

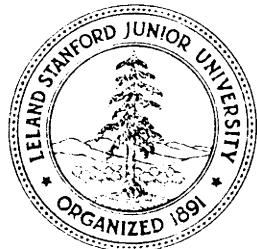
THE ERRATA OF COMPUTER PROGRAMMING

by

Donald E. Knuth

STAN-CS-79-712
January 19 79

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY



THE ERRATA OF COMPUTER PROGRAMMING

This report lists all corrections and changes of Volumes 1 and 3 of The Art of Computer Programming, as of January 5, 1979. This updates the previous list in report CS551, May 1976. The second edition of Volume 2 has been delayed two years due to the fact that it was completely revised and put into the TEX typesetting language; since publication of this new edition is not far off, no changes to Volume 2 are listed here.

The present report was prepared with a typesetting system that is now obsolete; please do not wince at the typography. All changes and corrections henceforth will be noted in TEX form on file ERRATA.TEX[ART,DEK] at SU-AI.

In spite of inflation, the rewards to error-detectors are still \$2 for "new" mistakes in the second edition, \$1 in the first edition.

Please do not endanger the author's morale by asking him about Volume 4. Thank you for your understanding.

1,10 throughout the book(s)

2/28/78 2

when the text of these books is on a computer I will try to be consistent in hyphenating compound adjectives like doubly-linked lists and storage-allocation algorithms, etc. . . . but until then, such lapses are not to be considered errors

1,2 line 1 1

5/27/78 3

Leibnitz \rightsquigarrow Leibniz

1,18 line -7

11/29/77 4

the theorem \rightsquigarrow that the theorem

1,18 line 16

11/29/77 5

3,... \rightsquigarrow 3,....

1,35 line 3, under the big pi

11/12/76 6

n , \rightsquigarrow n

The preparation of this report was supported in part by National Science Foundation grant MCS-77-23738, by Office of Naval Research contract N00014-76-C-0330, and by IBM Corporation. Reproduction in whole or in part is permitted for any purpose of the United States government.

1.41 displayed formula in exercise 32

2/28/78 7

n/c ↗ *n/c*

1.44 add a footnote (see p. v for style)

4/19/77 8

line 3 after (1): book. ↗ book.'

footnote for bottom of page: In fact, permutations are so important, Vaughan Pratt has suggested calling them "perms." As soon as Pratt's convention is established, textbooks of computer science will be somewhat shorter (and perhaps less expensive).

1.45 lines -4, -5(twice), -7, -15, -16

11/12/76 9

... ↗ ...

1.45 lines 3, 10, 11, 12, 21

11/12/76 10

... ↗ ...

1.50 exercise 21 line 1

7/31/76 1 1

Faa ↗ Fai

1.51 line 13

2/28/78 1 2

manner ↗ matter

1.52 line 6 after Table 1

8/25/76 1 3

Sxu-yuen ↗ *Sru-yian*

1.56 change in Eq. (17)

11/12/76 1 4

$-r$ ↗ r and r ↗ $-r$

1.57 Eq. (18)

7/31/76 1 5

$n \geq 0$. $\rightsquigarrow n$.

1.57 line after (19)

11/12/76 1 6

$-r \rightsquigarrow r$

1.66 caption to Table 2, replace third line by;

9/21/76 1 7

see D. E. Barton, F. N. David, and M. Merrington, *Biometrika* 47 (1960), 439-445; 50 (1963), 169-176.

1.72 line -4

11/15/78 1 8

$A_{n(k-1)} \rightsquigarrow A_{n-1)(k-1)}$

1.79 lines 8,9,10

6/25/76 1 9

Kepler, ... life. \rightsquigarrow Johann Kepler, 1611, who was **musing** about the **numbers** he **saw** around him [J. Kepler, *The Six-Cornered Snowflake* (Oxford: Clarendon Press, 1966), p. 21].

1.83 line -7

I J/29/77 20

use same style script F in this line as in line -6 (six places)

1.90 new generalized Eq. (29)

8/25/76 2 1

$(z/(e^z-1))^n = 1 - (1/(n-1))\binom{n}{n-1}z + (1/(n-1)(n-2))\binom{n}{n-2}z^2 - \dots = \sum_{k \geq 0} B_k \binom{n}{k} z^k / k!$ (29)

(convert this to usual format for displayed equations)

1.90 update to previous correction number 25

11/12/76 2 2

to appear, \rightsquigarrow 75-77,

1.91 replace lines 1-3 by the following new copy 8/25/76 2 3

The coefficients $B_k^{(n)}$ which appear in the last formula are called "generalized Bernoulli numbers"; **Section 1.2.11.2** examines them further in the important special case $n = 1$. For small k , we have $B_k^{(n)}/k! \cdot (-1)^k [n]_{n-k} (n-k-1)!/(n-1)!$, but when $k \geq n$ this formula breaks down since it reduces to 0 times ∞ . An analogous situation holds for the power series $(z/\ln(1+z))^n$, where the coefficient of z^k for $k < n$ is $[n]_{n-k} (n-k-1)!/(n-1)!$.

