DO 30 1=1,3". Similarly, "COMMONA,B" should be
“COMMON A,B". Blanks are not allowed within identifiers, keywords and real constants.

Blanks within dotted keywords, however, are allowed (e.g. ". TR U E.").

Single quotes within a string can only appear in Hollerith strings (e.g., SHDON'T). If
two quotes appear in sequence, the string is considered as two strings when scanned by

the lexer.(e.g.'DON"T' is divided in strings ‘DON’ and 'T').

Blank lines are allowed, A line cannot contain more than one statement.

Position of declaration statements:

All declaration statements, including DATA statements, must appear before the first
executable statement in a program unit. Statement functions must appear after the

declarative statements and before the first executable statement. The only restrictioh
regarding the order among the declaration statements is that the type and dimension

declaration of a variable must precede its initialization specification.

) FORMAT statements may appear either with the declarative or the executable
statements.

Variable names:

FORTRAN keywords and standard and intrinsic function names can be used as

variable names, except the keyword FORMAT, Also, the name of a common block can be
the same as a variable name. However, the same name cannot be used in a single program

unit as both a variable name and a standard, intrinsic, or user-defined subprogram name. If

a name Is longer than 6 characters, the extra characters are ignored and a warning is
given.

2.2 User's Guide

FORMAT specifications:

Commas are not mandatory in FORMAT specifications if they cause no ambiguity. For
example,

(X3XX' ONE’ X/X2 (4HFOURF8.,516))

and (X,3X,X,’ONE’,X,/,X,2(4HFOUR,F8.5,16))

are equivalent.

Statement labels:

Only executable statements and FORMAT statements can be assigned labels.

2.3 Data Types and Constants

2.3.1 Data Types

Variables and functions may be of type INTEGER, REAL, COMPLEX, or LOGICAL. The

usual naming conventions are used to determine if a variable or function is of type integer

or real, but they may also be explicitly declared. The naming conventions may also
change through the use of an IMPLICIT statment.

The following precisions are possible:

INTEGER and LOGICAL: quarter word, half word, single word, double word
default: single word

REAL: single word, doub e word: half word not yet implemented
default: single word

COMPLEX: two single words, two double words
default: two single words

Precisions are specified in quarter words, as in IBM FORTRAN:

| NTEGER%1 AAA

LOG | CAL*8 BBB

COMPLEX CCC

COMPLEXx16 FUNCTION DOD
REAL%8 EEE or DOUBLE PRECISION EEE

Automatic conversion occurs between and among any precision of integer and any

precision of real, (Reals are converted to integers by truncation.) Any other conversions
must be done explicitly using standard conversion functions,

integer variables used as the control variable of a DO statement, for storing a label

or for storing a device number for use ina READ, WRITE or REWIND statement must be of

single precision.

2.3.1 User's Guide

Exponentiation of a complex by an integer is allowed.

2.3.2 Constants

Complex constants consist of a left parenthesis, a real expression, a comma, another

real expresssion, and a right parenthesis. Thus (.3*X,SIN(Y)) is a legal complex constant.

The upper limits allowed for integers are 255 for quarter-word integers, 13107 1 for

half-word integers, 34369738367 for full-word integers and 73786976294838206463

for double-word integers. The lower limits are 1 less then the negatives of these numbers.

The upper and lower limits for reals are 1.701411843E+38 and 1.469368010E-39
respectively, for all precisions.

Currently, double precision constants are not recognized by our P-Code. For the time

being, they are converted to single precision by PCFORT.

2.4 Arrays and Storage Management

Array subscripts:

Array subscripts may consist of any legal integer expression.

Bound checking for array subscripts, if turned on, is done separately for the

subscript of each dimension.

Array boundary checking at compile time is only done for arrays that appear in

COMMON and EQUIVALENCE declarations, and for the ones that are initialized. These arrays
cannot have adjustable dimensions.

The specification of array elements in DATA and EQUIVALENCE statements with only

one dimension for arrays of several dimensions is accepted. (e.g. For an array dimensioned

as A(3,3), the array element A(2,3) may be specified as A(6)).

Arrays with adjustable dimension:

No restriction is made on the value of an actual argument that represents the

dimension of an array in the argument list of a subprogram. l.e. no check is made that the

value is within the declared bound of the actual array parameter. When an array subscript

is beyond the range of the actual array, no assumption should be made as to the
referenced value.

In the subprogram, bound checking (if turned on) for an array with adjustable

dimension is made against the current value of the argument used in the dimension

declaration. Change to the value of this dummy argument is allowed in the subprogram. If

the actual argument is an uninitialized Integer variable, no assumption should be made. as to

the declared bound in the subprogram.

2.4 User's Guide

COMMON declarations:

There are two special areas which are used for the common variables, one is used
for the blank common area and the other is for the rest of the common areas. The blank

common may be of any different length in each program unit, as specified In[ANS76]. The
COMMON declaration of any labeled common may not require a storage area larger than the

amount specified by the first declaration of the common, as in the following example:

wrong: right:

COMMON /X/A COMMON /X/ A, DUMMY
DIMENSION A (20) DIMENSION A (28), DUMMY (18)
END END

SUBROUTINE R SUBROUTINE R

COMMON /X/B COMMON /X/B

DIMENSION B (38) DIMENSION 8B (39)
END END

One way to go around such a problem is to use the switch that fixes a minimum size
for the common areas. With it, if the area required in the first declaration is smaller than

the one declared the second time, the switch should be set to the space needed for the

larger one.

Storage allocation:

No assumptions should be made about the location of one variable or array in relation
to another outside a common area.

Additional quarter words are inserted as necessary to align half word on half-word

boundaries, single word in single-word boundaries and double words on double-word

boundaries. Thus, a quarter word variable followed by a single word variable in a common

area would require two full words of storage.

2.5 Initializing Variables

Variables can be initialized in both DATA and type declaration statements. The type
. declaration statement with initialization and DATA statement are formed as follows:

Typexs axsl (kl) /x1/,bxs2(k2)/x2/, . . .,z2%s3(k3)/x3/

DATA a(kl),... ,d{k4)/x1/,e(kh),. . .,h(k8)/x2/,. . .

where type is INTEGER, REAL, LOGICAL, DOUBLE PRECISION or COMPLEX;

*s,*s1 ,*s2,... are optional, each s represents one of the permissible length specifications |
for its associated type;

a,b,...,2 are variable or array names;

2.6 User's Guide 0

(k1),(k2), ... give dimension information for arrays in declaration statements and subscript
information for array elements in DATA statements. In a declaration statement, this always

specifies the entire array, If absent for an array in a DATA statement, short form
specification for the entire array is implied;

xl, x2, . . . are constants or lists of constants. /x1/,/x2/,/x3/ . . . are optional in a
declarative statement, and are used to specify initial values for single variables and array

names. In a DATA statements, they are not optional, and specify initial values for the

preceding list of variables, array elements or array names;

2.5.1 General initialization rules

1. The type of initialization is determined by the type of the constant specified, and
not by the type of the variable being initialized. Only the size of the variable affects the
initialization. In initialization with boolean constants, however, only the first quarter word
of the location is tempered with,

2. The initialization of arrays is done in storage order. In a declarative statement,

each list of constants must correspond in number to the preceding variable or array. In a

DATA statement, the correspondence is to the total number of variables and array

elements specified in the preceding list. If extra constants are given, they are Ignored. If

not enough constants are given, the extra variables or array elements are not initialized.

In both cases, warnings are given. A complex variable is taken as two real variables, and

they correspond to two initialization constants. The enclosing parentheses are not allowed.

3. A replication factor can be used to specify how many times the constant following
the asterisk is to be repeated in the initializing process. The syntax is:

{rep>*<vabh

where <rep> is the replication factor and <val> is the constant value (e.g. 6*3.2 means
that the constant value 3.2 is going to be used 6 times).

4. Function names or subprogram parameters cannot be Initialized.

6. Arrays must be dimensioned before initialization in a data statement or in a type

declaration statement. Also, any type declaration for a variable in a data statement must

appear before the data statement.

6. If the initialization of a variable or location is specified more than once, only the
last initialization is effective.

2.6.2 Initialization with character strings

The initialization of variables with character strings, in data statements or type
declaration statements, follows these rules:

1. One character will be stored per quarter word. A full word has hence the capacity
to hold four characters, half and double words hold 2 and 8 characters respectively. An

array has a capacity which is the product of its size and the capacity of its elements.

2.62 User's Guide 10

2. If the string is larger than the capacity of the variable being initialized, only the

initial characters of the string are used and the rest are discarded.

3. If the number of characters in the string Is smaller than the capacity of the

variable then the string Is padded with NULL (binary zeroes).

4. Character strings may be preceded by a replication factor, followed by an

asterisk. The replication factor increases the number of string elements, not their length.

6. An array, or the two halves of a complex variable, may be filled with successive

characters from the string . If an element is incomplete it will be filled with NULL. If
successive elements are not reached they remain uninitialized.

Characters can also be assigned to variables using an assignment statement.

2.6.2.1 Examples

The following example:

INTEGER ™M/*ABCD’/, A(2)/'ABCDEFGH'/
DIMENSION C(3),0(3),E(8),F(3)
DATA 0(2),0(3),C/’AB', CD’, 'ABCDEFGHI '/
DATA E/’ONEISMORE’, * TWO', ' THREE', 'FOUR','FIVE', SIX’, SEVEN’ /
DATA F/3%’ MOM’ /

will cause the following initialization:

VARIABLE VALUE

M ' ABCD’

A(l) 'ABCD'’

A(2) 'EFGH'

D(1) unintial ized
D(2) ‘AB’

D (3) ‘CO’
C(1) 'ABCD'

C (2) 'EFGH'

C (3) te

E(1) "ONET’

E (2) "TWO! sbefore this, E(Z2) contained 'SMORE'but was
overwritten with the next element in the list

E (3) 'THRE'

E (4) 'FOUR'

E (5) 'FIVE'

E (6) 'SIX'
E(7) 'SEVE'

E (8) "N’ sno more elements in | ist, thus it is not
F(1) "MOM" overwritten
F (2) ‘MOM’

F (3) ‘MOM’

Characters can also be assigned to variables using an assignment statement.

2.6 User's Guide 11

2.6 Subprograms

The restrictions with regard to subprograms are:

Functions:

Function parameters (i.e. CALL TRIG (SIN,X,Y)) are currently not allowed, since the
PASCAL P-code combination we are using does not permit them.

A statement function must have at least one argument. A function with no

parameters must be declared EXTERNAL in each program unit in which it is referenced.
Otherwise, the function name is taken as a variable name.

Parameters to Subprograms:

All parameters are passed by reference, including array elements used as arguments.

Thus their values can be altered as the result of a subprogram call. Exceptions to this are
constants and expressions as actual parameters.

External Subprograms:

Currently, all program units used in a program are compiled at the same time as the
. main program; separately compiled subroutines or functions have not yet been

implemented.

ENTRY statement:

The ENTRY statement, available in many compilers, although not part of the
standards, has not been Implemented. The way to implement it in a PASCAL environment is
not yet established.

© 2.7 User Options; the SET statement

User options are indicated by setting various flags. Currently there are two: BCHK
turns on array boundary checking, and CSIZ specifies a minimum size for the common area
following the SET statement. A flag may be set to T, F or an integer value, For example:

SET BCHK=T,CS1Z=1200

SET statements may appear anywhere in a program. The defaults are F for BCHK,
and 0 for CSIZ.

CSIZ only applies to the common areas that appear for the first time in the next
COMMON statement following the occurence of the option. It is reset to its default value
at the end of each COMMON statement and at the beginning of each program unit.

2.8 User's Guide 12

2.8 Input/Output

2.8.1 File handling

PCFORT uses PASCAL run-time routines for input and output on the character level.

PASCAL treats all I/O as being to files of characters. FORTRAN device numbers 0
through 25 are given internal representations of FILEO, FILE2, FILES, FILE26. The

mapping between these pseudo-files and actual devices or disk files is done at runtime,

usually by a direct prompt at the terminal. Example:

FILE1? DATAT1

FILE2? OUT1

FILE3? TTY:

A file is opened immediately after the prompt is answered. This may occur at the

beginning of the program or at the first appearence of a READ or WRITE statement using

the device number of the file, depending on the PASCAL run-time used. (The latter is the

case for the current S-l run-time [gwa78]). Files are always closed only at the end of
the program. --

Random access within files is not allowed; files must be written to or read from

starting at the beginning of the file. The first time in a program a file is written to, Its

previous contents are destroyed, and the file pointer is reset to point to the beginning of

the file. A file may be both read from and written to in the same program, but each

successive change of mode causes the file pointer to be reset to point to the beginning of

the file. The file pointer may be explicitly reset to point to the beginning of the file with

the FORTRAN statement REWIND. In the current run-time, a change of mode or a REWIND

will also cause another prompt for the name of the file.

The BACKSPACE and END FILE statements are not implemented.

2.8.2 The READ and WRITE statements

- The standard READ, WRITE and FORMAT statements use FORTRAN run-time routines.

These routines are currently stored in P-Code form and copied to the end of the main P-
Code file when necessary, and have to be compiled together into the machine code in a

program that uses these statements.

Both formatted and unformatted reads and writes are handled. Unformatted write

uses fields of fixed widths according to the types of the variables being output. In

unformatted input, the input file is always scanned until the next non-blank character in

the input file is found. Blanks are taken delimiters, and they do not have to be present if
there is no ambiguity. Comma should not be used as delimiters. Each unformatted READ or
WRITE statement starts on the next line.

The maximum length of an input or output line is 256 characters. Any output to
beyond the 256th character will automatically cause an extra new line to be written. An

input line longer than 256 characters is processed as a single line but anything beyond the

256th character is treated as blanks, If an input line is shorter than that specified in the
format specification, an error message is given.

-]

2.8.2 User's Guide 13

Any internally representable character can be output to an A-formatted field. It Is to

be warned that the writing of control characters like the carriage-return or line-feed to an

A-formatted field may cause the form of the output line to depart from that specified in the

format specification.

The execution error messages of the READ and WRITE statements go to file OUTPUT.

2.8.3 The PRINT statement

The READ, WRITE, and FORMAT statements use Fortran run-time routines which are

currently stored in P-code form and copied to the end of the main P-code file when

necessary. This adds substantially to the time required to translate the P-code file. This

may be bypassed by using the PRINT statement, which makes use of PASCAL run-time

routines, and acts somewhat like a Pascal WRITELN statement. It prints integers, reals,
booleans, string constants, or complex numbers, or any legal expressions containing
these items.

Normally, a carriage-return line-feed will be printed at the end of the line; this may
be suppressed by a&ding a semicolon.

A field width may be added to any item. This indicates the maximum length of the
item to be printed. Enough blanks will be added to make the item always have that length.

The default field widths are 14 for integers and reals, and the actual length of the string,
. for strings.

Output always goes to the standard file OUTPUT unless a file number is added,
preceded by a colon ("PRINT:2"). In this case, the file must be first opened using an
OPEN statement ("OPEN2").

Here are some examples:

PRINT ‘THE ANSWER IS’, X%2
result: THE ANSWER IS 4.0

] PRINT ‘THE ANSWER IS’:
PRINT Xx2

result: THE ANSWER IS 4.0

PRINT ‘THE ANSWER 1S5':208,Xx2:18
result: THE ANSWER IS 4.9

COMPLEX*8 X

PRINT ‘THE ANSWER IS’, Xx(2.,8.):180
result: THE ANSWER IS 2.0 0.9

OPEN 2

PRINT:2 ‘THE ANSWER IS’, X%2
result: THE ANSWER IS 4.0

2.9 User's Guide 14

2.9 Miscellaneous

DO statement:

A DO statement must have an integer or integer variable for its upper bound and step
size. Hence, "DO 30 I=1,J+1" is illegal. An integer expression may be used as the lower

bound. The control variable may not be an array element. The default step size is 1.

Negative step sizes are allowed.

In the case that the upper bound or step size is an integer variable, if a change is

made to the value of the variable during execution of the loop, the upper bound or step

size is changed accordingly.

Jumping into the range of a DO loop (including the terminal statement) from outside

the DO range Is allowed. The control variable assumes the value it has at the time of the
jump. If the control variable is not initialized, no assumption should be made as to the
value of the variable.

A DO loop cannot be closed by a FORMAT statement.

Use of integer variables as label variables:

No distinction is made between integer variables and label variables. l.e. the usage

of an integer variable is not restricted with regard to whether it got its value by regular

integer assignments or by the ASSIGN statement for statement labels. An array element
can be used for the variable.

15

3. Overall Organization

3.1 Structural Scheme

PCFORT's processing of an input user program is driven by its main procedure and

procedure BLOCK, which invoke the various modules either directly or indirectly. The

organization of PCFORT is’ based on these modules. It is structured according to the
relationships among the various modules, Despite its length (about 9000 lines), PCFORT

easily presents itself once its structure is revealed.

Basically, when the compiler processes a given program statement, It either

generates code from it or remembers the information given in the text by building some

internal structure, which invariably is a linked list of a particular type, A module in PCFORT

can guarantee its own existence only if it satisfies at least one of the following
conditions:

(1)it scans and processes a type of statement In the user program.

(2) It scans and processes a specific construct which occurs in different types of
statements. These are:

a) the arithmetic expression processor,

b) the procedures for loading and storing variables,

c) the procedure to process function calls,

d) the procedures to process initialization specifications.

(3) It processes an Internal structure, and possibly generates code from it. These are:

a) the procedure to close either a DO loop or a loop in an I/O statement,

b) the storage allocation procedure,

c) the variable initialization code-generating procedure.

(4) It manages an internal table:

a) the symbol table routines,

b) the standard function table routines,

c) the temporary storage management routines.

(6) It is a pre-processing procedure for each input statement:

a) the Lexer,

b) the statement classifier,

3.1 Overall Organization 16

Apart from these are the error and warning routines, the code-generating routines

and a number of general utility procedures. Some of these utilities scan and process

specific constructs: a) procedure GETHTYPE - processes an explicit type specification.

E.g. “DOUBLE PRECISION”. b) procedure GETTYPE=~ processes the '*' modification of a
type specification. E.g. "* 4”. c¢) procedure GETCOORDINATE - processes the subscript
specification of an array element in a DATA. or EQUIVALENCE statement. E.g. “A(1,3)".d)
procedure ISARRAY- processes the dimension specification In the declaration of an array,

which occurs in the DIMENSION, COMMON and type declaration statements. E.g."B(l,4)".

3.2 Error Handling

PCFORT always checks the validity of a program construct before It operates on it.
In this way, It safeguards itself from any execution error during compilation. It
distinguishes between two kinds of errors:

(1) Errors discovered while scanning a program statement: PCFORT will stop

processing the statement at the point where the error is discovered. The error message is

output with '?' printed under the word that causes the error. At most one error message

will thus be output for a single statement, In some cases, PCFORT will try to generate
extra dummy code to make the code already generated for the statement acceptable by
the P-Code translator. PCFORT will continue as usual to parse and generate code for the
rest of the statements in the user program.

(2) Errors discovered while processing an internal structure of the compiler: For this

type of error (called SPECIAL ERROR in the compiler), the error message is printed with a
name that tells from where the error originates. The recovery procedure may involve

deleting the trouble-causing element or altering its contents to make it compatible with the

rest of the program.. Such actions are invisible to the user.

To enable the features of (1), the statement processing procedures In the compiler
always use the global lexeme pointer LXC as index while scanning a statement. The error

routine will print '?' under the word that LXC points to. Since different parts of a’
statement are usually processed by different procedures, the unifying rule used is’ that
each procedure is entered with LXC pointing to the first lexeme it processes and exit with

) LXC pointing to the one after the last lexeme it processes.

Warnings are output when errors are discovered in the program which PCFORT thinks
will not drastically affect the normal execution of the rest of the user program.

Regardless of when it is discovered, only a name will be printed with the message. The

position where the warning is printed in relation to the program statements in the listing

~ file serves as another clue to the user in some cases, Recovery actions may also be
taken by PCFORT. The resulting behaviour of the program is easily predictable by the
user.

PCFORT always prefers warning instances to error instances. l.e. for each user

error, PCFORT classifies it as an error instance only if it cannot make it a warning Instance.

17

4. Lexer

4.1 Summary

The purpose of the lexer is to split the input program up into nice pieces (lexemes)
which are easier to deal with than characters.

Each time the lexer is called it reads the next FORTRAN statement from the source

file, moves it character by character into an array called LEXSTRING, stores the FORTRAN

statement label in LABNO, generates the sequence of "lexemes" contained in this
statement, and puts the lexemes into an array called LEXEME, Comments are skipped, and
all lines of the source file are copied to the listing file. The length of the string is stored in
LEXSTRLENGTH, the number of lexemes in LEXCOUNT, the number associated to the first

line of the statement in LINENUMBER, and the last line in LINENO.

If an error occurs in the lexer, LEXCOUNT is set to O.

Each element of the array LEXEME is a record with three pieces of information:

1) LEXEME.T: The type of the iexeme.

2) LEXEME.F: The index in LEXSTRING of the first character of this lexeme.

3) LEXEME.L: The index of the last character of this lexeme.

For example, if the identifier COMMON occurs in columns 7 to 12 and it is the first
lexeme of the statement (the label is not counted as a lexeme), then the entries in
LEXEME will be

LEXEME[1].T = IDENTIFIER LEXEME[1]}F=7 LEXEME[1 J.L = 12

4.2 Lexer 18

4.2 Lexeme types

A lexeme Is defined to be one of the following items:

name description

PLUS + sign
MINUS - sign
STAR XK

SLASH

EXPONENT 33

LPAREN

RPAREN

EQUALS =
COMMA ,

LE,LT,GE,GT LE.,.LT.,.GE.,.GT.
EQ, NE EQ., .NE.
ANDOP, OROP <AND., .OR.
NOTOP NOT,

REALCON a FORTRAN real constant (not including preceding sign).
DPCON double precision const (not including preceding sign).

| NTEGERCON an integer constant (not including sign).
STRINGCON quoted or Holierith constant
TRUECON true.

FALSECON . false.

IDENTIFIER a sequence of characters, the first of which must be
letter and the rest may be letters or numbers

EXPLMARK |
QUOTMARK

NUMSIGN H

DOT |
DOLS | GN 8

PERCENT %
AMPERSAND &

COLON

SEMI COLON

LESSSIGN <

BIGGERSIGN > toe
QUESMARK ? :

ATSYM @ |
LSQBRACKET [|
RSQBRACKET |
BACKSLASH N

CARET U |
EOS end of statement |
NON none of the above. |

4.3 Reading ina statement |

When LEXER is called, LEXSTRING is cleared by putting blanks where the previous

statement was. It then invokes the procedure GETSTATEMENT to load the characters of
the next statement into LEXSTRING, It assumes that the first six characters of the next

line are already In the array COL1TOG6. if the first letter is "C", then the line is a comment

line. COL1 TOG is printed in the listing file and the comment itself is read into the listing file
(procedure SKIPLINE). The variable LINENO is used to keep track of the number of lines
that are read in.

4.3 Lexer 19

As soon as a non-comment line is read in (this may be a blank line), the global

variable LINENUMBER, which always contains the line number of the first line of the current

statement, is set to LINENO. if the end of file has been reached, this is indicated by

setting LEXSTRLENGTH to 0. COL1TOG6 is copied to both the listing file and LEXSTRING.

The rest of the statement is read in, putting each character in both the listing file and

LEXSTRING, until the end of the statement is encountered. if comment lines occur, they
are skipped over as previously. Continuation tines are recognized and appended. To

determine this, GETSTATEMENT must always look ahead to the next 6 characters of the
next line. Thus at the end of GETSTATEMENT, the first 6 characters of the next non-

comment line will be in COL1TO6. Each line is padded with spaces so that it always is 72

plus a multiple of 66 characters in length. After a statement is read in, LEXSTRLENGTH will

contain the number of characters in LEXSTRING, At this point, LEXSTRING is also written to

the P-Code file by procedure PRINT LEXSTRING.

After LEXER calls GETSTATEMENT, it checks to see if the statement returned

consists only of blanks. if it does, it calls GETSTATEMENT again. In this way, blank lines
are allowed. Next, it checks to see if the first 6 characters of LEXSTRING contain a label,

If it does, this label is converted to an integer and stored in the global variable LABNO.

4.4 Scanning the statement

The array LEXEME is. then fitted with iexemes that are recognized through a case

statement based on the first characters of the iexemes inside a WHILE loop that traverses

the LEXSTRING array. The procedure NEXTCHAR is generally used to get the next

character. But since it skips blanks, it is not used in processing identifiers, numbers and

keywords.

if the first character of the iexeme is a regular FORTRAN character other than a

letter, digit, single quote or dot, then the lexeme type is set to that character. (In the

case of an asterisk, the next character must be checked to see if it is a double asterisk).

if it is a digit, then the function DIGITSTRING (which will, in this case, always return:
TRUE, since we already know it is a digit string), finds the last digit. if the digit’ string is

followed by an H, then the lexeme is a Holierith string. If it is followed by a dot, then it

_ may be either a real or an integer followed by a dot-word (as in "33.EQ.X"). The
procedure FINDWORD is called to get the character string if it is a dot-word. (if this is the
case, it results in two iexemes being processed in a single pass: the integer and the dot-

word). If the dot is not followed by a letter, DIGITSTRING is catted again to find the last

digit of the fraction of the real number, and then FINDEXPONENT to get the exponent. If
the- first digit string is followed by neither a dot nor an "H", then the iexeme is an integer.

if the first character is a dot, then the iexeme is either a dot-word or a real (again,
FINDWORD and FINDEXPONENT are used).

If the first character is a single quote, then the lexeme Is a string. A string like

'‘ab''cd' is separated into two iexemes of type string ('ab’, ‘cd’). if the first
character is a letter, then the lexeme is an identifier, and characters are skipped until the

next non-alphanumeric letter is read in.

The identifier FORMAT is recognized as a reserved word and it is processed as a

special case. The FORMAT specification, including both surrounding parenthesis, is

4.4 Lexer 2 0

processed as a string constant. Consequently, the name FORMAT cannot be used as the
name of a variable.

Blanks are skipped everywhere, except in identifiers, numbers and key words.

The syntax for lexemes is described below using Wirth’s variant of BNF:

| exeme = special-symbol |dot-word| number | Hollerith |
identifier,

spec i a | -symbo | - ny! "= "x! AL 1] (" ") I" nn | "ei"
"]] | " 1" I | a "gH on | "8" Hel |
Mell | II < II | > II II "| "e" | II ["] II] II II / II |
nan

dot-word=",LE."|".LYT."}|".CE."|".GT."|".NE." | ".EQ." |
"AND." |} ".OR." | ".NOT." | ".FALSE." | ".TRUE.".

number = mantissa [exponent).

mantissa =digit-string "."[digit-string]|"."digit-string.

digit-string=digit{digit}.

exponent = ("D"| "E") "+" |"-"]digit-string.

Hoiierith =digit-string "H" (character) |""" (character) "’".

identifier = letter {letter|digitl,

21

5. Statement Classifier

Once a statement has been read in by LEXER, it is determined to be one of the foliowlng
types by procedure CLASSIFY:

STATEMENT-CLASS = (XNONE, XARI TH, XASSIGN, XLOGICALIF,XARI THIF, XGOTO,
XCALL, XRETURN, XEND, XPRINT, XBLOCKDATA, XFORMAT, XSET,
XCONTINUE , XSTOP, XPAUSE , XDO, XREAD, XWR1 TE, XREWIND,
XBACKSPACE, XENOF ILE , XEXTERNALFUNC, XSUBROUT INE,

XDIMENSION, XCOMMON, XEQUI VALENCE, XIMPLICIT,
XEXTERNAL , XLOGICAL, XINTEGER, XCOMPLEX, XREAL , XDOUBLE,
XDATA, XINTERNALFUNC) ;

CLASSIFY first checks to see if the statement Is an assignment statement or

statement function declaration, since keywords such as DO and GOTO are legal variable
names. If the statement is of the form:

identifier = anything

or_

ident i f ier (anything) = anything

then it Is one of the two. In the second case, if the symbol is a dimensioned array (all
DIMENSION statements must occur before all statement function declarations), then the

. statement is an assignment statement; otherwise it is a statement function declaration.

If the statement is not an assignment statement or a statement function, then the

first lexeme of the statement is compared with all keywords of the same length. Normally,

the statement type is determined right there. The only exceptions are:

For INTEGER, REAL, COMPLEX, or LOGICAL, the next lexeme is checked to see ifitls

the identifier FUNCTION, and the lexeme further down an Identifier, since FUNCTION can be
used as the name of a variable.

For DOUBLE, the next lexeme is checked to make sure it is the Identifier PRECISION.

For BLOCK, the next lexeme is checked to make sure it is DATA.

For IF, CLASSIFY determines whether the statement Is an arithmetic or logical IF. An
IF statement is an arithmetic IF if it is of the form

IF (anything) number anything

Otherwise, it is a logical IF. (While scanning between the parentheses, both in this case

and while checking to see if the statement is an assignment statement, it is necessary to

keep track of the number of left and right parentheses in order to allow for nested

parentheses.)

If the current statement already has error discovered in LEXER, it will be classified

as XNONE. When CLASSIFY finds any erroneous construct, it will also classify the current
statement as XNONE. CLASSIFY outputs no error message.

22

6. Main block

The processing of an input user program is controlled by the main procedure and

procedure BLOCK. The control structures of these two procedures are as follows:

6.1 Main procedure

call INITCOMPILER to initialize everything
call BLOCK to process the main routine

generate a return and a label that indicates how much storage is needed for
the main block.

while there are more subprograms do

call FUNC STMT or SUBR STMT to get type and arguments of subprogram
or call BLKDATASTMT if BLOCK DATA statement

call BLOCK to process body of subprogram

call VARINITIALIZATION to generate code to intialize any variables that
should be initialized

copy run-time routines to end of P-Code file if they are needed

6.2 Main block 23

6.2 Procedure Block

call INITBLOCK (see Section 19.1)

call LEXER to get statement

set global lexeme pointer, LXC, to point to first lexeme
call CLASSIFY to find out what kind of statement it is

while there are more declaration statements, FORMAT or SET statements do

call the appropriate routine to process it

call LEXER to get statement

set global lexeme pointer, LXC, to point to first lexeme
call CLASSIFY to find out what kind of statement it is

call STORAGE ALLOCATION to allocate storage for the variables that
have been declared

call FILL ADDRESS INITIALIST to copy these addresses into the list of
variables to be initialized

while there are morestatement function declarations, FORMAT or SET
statements do

call STMT FUNCTION, FORMAT STMT or SET STMT
call LEXER to get statement
set global lexeme pointer, LXC, to point to first lexeme
call CLASSIFY to find out what kind of statement it Is

if we are not processing a BLOCK DATA block, generate SST and ENT
instructions

while statement is an executable statement, FORMAT or SET statement do

if there is a FORTRAN label, then enter it in the label table if it

is not there already and generate code for a P-Code label (ENTERLABEL)

call the routine to process the statement

. if we are not about to process statement within a logical IF
statement then do

if we have been processing an IF statement, then generate the

P-Code label to be jumped to if the condition was false

if there is a FORTRAN label and it is an ending for a DO loop,

then generate the appropriate code

get the next statement

if the END statement we are now on has a label, enter it in the label table,

generate the corresponding P-Code label and give a warning.

check if any do loop is still open

Issue warnings If any labels or variables have been used only on the left-hand

side or only on the right-hand side

If the block is not main or a block data, generate a return and a label that

indicates how much storage is needed for this block.

get the next statement

24

7. Symbol Tables

7.1 The structure of the tables

There are five symbol tables:

1) The main symbol table (SYMBOL) keeps track of variables, subprogram names and
FORMAT labels within a single unit (main program or subprogram).

2) The EXTNAME table keeps track of subprogram names throughout all the program
units.

3) The LABELNO table keeps track of FORTRAN labels within a single program unit.

4) The COMNAME table keeps track of common areas.

6) The STDFUNCTABLE contains the name of all standard functions.

Each of these tables is made up of records which form a binary tree. The symbols

are ordered lexicographically in the tree. The heads of the tables are pointed to by
pointers stored in the global variables SYMHEAD, LABELHEAD, COMHEAD, EXTHEAD, and
HEADSTDTABLE.

The main symbol table and the label table are cleared at the beginning of each new

unit. The other three are cleared only once, at the beginning. The storage used by the

cleared entries is automatically reclaimed through the garbage collection facility in the
PASCAL in which PCFORT is written.

7.2 The associated routines

The standard function table is set up at compiler initialization time and has a routine,
IN STNDFUNCTABLE, that searches it. The other four each has a main routine that

searches the table for a given entry and inserts it if it is not already there, and then adds

) any information to the symbol table that is not contradictory to the information It already
has about these symbols. This structure is convenient in a one-pass FORTRAN compiler,
because the Information for a symbol is typically scattered all over the program.

The four main routines, called FSYMBOL, FLABELNO, FCOMNAME, and FEXTNAME, are

very similar in structure, and have similar subsidiary routines which they call. For example,
the routines CLEARSYMBOL, CLEARLABELNO, CLEARCOMNAME, and CLEAREXTNAME all

initialize new records for insertion into the proper table, The following description of how

FSYMBOL works, therefore, is applicable to the other three routines.

When FSYMBOL Is called, it calls routine BUILDSYMBOL witha name and a pointer to
the head of the table as parameters. BUILDSYMBOL looks for an entry in the table with
that name by calling procedure SYMLOOK. IF SYMLOOK finds the name in the table, it sets

FOUND to TRUE and returns a pointer to the symbol in SPTR. If it does not find the symbol,
it creates a new record, calls CLEARSYMBOL to set the default values of the record, sets

FOUND to FALSE, and returns the pointer to the new record in SPTR. If FOUND Is false, the

BUILDSYMBOL knows that the record is a new record and inserts the implicit type of the

7.2 Symbol Tables 25

symbol, and then passes SPTR back to FSYMBOL. FSYMBOL then inserts all the information

about this symbol that was passed to it as parameters, checking for contradictions with

the information It already has. It is assumed that contradiction does not exist among the

call parameters in a single call.

The four symbol table routines FSYMBOL, FLABELNO, FCOMNAME and FEXTNAME can

be used for 3 different purposes: 1) to retrieve the pointer to the symbol table entry, 2)
to assert information about the symbol as given in the parameters in the call, and 3) to

test the properties of the symbol against the values given in the parameters in the call.

Each of the routines depart from 3) somewhat, and the details are given in their sections
following.

7.3 The main symbol tab/e

The main symbol table stores information about the characteristics of the variables in

a block, the most important of which is their addresses. it also stores the FORMAT labels.

A space in memory for saving the address of the FORMAT string is allocated for each

FORMAT label (see Section 26).

It uses records-of type SYMBOL:

DIN = RECORD CASE INTEGER OF (x array dimension %)
0: (CONSOIM: INTEGER); (x constant %)
1 : (VARDIM: SYMBOL) ; (x variable %)

END:

FUNCTYPE = (NOTEXTERNAL,EXTERNAL,EXTSUBR,EXTENTRY,EXTFUNC,STMTFUNC,
INTRINSTDEXT) -

SYMBOL = PACKED RECORD

LSON, RSON: SYMBOL¢ (x POINTERS TO SONS %)
NAME: THENAME; (x SYMBOL NAME, 6 CHARACTERS LONG *)
STYPE: DATATYPE: (x THE TYPE OF THE VARIABLE; I T SHOULD

BE SET TO NONE IF SUBROUTINE NAME %)

WHEREDEFINED, (%* PROGRAM LINE NUMBER IN WHICH
VARIABLE APPEARS THE FIRST TIME %)

LEVEL, (x ADDRESSING LEVEL FOR THE VARIABLE *)
ADDRESS: INTEGER; (x -1 IF NOT YET ESTABLISHED. %)

USED_LHS, (x TRUE IF VARIABLE WAS GIVEN A VALUE)
USED-RHS, (x TRUE IF VARIABLE'S VALUE WAS USED %)

(x ABOVE 2 NOT USED IF FORMATLABEL, EXTERNAL,
SUBROUTINE, STANDARD FUNCTION OR
EXTFUNC NOT USED AS FUNCTION VARIABLE %)

S-EXPLICIT: BOOLEAN: {x TRUE IF TYPE EXPLICITLY DECLARED %)
CASE S_FUNCSUBR: FUNCTYPE OF (x NOTEXTERNAL IF NOT EXPLICI TLY ASSERTED x)

INTRINSTODEXT: (PTRSTD:STOFUNCTABLE);{(%x POINTER TO STANDARD FUNCTION
TABLE IF STARDARD FUNCTION NAME %)

STMTFUNC: (SEGMENNUM: INTEGER); (x SEGMENT NUMBER OF ITS P-CODE
PROCEDURE BLOCK)

NOTEXTERNAL: (S1_EQUIVALENCE, (x TRUE IF VARIABLE EQUIVALENCEDx)
S2_EQU | VALENCE, (x USED TO INDICATE IF AN EQUIV.