1.92 line -8 7/31/76 2 4

Faa \rightsquigarrow Fai

1.98 caption, line 2 7/31/76 2 5

2.11 \rightsquigarrow 2.10

1.103 line 3 7/31/76 2 6

Faa \rightsquigarrow Faà

1.110 three lines after (12) 6/25/76 2 7

$R_m \rightsquigarrow |R_m|$

1.111 line 8 11/15/78 28

mately 2 \rightsquigarrow mately $(-1)^{1+k/2} 2$

1.116 line -6 11/29/77 2 9

Analysis \rightsquigarrow A crude analysis

1.116 line -6 and Eq. (22) 11/29/77 3 0

$n^{n-1/2} \rightsquigarrow n^n$

1.117 line 5

11/29/77 31

three \rightsquigarrow two

1.118 exercise 5

11/29/77 3 2

$n^{n-1/2} \rightsquigarrow n^n$

1.125 line 2

11/16/77 3 3

is loaded. \rightsquigarrow are loaded.

1.126 line 1

J/16/77 34

The contents \rightsquigarrow A portion of the contents

1.126 line 7

11/16/77 3 5

is \rightsquigarrow are

1.127 line -19

J J/15/78 36

Overflow may occur as in ADD. \rightsquigarrow Same as ADD but with -V in place of V.

1.127 lines -18 through -13

11/15/78 3 7

move this paragraph in **front** of the SUB definition on the preceding two lines

1.134 line -12

4/19/77 3 8

MUL requires \rightsquigarrow **MUL**, **NUM**, **CHAR** each require

1.137 box 05

4/19/77 3 9

I \rightsquigarrow 10

1,150 lines -10,-9,-8

4/19/77 4 0

CON ↗ CON (4 times)

1,152 line 16

1 1/29/77 41

facilate ↗ facilitate

1,156 stylistic correct ions

6/14/77 4 2

line 2: i.e. ↗ e.g.

line 3: (X ↗ (Here X

line 5: sun. ↗ sun;

line 10: (E ↗ (This number E

line 22: the year ↗ that the year

1,198 lines 19-21

6/14/77 4 3

An illustration...See also the book ↗ See, for example, the book

1,229 line -11

6/14/77 4 4

F = 7 ↗ F = 9

1,225 line -9

6/25/76 4 5

about 1946 ↗ during 1946 and 1947

1,237 line -10

12/19/76 4 6

down an item ↗ an item down

up the stack ↗ the stack up

1,248 insert new paragraph after line 4

4/19/77 4 7

Further study of Algorithm **G** has been made by D. S. Wise and D. C. Watson, **BIT 16** (1976), 442-450.

1.258 line 4

9/21/76 4 8

we ↗ exercise 30 describes a somewhat more natural alternative, and we

1.270 new exercise

9/21/76 4 9

30. [17] Suppose that queues are represented as in (12), but with an empty queue represented by F = A and R **undefined**. What insertion and deletion **procedures** should replace (14) and (17)?

1.303 exercise 9 line 4

3/2/77 5 0

girl6 ↗ women

1.325 line 8

4/19/77 5 J

otherwise. ↗ otherwise, making the latter node the right son of NODE (Q).

1.332 new quote to insert *just* before Section 2.3.2

1/16/77 5 2

Binary or **dichotomous** systems, although **regulated** by a **principle**,
are among the most **artificial** arrangements that have ever been
invented.

--WILLIAM SWAINSON, *A Treatise on the Geography and Classification of Animals*, Sec. 250 (1835)

1.339 line 13

6/25/76 5 3

In all ↗ Furthermore TYPE (W) is set appropriately, depending on x. In all

1.382 line 2

12/19/76 5 4

there is a man now living having ↗ somebody now living has

1.398 line -1

5/27/78 5 5

with ↗ than

1.406 line -2

1/16/77 5 6

as ↗ informally as

1.406 line 11

5/27/78 5 7

-types ↗ -tuples

1.406 line 18

11/15/78 5 8

Polya ↗ Pólya

1.414 step A2 lines 2-4

2/28/78 5 9

unmarked, mark it, and if ↗ unmarked: mark it and, if (twice)

1.420 lines 14-15

9/21/76 6 0

[See the . . . 372.) ↗ An elaborate system which does this, and which **also** includes a mechanism for postponing operations on reference counts in order to achieve further **efficiency**, has been described by L. P. Deutsch and D. G. Bobrow in **CACM 19 (1976)**, 522-526.

1.420 line 17

11/29/77 61

see ↗ see N. E. **Wiseman** and J. O. **Hiles**, **Comp. J.** 10 (1968), 338-343,

1.437 line 1 8

6/25/76 6 2

For these reasons the ↗ A contrary example appears in exercise 7; the point is that neither method clearly dominates the other, hence the simple

1.445 line 11

1/16/77 6 3

each with a random lifetime, ↗ each equally likely to be the next one deleted,

1.446 new paragraph after line 6

1/16/77 6 4

Our assumption that each deletion applies to a random reserved block will be valid if the lifetime of a block is an exponentially-distributed random variable. On the other hand, if all blocks have roughly the same lifetime, this assumption is **false**; John E. Shore has **pointed** out that type A blocks tend to be "older" than type C blocks **when** allocations and deletions **tend** to have a somewhat first-in-first-out character, since a sequence of adjacent **reserved** blocks tends to be in order from youngest to oldest and since the most recently allocated block is almost never type A. This tends to produce a smaller number of available blocks, giving even better performance than the fifty-percent rule would predict. [Cf. **CACM** 20 (1977), 812-820.]

1.448 line -9

1/15/78 6 5

areas \rightsquigarrow areas of the same **size**

1.451 line 7

1/16/77 66

\rightsquigarrow ; John E. Shore, CACM 18 (1975), 433-440.

1.451 yet **anot** her addition after line 7

2/28/78 6 7

\rightsquigarrow ; Norman R. Nielsen, CACM 20 (1977), 864-873.

1.454 exercise 28

4/19/77 6 8

line 2: 5; for \rightsquigarrow 5. For
line 4: " \rightsquigarrow The execution time is **2u**."

1.456 line 8

6/25/76 6 9

V-1.] \rightsquigarrow V-1; and see especially also the work of Konrad Zuse, **Berichte der Gesellschaft für Math. und Datenv.** 63 (Bonn, 1972), written in 1945, Zuse was the first to develop nontrivial algorithms that worked with **lists** of dynamically varying lengths.]

1.456 line -7

12/19/76 7 0

is divisible \rightsquigarrow is not divisible

1.458

6/25/76 7 1

lines -15 thru -13: The A-1 . . . code; \rightsquigarrow The machine language for several early computers used a three-address code to represent the computation of arithmetic expressions;

lines -11 and -10: the A-1 compiler language \rightsquigarrow an extended three-address code

1.460 line 2

3/ 2177 72

The latter \rightsquigarrow Weizenbaum's

1.463 several changes

12/19/76 7 3

line 1: . \rightsquigarrow ,

line 4: older \rightsquigarrow other

new paragraph to be inserted after line 4:

A **related** model of computation was proposed by A. N. Kolmogorov as early as 1952. His machine essentially operates on graphs C , having a specially designated starting vertex v_0 . The action at each step depends only on the **subgraph** C' 'consisting of all vertices at distance $\leq n$ from v_0 in C , replacing C' in C by another graph $C'' = f(C')$, where C'' includes v_0 and the vertices v at distance exactly n from v_0 , and possibly other vertices; the remainder of graph C is left unaltered, its components are attached to the vertices v at distance n as **before**. Here n is a **fixed** number specified in advance for any particular algorithm, but it can be arbitrarily large. A symbol from a finite alphabet is attached to each vertex, and restrictions are made so that no two vertices with the same symbol can be adjacent to a common vertex. (See A. N. Kolmogorov, *Uspekhi Mat. Nauk* **8**,4 (1953), 175-176; Kolmogorov and Uspenskiĭ, *Uspekhi Mat. Nauk* **13**,4 (1958), 3-28, *Amer. Math. Soc. Translations, series 2*, 29 (1963), 217-245.) Such graph machines can easily simulate the linking automata defined above, taking one graph step per linking step; conversely, linking automata can simulate graph machines, taking at most a bounded **number** of steps per graph step when n and the alphabet size are fixed. The linking model is, of course, quite close to the operations available to programmers on real machines, while the graph model is not.

1.473 exercise 44 line 2

11/12/76 7 4

$x_k + y_i \rightsquigarrow x_j + y_k$

1.478 line 8

11/16/77 7 5

(to appear) \rightsquigarrow **13** (1975), 251-261.

1.482 line 1

7/31/76 7 6

Faa ↗ Fai

1.487 new answer, cont inued

4/19/77 7 7

For example, Eq. (6) holds for all **complex** k and n , except in certain **cases** when n is a negative integer; Eqs. (7), (9), (20) are **never** false, although they may **occasionally** take indeterminate forms such as $0 \cdot \infty$ or $\infty + \infty$. We can even extend the binomial theorem (13) and **Vandermonde's** convolution (21), obtaining $\sum_k \binom{r}{a+k} z^{a+k} = (1+z)^r$ and

$\sum_k \binom{r}{a+k} \binom{s}{b-k} = \binom{r+s}{a+b}$, formulas which hold for all complex r, s, l, a, b whenever the series converge, provided that complex powers are properly defined. [See **L. Ramshaw, Inf. Proc. Letters 6** (1977), 223-226.]

1.487 new answer

11/12/76 7 8

42, $1/(r+1)B(k+1, r-k+1)$, if this is defined according to exercise 41(b). In general it appears best to define $\binom{r}{k} = 0$ when k is a negative integer, otherwise $\binom{r}{k} = \lim_{s \rightarrow r} \frac{\Gamma(s+1)}{\Gamma(k+1)\Gamma(s-k+1)}$, since this preserves most of the important identities.

1.494 line 9

11/15/78 7 9

Polya ↗ Pólya

1.499 exercise 7

11/15/78 8 0

(It is "Glaisher's constant" 1.2824271...) To ↗ To
This formula . . . $n=4$. ↗ (The constant A is "Glaisher's constant" 1.2824271..., which R. W. Cosper has proved equal to $(2\pi e^{\gamma - \zeta'(2)/\zeta(2)} 1/12)$.)

1.500 exercise 5

11/29/77 8 1

line 1: $2n-1 \rightsquigarrow 2n+1$

line 2: has . . . dx . ↗ changes sign at $r = n - O(\sqrt{n})$, so $R = O(\int_0^n |f'(x)| dx) = O(|f'(r)|) + O(|f'(n)|) = O(f(n)/\sqrt{n})$.