VARIABLE HAS BEEN PROCESSED IN

STORAGE ALLOCATION TO CHECK

EQUIVALENCING TWICE %)

S-COMMON, (x TRUE IF COMMON VARIABLE %)
S-DUMMY, (* TRUE IF DUMMY ARGUMENT %)
INITIALIZED: BOOLEAN: (x TRUE IF VARIABLE Is

7.3 Symbol Tables 26

INITIALIZED, FALSE OTHERWISE x)
(x FOLLOWING FIELDS DO NOT HAVE CORRESPONDING PARAMETER

IN PROCEDURE FSYMBOL x)

PTRCOM: *COMNAME; (x POINTER TO THE COMNAME TABLE,
USED ONLY IF COMMON SYMBOL x)

DIMENSION: INTEGER: (x 0 IS THE DEFAULT DIMENSION

IF NOT EXPLICITLY DIMENSIONED x)

S_CON:ARRAY [1..MAXDIM] OF BOOLEAN: (x TRUE IF THE ITH
DIMENSION IS CONSTANT %)

DIMEN:ARRAY [1..MAXDIM] OF DIM: (x EITHER THE CONSTANT

DIMENSION OR THE POINTER TO THE SYMBOL

TABLE ENTRY IF VARIABLE DIMENSION x)

END:

Its main procedure, FSYMBOL, has parameters that correspond to the record fields:

PROCEOURE FSYMBOL (VARSPTR:POINTSYMBOL (x RETURNS ALWAYS A POINTER TO THE
ENTRY IN THE SYMBOL TABLE x)

SYMNAME: THENAME;

SYMTYPE:DATATYPE; (x NONE IF NO INFO IS SENT x*)
SYMWHEREDEFINED: INTEGER; (x THIS WILL CONTAIN THE PROGRAM

LINE NUMBER BEING PROCESSED x)

~SYMFUNCSUBR: FUNCTYPE ; (x NOTEXTERNAL IF NO INFO, THE
PROPER FUNCTYPE OTHERWISE x)

SYMCOMMON,

SYMDUMMY,

SYMEQUIVALENCE,

SYMLHS,

SYMRHS,

SYMINITIALIZED: BOOLEAN) ;(x FALSE IF NO INFO OR FALSE %)

Most of the entries in this symbol table assume an implicit value If no Information is

asserted. When it is necessary to check that an entry is having a certain value, it is

possible to accomplish the check by asserting the entry to that value using the

corresponding parameter in the call to FSYMBOL. Note that in this case, if the entry Is
having the implicit value, it will be changed to the asserted value, which is undesirable In

some cases. When the check is for the entry to have the implicit value, this does not

work, since the Implicit value in the call parameter specifies no action. It is necessary to

] retrieve the pointer and then make the comparison explicitly.

If STORAGE ALLOCATION has already been called, i.e. when processing the
executable part of a program unit, FSYMBOL allocates space for new variables not
previously declared using procedure SIMPLE STORAGE. If no allocation Is desired (e.g.

when testing that a statement function name has not previously been declared as a
variable), BUILDSYMBOL should be used to retrieve the pointer rather than FSYMBOL.

Field S EXPLICIT Is set to true whenever STYPE has been asserted In a call.
FSYMBOL will automatically infer a symbol to be EXTFUNC if it is both typed and declared
EXTERNAL.

7.4 The label number tab/e

Both statement labels and FORMAT labels are entered into this table. For each

statement label, It also stores the P-Code label associated with It. This association Is

7.4 Symbol Tables 277

fixed the first time the FORTRAN label occurs in the program unit, when the new table
entry is created. The position of the label in the statement, i.e. whether it is on the left-

hand side ("100 X=| ") or the right-hand side ("GOTO 100"), is kept in the table.

The label number table is made up of records of type LABELNO:

LABELTYPE = (LNONE, ISFORMAT, ISSTMT);

LABELNO = PACKED RECORD
NAME, (x FORTRAN LABEL x)
PLABEL: INTEGER; (x PCODE LABEL NUMBER ASSOCIATED x)
LSON, RSON: *L_ABELNO;
I S_ON_RHS,
| S_ON_LHS: BOOLEAN; (x TRUE IF THIS LABEL NUMBER HAS OCCURREO

ON RIGHT/LEFT HAND SIDE OF STATEMENT?)
LTYPE: LABELTYPE; (x TELLS WHETHER A FORMAT OR STATEMENT

LABEL. NONE WHEN FIRST CREATED x)

END;

and is accessed by the routine FLABELNO:

PROCEDURE FLABELNQ (VAR LPOINTER:POINTLABELNO:
NUMBER: INTEGER: (x FORTRAN LABEL x)
L IS_ON_RHS,
L1S_ON_LHS: BOOLEAN; (x FALSE IF NO INFO OR FALSE x)
LABTYPE: LABELTYPE); (x TYPE OF LABEL, MUST BE ASSERTED x)

Places where FLABELNO is called are procedures ENTERLABEL called by BLOCK,
COMPLUJP and COMPLFJP used in the GOTO and arithmetic IF statement processors, the
DO statement processor and the READ/WRITE statement processor.

7.5 The common tab/e

The common name table (COMNAME) simply stores the names of the common areas

thus far defined and some information about them. It Is made up of records of type
COMNAME:

. COMNAME = PACKED RECORD

LEVEL, (x PSEUDO LEVEL NUMBER FOR THIS COMMON
AREA x)

LENGTH, STADDR: INTEGER; (x LENGTH OF THE COMMON BLOCK IN QUARTER
WORDS AND STARTING ADDRESS x)

PTRCOMLIST: CCOMLIST; (x POINTER TO THE LINKED LIST OF COMMON
ELEMENTS IN THIS AREA x)

LSON, RSON: 1COMNAME;
NAME: THENAME; (x NAME OF THE COMMON AREA x)

END:

and accessed by the routine FCOMNAME during storage allocation:

PROCEOURE FCOMNAME (VARCPOI NTER: POI NTCOMNAME;
CONAME: THENAME) ;

LEVEL Is filled automatically inside CLEARCOMNAME, Immediately after the entry Is
created, In such a way that each common area has associated a different level number If

the switch VARCOMMON is on, or level 2 if it Is off (see Section 10).

7.6 Symbol Tables 28

PTRCOMLIST, which points to a linked list of variables, is built when processing COMMON
declarations. At the beginning of each program unit, the field PTRCOMLIST of all entries is
cleared.

When an entry is first created for a common area name, LENGTH is set to the value
given by global variable COMMONSIZ. This variable has a default value 0, and is set by the

option CSIZ. At the end of processing a COMMON statement, this variable is reset to O.
When space is allocated the first time for a common area, if the actual allocated area is

greater than that specified in LENGTH, this field is changed to the larger value. Otherwise,

the amount of space allocated is equal to the value of LENGTH. Thereafter, its value is
fixed.

STADDR, initially set to -1, indicates whether a memory block has been allocated to
the common area in a previous program unit. If yes, it gives the start address of this
block,

FCOMNAME is called only in the common statement processing procedure. It only

returns the pointer to the common table entry. During storage allocation, the entries are

accessed by traversing the tree.

7.6 The external tab/e

The external name table keeps track of the existence and calls of the various

subprograms. A symbol can be in the EXTNAME table and in the SYMBOL table at the same

time. In this case, the symbol is either used as an external subprogram name in the

program unit, or an internal variable or statement function name which happens to have the

same name as another subprogram. When processing a subprogram, the subprogram name

is also in both tables, and in the case of function subprograms, the name is used internally
as a function variable.

A symbol is inserted in the external table when it is called or defined. This occurs in

1) procedure USERFUNC, which processes calls, 2) the FUNCTION statement processor and.
3) the SUBROUTINE statement processor.

. The table is made up of records of type EXTNAME:

EXTNAME = PACKED RECORD

LSON, RSON: TEXTNAME;
NUMBER : INTEGER; (x SEGMENT NUMBER ASSOCIATED TO THIS

SEGMENT NAME ENTRY x)

XFUNCSUBR: FUNCTYPE; (x MUST BE ONE OF EXTFUNC, EXTSTMT,
EXTENTRY x)

TYPEEXPLICIT, (x TRUE IF EXPLICIT TYPE IN SUBPROGRAM
HEADING x)

|S_OEF | NED, (x A SUBPROGRAM BLOCK EXISTS FOR IT %)
| S-CALLED: BOOLEAN: (x INVOKED AT LEAST ONCE x)

STYPE: DATATYPE; (x THE TYPE OF THE FUNCTION; IF
SUBROUTINE, THIS FIELD NOT USED x)

NAME: THENAME;
END:

and accessed by the routine FEXTNAME:

PROCEOURE FEXTNAME (VAR EPOI NTER: POI NTEXTNAME:

7.6 Symbol Tables 29

EXNAME: THENAME;

EXTYPEEXPLICIT: BOOLEAN; {x TRUE IF EXPLICIT TYPE IN
SUBPROGRAM HEAD | NG %)

EXTYPE:DATATYPE; (x NONE IF NO INFO %)
EXFUNCSUBR: FUNCTYPE; {x NOTEXTERNAL IF NO INFO x)
EXDEFINED,

EXCALLED: BOOLEAN) (x FALSE IF NO INFO *)

NUMBER is filled automatically inside CLEAREXTNAME immediately after the external

name table is created, in such a way that each external program unit has associated a
different segment number.

FEXTNAME is designed both for asserting and checking. This is because it is not sure

when the mode is assertion and when it is checking, since the position of a subprogram
bears no relationship to where its calls originate. FEXTNAME checks the STYPE and

XFUNCSUBR fields if the external symbol is either previously called or defined. Otherwise,
it goes ahead to assert STYPE and XFUNCSUBR to the values given in the parameters.

When FSYMBOL is called from 1), parameter EXTYPE is to be the STYPE value of the
symbol’s entry in the symbol table, even if its type is implicit, since the type in the
external table is fixed after the first call.

When FSYMBOL is called from 2), parameter EXTYPEEXPLICIT Indicates whether
typing is explicit in the FUNCTION statement. This is needed because FEXTNAME is called
once again before processing the first statement, or after processing the IMPLICIT
statement if present as the first statement in the subprogram. This call is from procedure

. BLOCK. The pointer is retrieved. If the TYPEEXPLICIT field is false, then if the subprogram
has been called, check is made against the now known implicit type. Otherwise, the
Implicit type is assigned.

7.7 The standard function table

The standard function table is initialized by the procedure FiLL STDFUNCTABLE. It
has the following type of record:

STOFUNCTABLE = RECORD

- NAME : THENAME;
NUMBER : INTEGER: (* EACH PROCEDURE HAS A DIFFERENT

NUMBER, USED WHEN THE FUNCTION
IS CALLED x)

LSON, RSON: *STOFUNCTABLE
END:

It is searched by the function IN STDFUNCTABLE:

FUNCTION IN-STDFUNCTABLE (NAME: THENAME:; VAR STDPTR:POINTSTOFUNCTABLE)
BOOLEAN:

30

8. Processing of Declarations

A variable can have any of the following datatypes:

DATATYPE= (NONE, (x NONE OF THE OTHER TYPES x)
LOGICAL1, (x EQUIVALENT TO THE TYPE BYTE x)
LOGICALZ, (x LOGICAL HALF WORD x)

LOGI CALA, (x LOGI CAL SINGLE WORD *)
LOGICAL8, (x LOGI CAL DOUBLE WORD x)
RES, (x REAL DOUBLE PRECISION x)
RE4, (x REAL x)
REZ, (x REAL HALF WORD x)

(x THIS TYPE IS NOT YET FULLY IMPLEMENTED. THE

COMPILER WLL RECOGNIZE IT BUT NO CODE CAN BE

GENERATED FOR IT YET, x)
INTS, (x INTEGER DOUBLE WORD x)

I NT4, (x INTEGER SINGLE WORD x)
INT2, (x INTEGER HALF WORD x)
INT1, (x INTEGER QUARTER WORD,

EQUI VALENT TO THE TYPE CHAR x)
COMPS, (x COMPLEX x)
COMP16, (x COMPLEX DOUBLE PRECISION x)
FORMATLABEL {x A FORMAT LABEL HAS THIS TYPE WHEN INSERTED

IN THE SYMBOL TABLE x)

When a variable occurs in a declaration, an entry for that variable Is made in the

symbol table by calling procedure FSYMBOL, and the information given in the declaration is

filled in. An error message is issued if that symbol already has some contradictory
Information The address of the variable is not determined at that time, because when a

declaration is scanned, not all the information about the variables is known. The

assighment of an address to the variable declared will occur In procedure
STORAGE-ALLOCATION (see Section 12, Storage Allocation).

8.1 Type-specific Declarations

- Procedure TYPEDECL scans and processes this kind of declaration. Variables are

inserted In the symbol table with the information specified by the declaration.

First, it obtains the type for the variable, based on the type of the declaration. It

then scans forward and obtains its size modified by the star if one is specified. The

- variable Is inserted in the symbol table and a pointer to the symbol table entry Is passed

to procedure ISARRAY. This procedure is responsible for obtaining the dimension

information for the variable if it is an array, This procedure returns the number of elements
in the array in its reference parameter ITEMS.

If the variable is initialized, procedure VARINIT is responsible for the steps involved.
This procedure builds a list of the variables to be initialized. This list will be formed for the

INITIALIST records (see Section 8.7, Data Statement). The root of the list Is
the global variable HEADINIT. An entry in the list is created for each element to be

initialized. This means that a simple variable will have only one entry in the list, but an
array of 6 elements will have 6 entries in the list; a single complex variable will have 2

entries in the list, the first one for the real part and the second one for the imaginary part.

8.1 Processing of Declarations 31

The rules for initializing variables are described in Section 2.6, Initializing Variables.

VARINITis entered with variable ITEMS set to the number of elements that are going
to be initialized and LXC (the global pointer to the lexeme array) pointing to the lexeme

with the first initialization value. The initialization list is extended at the end by calling

EXTEND LIST a number of times according to ITEMS. Procedure FILL VALUES is then
called which traverses the lexemes with the initialization values and fills them in the fields

in the nodes just created. In this process, it uses procedure INSERT VALUE.

Procedures EXTEND LIST, FILL VALUES and INSERT VALUE are also used in
processing the Data statement. See Section 8.7, The Data Statement, for
more detailed descriptions.

The same initialization list is used for all the program units of a program, lengthening

as more initializations are specified, but the symbol table for each block is cleared at the

beginning of a new block. For this reason, the address of the variables to be Initialized

have to be saved in INITIALIST. This is done in procedure FILL ADDRESS INITIALIST
which is called after the storage allocation has taken place (see Section 9.1,

Procedure FILL ADDRESS INITIALIST).

8.2 Dimension Declaration

Procedure DIMENDECL scans and processes the FORTRAN DIMENSION statement. The
symbol table entries for the variables are updated with the dimension information. It uses

. procedure ISARRAY to obtain the dimension information.

8.3 Implicit Declaration

Procedure IMPLIDECL scans an IMPLICIT statement. Array IMPLIARRAY is filled with
the specified implied types, IMPLIDECL can be entered only when processing the first
statement in a program unit.

This procedure gets the implied types and size modifications, and inserts them in

IMPLIARRAY for the list of letters specified, using procedure LETTERLIST. If an IMPLICIT
- statement occurs in a subprogram, the dummy arguments are affected plus the function

name if it is a function subprogram. Therefore, once all the declarations are scanned, the

symbol table entry Is traversed in order to change the standard FORTRAN implied types for
the dummy arguments and function names, using procedure CHANGEDEFAULTS. These are

t he. only valid symbols In the symbol table at that time because the IMPLICIT statement

must be the first statement in a program unit.

8.4 Common Declaration

Procedure COMDECL scans and processes a common declaration. The common name
table Is built inside this procedure and lists with the common variables in each common

area are made. This list is formed with COMLIST records that have the following format :

COMLIST = RECORD STPTR: *SYMBOL; (x POINTER TO SYMBOL TABLE ENTRY OF
COMVDN ELEMENT x)

NEXT: *COMLIST;

8.4 Processing of Declarations 32

END:

The root of the the llst of common variables for each common areas is stored in the

field PTRCOMLIST of its entry in the common name table.

For each common area, COMDECL first gets its name and inserts it in the common
name table. If it is already in the table, it obtains the last entry in the common list for that

area, Using this pointer, the new declared variables in this area are inserted in the order

they are declared. These variables are also entered in the main symbol table, if necessary,
along with the information that they are in a common area fields (S COMMON is set to

TRUE, and PTRCOM is set to point to the correct entry in the common table).

Any dimension information of a variable in a common declaration Is treated as

dimension declaration, and this information is obtained with procedure ISARRAY.

Information about the length and starting address of the common areas is not
inserted here but in procedure STORAGE ALLOCATION, where the addresses for the

common variables are assigned. The reasonfor this is that a variable may be DIMENSIONed

In a later statement, so there is no way to be sure how much space it will take until all the

declarations have been processed.

The blank common area is called 'M M M' internally in the compiler. The spaces

between the M's make it impossible for any user to use this name as a name for one of its
common areas.

8.5 Equivalence Declaration

Procedure EQUIVALDECL scans and processes the equivalence declaration. This
procedure builds the list of equivalence groups and it also builds the circular lists of

equivalent variables that form the equivalence groups. A pointer to the beginning of the

list of equivalence groups is stored in EQUIVHEAD.