1.502 exercise 17(b) line 6

3/2/77 8 2

J2NN ↗ J2P

1.502 exercise 19

4/19/77 8 3

24 \rightsquigarrow 42
 $1+1)u \rightsquigarrow 10+10)u$

1.504 exercise 25

4/19/77 8 4

lines 11-12: operations" \rightsquigarrow operations," jump6 on register even or odd, and binary shift6
 last line: M. \rightsquigarrow M, and others could set **register** \leftarrow **rA**, **register** \leftarrow **rX**.

1.504

6/14/77 8 5

line 1: 6 \rightsquigarrow 5 (also make this change in previous correction no. 111)

line 6: 3494 \rightsquigarrow 3495 and 6 \rightsquigarrow 5

line 7: 3495 \rightsquigarrow 3496 and 5 \rightsquigarrow 4

line 9: 3506 \rightsquigarrow 3505 and 6 \rightsquigarrow 5

line 10: 16 \rightsquigarrow 14

1.511 changes to answer 14

6/14/77 8 6

line 1: uses as much \rightsquigarrow due in part to J. Petolino uses a lot of

line 2: as possible, in \rightsquigarrow in

line 9: I NCX 1 \rightsquigarrow

line 10: G \rightsquigarrow GMINUS1

lines -17 to end of **page**, **replace by**:

INCA 61		
STA CPLUS60		
MUL =3//4+1=		
STA XPLUS57(1:2)		
CPLUS60	ENTA *	
	HUL =8//25+1=	rA = i? + 24
GMINUS1	ENT2 *	E5.
	ENT1 1,2	rI1 = C
	INC2 1,1	
	INC2 0,2	
	INC2 0,1	
	INC2 0,2	
	INC2 773,1	r12 = 11C + 773
XPLUS57	INCA -*,2	rA = 11C + Z - X + 20 + 24 · 30 (≥ 0)

1.512 more changes to answer 14

6/14/77 8 7

delete the bottom line and replace lines 1-31 by:

	SRA X 5	
	D I V =30-	rX = E
	DEC X 24	
	J X N 4F	
	DEC X 1	
	J X P 2F	
	J X N 3F	
	DEC 1 11	
	J1NP 2F	
3H	INCX 1	
2H	DEC X 23	E6.
4H	S TX 20MINUSN(0:2)	
	L D A Y	EC.
	MUL =1//4+1-	
	ADD Y	
	SUB XPLUS57(1:2)	rA . D-4I
	20MI NUSN ENN1*	
	INCA 67,1	E7.
	SRA X 5	rX = D + N
	D I V =7-	
	SLAX 5	
	DECA -4.1	rA = 31 - N
	J A N 1F	E8.
	DECA 31	
	CHAR	
	LDA MARCH	
	J MP 2F	
1H	CHAR	
	LDA APRIL	

1.513 new answer

6/14/77 8 8

15. The first **such** year is A.D. 10317, although the error **almost** leads to failure in **A.D. 10108+19k** for $0 \leq k \leq 10$.

1.513 still more changes to answer 14

6/14/77 8 9

replace lines 1-6 by:

BEGIN

ENTX 1950
ENT6 1950-2000
JMP EASTER
INC6 1
ENTX 2000,6
J6NP EASTER+1

“driver”
routine,
uses the
above
subroutine.

1.514 line 18

11/29/77 9 0

time. ↗ time. (It would be faster to calculate $r_n(1/m)$ directly when m is small, and then to apply the suggested procedure.)

1.515 bottom line

11/29/77 9 1

Berk'ly ↗ Berkeley

1.516 lines -4,-3

4/19/77 9 2

3)+7 ↗ 7.5)+16

1.517 exercise 12 lines 7-10

5/27/78 9 3

delete “Thus, . . .(b).”

1.518 line 5

5/27/78 94

19-27. ↗ 19-27; E. G. Cate and D. W. Twigg, *ACM Trans. Math. Software* 3 (1977), 104-1 10.

1.519 new answer

9/21/76 9 5

30, To insert, set $P \leftarrow \text{AVAIL}$, $\text{INFO}(P) \leftarrow Y$, $\text{LINK}(P) \leftarrow A$, if $F = A$ then $F \leftarrow P$ else $\text{LINK}(R) \leftarrow P$, and $R \leftarrow P$. To delete, do (9) with F replacing T .

1.550 exercise 18

3/ 2177 9 6

denotes, ... are included. \nwarrow denotes "exclusive or." Other invertible operations, such as addition or subtraction modulo the pointer field size, could also be used. It is convenient to include

1.550 exercise 2

3/ 2177 9 7

line 2: next . . . list point \nwarrow next, so the links in the list must point

line 3: So . . . the \nwarrow Deletion at both ends therefore implies that the

line 4: ways. \nwarrow ways. On the other hand, exercise 2.2.4-18 shows that two links can be represented in a single link field; in this way general deque operations are possible.

1.553 exercise 9 step G4

3/ 2177 9 8

desired **girls**, \nwarrow young **ladies** desired,

1.558 line -6

5/27/78 9 9

"pedigrees", \nwarrow "pedigrees,"

1.575 exercise 12 line 5

9/21/76 1 0 0

∞ . \nwarrow ∞ . Here $c(i,j)$ means $c(j,i)$ if $j < i$.

1.583 answer 5

11 5/79 101

There is . . . **exist**. \nwarrow When $n > 1$, the number of series-parallel networks with n edges is $2c_n$ [see P. A. MacMahon, *Proc. London Math. Soc.* 22 (1891), 330-339].

1.588 fourth line before exercise 33

5/27/78 1 0 2

minimal. \nwarrow minimal. [This argument in the case of binary trees was apparently first discovered by C. S. Peirce in an unpublished manuscript; see his *New Elements of Mathematics* 4 (The Hague: Mouton, 1976), 303-304.]

1,594 updates to previous change number 150 **9/21/76 103**

to appear, \rightsquigarrow 491-500,
(see also the important new contribution by H. G. Baker, Jr., *CACM* 21 (1978), 280-294, for
which I will probably want to revise Section 2.3.5 entirely!)

1,594 update to previous change number 151 **11/29/77 104**

Clark's list-copying algorithm appeared in *CACM* 21 (1978), 351-357, and **Robson's** in
CACM 20 (1977), 431-433

1,597 last line of answer 6 **1/16/77 105**

list. \rightsquigarrow list. For an alternative improvement to Algorithm A, **see** exercise 6.2.3-30.

1,597 exercise 8 **6/25/76 106**

line 1: also set $R \rightsquigarrow$ also set $M \leftarrow \infty, R$
line 3: If $R = A$ or $tl \rightsquigarrow$ If M

1,601 exercise 26 line 3 **2/28/78 107**

two. \rightsquigarrow two, with blocks in decreasing **order of size**.
 $P \geq M \rightsquigarrow P \geq M - 2^k$.

1,601 program line number 12 **4/19/77 108**

$j \rightsquigarrow j.$

1,602 new answer **2/28/78 109**

31. Seo David L. Russell, *SIAM J. Computing* 6 (1977), 607-621.

1,603 addition to previous change 153 **4/19/77 110**

. \rightsquigarrow ; Lars-Erik Thorelli, *BIT* 16 (1976), 426-441.

1.606 exercise 41, numerator in value of **a[5]** **6/14/77 111**

19559 \rightsquigarrow 18535

1.617L **6/25/76 112**

delete A-l compiler, 458.

1.617L Aardenne-... **11/29/77 113**

Taniana \rightsquigarrow Tatyana

1.617R **12/19/76 114**

AMM \rightsquigarrow *AMM*

1.618L **5/27/78 115**

Baker, Henry **Givens**, Jr., 594.

1.618R **4/19/77 116**

add **p487** to entry for Binomial theorem, **generalizations of**

1.619L **Bobrow** entry **9/21/76 117**

add **p420**

1.619R **5/27/78 118**

Cate, Esko George, 518.

1.619R **11/29/77 119**

Cheney, Christopher John, 420.

1.620R new definition entry

12/19/76 120

Data organization: A way to represent information ~~in a data structure~~, together with algorithms that access and/or modify this structure.

1.621L

2/28/78 121

Derangements, 177.

1.621L Deut sch entry

9/21/76 122

add p420

1.622L End of file entry

3/2/77 123

224 ↪ 223

1.623R Garwick entry

11/15/78 124

244 ↪ 245

1.624L Hopper entry

6/25/76 125

255,458. ↪ 225.

1.624L

11/29/77 126

Hiles, John Owen, 420.

1.624R

3/2/77 127

Invert a linked list, 266, 276.

1.624R INT entry

6/14/77 128

225. ↪ 224-225.

1,625R

5/27/78 129

Leibnitz (= Leibniz) ↗ Leibniz (= Leibnitz)

1,625R

12/19/76 130

Kolmogorov, **Andreĭ** Nikolaevich, 463.

1,626R MacMahon entry

11 5179 131

add **p.** 583

1,627L

9/21/76 132

Merrington, Maxine, 66.

1,628L

2/28/78 133

Nielsen, Norman Russell, 451.

1,628R

5/27/78 134

Peirce, Charles Santiago Sanders, 588.

1,629

4/19/77 135

add **p44** to Pratt entry

1,629L

6/14/77 136

Petolino, Joseph Anthony, Jr., 511.

1,629R

5/27/78 137

Prüfer, Heinz ↗ **Prüfer**, Ernst Paul Heinz

1,629R

6/25/76 138

Prinz, Dietrich G.

1,630L

4/19/77 139

Ramshaw, Lyle Harold, 487.

1,630R

3/ 2/77 140

Reversing a list, 266, 276.

1,631L new entry

1/ 5/79 141

Series-parallel networks, 583.

1,631L

1/16/77 142

Shore, John E., 446, 451.

1,631L

2/28/78 143

Russell, David **Lewis**, 602.

1,632L

1/16/77 144

Swainson, William, 332.

1,632L Stirling numbers entry

8/25/76 145

90, ↗ 90-91,

1,632R

4/19/77 146

add **p630** to **Thorelli** entry

1.633R

4/19/77 147

Watson, Dan **Caldwell**, 248.

1.633R

4/19/77 148

add **p487** to Vandermonde entry

1.633R

5/27/78 149

Twigg, David William, 518.

1.633R van Aardenne-...

11/29/77 150

Taniana ↗ Tatyana

1.633R

12/19/76 151

Uspenskiĭ, Vladimir Andreevich, 463.

1.634L

4/19/77 152

add **p248** to Wise entry

1.634L

6/25/76 153

Windley, Peter F.

1.634L Weizenbaum entry

9/21/76 154

delete **p420**

1.634L

11/29/77 155

Wiseman, Neil **Ernest**, 420.