The list of equivalence groups is formed with EQGROUP records and the lists: of
equivalenced variables are formed, with EQLIST records.

- EQGROUP = PACKED RECORD |

LOW, HIGH: INTEGER; (x STORE THE LOWER AND HIGER BOUNDS
OF THE EQUIVALENCE GROUP x)

LEADER: TEQL1 ST; (x POINTS TO FIRST ELEMENT IN LIST OF
EQUIVALENCES VARIABLES THAT FORM GROUP x)

NEXT: TEQGROUP; (x POINTS TO NEXT GROUP x)

ALLOCATED, (x TRUE IF THE GROUP HAS ALREADY BEEN
ALLOCATED IN MEMORY x)

HAS_INIT, (k HAS ONE VARIABLE INITIALIZED x)
HAS-COMMON:BOOLEAN; (% TRUE WHEN THIS GROUP HAS

A COMMON ELEMENT, x)
END:

EALIST = RECORD STPTR: 4SYMBOL ;
{x POINT TO SYMBOL TABLE ENTRY OF EQUIVALENCED VAR. x)

DIMENSION:ARRAY [1..MAXDIM] OF INTEGER;
(x USED TO STORE THE COORDINATES OF ARRAY ELEMENT

EQUI VALENCED x)

OFFSET: INTEGER;

8.6 Processing of Declarations 33

(x OFFSET OF THE ELEMENT W TH RESPECT TO THE LEADER OF

THE LIST x)

NEXT: TEQLIST;
(x NEXT IN THE LIST x)

END;

(x THISLISTIS USED TO STORE THE VARIABLES THAT ARE EQUI VALENCEO
| N ONE EQUI VALENCE GROUP x) ;

For each equivalence group, procedure EQUIVALDECL calls procedure EQUIVARLIST.
This procedure gets the names of the variables that form the group, inserts them in the

symbol table, if required, setting field S1 EQUIVALENCE to TRUE, and Inserts them in the
circular list that form the equivalence group. If the variable equivalcnced is an element of

an array, its coordinates are also obtained. All this is done inside procedure EQUIVARLIST.

With the equivalence groups declared, a list Is formed using the global variable

EQUIVHEAD that points to the head of the list and TAILEQGROUP that points to the most
recently declared equivalence group at the tail.

Since the coordinates for array elements are remembered instead of being
processed immediately, dimension declaration of a variable can occur after its equivalence
statenent.

8.6 External Declaration

Procedure EXTDECL scans and processes an external declaration. The information

that a variable is external is entered in the symbol table only, since the effect of the

external declaration is restricted to inside its program unit. The external table is updated

only when the external symbol is called.

8.7 The DATA Statement

In most FORTRAN compilers, DATA statements are handled by setting up the binary

load file so that the locations which are specified by the variable to be initialized ar e

loaded with the initial values at the time the program is loaded. It is not possible to do this

“in P-Code, since storage is allocated on the stack only when the corresponding procedure
is entered; Instead, a series of explicit loads and stores must be executed at the
beginning of the program.

Procedure DATA STMT scans and processes a DATA statement. The initialized
variables are inserted% a list of the variadies to be initialized at the beginning of program .

execution. The generation of code for the actual initialization of variables is done in
procedure VARINITIALIZATION , described in Section 9.2.

The global variable HEADINIT points to the head of the listof variables to be
initialized. The variable TAILINITLIST points to the last element The list is formed with
records called INITIALIST with the following structure:

INITIALIST = PACKED RECORD

SYHTABPTR :#5YMBOL; (x POINTER TO SYMBOL TABLE ENTRY
OF VARIABLE TO BE INITIALIZED x)

LOCSIZE: INTEGER: (x SIZE OF INITIALIZEO LOCATION:

8.7 Processing of Declarations 34

FOR COMPLEX, SI ZE OF EACH HALF x)
NEXT: MINITIALIST; (x NEXT NOOE x)

LEVEL, (x LEVEL OF THE VARIABLE x)
ADDRESS: INTEGER; (x LOCATION TO BE INITIALIZED,

EVEN IF ARRAY ELEMENT x)

AMOUNT: DIGIT_STRING; (x STRING WITH THE VALUE
TO BE INITIALIZED x}

CONTINUING: BOOLEAN; (x TRUE IF THIS IS A CONTINUUM OF
THE PREVI OUS NODE, USED IN
INITIALIZATION WITH STRINGS x)

CASE AHOUNTYPE:LEXTYPE OF (x LEXTYPE OF THE STRING VALUE x)
STR | NGCON:

(STRLEN: INTEGER); (x IF INITIALIZATION WITH STRING,
LENGTH OF THE STRING CONSTANT x)

INTEGERCON, REALCON, DPCON:

(NEGATIVE: BOOLEAN) ; (x TRUE IF CONSTANT IS -VE %)
END;

A group Is formed by ail the variables that appear before the two slashes that

surrounds the initial values for that group. For each group of variables to be initialized,

procedure DATA STMT adds nodes for the variables to be initialized in INITIALIST by
calling procedure-FORM VAR LIST. The list is then updated with the initial values for the
variables just Inserted-by calling procedure FILL VALUES. Variable FIRST IN LIST is
returned from FORM VAR LIST pointing to the first element of the group just inserted and
Is used by FILL VALUES to tell where to start entering the initialization values.

Here is a more detailed description of the procedures used:

Procedure FORM VAR LIST gets and inserts the names of the variables to be
initialized into the symbol table, indicating that they are being initialized by setting the

field INITIALIZED to TRUE. It then creates the entries in INITIALIST for these variables by

calling procedure EXTEND-LIST.

One entry is created for a simple variable. Complex variables are inserted in the list

of initialized variables as two reals: the real part and then the imaginary part. Arrays have

an entry for each element of the array, and the displacement in actual memory locations of

each of Its elements with respect to the start address of the array is given in the

- ADDRESS field of its INITIALIST record entry, The real address for the elements Initialized

Is not entered until procedure FILL ADDRESS INITIALIST is called after storage allocation
has occurred. This will just add the addressin the symbol table to what is already in the

ADDRESS field In an INITIALIST entry, Types of the initialized variables and dimensions of
-the arrays whose elements are being initialized must have been completely defined before

-the initiaiizatlon specification.

Procedure EXTEND LIST does the actual building of the initialization list. The

information inserted by this routine consists of a pointer to the symbol table entry for the

element being initialized, its displacement in memory with respect to the beginning of the

array, which Is 0 for a simple variable, the size of the location and the flag CONTINUING
which Is used to indicate if the current location is a continuation of the location in the

previous node, as in the succeeding elements in the Initialization of whole arrays and the

second halves of complex variables.

Procedure FILL VALUES updates the list of variables in INITIALIST with the

8.7 Processing of Declarations 35

corresponding initial values, FIRSTIN LIST points to the first element of the list that
needs an initialization value and POINTTO LIST Is used to traverse the INITIALIST while
saving the values in the AMOUNT field of INITIALIST. For each value, this procedure gets

the number of times the value is repeated, INSERT VALUE Is then called this number of
times. Fields NEGATIVE or STRLEN of INITIALIST are set directly in FILL VALUES depending
on the type of the constant. For string constants, INSERT VALUE is called as many times
as required depending on the length of the string; and depending on the flag CONTINUING.

Procedure INSERT-VALUE completes the information in the INITIALIST record entry
by inserting the iextype and the amount expressed in characters.

The procedures EXTEND LIST, FILL VALUES and INSERT VALUE are also used in
processing Initiailzations in type-specific declaration statements.

36

9. Initialization of Variables

The Initialization of variables requires three steps, First, a list of the variables to be

initialized is formed during the processing of type-specific declarations (Section 8.1) and

DATA statements (Section 8.7). In the second step, the addresses of the variables to be
initialized are saved in the LEVEL and ADDRESS fields of the record entries in INITIALIST

when procedure FILL ADDRESS INITIALIST is called after storage allocation has occurred.
Finally, code are generated for the initializations at the end of compilation by calling

procedure VARINITIALIZATION. These last two procedures are described in this section.

9.1 Procedure FILL ADDRESSINITIALIST

This procedure finds the address of a variable once storage has been allocated to it

and enters it in its INITIALIST entry. The procedure is called after STORAGE ALLOCATION

has been called, which occurs after processing the last declarative statement and before

the first statement function or executable statement in a program unit.

Global variable NEXTININIT is used to remember the record entry of the last variable

Initialized for the_previous program unit, All the entries in INITIALIST after that entry are
traversed and the corresponding addresses are entered,

The displacement information, stored in field ADDRESS, is computed by adding the
value already in the ADDRESS field of INITIALIST and the value of the displacement stored
in the symbol table entry for the variable. This is because the distance of an array element

from the start address of the array was previously stored here, if it is a simple variable,

this ADDRESS field would previously store 0. Field LEVEL is obtained directly form the
LEVEL field in the symbol table entry. After these two pieces of information are obtained,

the pointer to the symbol table entry is set to NIL, so that when the symbol table is

cleared at the end of the current program unit, no pointer points to Its entries and the

space used by the symbol table can be reclaimed for other uses.

At the end, NEXTININIT is updated to point to the last element of the initialization list

that corresponds to the last variable initialized in the most recently compiled program unit.

9.2 Procedure VARINITIALIZATION

This procedure is called by the main procedure after all the program units are

compiled. It generates code for the initialization of variables and the loading of FORMAT
specifications into memory at execution time, the latter being done by calling procedure

INIT__ FORMATS (see Section 26.2, Initialization of Formats),

The code for the initialization of variables are placed inside a special P-Code
procedure, created for the compiler, called $INIXX. A call to procedure $INIXX is always

executed before anything else in the compiled P-Code program. |

Procedure VARINITIALIZATION first generates code for the head of the special

procedure $INIXX by calling procedure BLKCODE GENERATION. Then, it generates code for
the body of procedure $INIXX. This consists of a series of LDC-STR P-Code instructions
that will load the constant values on the stack and store them into the variables’ locations

in memory.

9.2 Initialization of Variables 37

String constants are loaded into variable addresses using the LCA-LDA-MQOV

sequence of P-Code instructions.

Before generating code for the return of procedure $INIXX, procedure

VARINITIALIZATION calls procedure INIT FORMATS that generates code for the loading of
the FORMAT string specifications into memory. After this, procedure $INIXX Is closed with
the RET and DEF P-Code instructions.

38

10. Storage Allocation Structure

10.1 The problem

In P-Code, there are a number of static /eve/s, each of which may have one or more
procedures associated with it. Each procedure has a set of local variables associated

with it. When a procedure is entered, space for its variables is allocated; at exit, the

space is deallocated. Thus, the values of ail of the local variables of a procedure are
undefined when that procedure is entered.

In FORTRAN, however, all of the variables of each subroutine are OWN variables; that

Is, their values remain the same between the end of one invocation of a subroutine and the

beginning of the next. Hence, space for all of these variables must be allocated at the

beginning of the program, even though some of them may only be accessed when certain
subroutines are entered.

in P-Code terms, this means that all variables in a FORTRAN program must be on some
level that is lower than or the same as the level of the main program.

The fact that PCFORT is one pass has an important ramification: the total amount of

storage needed for the main variable level and for each of the COMMONsis unknown until

all the code for all the procedures and subprograms has been emitted. This presents two
problems:

1.SOPA, the P-code compiler currently used by PCFORT, demands that the amount
of storage needed for the local variables of any one procedure must be indicated before

the emission of P-Code for the next procedure; i.e. the amount of space needed for the
variables of the main routine must be output before generating any of the code for any of
the subroutines.

2. If the main variables and common variables are on the same level, the address of

any variable following those declared to be in a common area cannot be definitively

determined until the size of that common area is known, For example, in the following, if

the address of B is fixed before subroutine ZZZ is processed, there will not be enough

- room in common X for array C:

COMMON/X/ A (18)

B = 13

END

SUBROUTINE ZzzZ

COMMON/X/ C (20)

END

11.1 Partial Solution

A partial solution to this problem involves assigning to the blank common area its own

level and restricting the rest of the common areas by specifying that the first time a

common area is declared in a program unit, its size is the larger this area can have in any

other program unit that appear later. Then the levels are distributed as follows:

Level 1 -- the blank common area (dummy procedure)

11.1 Storage Allocation Structure 39 |

Level 2 -- all other common areas (dummy procedure)

Level 3 -- all other variables (dummy procedure)

Level 4 -- main block (no variable)

Level 5 -- all subprograms (no variable))

Level 6 -- all statement functions (no variable)

This scheme is advantgeous because of the fact that P-Code does not require that

procedures be In any specific order. Thus, the code for the “procedures” In levels 1 = 3,
which Includes how much storage is needed for these procedures, can come after the

cods for levels 4 through 6.

To make this work, there must be a series of procedure calls at the beginning of the

program, each of which allocates storage for that level and then calls the procedure for

the next higher level. Here is a PASCAL representation of the idea:

11.2 Storage Allocation Structure 40

11.2 PASCAL representation

program BLANKCOMMON:
var i: array {1..10]) of integer; (x variables in the blank common x)

procedure GENCOMMON;
var n: array [1..1888] of integer:

(x variables in al | other commons x)

procedure FORVARS;
var k: real

(x all variables not in COMMON areas stored here x)

procedure FORMAIN;

procedure USERSUBROUTINE;

function STATEMENTFUNCTION (real X);

begin
STATEMENTFUNCTJON : = 2%X;
end:

begin{x USERSUBROUTINE x)
k :=2.8;(x normal variable x)
i111 :=08;{(x variable in blank common x)
end:

begin (x FORTRAN main prog x)
k := 8; (x normal variable x)
USERSUBROUT INE;

i [1] :=8;(x in blank common x)

jl} :=8;(x in common 1 x)
end:

begin (x dummy for genera | var area %)
FORMAT Nj
end;

begin (x dummy for general common area x)
FORVARS;
end:

begin (x dummy for blank common area x)
GENCOMMON;
end:

11.3 Storage Allocation Structure 41

11.3 The CMN instruction

This scheme only partially solves the commons problem, as the size of any of the
commons in level 2 must be known before another common is declared.

A complete solution that has been proposed is to have a new P-Code instruction,

called CMN, which would assign to each named common area a pseudo-level number (level
9 and above). This pseudo-level would represent a special loader segment, which would

be pointed to by a register. We have anticipated this solution by including a switch,
VARCOMMON, which will emit this new instruction when set to TRUE.

To minimize the user frustration before this is Implemented, the current

implementation provides a user switch called CSiZ that allows the user to indicate the size

of the common directly.

42

12. Storage Allocation

This procedure assigns memory locations to the variables declared during the
declaration part of a block. The procedure is called after all declarations have been

processed and before any statement function declaration or executable statement occurs.’

Any other variable that appears later in the program without having been previously

declared is allocated through procedure SIMPLE STORAGE, which is called by FSYMBOL.

Each variable is assigned a level number and an offset. Functions and subroutine

names and their dummy arguments are assigned the level number of 5 . Statement

functions and their dummy arguments are assigned the level of 6. Common variables are

assigned levels 1 (blank common area) and 2 (rest of the common areas) respectively if

switch VARCOMMON is not set, If the switch is set, each common area except the blank
common is given its own pseudo-level, beginning at level 9 (see Section 1 1.3). All other

variables are assigned a level of 3.

The allocation of space is done using a global variable called DISPLACEMENT that
keeps track of the space already allocated on level 3. About 600 quarter words of

storage are needed by the run-time routines, and DISPLACEMENT is initialized to point to

the first free position after that. Every time a space for a variable is needed,
DISPLACEMENT is adjusted, if necessary, to lie on a half, single or double word boundary.
Its value is then stored in the field ADDRESS of the symbol table. It is then incremented
by the proper amount.

The space is allocated in a specific order:

1) Common variables and equivalenced groups containing a common variable. The

common areas are allocated in lexicographical order. Inside each area, the variables are

allocated in the order In which they were declared as part of the common area. The

variables equivalenced to one in the common area are allocated according to the desired

equivalence relation.

2) Equivalenced variables with no common element in the equivalence group.

3) All other variables, in lexicographical order.

All common areas, equivalenced variables within a common area and other
equivalenced variables begin at a double word boundary. For the rest of the variables,

quarter word variables begin at the next quarter word boundary, half word variables at the

- next half word boundary, single word variables at the next single word boundary and

. double and quadruple (complex) word variables at the next double word boundary.

Common variables are passed to the STORAGE ALLOCATION routine in the form of a
list (see Section 7). The head of the list is stored in the PTRCOMLIST field of the common

name table entries. The equivalenced variables are entered as a list of equivalenced

groups (see Section 7).

Here is a more complete description of how storage allocation Is done:

12.1 Storage Allocation 43

12.1 Preprocessing equivalence groups

Before any space is allocated, the offsets of the equivalenced variables with

respect to the leader of the group (first variable declared in the group) is computed. This

is done in procedure EQUIV OFFSETS. It also merges two equivalence groups if a variable
Is equivalenced in both of Them, checking for any index conflicts in array elements (e.g.
“EQUIVALENCE (A(3),B(2)),(A(2),B(3),C)"). The algorithm used in the computation of the
offsets is described in [Gri71].

Procedure MERGE is called by EQUIV OFFSETS if a variable is equivalenced two
times. First, it finds the two entries of the variable in the list of equivalence groups. If the

variable appears two times in the same equivalence group, the second one is deleted. If

the variable appears in two different groups, the first group is deleted and appended to

the beginning of the second one. In this second group, the variables that have already

been processed at the moment the double equivalence was found have their offsets

adjusted in accordance to the new leader of the group. The doubly equivalenced variable

Is skipped in the second list and the variables not yet processed will still be at the end of

the enlarged group being processed.

12.2 Allocating space for ‘common areas

Once all the offsets for the equivalenced variables have been computed and all
necessary mergings have been performed, space for the common variables is allocated.

The address where the common area begins, INITIALADDRESS, is obtained. It Is zero if the
. switch VARCOMMON is set because a static pseudo-level is reserved exclusively for each

common area. If the switch is off and no space has been allocated for that area In any
previously compiled program unit, the initial address is the current value of

DISPL__ GENCOMMON at level 2 for any common area except the blank common whose initial
address is 0, If space has already been allocated for the common area, the initial address
is the address where the area was previously allocated, stored in fields LEVEL and STADDR
of the common name table entry.