1,634R

6/25/76 156

Young Tanner, Rosalind Cecilia **Hildegard, 75.**

1,636 (namely the endpapers of the book)

4/19/77 J57

also make any changes specified for pages **136-137**

3,0X quotation for bottom of page

5/27/78 158

Two hours' daily exercise, . . , **will** be enough
to keep a hack Fit For his work.
--M. H. MAHON, *The Handy Horse Book (Edinburgh, 1865)*

3,8L line 21

3/ 2/77 159

mädchen ↗ Mädeln

3,8R line 26

3/ 2177 160

Weiner ↗ Wiener

3,24 line 13

2/28/78 16 J

(1965 ↗ (1965)

3,34 bottom line of determinant on line 12

5/27/78 162

a_{mn} ↗ a_{mm}

3,40 Eq. (26)

2/28/78 163

the j in e^j should be in smaller (superscript size) font

3,57 line 2 of step S3

2/28/78 164

right ↗ right of

3.58 line 4

2128178 165

$a_1 a_2, \rightsquigarrow a_1, a_2,$

3.63 line -4

5/27/78 166

S's \rightsquigarrow X's
X's \rightsquigarrow S's

3.65 line -8

2/28/78 167

to better understand $t_n \rightsquigarrow$ to understand t_n better

3.67 following (50)

5/27/78 168

lines 2-4: we find...Euler's \rightsquigarrow Euler's

line 5: in this case, since \rightsquigarrow since

lines 7-8 (the two lines following (51)): n ; this...we have proved that \rightsquigarrow

n . The derivative $g^{(m)}(y)$ is a polynomial in y time6 e^{-2y^2} , hence $R_m \cdot O(n^{(t+1-m)/4})$
 $\int_{-\infty}^{+\infty} |g^{(m)}(y)| dy = O(n^{(t+1-m)/4})$. Furthermore if we replace a and b by $-\infty$ and $+\infty$ in
the right-hand side of (SO), we make an error of at most $O(\exp(-2n^6))$ in each term. Thus

3.69 exercise 8

6/14/77 169

accent over o in Erdős should be " not "

3.72 new copy for exercise 28

7/15/78 170

28. [Mb33] Prove that the average length of the longest increasing subsequence of a random permutation on $\{1, 2, \dots, n\}$ is asymptotically $2\sqrt{n}$. (This is the average length of row 1 in the correspondence of Theorem A.)

3.79 last line before exercises

9/21/76 171

Feurzig \rightsquigarrow Feurzeig

3.83 lines 7 and 12

11/29/77 172

$\log_2 \rightsquigarrow \lg$

3.98 line 4

6/12/77 173

$\log_2 \rightsquigarrow \lg$

3.104 line -2

6/14/77 174

inversions. \rightsquigarrow inversions. Discuss corresponding improvements to Program S.

3.117 simplifications of step Q2

12/19/76 175

line 3: $K \leftarrow K_l, R \leftarrow R_l \rightsquigarrow K \leftarrow K_l$

line 4: K and $R \rightsquigarrow K$

3.118 comment to program line 05

12/19/76 176

$K \leftarrow K_l, R \leftarrow R_l \rightsquigarrow K \leftarrow K_l$

3.120 line -3

6/14/77 177

$S_N \rightsquigarrow S_N$

3.122 line -6

12/19/76 178

instructions " $K \leftarrow K_l, R \leftarrow R_l$ " \rightsquigarrow instruction " $K \leftarrow K_l$ "

3.128 line -3

4/19/77 179

$v. \rightsquigarrow v.$ Yihxiao Wang has suggested that the mean of three key **values** such as (28) be used as the threshold for partitioning; he has proved that the number of comparisons required to sort uniformly distributed random data will then be asymptotic to $1,082 n \lg n$.

3.132 10 lines after (42)

5/27/78 180

$(N/x)^t \rightsquigarrow (N/x_0)^t$

3.132 7 lines after (42)

5/27/78 181

$O(N^{t-1/2} e^{-\pi N/2}) \rightsquigarrow O(|t+iN|^{t-1/2} e^{-t-\pi N/2})$

3.133 in the discussion following (45)

5/27/78 182

line 3: $N^t \rightsquigarrow |M+iN|^t$

line 4: negligible. \rightsquigarrow negligible, when N and N are much larger than M .

3.134 Eq. (46) and the line following

2/28/78 183

, $\rightsquigarrow + O(n^M)$,
where \rightsquigarrow for arbitrarily large M , where

3.134 displayed formula on line 12

2/28/78 184

$f(n) \rightsquigarrow |f(n)|$
1725 \rightsquigarrow 173

3.135 exercise 16

11/29/77 185

$HM46 \rightsquigarrow HM42$

3.136 exercise 46 lower limit of integral

6/14/77 186

$a+i\infty \rightsquigarrow a-i\infty$

3.138 exercise 52 binomial coefficient in the sum

6/14/77 187

remove spurious fraction line between 211 and $n+1$

3.144 line 10

2/28/78 188

Language, \rightsquigarrow *Language*

3.153

11/12/76 189

about here I will someday insert material about the new "binomial queue" algorithms to be discussed in **papers** by Vuillemin and Brown, **since** they appear to outperform **leftist** trees