If a common variable is also equivalenced, the variables In the same equivalence

group are allocated using procedure ALLOC COMMON AND EQUIV called from procedure
CHECK EXTENSION, which also checks for invalid extensions to the left of a common area

-due to the equivalencing, After space is allocated for all the common variables of an area,
extensions to the right of the common area are checked. See Section 7.6, The Common

Table regarding how the initial length of a common area is determined.

12.3 Allocating space for non-common variables

Once space has been allocated for all the common variables, the list of equivalence
groups is traversed and space is assigned to those groups not yet processed. Finally, the
symbol table is traversed in alphabetical order and space for all variables not declared as

common or equivalence is allocated.

4.4

13. P-Code generating routines

Almost all code that is written in the P-Code file Is generated by one of the P-Code

generating routines, There are a few cases in which P-Code is written directly to the file
by a main routine using WRITELN (P-Code, . . .

The main P-Code generating routine is GEN. This works for most instructions. There

are four arguments: opcode, P-Code operand type, and two integers. Where not all of

these are necessary, the superfluous ones are ignored. The P-Code operand type is of
type GENTYPES, which is represented as the single-character P-code type doubled (see
below). When no type is required, the type ZZDUMMY is passed. This is to make it clearer

when reading the routine that calls GEN that no type is required, and also acts as a check
to ensure that a type is passed whenever it is required. This check is performed by

procedure PTYPE, which converts a variable of type GENTYPES to the actual string that is

printed in the P-Code file.

GENTYPES = (AA,BB,CC,D0,HH,IT, JJ,MM,NN,PP,QQ,RR, SS, XX, ZZOUMMY) ;

AA = address

BB = boolean

cc = character

BO = double word integer
HH = half-word integer
Il = Single word integer
JJ = index

MM = multiple-unit arrays or records
NN = the ni | pointer
PP = procedure
RR = single word real
ss = the ordinal number for the element of a set

xx = double word real

The LDC instruction is generated by a number of different procedures distinguished
by the forms in which the constant is passed to the procedures:

GEN LOADNUM -- the constant is to be taken directly from the FORTRAN statement
kept in LEXSTRING. The pointer to the lexeme is passed

) GEN LDC -- constant is passed as a string of 20 characters which can contain any
possible double precision number

G E N LOADINT, GEN LOADREAL, GEN LOADBOOL, GEN LOADCHAR -- constant Is
passed in integer, real, boolean and character forms respectively

Other P-Code generating routines are:

GENLOADSTRING -- given a pointer to a string lexeme, generates code to load that
lexeme

GEN LABEL -- prints a P-Code label definition, e.g. "L156 LAB"

GEN__ DEF -- prints a P-Code constant definition, e.g."L16 DEF 20"

GEN _CMN -- generates a CMN instruction (not yet implemented)

13 P-Code generating routines 45

GENCSP, GENMST, GENCUP, GENSST, GENENT -- generates the given instruction

GENSEG CODE -- generates the dummy blocks (see Section 10)

The following two procedures are called from the above P-Code generating
procedures:

PRINT LABEL -- prints a P-Code label, e.g. "L186"

PRINT NAME -- prints the name of a program unit in P-Code form, e.g. 'PEPEOOOS3'".
The maximum length of the name is 5 letters, The maximum segment number is 999. Each
procedure has its own segment number. The global variable SEGNUMBER always contains
the segment number that was last allotted.

46

14. Temporary storage management

Temporary locations are used in cases like storing loop variables and handling complex

numbers. In order to be able to re-use these locations, two temporary storage
management routines were written, which allocate and keep track of temporary locations

of different sizes. All temporary locations used are at level 3 - the level for all variables

except common and dummy variables.

FUNCTION GETTEMP (SIZENEEDED: INTEGER): INTEGER:

finds an unused temporary storage location and returns its address.

PROCEOURE RELTEMP (LOCATION: INTEGER):

indicates that the address indicated is no longer needed and may be used somewhere else

as a temporary storage location.

The temporary locations are kept In a linked list pointed to by global variable

TEMPLOCHEAD. In the beginning, the list contains no nodes. The list is lengthened as more
and more temporary locations are demanded in the course of compilation. The order of

each node in the-list is not significant. The structure of each node is:

TEMPLOCNOOE = RECORD

LOC,
SIZE: INTEGER:

FREE: BOOLEAN;
NEXT: *TEMPLOCNODE;

END;

GETTEMP first searches the list to see if there is a temporary location of the

appropriate size that has already been claimed as a temporary location but is now free. If

. there is none, it claims a new one by incrementing DISPLACEMENT by the size of the

location needed plus any extra it needs to assure that the location starts on a single word
boundary. The new node to remember this temporary location is added to the list,

RELTEMP merely searches through the list until it finds the specified location, then
sets FREE to TRUE.

47

15. Loading and storing variables

15.1 The procedures

The procedures used to generate code to load and store non-complex variables are

LOADVAR, LOADVARADDR, LOAD ARRAY ELEMENT, and STOREVAR. (See the section on
complex numbers for complex variables.) To load the value of a variable, LOADVAR is
called. To store a value in a variable, LOADVARADDR is called, then the value is loaded

(usually by ARITH) and then STOREVAR Is called.

There are three types of variables: simple variables, simple variables passed as

parameters, and array elements. For the last two, it Is necessary to access the variables

indirectly by loading the address on the stack first, and then doing a load or store indirect. oo

The loading of the address is done by LOADVARADDR.

LOADVARADDR is passed a pointer to the symbol table for the variable In question. If

the variable is a dummy variable, It loads Its address. If the variable is an array, it loads

its address, if not already loaded (it may have just been loaded if the array Is also a

dummy parameter), and then calls LOAD ARRAY ELEMENT, which reads the subscripts and
generates code to calculate the offset. If the-variable Is either a dummy variable or an

array, LOADVARADDR returns TRUE. Otherwise, it returns FALSE.
LOAD ARRAY ELEMENT calculates the address is the following way: It checks to see if
there is a left parenthesis, and then goes to the next lexeme. It then calls ARITH, which

loads the integer expression corresponding to the first subscript on the stack. It then

goes past the next comma, if any. For the second dimension, it generates code to multiply

the value by the upper bound of the second dimension minus one before adding to the first

subscript. For the third, it generates code to multiply the offset value by the upper

bounds of both the first and second dimensions. When it encounters a right parenthesis
instead of a comma, it returns.

For an array A of dimensions (X,Y,Z), then, the offset for A(a,b,c) would be

a + Xx(b-1) + Xx¥Yx(c-1).

16.2 Loading and storing variables 48

15.2 Example of Indirect load and store

FORTRAN,
SUBROUTINE X (1)

DIMENSION J(3,4)
J(2,3) = 1
RETURN

END

P-code:

SST P X0000031 54004

X0000031 ENT P 5 L1 X0000031 111

LDA3 504 s load address of array J
LDC1 2

DECI,1
LOC I 3

DEC I,1
LOC TI 3
MPI

ADI

IXA 4 sup to here, load address of J(2,3)
LOO A,S,8 : load address stored at address of |
IND 1,0 : load content of address just loaded
STO 1 tstore value at address 2nd on stack
RET P

L1 DEF 12

49

16. Expression evaluation

Expression evaluation is done by recursive descent, Although thls Is a somewhat
less efficient than using operator precedence, it is cleaner and makes it easier to deal

with parentheses.

Expression evalutation procedures are divided into three kinds: logical expression

procedures, arithmetic expression procedures, and complex expression procedures.
Logical expressions are expressions connected by logical operators, such as ".AND.".
They always include arithmetic expressions, which are constants or varibles or other
arithmetic expressions connected by arithmetic operators.

ARITH, the expression evaluaator, expects the global lexeme pointer LXC to be

pointing to the beginning of the expression when it is called, and leaves it pointing to the
lexeme after the expression. It returns the datatype that will be left on the top of the
stack when the expression is evaluated.

16.1 Syntax

The syntax for expressions is as follows:

logical expression = logical term {".0R." logical term)
logical term = logical factor {".AND." logical factor)
logical factor = {".NOT."} relational expression

relational expression = arith expr rel operator ari th expr
rel operator=",LE."|".LT."|".CE."|".CT."|".NE." | "EQ." |

REE RE
arith expr = term laddop term)
term = {addop} factor {mul top factor)
factor = lprimaryt {"xx" pri maryl
addop = "yt" | n_n
mul top = "a" RAL
primary = "(" ari th expr “I” | constant | complex constant | logical constant

| variable | function call | array element
complex constant ="(" arith expr "," arith expr ")"
logical constant =".TRUE."|".FALSE."

16.2 Processing identifiers

~~ When ARITH encounters an identifier, it must determine whether It is a variable, a call
to a standard function, or a call to a user function,

There are two procedures for processing function calls: STANDARDFUNC, which
processes calls to intrinsic and standard external functions and USERFUNC, which
processes calls to statement functions and external functions.

One of the fields of every record in the symbol table is SFUNCSUBR. It has one of
the following values:

FUNCTYPE = (NOTEXTERNAL,EXTERNAL,EXTSUBR,EXTENTRY,EXTFUNC,STMTFUNC,
INTRINSTDEXT) ;

This is the way ARITH handles symbols:

16.2 Expression evaluation 50

1. Look it up in symbol table (this means that if it is not already there, it is entered,

with, among other things,S FUNCSUCR set to NOTFUNC); If it has appeared in this program
unit before, then S FUNCSUBR will already contain the Information about what kind of
symbol it is;

2. if we already know it is a user function, then call USERFUNC |

3. else if we already know it is a standard function then call STANDAROFUNC

4. else if next lexeme is not an left parenthesis or it has been dimensioned, then it

must be a simple variable or array element; call LOADVAR (see Section 16, Loading and
Storing Variables).

6. else If It is in the standard function table, set S FUNCSUBR to INTRINSTDEXT to
indicate that it is a standard function and call STANDARDFUNC

6. else it must be a user-defined subprogram; set S_ FUNCSUBR to EXTFUNC to
indicate this, then enter it in the EXTERNAL table and call USERFUNC

16.3 Example

FORTRAN: IF (3.2%].EQ.5.1%xx3)} . . .

Pcode:

LDC R 3.2

LOO | 3 500 + load value of variable I
FLT s float value of |
MPR

LDC R 5.1

LOC | 3

CUP EXPON scall exponentiation function
EQUR

61

17. Complex numbers

17.1 The complex stack

Unfortunately, complex numbers can’t be handled directly by P-Code. Therefore, it is
necessary to simulate the P-machine stack using a stack called CSTACK. It contains the
addresses of all the complex numbers in the expression being evaluated. These
addresses will be the addresses of either complex variables, complex constants

(stored in temporary locations), or results of previous operations on the top of the

complex stack (also stored In temporary locations).

It also contains information on whether the address location specified is a

temporary location or the address of a regular complex variable. This is needed so that

the temporary location can be released and reused after it is no longer needed.

The structure of CSTACK is as follows:

TYPE CSREC = RECORD

ADDR: INTEGER;
STORED-I N_TEMP: BOOLEAN
END:

VAR CSTACK: ARRAY [1..MAXCSTACK) OF CSREC:

CSTACKPTR: 0.. MAXCSTACK:

The P-machine stack is used merely to perform a single operation on the top or

top two elements of the complex stack. Thus after every operation, it is empty.

The address of the final result is stored in the global variable CRESULTLOC. Thus,

after any call to ARITH, the top of stack type should be checked. If it is of type

complex, then it needs to be copied from CRESULTLOC, The real part of the number will
be stored in CRESULTLOC and the imaginary part in CRESULTLOC +
GETSIZE(TOPOFSTACKTYPE)/2.

The two operations on the complex stack are:

) PROCEDURE PUSHCSTACK (ADDR: INTEGER: STORED-1 N_TEMP: BOOLEAN) ;

PROCEDURE POPCSTACK (VARADOR: INTEGER; VARSTORED_IN_TEMP: BOOLEAN);

17.2 Putting complex numbers on top of CSTACK

A complex number can be one of four types: a constant, a variable, a function result,
or an array. In addition, it may have been passed as a parameter.

Procedure PRIMARY of procedure SIMPLE EXPRESSION checks to see if the current
lexeme is a left parenthesis. If itis, it calls SIMPLE EXPRESSION recursively to evaluate
the expression within parentheses. If, after doing that, it encounters a comma, then It
knows it has found a complex constant. it gets a temporary iocatation using function
GETTEMP, stores the real part of the expression into that location, calls
SIMPLE EXPRESSION to get the imaginary part, and then copies that into the second half

of the temporary location, It then pushes that address onto CSTACK.

17.2 Complex numbers 62

If the current lexeme is a complex variable, then the address of that variable is
loaded onto CSTACK. (This is done in procedure PROCESSID.)

If the current lexeme is an array or a parameter, then the final address is not known
at compile time, For this reason, it is necessary to get another temporary location and

generate code to copy the number there. That address is pushed onto the stack. This is
all done In procedure LOADCOMPLEX,

If the current lexeme is a function call, then USERFUNC is called. The function result

will be stored in the address pointed to by CRESULTLOC, which is pushed onto the stack.

17.3 Operations on complex numbers

Operations on complex numbers are defined as follows [Org66]:

If Z1= Al +i*B1 And Z2= A2 +i*B2, then

Z1 + Z2= (Al + A2) + ix(Bl + B2)

Z1 - 722 = (Al - A2) + ix(Bl - B2)

ll x 22 = (AlxA2 - BIxB2) + ix(AlxB2 + BlxA2)

22 / 71 = ({(A1xA2 + B1xB2) / (Alxx2 t Blxx2))

t ix((AlxB2 - B1xA2} / (Alxx2 t Blxx2))

The procedures used for evaluating complex numbers are: CADDSUB, CMULT, CDIV,
CNEG (unary minus), and CEXP (exponentiation). They ali use the primative procedure
COP, which generates code to load two variables on the P-stack, do a simple operation on
them, and store the result in a third location.

17.4 Addition of two complex numbers

For an ADD operation the sequence of events would be:

) 0. do two POPCSTACKs to get the locations of the two numbers on the top of the
complex stack

1. generate code to load the real part of the complex number second from the top of
the complex stack onto the P-stack

2. generate code to load the real part of the complex number from the top of the
complex stack onto the P-stack

3. get a temporary location to store the result

4. generate code to add the two numbers and store the result in the temporary
location

6. repeat 1, 2, and 4 for the imaginary part

17.4 Complex numbers 63

6. push the address of the result onto the complex stack

7. if either of the two complex numbers were in a temporary location, release the

temporary location

Subtract, multiply, and divide are analogous.

17.5 Example of complex addition expression

FORTRAN: X = (3.,1.}tY -{4.,2.)

P-code:

LDC R 3.0

STR R 3516 ;store real part of (3.,1.) in temporary ioc.
LDC R 1.0

STR R 3520 ;storeimag. part of (3.,1.) in temporary loc.
LOO R 3 516

LOD R 3 508 : load real part of Y
ADR sadd real parts
STR R 3 524 ; store sum of real parts in temporary toc.
LOO R 3 520

LOD R 3 512 ; load imaginary part of Y
ADR s add imaginary parts
STR R 3 528 ;store sum of imaginary parts in temporary loc.
LOC R 4.0

STR R 3516 store real part of (4.,2.) in temporary loc.
LDC R 2.0

STR R 3520 ;store imag. part of (4.,2.) in temporary loc.
LOD R 3 524

LOO R 3 516

SBR

STR R 3532 store difference of real parts in temp. loc.
LOO R 3 528

LOD R 3 520
SBR

STR R 3536 ;store difference of imag. parts in temp. loc.
LOO R 3 532

STR R 3 500 ;store at real part of X
LOO R 3 536

] STR R 3504 ;store at imaginary part of X

17.6 Exponentiation

- Integer exponentiation is done as follows:

0. The exponent, being an integer, has been left on the P-stack. Generate code to
store it in a temporary location

1. Get a temporary location for the loop variable; generate code to store 1 into it

2. pop the top of the complex stack to get the address of the base

3. get a temporary location for the accumulator and generate code to copy the base

to that location for the first multiplication

17.6 Complex numbers 64

4. push onto the complex stack the address of the base and the accumulator

6. generate a label to indicate the beginning of the loop

6. call the complex multiplication procedure; this will get a temporary location for the
result, pop the addresses of the operand from the complex stack, generate code to do the

multiplication and store the result in that location, and push the address of the result onto

the complex stack

7. generate code to increment and test the loop variable and jump out if done

8. generate code to copy the result into the accumulator location

9. generate code to jump back to the label in 6

10. release all temporary locations

17.7 Complex numbers 55

17.7 Example of complex exponentiation

FORTRAN: X =(5.,6.)%x%3

P-code:

LOC R 5.80

STR R 3516 ;store real part of {(6.,6.} in temp. loc.
LOC R 6.0

STR R 3520 ;store imag. part of (5.,6.) in temp. loc.
LDC | 3

STR 1 3540 ;store 3 in temporary location
LDC | 1

STR | 3544 store initial value of counter in temp. loc.
LODR 3 516

STRR3524 ;store real part in temp. loc. to accumulate
result

LOOR 3 520

STR R3 528 ;store imag. part in temp. loc. to accumulate
result

L2 LAB

LOD R 3 524

LOD R 3 516
MPR

LBD R 3 528

LOD R 3 520
MPR

SBR scompute real part of current multiplication
STR R 3 548 ;store computed real part in temp. loc.
LOD R 3 524

LOD R 3 520
MPR

LOD R 3 528

LOD R 3 516
MPR

ADR compute imag. part Of current mult piicat ion
STR R 3 552 ;store computed imag. part in temp. loc.
LOD | 3 540

LOD | 3 544

LES |

FJP L3 s test loop termination
LOD | 3 544

INC | 3

STR | 3 544 » increment counter
LOD R 3 548

STR R 3 524 ;store real part in location to accumulate
result

LODR 3 552

STR R3528 :;storeimag. part in location to accumulate
result

UJP L2 + jump back for next multiplication
L3 LAB

LOD R 3 548

STR R 3 500 ;store at real part of X
LOO R 3 552

STR R3 504 ;store at imaginary part of X

6 6

18. The assignment statement

The assignment statement works as follows:

It first looks up the symbol in the symbol table and calls LOADVARADDR to load the

address on the stack, if necessary (see Section 16). It sets the global lexeme pointer,
LXC, to point to the lexeme after the equal sign. If the variable is a logical variable, it calls

LOGEXPR. Otherwise it calls ARITH (see Section 16).

If the expression contains a string, then it calls the procedure STORESTRING
(described below). Otherwise, if the expression is of type real and the variable of type

integer or vice versa, then the appropriate P-Code instruction is generated to convert the

expression. Any conversion between different sizes of integers and reals that Is
necessary is handled automatically by SOPA. Any other mismatch between expression and

variable types generate an error message.

If the expression is of type complex, then STORECOMPLEX is called (see Section

17). Otherwise, STOREVAR is called to generate code to store the variable (see Section
16).

STORESTRING is used to store a string into any kind of variable. It first checks to
make sure that the expression consists of exactly one string constant. It then generates
code to load the string, character by character, into the address Indicated. For simple

variables, this is straightforward. The character is loaded onto the stack, and then code is

generated to store it in the next quarter word of the address. For an array element or

parameter, however, code must be generated to load the address for each character and

increment It by the right amount. To do this, the address that was put on the stack by

LOADVARADDR, which is still on top of the stack (the string has not been put on the stack
yet) is stored in a temporary location. The address Is loaded from this location for each

character and incremented using an INC Instruction.

67

19. Subroutine and Function Statements

Procedures SUBR STMT and FUNC STMT process the subroutine and function
statements. Both of them initiate a new program unit by calling procedure INITBLOCK. The

global flag IN_SUBR FUNC to TRUE whenever the compiler is processing a subprogram.

All the parameters of a function or a subroutine are passed by reference, thus the

space that has to be allocated for them Is always 4 quarter words (the space required for
an address).

Whenever a variable is processed in the executable part of a program unit, its STYPE
field in the symbol table entry is checked, and either the FUNCTYPE field is NOTEXTERNAL

or the symbol table entry is identical to that pointed to by SEGPTR, in which case it is the

function variable. An identifier not satisfying these conditions cannot be used as a
variable in that program unit.

The fields ADDRESS, S EXPLICIT, USED RHS and USED LHS of the symbol table
entry of a subroutine is not used. Its STYPE field has to be set to NONE so that its use as
a variable does not pass the above test. The "used" and “defined” information for

function and subroutines is kept in the external table instead.

19.1 Initialization of a Segment Block

The initialization of the global variables when a new block is found is done by

procedure INITBLOCK. This proceure performs the following steps:

1. It clears the symbol and label tables, the list of equivalenced variables and the

list of DO’s that are still open.

2. It restores the standard default values for variables not declared (modifying
IMPLIARRAY).

3. In the common table, it sets the field PTRCOMLIST for each area to NIL, since the :

compiler is ready to build a new list of common variables for the common area in the next
program unit.

4. it sets to FALSE the global variables AFTER STORAGE ALLOCATION, which
indicates if the storage allocation of the variables de&red in the program unit has

occurred, and HAS RETURN, which indicates if a RETURN statement for the program unit
has- been encountered.

5. It resets CURR PCODE LABEL, the P-code label counter, and
DUMMY DISPLACEMENT, used to allocate space for the dummy arguments, COMMONSIZ,
the variable in charge of the CSIZ option, is also reset to O.

6. It initializes the global variable IFDEST, to indicate that no arithmetic IF statement
is being processed.

19.2 Subroutine and Function Statements 58

19.2 Subroutine Statement

After the call to INITBLOCK, routine SUBR STMT inserts the subprogram name In the

symbol table with no type, level 6 and displacement 0. The symbol table is updated by a

call to FEXTNAME. Then it calls procedure DUMMY_ PROCESSING for the processing of the
dummy arguments.

Procedure DUMMY PROCESSING scans the parameters of a subroutine or a function,
allocating space for them and Inserting their names, levels (always 6), addresses, and an
indication that they are dummy arguments in the symbol table. It uses the global variable

DUMMY DISPLACEMENT for the allocation of space. DUMMY DISPLACEMENT is initialized
to the amount of space needed for the MST P-Code instruction (always 8 quarter words to
allow for the return value of a function; see below). It is incremented by 4 for each

parameter in the program unit.

7 9.3 Function Statement

Procedure FUNC STMT initializes a new block, gets the type of the function if it is
specifically indicated, gets its size modification if specified, inserts the function name in

the symbol table Indicating its type, size and address (level 6, displacement 0), and
processes its dummy arguments by calling procedure DUMMY PROCESSING.

The return value of complex functions are not returned in displacement 0 at level 6
because 2 separate values have to be returned. Instead, space is allocated for it after

the space reserved for the function parameters. The address of this space is the value

returned by the function, and an indirect reference is needed, in the case of complex
functions, in order to access the returned value of the function. For this reason, such

functions are declared internally as being of type "address" for the SST and ENT P-Code
instructions. (Function GETGENTYPE returns type AA for functions of types COMPS8 and
COMP 16).

19.4 Code Generation

. Code for the head of the new program unit is generated in procedure
BLKCODE GENERATION. This procedure is called by global procedure BLOCK after all the

declarations of the program unit have been processed. This is necessary because all the

code for the statement functions must be generated before the code for the head of the

program unit is generated, since procedures must appear sequentially in P-code, even if

~ they are nested.

|

19.6 Subroutine and Function Statements 59

19.5 Example

FORTRAN:

INTEGER FUNCTION X(I)

X = 2%}
RETURN

END

P-code:

SST I X0000031 5 4 0 0 4

X0000031 ENT I 5 L1 X0000031 1 1 1

LDC 12 + load constant 2
LOD A5 8 + load address stored at address of |
IND I O » fetch content of this address
MP1 s compute 2x]
STRIS 0 store at address 0 for the return value
RET I sgenerated due to the RETURN statement
RET I sgenerated at end of al | subprogram block

L1 DEF 12 s stack frame of this subprogram is 12 words long

60

20. Subroutine and Function Calls

Dummy arguments of subroutines and functions are allocated addresses on their own
stack frames. All parameters in FORTRAN are passed by reference. During execution of a
subroutine or function, these addresses contain the addresses of the actual parameters.

The actual storing of the addresses of the actual parameters into these locations during
procedure invocations are done automatically by the P-Code machine, and is not visible in

the P-Code program. In P-Code, the addresses to be passed are put on the stack with
the PAR instruction to Indicate that they are parameters, and then the procedure is called.

There are three different treatments in the passing of addresses, depending on the
type of actual parameter used in the call. If the parameter is a simple variable, an array

name, or an array element, its address is put on the stack. If it is a string constant, it is

loaded in the string constant area of the stack computer [giw77] and its address is then
put on the stack. If it is an expression that is not just a single variable, code to evaluate

the expression and put the resulting value on the stack is generated, followed by code to

store this value in a temporary location and put the address of this location on the stack.

20.1 Function Call

Procedure USERFUNC is used to scan and process the arguments of a function or

subroutine call and to generate the code that actually does the call.

This procedure counts the arguments with procedure COUNT ARGUMENTS, generates
an MST P-Code instruction that indicates the beginning and size of the stack for the call,

processes the arguments with procedure PROCESS ARGUMENTS, and generates the code
for the call. The segment number for the CUP instruction is obtained from field SEGMENNUM

of the symbol table for call to a statement function and from the field NUMBER of the
external table for call to a subroutine or an external function. Procedure USERFUNC

updates the external table when an external subprogram is called.

Procedure PROCESS ARGUMENTS scans the arguments of a call. It differentiates

four kinds of arguments: identifiers, array elements, string constants and expressions. For

identifiers (simple variables and array names) and array elements, its address is loaded in

. the stack and a PAR P-Code instruction is generated. To recognize an array element, the

boolean function IS ARRELEMENT is used. For string constants, the string is stored in
the string constant area of the machine with an LCA P-Code instruction, which leaves the
address of the string on top of the stack, and then a PAR instruction is generated.

Expressions are processed by the procedure ARGEXPRESSION, which works as follows:

It first generates code for the evaluation of the expression. Then it allocates space

for the result of the expression, except for a complex expression whose result is stored

In the location indicated by the global variable CRESULTLOC. It stores the result of the

expression into the space just allocated, except for complex expressions that are already

stored in memory. The procedure terminates by loading the address, where the result of

the expression is stored, into the top of the stack and generating a PAR instruction to
indicate that the address on top of the stack is a parameter.

20.2 Subroutine and Function Calls 61 |

20.2 Subroutine Call

Procedure CALL STATEMENT scans and processes a subroutine call. It gets and
inserts the name of the subroutine into the symbol table, The data type for the subroutine
Is set to NONE explicitly after its insertion in the table, because FSYMBOL inserts the i}

default FORTRAN type instead of NONE for the subroutine name.

Procedure USERFUNC is called to do the processing of the arguments and the
generation of code for the call.

20.3 Example of a function call

FORTRAN:

COMPLEX%16 X

| = F(J,2%3,X)

Pcode:

MST 5 12 12 ssignal start of function call
LDA 3 524 + load address of variable J

PAR A » first parameter
LDC | 2

LDC | 3

MPI

STR | 3 528 i store value of expression in temporary
LDA 3 528 + location 528 and load this address

PAR A ; second parameter
LDA 3 504 : load address of variable x

PAR A + third parameter
CUPR 7 FPB08831 :end of function call code
TRC sconvert returned value to integer
STR | 3 520 sstore at address of variable |

20.4 Standard Function Calls

Standard function calls are implemented in three ways:

1. 4 direct call to an equivalent P-code standard function (CSP).

2. In-line code.

3. A call to a function in the FORTRAN run-time package (CUP).

- A list of the functions and how they are implemented follows:

DESCRIPTION NAME ARGS RESULT PCOOE
------W--M- ---- ———— SE

absolute value ABS real real ABR

IAB int int ABI

DABS doub | doub | ABR

(mod) CABS complx real inline
truncation AINT rea | rea | TRC, FLT

INT rea | int TRC

IDINT doub | int TRC
mod AMOD rea | rea | inl ine

20.4 Subroutine and Function Calls 62

MOD int int MOO
OMDO doub | doub | inl ine

max AMAXO int rea | CUP MAXIN,FLT
AMAX1 rea | rea | CUP MAXRE

MAXO0 int int CUP MAXIN
MAX1 rea | int FLT,CUP MAXIN
DMAX1 doub | doub | CUP MAXOB

min AMINO int real CUP MININ, FLT
AMIN] real real CUP MINRE
MING int int CUP MININ

MINI rea | int FLT,CUP MININ
DMIN1 doub | doubt CUP MINOB

int to real FLOAT int rea | FLT
real to int IFIX rea | int CUP IFIX

transfer sign SIGN rea | rea | CUP SIGN
ISIGN int int CUP ISIGN
OSIGN doubl cloub I ~~ CUP OSIGN

positive diff DIM rea | rea | CUP DIM
(Bi ff al<a2) IDINM int int CUP IOIM

doubl to real SNGL doub | rea | CUP SINGL

complex to real REAL complx real inl ine
complex imag AIMAG complx real inline

to real

real to doubl -- OBLE rea | double CUP ODUBL

real to complx CMPLX rea | comp lx inl ine
con jugate . CDNJG complx comp Ix inline

exponential EXP rea | real CSP EXP
OEXP doub | doub | CSP EXP
CEXP complXx complx not implemented

natural log ALDG rea | rea | CSP LOG
OLDG doub | doub | CSP LOG

CLOG complx complx not implemented
common | og ALOG1O real real not implemented

OLDGI0 doub I doub | not implemented
sin SIN rea | real CSP SIN

OSIN doub | cloub | CSP SIN

CSIN complx complx not implemented
cos CDS rea | real CSP CDS

DCOS doub | doub | CSP CDS

CCOS complx complx not implemented
tanh TANH rea | real not implemen ted

(IBM) OTANH doub | doubl not implemented
square root SQRT rea | rea | CSP SQT

OSQRT doub | doub | CSP SQT

CSQRT complx complx not implemented
"arctan ATAN rea | rea | CSP TAN

OTAN doub | doub | CS? TAN
arctan (al/a2) ATANZ real rea | OVR, CSP TAN

DTAN2 doubl doub! OVR, CSP TAN

|

63 |
2 1. Statement Functions

Procedure STMT FUNCTION scans and processes a statement function. The dummy
arguments of a statement function are local to it. They have to be present in the symbol

table when processing the function definition, and they must disappear after the
declaration Is processed. If their names are the same as other variable names used in

that program unit, they must be recovered in the symbol table. In order to do this, it is

necessary to save the symbol table entries the dummy arguments replace. This is done by

forming a list of records called DUMMY LIST. The fields saved in these records are those
in the symbol table that can possibly be altered while processing the statement function

definition. The definition of this list is local to procedure STMT FUNCTION:

DUMMY-L | ST = RECORD

PTR: PDINTSYMBDL; (x points to its symbol table entry *)
S_FUNCSUBR: FUNCTYPE;
LEVEL, ADDRESS,

DIMENSION: INTEGER;
USED_LHS,
S-DUMMY: BOOLEAN; (x original contents in symbol table *)
NEXT: PDUMMY_LIST:;(x next in list x)

END;

Procedure STMT FUNCTION gets and inserts the name of the statement function in
the symbol table with LEVEL field set to 6, ADDRESS field set to 0, USED _RHS set to false
and USED LHS set to true.

It processes the dummy arguments by calling procedure DUMMY ARGUMENTS, which
inserts them in the symbol table and remembers the old contents in the DUMMY LIST
records pointed to by HEAD DUMMY. The dummy arguments are allocated addresses at
level 6. oo

A segment number is assigned to the statement function segment and code is

generated for the head of the segment by calling procedure BLKCODE GENERATION. Then,

code is generated for the evaluation of the expression by calling procedures ARITH or
LOGICALEXPR depending on the type declared for the statement function.

After that, code is generated to store the result of the expression in the space
- reserved for the statement function name at level 6. At the same time, code is generated

to do the required type conversions.

Finally, code is generated for the return of the statement function, and the dummy

arguments of the function are erased from the symbol table by calling procedure

ERASE_DUMMYS, which also recovers the old contents in the symbol table from the
DUMMY__ LIST records.

6 4

22. Do Loop

For each DO: code Is generated at 2 places: where the DO statement is recognized
and at the end of the range of the DO. In the former, codee are generated for the

initialization of the control variable of the loop, and a P-Code label is emitted to mark the
beginning of the loop. In the latter, code is generated to increment the index variable by

the appropriate amount, to check if it exceeds the final value, and to branch back to the

label that initiates the loop if it does not exceed the final value.

A list of opened do-loops is built to control code generation for do-loops. This DO-list
works as a stack to keep track of the nesting of do-loops. Each time a new DO statement

is processed, an entry is created for it in the stack. CURRENTOO is a global variable that

points to the record of the most recently opened do-loop at the top end of the stack.

The end of the range of a DO is determined as follows, When a new label number is
defined, this is checked against the end label number of the innermost DO. If it matches,
then the innermost DO is terminated, and the same check is continued for the next outer

DO. This process terminates when the current label number is not the same as the label

number of the DO in the top DO-list. At the end of a program unit, if there is still any record

on the DO-list, an error message is generated.

The DO-list is formed with the DOENTRY record of the form:

OOENTRY = PACKED RECORD

CDNTRDLVAR : *SYMBOL; (x POINTS SYMBOL TABLE ENTRY OF
CONTROL VAR | ABLE x)

STEPAMOUNT,
UPPERAMOUNT : DIM; (x STEP AND FINAL VALUES x)

STMTLABEL, (x FORTRAN LABEL THAT ENDS THE
THE RANGE OF THE LOOP x)

PCDOELABEL : INTEGER: (x PCDOE LABEL INSERTED WHERE
THE DO-LOOP BEGINS x)

PREV | DUS : tDOENTRY; (x POINTS TO NODE OF PREVIOUS
NESTED DO x)

STEPKIND,
UPPERKIND : BOOLEAN; {x TRUE IF THE STEP OR UPPER AMOUNTS

ARE GIVEN AS CONSTANTS,
FALSE IF AS VARIABLES, x)

END;

22.1 Do Loop Initialization

Procedure DOSTATEMENT scans and processes a DO statement. It creates an entry
in the do-list, gets the FORTRAN label that terminates the range of the do-loop and inserts

it in the entry just created, processes the control part of the do-loop by calling procedure

DO_ CONTROL and generates a P-Code label indicating the beginning of the do-loop.

In procedure DOCONTROL, the control variable is located or inserted in the symbol
table. Code is generated for the computation of its initial value and storage In the
variable% memory location. The values or addresses of the final and increment values are

saved in the most recently created DOENTRY record.

The initial value can be an integer expression, but the increment amount and the final

22.1 Do Loop 65

value must be an integer constant or integer variable. The default value of the increment

amount is 1 if none is specified.

22.2 Do Loop Termination

Procedure CLOSEDO generates cocie for the termination of a do-loop. It is called by
procedure BLOCK each time a FORTRAN label is found in the source code, in order to check

if the label just found corresponds to the FORTRAN label that terminates the range of a do-
loop, stored in the most recently created entry of the DO-list. If it does, code is generated
to Increment the control variable and test for the termination of the loop.

Once code for the current do is generated, the previous entry in the stack becomes
the new CURRENT and it is checked if the label in LABNO also indicates the end of its

range. If it is so, code is also generated for its termination. This is repeated until the label
in LABNO is not the end of the range of the current DO record.

This procedure also checks the kind of the statement that terminates the loop and

gives an error if it is one of the following: RETURN, PAUSE, STOP, DO, GOTO and arithmetic
IF.

The generation of code for the termination of the loop is done in procedure

GENCODE_FOR_DO.