3.158 line -5

5/27/78 190

$a_i \rightsquigarrow a_1$

3.167 line 21 of program

5/27/78 191

$L_q \rightsquigarrow L_p$

3.176 line -12

5/27/78 192

$M \cdot b \rightsquigarrow M \cdot b^r$

3.177 lines 25-27

9/21/76 193

that the multiplicity . . . Algorithm R, even \rightsquigarrow
that it ultimately spends too much time fussing with very small piles. Algorithm R is
relatively efficient, even

3.192 line -7

5/27/78 194

Well's \rightsquigarrow Wells's

3.193 line -15

5/27/78 195

less \rightsquigarrow fewer

3.199 Eq. (4)

2/28/78 196

$lg \Gamma \rightsquigarrow \Gamma lg$

3.208 replacement for exercise 14

11/29/77 197

14. [41] (F. K. Hwang.) Let $h_{3k} = \lfloor (43/28) \cdot 2^k \rfloor - 1$, $h_{3k+1} = h_{3k} + 3 \cdot 2^{k-3}$, $h_{3k+2} = \lfloor (17/7) \cdot 2^k - 6/7 \rfloor$ for $k \geq 3$, and let the initial values be defined so that $(h_0, h_1, h_2, \dots) = (1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 23, 29, 38, 48, 60, 76, 97, 121, 154, \dots)$. Prove that $M(3, h_t) > t$ and $M(3, h_t - 1) \leq t$ for all t , thereby establishing the exact values of $M(3, n)$ for all n .

3.215 bottom line of Table 1

3/2/77 198

1 7 \rightsquigarrow 16** (twice)

add footnote:

xx See K. Noshita, *Trans. of the IECE of Japan*, E59, 12 (Dec. 1976), 17-18.

3.216 line 4 after second illustration

3/2177 199

the values listed in the table for $n \geq 8$ \rightsquigarrow the values shown for $V_4(9)$, $V_5(10)$ and their duals $V_6(9)$, $V_6(10)$

3.217 amendment to previous correction number 242 12/19/76 200

line 17: A. Schiinhage [to appear] \rightsquigarrow A. Schiinhage, M. Paterson, and N. Pippenger [*J. Camp. Sys. Sci.*, 13 (1976), 184-199]

line 18: asymptotic \rightsquigarrow

lines 19-20: $3n$, and . . . $1.75n$. \rightsquigarrow $3n + O(n \log n)^{3/4}$. On the other hand, Vaughan Pratt has obtained an asymptotic lower bound of $1.75n$ for this problem [cf. *Proc. IEEE Conf. Switching and Automata Theory* 14 (1973), 70-81]; a generalization of his result appears in exercise 25.

3.219 exercise 14

12/19/76 201

Show that . . . comparisons. \rightsquigarrow Let $U_t(n)$ be the minimum number of comparisons needed to find the t largest of n elements, without necessarily knowing their relative order. Show that $U_2(5) \leq 5$.

3.220 new exercise

12/19/76 202

26. [M32] (A. Schönhage, 1974.) (a) In the notation of exercise 14, prove that $U_t(n) \geq \min(2+U_t(n-1), 2+U_{t-1}(n-1))$ for $n \geq 3$. *Hint:* Construct an adversary by reducing from n to $n-1$ as soon as the current partial ordering is not composed of components \bullet or \rightsquigarrow . (b) Similarly, prove that $V_t(n) \geq \min(2+U_t(n-1), 3+U_{t-1}(n-1), 3+U_t(n-2))$ for $n \geq 5$, by constructing an adversary which deals with components \bullet , \rightsquigarrow , $\bullet \rightsquigarrow$, $\bullet \bullet \rightsquigarrow$. (c) Therefore we have $U_t(n) \geq n + t + \min(1, (n-t)/2, t) - 3$ for $1 \leq t \leq n/2$. (d) The inequalities in (a) and (b) apply also when V or W replaces U , thereby establishing the optimality of several entries in Table 1.

3.225 line 1

5/27/78 203

$\lfloor m/2 \rfloor \rightsquigarrow 2\lfloor m/2 \rfloor$
 $\lfloor n/2 \rfloor \rightsquigarrow 2\lfloor n/2 \rfloor$

3.229 remarks about current best known sorting networks

1/16/77
204

line 19: D. Van Voorhis in 1974. \rightsquigarrow R. L. Drysdale III in his undergraduate honors project at Knox College in 1973.

lines 20-21: a $n \lg n + O(n)$ comparators, ...3651. \rightsquigarrow

$(371/960)n \lg n + O(n)$ comparators; in particular, his construction yields $\hat{S}(256) \leq 3657$,

line 22: [To be published.] \rightsquigarrow [SIAM J. Computing 4 (1975), 264-270.]

3.232 update to previous change number 250

8/25/76 205

[JACM, to appear] \rightsquigarrow [JACM 23 (1976), 566-571]

3.233 line 9

5/27/78 206

) \rightsquigarrow)

3.243 rating of exercise 48

1/16/77 207

HM49 \rightsquigarrow HM46

3.259 lines 4, 5, 6, 7

9/21/76 208

has not yet ... $m = 8$. This increase \rightsquigarrow

is difficult to analyze precisely, but T. O. Espelid has shown how to extend the snowplow analogy to obtain an approximate formula for the behavior [BIT 16 (1976), 133-142]. According to his formula, which agrees well with empirical tests, the run length will be about $2P + b(m-1.5)(2P+b(m-2))/(2P+b(2m-3))$, when b is the block size and $m \geq 2$. Such an increase

3.260 insert new paragraph before Table 2

2/28/78 209

The ideas of delayed run-reconstitution and natural selection can be combined, as discussed by T. C. Ting and Y. W. Wang in Camp. J. 20 (1977), 298-301.