. 22.3 DO loop example

FORTRAN:

do 10 i=3,5,2 + DO statemment

code

10 cont nue + End of the range of the loop

P-Code:

LOC | 3

STR1, 3,500 + Store initial value of control var
LZ LAB + P-Code label to mark beginning of loop

code for statements in
the range of the do-loop

L001, 3,590 + Load value of control variable
INC 1,2 + Increment it

STR 1I,3,500 i Save i t
LOOI, 3,500 + Reload it
LOC 1 5 + Load final value

GRT | + Compare them
FJP L2 + Jump back if stillsmaller

66

23. GOTO statements and statement labels

FORMAT statement labels are entered both in the label table and the symbol table.

All other labels are inserted only in the label table. The first time a label occurs, a P-code
label is allocated for it and inserted in the label table.

The check as to whether a statement label referenced is defined or not can be made

only at the end of a program unit, since the LHS and RHS occurrences are processed

independently. Procedure LABELLHS CHECK is called at the end of every program unit
to search through the label table. For each label used only on the RHS but not on the LHS,
a warning is given and the P-Code label is generated at the end of the code for the

program unit with traps. Jumps to the undefined statement labels during execution will
then cause a halt.

The three kinds of GOTO statements are processed as follows:

23.1 unconditional GOTO:

A simple UJP instruction is made to the corresponding P-Code label.

23.2 computed GOTO:

This compiles into the XJP instruction, which corresponds to the CASE statement of
PASCAL. First, code to load the branch variable are generated by calling procedure

LOADVAR, which takes care of cases that the variable is simple, dummy or is an array

element. The XJP instruction is then generated, with the branch table immediately
following. In it, the UJP's for the list of statement labels are made, The form of the P-
Code generated Is as follows:

FORTRAN statement: GOTO (18,20,38},|

P-Code: LOO 1,1,500
XJP L40

L40 OEF O

L41 OEF 2

L42 LAB

UJP L111

UJP L22

UJP L33

L43 LAB

call to exec error routines

Correspondences: L11- 10
L22 - 20

L33 - 30

500 - address of I

23.3 GOTO statements and statement labels 67

23.3 assigned GOTO:

Because P-Code labels referenced in P-Code jump instructions must be label names,
code for this FORTRAN statement is somewhat inefficient.

There are two ways this statement could be compiled into P-Code. The first is to
use the XJP instruction, which is like transforming the assigned GOTO statement into the
corresponding computed GOTO. The second method, which is the one used, does not use

XJP, and generates denser P-Code. The label variable Is multiply loaded (by call of

LOADVAR as in above) and its value compared one by one with each statement label in the
list until equality is found. Then the corresponding jump is made. An example of the code
generated is:

FORTRAN statement: GOTO J, (18,28, 30)

P-Code: LOO I, 520
LOC 10

NEQ

FJP L11 s if I=18, jump to LI11
LOO 1,520
LOC 20

~ NEQ

FJP L22 +1 f1=20, jump to L22
LOD 1,520
LDC 30

NEQ

FJP L33 : if 1=38, jump to L33
call to exec error routines

Correspondences: L11- 10
L22 ~ 20

L33 - 30

520 - address of J

68

24. The arithmetic IF and logical IF Statements

24.1 logical IF

The logical IF is the only type of. FORTRAN statement that is compound. The

compilation is separated into two parts. The first part (procedure LOGICALIF) processes
the logical expression enclosed by the parentheses. Procedure LOGICALEXPR is called

which will generate P-code that evaluate the IF condition and put the result on top of the

stack. The outermost pair of parentheses is not checked here since they have been
checked inside procedure CLASSIFY. The global variable IFDEST serves as a flag to

indicate whether current processing is inside a logical IF statement. It is initialized to -1 in

procedure INITBLOCK. When a logical iF statement is encountered, it is set to the number

of the P-Code label which will be generated at the end of the whole IF statement. Code is

generated to jump to this label if the IF condition is false.

The second part is compiled as an independent FORTRAN statement, the only
difference being that IFDEST is set, and consequently a new statement is not read in from

the source file. A check is made if the type of the statement is among those allowed as

the second part of a logical IF statement. After the second part of the logical IF is
compiled, the P-Code label IFDEST is generated and IFDEST Is reset to -1.

Note that because the second part is processed as an independent statement, other

statement processing procedures cannot assume that the lexemes for the statement start
at position 1.

24.2 arithmetic IF

The arithmetic expression in the first part of this IF statement is processed by

calling procedure ARITH, which will generate the P-code to evaluate the arithmetic

expression and put the result on top of the stack. Again, the outer pair of parentheses is

not checked since they are checked inside CLASSIFY. ..

Note that because of the 3-way branch, two tests have to be made of the value on

top of the stack. Since the address disappears after the comparison, code is first

generated to store the top-of-stack value in a temporary location. Then follows code to

make the tests and do the jumps. The form of the P-Code generated is:

FORTRAN statement: IF (...)18,208,38

(Code to evaluate expression and
put result on top of stack)

STR 1,1,504 sstore result on top of stack
LDC,
LOD 1,1,584 reload i t
GRT

FJP L11 1if less than 0, jump to L11
LDC 1,8 + load ©

LOD 1,1,584 reload expression
NEQ

FJP L22 +if equal to 0, jump to L22
UJP L33 s jump to L33

24.2 The arithmetic IF and logical IF Statements 69

Correspondences: L11- 10
L22 - 20

L33 - 30

504 - temporary location selected

(In this example, the arithmetic expression is assumed to be of
type integer.)

70

25. The PRINT statement

The PRINT statement was intially written for use in debugging before the runtimel/O
was working. It currently keeps track of whether files are open or not using its own
procedure, OPENFILE. When the run-time is eventually linked in as an external, separately

compiled procedure, it will use those file opening routines.

Procedure OPENFILE generates code to REWRITE (open for output) the file

corresponding to the device number given if it is not already open. User file numbers -1,

-2, -3, -4, -5, -6 correspond to PASCAL run-time files INPUT, OUTPUT, PRD, PRR, QRD, QRR.

File number 0 corresponds to FILEO, file number 1 to FILE1, etc.

The normal way to print a numerical expression would be to load the file address, call

ARITH to load the value on the stack, and the generate a call to WRI (write integer) or
WRR (write real). The problem with this is that if the expression contains complex :

numbers, it is necessary to do at least one STORE during the expression evaluation. After
a STORE, the stack must be empty, which it wouldnt be if you had already loaded the file

address. therefore the sequence of events is:

If the next lexeme is a string, generate a LCA followed by a CSP WRS (write string);
otherwise:

1) Call ARITH.

2) If the expression was complex, load the file address; then load first the real part

and then the imaginary part from RESULTLOC (see Section 17) generating a call to WRR
for each element.

3) For regular reals and integers, first store the value that was left on the stack In a

temporary location, then load the file address, then load the value, and finally generate a
call to WRR or WRI.

25.1 The PRINT statement [a

25.1 Example

FORTRAN: PRINT ’'X=',5:1,'Y=",(3.,2.)

P-code:

LOA 1 13 s load address of file OUTPUT on the stack
CSP SiO

LCA ’X="'

LOC | 2

LOC | 2

CSP WRS

CSP EIQ suri te 'X=’
LDC | 5

STR | 3 500 sstore 5 at temporary location 500
LDA 1 13

CSP S10

LOO | 3 500
LDC | f

CSP WRI

CSP EIO surite 5 in field of length 1
LDA 1 13

CSP S10

LCA ’Y="'

LOC I 2
LOC | 2

CSP WRS

CSP EIO suri te 'Ye'
LOC R 3.0

STR R 3 504
: LDC R 2.0

STR R 3 508

LDA 1 13 s load 3.0 and 2.0 from locations 504 and 508
CSP SIO

LOO R 3 504
LOC | 14

CSP WRR suri te 3.0
LOO R 3 508

LDC | 14

CSP WRR surite 2.0
CSP EIO

CSP SIO

CSP WLN send of line
CSP EIO

72

26. FORMAT Statement Processing

FORMAT statements are processed In two parts. First, the FORMAT statement Is
scanned and the information for the FORMAT statement is entered in a created FORMTLIST

record. The list of these records about the FORMAT statements in the various program

units is pointed to by the global variable HEADFORMTLST. The structure of the FORMTLIST
record is:

FORMTLIST= RECORD

PTRFMTSTR : ftFORMTSTR;(x POINTER TO THE FORMAT STRING LIST x)
NEXT: MFORMTLIST:
ADDRESS,

- LEVEL : INTEGER; (x ADDRESS WHERE FORMAT STRING IS STORED x)0;

The FORMAT string specification is also saved In a list formed with records called
FORMTSTR with the structure:

FORMATSTRING = PACKED ARRAY (1..MAXCHARINLCA] OF CHAR;

FORMTSTR = RECORD

- STR : FDRMATSTRING; (x FORMAT STRING x)
NEXT: TFORMTSTR;

END:

The purpose of this second list is to save space because it Is not necessary to acquire

much more space than the maximum length of a FORMAT specification can have. Only
increments of MAXCHARINLCA units of storage need be allocated by the compiler.

MAXCHARINLCA is the limit on the length of the literal allowed in the P-Code LCA
instruction. Currently, it is 64. Thus, another advantage of this scheme Is that the
characters on each record can be loaded by a single LCA instruction.

26.1 The FORMAT Statement

Procedure FORMAT STMT scans and processes a FORMAT statement. It gets the
label of the FORMAT statement in character form and inserts it into the symbol table

. Indicating it is a FORMAT label, An address is allocated to the FORMAT label which holds the

address of the location where the FORMAT string specification is stored.

A new entry in the list of formats, FORMTLIST, is created and the following
information is obtained and inserted: 1) the address and level allotted to the FORMAT label

_and 2) the pointer to the FORMAT string specification list.

The FORMAT string specification is copied Into the FORMSTR list character by
character. Any unused space in the last FORMTSTR record is cleared to blanks.

26.2 Initialization of Formats

Procedure INIT FORMATS is used to generate code for the loading of the FORMAT
string specifications-&to memory at execution time. This procedure is called by procedure

VARINITIALIZATION which Is in charge of all the initialization of variables for the compiler.
(See Section 9.2, Procedure VARINITIALIZATION).

26.2 FORMAT Statement Processing 73

For each FORMTLIST record, procedure INIT FORMATS generates a series of LCA-
LDA-MQOV Instructions according the length of the FORMTSTR list. In each sequence of the

three instructions, the segments of each FORMAT string stored in the FORMTSTR records
are moved to be adjacent to each other in a block starting at address DISPLACEMENT,
level 3. The LDA-STR instructions then follow which stores the address where the FORMAT

string begins at the address of the FORMAT label.

74

27. Read and Write Statements

27. 1 Run-time I/O routines

FORTRAN allows lists, loops, etc. within the Read and Write statements which allow

fairly arbitrary complexity of variable sequences. in order to manage this complexity, the

implementation conventions use multiple calls to system routines listed below:

27.1.1 Initialzation of i/O routines

The run-time routines requires initialization at the start of execution of any FORTRAN
program. Therefore, a call to

FILE1029

is always generated at the beginning of a FORTRAN program: This initializes the file table
which describes the status of each file or device. All of them are assumed to be closed.

The file to output execution error messages is open. An error flag for the I/O run-time
routines Is initialized.

27.1.2 Initialization of single 1/0 statement

One call to an initialization routine before executing each Read/Write statement is

required before any data transmission call can be made.

REAO 1826
WRIT1023

Parameters: integer device number and address of FORMAT stiri ng.

The device (or file, as the case may be) is opened if not already opened in the

corresponding mode. In output, the cursor to the I/O buffer is initialized. In input, the first

) line is read into the I/O buffer. if the FORMAT pointer is not nil (unformatted I/O), the
variables for processing the FORMAT string are initialized.

27.1.3 Data transmission

Each call transmits one value, using one entry from the FORMAT description. These
calls may be embedded In loops within the calling program, such loops being invisible to
the 1/0 routines.

REAOV028

WR | TV025

Parameters: address of data value, size of data value in bytes
and coded type of data value (Binteger,lreal,2 logical).

These routines scan the FORMAT string until the next I/O field is found, and service

27.1.3 Read and Write Statements 76

the FORMAT string’s contents as it scans past them. The value is transmitted according to

the field description (which also implies the type of the data value), taking into account

the size of the variable given as the 2nd parameter. If I/O is unformatted, then the 3rd

parameter (type) Is taken into account to determine the desired conversion,

27.1.4 Termination)

These calls finish the transmission for each Read/Write statement, release buffers

and return an error code. Any further i/O has to begin with initialization calls.

REAOT027

WR1 TT024

Parameter: address of indicator,

The FORMAT string is scanned until the end or the next I/O field if it occurs first. In

output, the I/O buffer Is written out. The indicator is a quarter-word and is set to
0. 1/0 perceived correct
1. I/O error detected

2. I/O end of fiie detected

27.1.6 Rewind

Lastly, a call to

REW| NO30

parameter: file number

is generated at a REWIND statement in the FORTRAN source program: This causes a reset
if the file has been reset before, or a rewrite if the file has been rewritten before. This

enables the user to start at the beginning of the file again for the same operation on the
file.

2 7.2 Compiler Routines

Procedure IOSTATEMENT scans and processes the input/output statements.
Parameter READING to this procedure indicates the kind of I/O statement, being TRUE for a
read statement and FALSE for a write statement.

- The general form for the I/O statements is :

READ (DEVICE, FORMAT) LIST
READ (DEVICE) LIST + i f unformatted

where LIST is a list of variables that may only include simple variable names, array names

and array elements. DEVICE is the device number and FORMAT may be a FORMAT statement

label or an array name.

For the I/O of arrays, when no control variable is explicitly established, the two

temporary locations remembered in MAXPRINTARRAY and CONPRINTARRAY are always

27.2 Read and Write Statements 76

obtained when an |/O statement is processed. These temporary locations contain the

upper bound (number of elements in the array) and index respectively for the array. They

are released at the end of processing of the i/O statement.

Procedure IO STATEMENT gets the device number and the FORMAT specification
(either a FORMAT statement label or an array name), and generates code to call the run-
time routines for the initialization for the |/O of the current statement, code for data

transmission of the variables (by calling procedure LIST PROCESSING) and code to call
the routine for the termination of the I/O for the statement.

Procedure LISTPROCESSING processes the variables in an i/O statement. It is
called by procedure IO STATEMENT the first time, and by itself recursively when a do-
implied or a list of variables surrounded by parentheses is found inside the list being

processed. Parameter IN_00 IMPLIED indicates if the list of variables being processed
belongs to a do-implied or is just a list of variables surrounded by parentheses.

For each element of the list, LISTPROCESSING takes some specific action. If it is a
simple variable, array element or an array, procedure VARNAME is called, If It Is a do-

implied list, (procedure CHECK DO IMPLIED detects that), proceciure DO IMPLIED is
called to process it. If it is-a simple list, procedure LIST PROCESSING is called
recursively to process this inner list, with IN DO IMPLIED set to false.

Procedure VARNAME generates code for the I/O of a simple variable, array element or
a complete array. For the simple variable or array element, the parameters to the system

routine that does the data transmission are loaded and then a call to it is generated. For

the complete array, a special loop in P-Code is generated. This loop is preceded by, in
their order, code to compute the number of elements of the array and store it in

MAXPRINTARRAY, code to initialize CONPRINTARRAY, the indexing location, to 0 and a P-
Code label to mark the beginning of the loop. Inside the loop are code to load the
parameters for the system routine and a call to it. The address of each element of the

array is computed by loading the initial address of the array and then indexing It with the

value at CONPRINTARRAY. At the end of the loop are code which increment the index and

test its value against that in MAXPRINTARRAY for loop termination conclition, Co

Procedure DO IMPLIED processes an implied do. First, it processes the control part

) of the do-loop using procedure DO CONTROL; then it generates code for the list of
variables in the do-implied by calling procedure LIST PROCESSING with the parameter

IN. DOIMPLIED set to true; after this it generate&ode to close the do-loop using
procedure CLOSEDO. Each do-implied has associated a dummy FORTRAN label (above

100000 to avoid any possible duplication with an existent FORTRAN label) that is used by

“the CLOSEDO routine. These dummy labels are not inserted in the label number table.

27.3 Code Generated

FORTRAN program:
INTEGER C(3,3),P (5)

. « fNOre code..

READ (4,8) (C, (P(I}, I=N,M,1))

P-Code generated:
MST 2,8,8 + Initiation.
LDC | 4

PAR | + Load device number

27.3 Read and Write Statements 77

LOO A, 3,564

PAR A ; Load address of FORMAT string
cup P,5,READIB26 » Call to initialization routine >

LOC | 3 s I/O of array C
LDC | 3

MPI

STR I, 3,556 s Compute size of array and store it in
LDC | O : MAXPR I NTARRAY

STR I, 3,568 + Load initial value in CONPRINTARRAY

LZ LAB s Label that signals beginning of loop

MST 2,12,12
LDA 3,500

LOD 1,3,560
IXA 4

PAR A + Load address of array element
LDC | 4

PAR | + Load size of data value
LDC | O

PAR | + Load coded type
cup P,7,READVOZ28 + Call to data transmission routine

LOD I, 3,568 + Load control variable
INCI,1 s Increment it
STR | ,3,568 + Save it
LOD 1, 3,560 + Reload it
LOD I, 3,556 + Load final value (from MAXPRINTARRAY)
GEQ | + Compare them
FJP L2 + Jump back if not greater or equal

LOD 1,3,572 + Do-implied with I/ O of variable P
STR 1 ,3,568 + Load initial value and save it in

L3 LAB : control variable

MST 2,12,12
LDA 3,536
LOO 1,3,568
DECI,1
[XA 4

PAR A + Load address
LDC I 4

PAR 1 + Load size |
LDC 11

PAR I s Load coded type
CUP P, 7, READV028 : Call to data transmision routine |

LOD I, 3,568 « Code to close the loop |
INC I,1
STR I, 3,568
LOOI, 3,568
LOO 1,3,576
GRTI

FJP L3 |

MST 2,4,4 + Termination of the 1/0
LDA 3,436 *
PAR A + Load address of indicator

CUP P, 3,READTB27 + Call to termination routine

78

28. The FORTRAN run-time package

The FORTRAN run-time routines are currently mostly I/O routines for the execution of
READ and WRITE statements. These routines are written in PASCAL and make use of the

lowest level PASCAL [/O run-time routines. The FORTRAN run-time will eventually also

include trigonometric functions, which will be written in S-I assembly language.

The 1/0 routines require the double precision facility in PASCAL to properly process
the 1/O of double precision variables in FORTRAN. Since this facility is not yet available,
double precision I/O are processed only up to the accuracies allowed by single precision.
The I/O of quarter-and half-word variables are completely handled.

The 1/0 routines are stored in P-Code form and copied to the end of the main P-Code
file when necessary. They will eventualiy be stored in loader format along with the

trigonometric functions, and linked to the main program by the linker,

28.1 Structure of the 1/0 package

The separate parts that make up the I/O run-time package are listed with their
procedures in the order as they appear in the program:

(A) error procedure - This outputs I/O execution error messages and sets
error f lags.

(1) procedure ERROR

(B) routines to handle the operations of the 1/0 buffer,
(1) procedure CALLNEWOUTLINE
(2) procedure NEWOUTLINE
These write out the buffer as the next line in the output file.
(3) procedure CALLNEWINLINE
(4) procedure NEWINLINE
These input the next line in the input file into the buffer.
(5) procedure PUTCHAR - This puts the next output character to the 1/0

buffer,
(6) procedure CETCHAR -~- This gets the next input character in the [1/0

buffer.

(C) procedures to process the FORMAT string.
(1) procedure NEXTFIELD ~- When called, it will scan the format

string from where it was before, processing what it encounters until
it gets to the next 1/0 field. The specifications of the field are
returned.

"(D) procedures for output conversions of data values.
(1) procedure PRIFIELD - prints an integer in a I-formated field.
(2) procedure PRFFIELD - prints a real in an F-formated field.
(3) procedure PREFIELD - prints a real in an E-formated field.
(4) procedure PRGFIELD - prints a real in an G-formated field.
(5) procedure PRLFIELD - prints a boolean in an L-formated field.
(6) procedure PRAFIELD - prints the contents of a variable in an

A-formated field,

(E) procedures for formated input conversions of data values.
(1) procedure REIFIELD - reads in an integer in an I-formated field.
(2) procedure REEFGFIELD - reads in a real in an E-, F- or G- formated

field, the effect being defined as identical.
(3) procedure RELFIELO - reads in a boolean from an L-formated field. .

28.1 The FORTRAN run-time package 79

(4) procedure REAFIELD - reads in the characters in an A-formated field
to a variable.

(F) procedures for unformated input conversions of data values.
(1) procedure UNFINTINPUT - scans and inputs an integer.
(2) procedure UNFREALINPUT - scans and inputs a real number.
(3) procedure UNFBOOLINPUT - scans and inputs a boolean.

(G) procedures called externally.
(1) procedure WRITINI (P-Code name is READ10261
(2) procedure WRITTRM (WRITI823)
(3) procedure WRITVAL (WRITV@Z5)
(4) procedure READINI (READIB26)
(5) procedure READTRM (READT@27)
(6) procedure READVAL (READVBZ8)
(7) procedure FILEINI(FILEIB23)
(8) procedure REWIND (REWING36)

In WRITVAL and READVAL, for formatted I/O, (C) NEXTFIELD is first called, and then

the appropriate procedure In (D) or (E). For unformated I/O, in WRITVAL, the standard field
widths is assigned and the appropriate procedure In (D)(1), (3) and (5) Is called. In
READVAL, the appropriate procedure in (F) is called. Note that the procedures in (D),
(E) or (F) treat the transmitted data value as double word size. WRITVAL will do the
necessary shifting for smaller sized data values before calling (D). READVAL will do the
necessary shifting after calling (E) or (F). PRAFIELD and REAFIELD, however, are

exceptions since the number of transmitted characters is different for variables of

different sizes (four characters per single word, 9 bits for each character), These two

procedures are called from WRITVAL and READVAL with an exira parameter that gives the
size information of the variable.

28.2 Processing the FORMAT string

The entities allowed in a FORMAT string are: numbers, Hollerith string, literal string

(enclosed in quotes), comma, slash, X, (,), P, and the field specifications for I, E, F, G, L, A
fields. Items enclosed in parentheses form a group. The number of groups in the same
level is not limited, but only three levels of grouping are allowed, including the outermost

group which is the FORMAT string itself.

) Procedure NEXTFIELD is in the form of a loop which scans and processes one of the
above entities each round, Two booleans COMMAED and COUNTED keep track of the
syntactic information in checking for syntax errors, The comma is not mandatory in the

FORMAT string in cases where its absence causes no ambiguity.

Variables GPCOUNTZ2 and GPCOUNT3 keep track of the current position of the cursor

within groups. When GPCOUNTS is 0, the cursor is not within a 3rd level group. When the

cursor is within a 3rd level group, GPCOUNT3 indicates the number of times it still has to
scan across that group. It is decremented each time the end of the 3rd level group is
reached. Same holds for GPCOUNT2 and 2nd level group. GPBEGIN1, GPBEGIN2 and
GPBEGIN3 give the starting position of the current group of the corresponding level.

When scanning reaches the end of the FORMAT string and still has yet to look for the

next I/O field, back-up has to occur to the beginning of the last 2nd level group. For this

purpose, LASTGPPOS and LASTGPREP will hold te starting position of the last 2nd level

28.2 The FORTRAN run-time package 80

group (or the 1st level group - the FORMAT string itself, if no 2nd level group exists) and

its repetition factor.

To prevent NEXTFIELD from looking for a field indefinitely when in fact no field exists

from its back-up point to the end of the FORMAT string, the boolean variable FIELDFOUND is

: used. Whenever the end of the FORMAT string is reached, there will be back-up only if

FIELDFOUND is true. FIELDFOUND is set false when scanning the beginning of the FORMAT
string and at the beginning of every 2nd-level group that can possibly be the back-up

position for the FORMAT string. It is set to true whenever a field is found.

At the end of the I/O statement (when procedure WRITTRM or READTRM is called),
NEXTFIELD has to be called the last time until scanning reaches the next I/O field or the

end of the FORMAT string. Here, FIELDFOUND is first set to be false before calling
NEXTFIELD so that no backing up is done at the end of the FORMAT string.

28.3 1/0 management

An |/O buffer of fixed length (currently 256 characters) is maintained. This stores
the next output line being built, or the next input line from the input file. In output, the

buffer is written--to the output file when a new output line is specified. in input, the next

line from the input file is read to the buffer when the next input line is specified.

The length of the output or input line is variable. If the output line exceeds the
length of the I/O buffer, a next output line is automatically created to accomodate the
extra characters. If the input line exceeds the length of the I/O buffer, the input line still

assumes its length, but the characters to the right of the line limit that cannot be
accomodated within the buffer, are all taken to be the blank character.

28.4 Internal-external correspondence of data values

In standard FORTRAN, the type of conversion in formatted 1/0 is determined by the
field-type in the FORMAT string, and not according to the type of the variable in the READ

or WRITE statement. The same content (bit pattern) of the location in I/O is to be treated
as different types of data value according to the field-types specified. (This is necessary

} since, for instance, no string variable exists but the character type field (A-field) does

exist.) The FORTRAN user has to make sure that his variables in formatted I/O have the
right corresponding field type in the FORMAT string for the right values to be transmitted.

In the implementation, the data type

|OLOC = RECORD

CASE INTEGER OF

B: (INTVAL: INTEGER);
1: (REALVAL: REAL);
2: (CHARVAL: ARRAY [1..4) OF CHAR) ;
3: (BOOLVAL: BOOLEAN)

END;

allows access to content of a memory location as different types of data values. The

above default is implemented by making a variable of this type as the reference parameter

for the I/O variable in the externally called procedures READVAL and WRITVAL. After

28.4 The FORTRAN run-time package 81

calling NEXTFIELD, the type of conversion is known from the field type, and the

corresponding conversion procedure is called using the suitable variant field as the

parameter.

The size of the variable (one of the parameters in READVAL and WRITVAL) is taken

account by shifting the value prior to output conversion or shifting after input conversion.
In formatted I/O, the form of the input or output field has no correspondence to the
variable size. In output, E-field and D-field differ only with respect to whether 'E' or 'D'
indicates the exponent. In input, 'D' or 'E' makes no difference in indicating the exponent.

28.5 Output conversions of data values

All output conversions can be treated as formatted, unformatted output being simply

formatted output with standard field sizes for the different types. The standard field

sizes are those that allow the full content of the variable location to be displayed. Thus,

they vary with the size of the variable.

In all output conversions, variable I0BUFCURS always points to the left boundary of

the output field. Another variable W1 indexes across the width of the field. The FOR loop

is always used, and W1is the control variable.

Here are details for the output conversion of real numbers:

The real number is first normalized to >=0.1and < 1.0, the power being accumulated
. in the integer variable E. Rounding is performed at the appropriate place by adding 0.5 to

the appropriate power of ten to the digit after the least significant printed digit.

Truncation then does the desired rounding.

For conversion to character form, the normalized mantissa is multiplied by 10 **1 1

(given MAXINT = 34359738367 has 11 digits) if <.34359738367, and by 10 ** 10
otherwise, to convert to an integer. This arrangement is made to preserve as much

accuracy as possible. The output characters are then made from this integer. This integer

only gives the significant digits. The position of the decimal point is monitored by E, taking

into account the exponent to be printed. Thus, even if the output mantissa has more than

1 1 digits before the decimal, the less significant digits are made all zero.

The algorithm for output conversion of E-field (similar for F-field with slight

modifications) is: (W, D and S are the field descriptors)

1. IF (8> (W-D-5)) OR (OUTREAL<@) AND (8 ¢ (W-D-6) J OR
(S> (W-D-5)) OR (OUTREAL<8) AND (S< (11-D-6))

THEN print x’ across field
(field not large enough)

2. ELSE IF (DUTREAL <MINREAL} A N D (OUTREAL > -MINREAL)

THEN print zero
(MINREAL is the smal lest magnitude of real number al loued.
Note that this is different from the smallest representable
rea| number, which has the lowest power but without the
mantissa normalized,)

3. ELSE (a) get sign if negative
{b) normal ize OUTREAL to >= 0.1 and < 1.0, and

accumulate the power in variable E

28.6 The FORTRAN run-time package 8 2

(ch) | F ((S+D) >=8) A ND ((5+D) <=18) (Here, 10 is
largest number of significant digits stored in
a word of memory)

THEN OUTREAL := OUTREAL t 8.5 %x 1 0 x (-(5+0)})

(Do rounding. (540) is the number of significant
digi ts printed.)

(d) | F OUTREAL > 1.0 (increase to > 1.0 due to rounding)
THEN BEGIN OUTREAL:=0UTREAL/ 10;

E :=Et1END

(e) | F OUTREAL < .34353738367

THEN CURTRUNC : = TRUNC{(OUTREAL x (18 xx 11})
ELSE CURTRUNC : = TRUNC(OUTREAL x (18 %x 10))

(f) output digits from CURTRUNC, the dicimal point being
governed by S. |

(g) E:=E - S;
print the exponent according to E.

28.6 Input conversion of data values

In unformatted input conversion, the input file is scanned line by line until the next

non-blank character is found, and decoding starts from this position. Blanks and end-of-
line separate input entities.

In formatted input conversion, variable IOBUFCURS always points to the left boundary

of the Input field. Variable W1 indexes across the width of the field. For integer and real

inputs, blanks in a field imply 0. For real input, presence of '.! overrides the implicit

decimal place indicated by D in the field specification. Presence of the exponent
overrides the effect of the scale factor S. Effects of D-, E-, F- and G- fields are defined

as identical in real input.

The loop that processes the input characters (with one character look-ahead) is

always of the form:

WHILE (BUFFERI[W1} IN [set of looked-for charl) ANO

(Wl is within boundary) DO
BEGIN

process this character
WE t=UWl + 1

END;

(Where boundary refers to the field boundary (or the decimal boundary within the field) in

formatted input and line boundary in unformatted input.)

This arrangement requires that the input buffer be declared one unit longer to

prevent out-of-bounds error of the buffer index. Another possible arrangement (not used)

which does not entail this extra declaration requires an extra flag and less straigtforward
structure:

DONE := FALSE;
WHILE NOT DONE DO

IF BUFFER [W1] IN [set of looked-for char-1
THEN BEGIN

process this character
Wl ¢= Wl t 1;

IF Wl not within boundary

28.6 The FORTRAN run-time package 83

THEN OONE : = TRUE:

END

ELSE DONE : = TRUE:

Input digits are always decoded into an integer variable, even if the digits belong to
the mantissa of a real number.

To check for overflow error and to ensure that any representable integer can be

input, the scheme used is: (Given MAXINT= 34369738367)

KEEPNUM: = 0:

WHILE (NXTCHAR in('8'..’3'1}) DO
BEGIN

IF (KEEPNUM > 3435973836) OR
((ININT = 3435973836) AND (NXTCHAR IN{’8',’3']))
THEN over f | ow-error

ELSE KEEPNUM : = KEEPNUM x 10 + (ORD (NXTCHAR)-0ORD('8"))

get NXTCHAR
END:

In reading real numbers, the input is decoded into the integer variable KEEPNUM

which keeps the mantissa and integer variable E which keeps the exponent such that

KEEPNUM **E gives the correct real value. In this case, too many digits in the mantissa
should not cause overflow if still representible as a real number, Here, the decoding part
of the while loop that processes the digits in the mantissa is:

IF (KEEPNUM > 3435973836) OR
((KEEPNUM = 3435973836) AND (NXTCHAR IN{’8&’,’3’1))
THEN E := E + 1

ELSE KEEPNUM : = KEEPNUM x 10 t (ORD (NXTCHAR)-0ORD(’@’));

(If current digit is after the decimal, then increment of E above is not necessary.)

In practice, the IF condition above can be replaced by just IF (KEEPNUM >=
3435973836) for greater efficiency without much loss of accuracy.

84

2 9. References

[NAJ75] K. Nor i, U. Amman, K. Jensen, et al., “PASCAL P Compiler
Implementation Notes”, ETH Zurich, 1975.

[ANS64] American Standard Association,. X3.4.3: “FORTRAN vs. BASIC
FORTRAN”, Comm. of the ACM, Vol. 7, No. 10, October 1964,
pp. 5391-625.

TANS661 ANSIT: “USA Standard FORTRAN”, USA Standards Institute, USAS
X3.9-1966, New York 1966.

[ANS71] Americal National Standards Committee X3J3, “Clarification of

FORTRAN standards - second report”, Comm. of the ACM, Vol. 14,
No. 10, October 1971, pp. 628-642.

[ANS76] American National Standards Committee X3J3, “Draft Proposed
ANS FORTRAN’, Sigplan Notices, Vol. 11, No. 3, March 1976,
(254 pages).

[Brl68] Gary Y. Breitbard and Gio Wiederhold, "PL/ACME: An
Incremental -Compiler for a Subset of PL/1", Information
Processing 1968 (Proceedings of the 1968 IFIPS Conference,
Edinburgh), North Holland, 1969, pages 358-363.

(FiZ78] Jim Finnel and Pol le T. Zel Iweger, “The S-1 Multi-processor”,
DSL Technical Note 142, Stanford University, June 1978.

[(Gri713 David Gries, "Compi ler Construction for Digital Computers”.
John W i ley and Sons, 1971, pp. 304-312.

[Jel751K. Jensen, and N. Wirth, “PASCAL User Manual and Report”,
Spr inger Ver lag, New York, 1975.

[kew78] Arthur Keller and Gio Wiederhold, “S-l Intermediate Loader
Format”, S-1 project document LDI-8, 27Nov/8.

(Orgbt6] El liott 1.0rganick, “A FORTRAN IV Primer”, Addison-Wesley,
1966, p.48.

- [giw/7) Erik J. Gilbert and David W. Wall, “P-Code Intermediate
Assemb | y Language”, S-1 project document PAIL-3, 18JUL77.

[guwa78]) Erik J. Gilbert and David W. Wall, “Specification for Run-time
Suppor t for PASCAL”, S-1 project document PRUN-0, 28MAR78&.

-lwag781 David W, Wall and Erik J. Gilbert, “SOPAIPILLA Maintenance
Manua I", S-lI project document SOPADOPE-1, 23Mar78.

CWiB701 Gio Wiederhold and Gary Breitbard, “A Method for Increasing The
Modularity of Large Systems”, IEEE Computer, Vol. 3, no. 2,
March-Apr i | 1970, page 30.

35

APPENDIX:

NOTES ON RUNNING PCFORTAT W-AI:

Compiling and running a Fortran program using PCFORO involves keeping track of

a lot of files. So, it is better to use a DO file, namely FOR.DO[FOR,S1].

Due to line-length constraints, what the DO file does is: copy your file to the file
X.FOR[FOR,S1], alias to that area, do the necessary things, and then alias back to your
area to run the program. Therefore, the do program needs to know your PPN as well as
the name of the source file: (The source file can be on any area.)

DO FOR [FOR, S11]

?f= HYDRO.FOR

?p= 1,PN

This DO file assumes that the Fortran program is to be executed on the S1. SOPA
is run to translate the output P-code into S1 code. During execution on the S1
simulator, file OUTPUT will contains execution error messages, and file FILEO1 will
contain output written to device 1, FILEO2 to device 2, etc.

Specific breakdown of FOR.DO:

FOR(1l): copies source file to X.FOR, aliases to (FOR,S1)

FOR(2): X.FOR to X.PCO (PCFOR®)

FOR(3) : X.PCOt o X.LOI (SOPA)

FOR(4): al iases back to your area, runs X.LOI[FOR,S1]1(FSIM)

Various files are produced and reside in the [FOR,S1] area as the result of the
two-stage compilation of the Fortran program, apart from those that come from executing
the object program. They are:

X.FOR: copy of the original Fortran source program
X.LST: compilation | isting of the Fortran program (including

error messages)
X.ERR: this lists only the compilation error messages of the

For tran program
X.PCO: this contains the translated P-code of the Fortran

program

X.PS1:S0PA listing of the P-code to S1 code translation
X.LDI: this contains the executable S1 code output by SOPA

If the user wishes to run the various phases of the compilation separately, he
may construct separate 00 files without linking them together.