3,262 line 7

5/27/78 210

should be the square root of $(4e-10)P$

3,264 line -1

5/27/78 211

begins \rightsquigarrow begins

3,279 line 10 after Table 4

6/14/77 212

JACM(to appear) \rightsquigarrow *SIAM J. Computing* 6 (1977), 1-39

3,282 line before the big tableau

5/27/78 213

"R," \rightsquigarrow "R",

3,284 line 22

11/5/79 214

143 \rightsquigarrow 145

3,284 lines 4, 13, 20

11 5179 215

25 \rightsquigarrow 27

3,303 line -4

8/25/76 216

always get \rightsquigarrow always gets

3,326 line -7

11/29/77 217

$L[p]$ \rightsquigarrow $L[m]$

3,338 lines 1 and 7

6/14/77 218

! \rightsquigarrow .

3,341 the foldout illustration

7/31/76 219

in the bottom example (***10**) look at line 4 of the six lines, where there is a longish black bar as the seventh activity (the sixth activity is a shorter black **bar**)...and lines 1,2,3, and 5 have a blank bar just above and below this longish black bar; actually **lines 1,2,3, and 5** should have parallel upward-slanting diagonal lines (the symbol for "reading in forward direction") inside these blank bars

3,348 line 9 after the first illustration

5/27/78 220

tape **C** \rightsquigarrow tape **A**
tape **D** \rightsquigarrow tape **B**

3,352 line -9

6/14/77 221

is \rightsquigarrow in

3,352 exercise 3

11/29/77 222

merge \rightsquigarrow radix sort

3,356 line -11

5/27/78 223

T3 \rightsquigarrow Track 3

3,358 line -20

12/19/76 224

artificially \rightsquigarrow **tificially**

3,370 Equation (8)

8/25/76 225

$B_2^2 \rightsquigarrow B_1^2$

3,373

6/25/76 226

about **here** I should mention C. **McCulloch's** new approach to external disk sorting (embodied in the KA Sort on Honeywell 200)

3.374 st yiist ic improvements

1/16/77 2 2 7

line 17: large, and . . . unthinkable! ↗ large; it is, however, so large that N seeks are unthinkable.

line 24: But ↗ On the other hand,

line 24: ! ↗ .

3.381 table entries for Straight insertion

6/14/77 2 2 8

Length: 12 ↗ 10

Space: N ↗ N + 1

Average: $2N^2+9N \rightsquigarrow 1.5N^2+9.5N$

Maximum: 4 ↗ 3

N-16: 494 ↗ 412

N=1000: 19855'74 ↗ 1491928

3.384 insert new paragraph before line -1

6/25/76 2 2 9

In Germany, K. Zuse **independently** constructed a program for straight insertion sorting in 1945, as one of the **simplest** examples of linear list operations in his "**Plankalkül**" language. (This pioneering work remained unpublished for nearly 30 years; see **Berichte der Gesellschaft für Math. und Datenw. 63 (1972)**, part 4, 84-85.)

3.387 line 2

8/25/76 2 3 0

near-optional ↗ near-optimal

3.394 caption to Fig. 1

3/2/77 2 3 1

search. ↗ or "house-to-house" search.

3.394 Fig. 1

4/19/77 2 3 2

label the downward branch coming out of box S2 with an ▀ sign

3.400 lines 12 and -5

2/28/78 2 3 3

running time ↗ average running time

3.412 correction to previous change 263

4/19/77 2 3 4

delete this change, the book was right the first time

3.413 lines -4,-3

4/19/77 2 3 5

and $N > 2^k$, we \rightsquigarrow we
 $L \leftarrow \lceil (N-2^k)/2 \rceil + 1 \rightsquigarrow \lceil \lg(N+1-2^k) \rceil$

3.419 lines 13-14

3/2/77 2 3 6

H. Bottenbruch . . . He \rightsquigarrow D. H. Lehmer [Proc. Symp. Appl. Math. 10 (1960), 180-181] was apparently the first to publish a binary search algorithm which works for all N . The next step was taken by H. Bottenbruch [JACM 9 (1962), 214], who

3.419 line 30

11/12/76 2 3 7

, but his flowchart and analysis were incorrect. \rightsquigarrow .

3.429 line 7 (append to step D1)

5/27/78 2 3 8

(For example, if $Q = \text{RLINK } (P)$ for some P , this means we would set $\text{RLINK } (P) \leftarrow \text{LLINK } (Q)$, etc.)

3.438 Fig. 16

6/14/77 2 3 9

insert "a)" and "b)" to the left of the roots of the trees, and change circles to squares in the right descendants of nodes AN and AS in the upper tree

3.439 update to previous change 276

11/15/78 2 4 0

the Garsia-Wachs algorithm appeared in SIAM J. Computing, Dec. 1977, pp. 622ff; but now it **seems** an even better way has **been** found by Hu, Kleitman, and Tamaki (UCSD report 78-CS-016)

3.450 modifications to exercise 33

12/19/76 241

line 6: optimum. Cf. \nwarrow optimum; cf.

line 7: .) \nwarrow . On machines which cannot make three-way comparisons at once, a program for Algorithm T will have to make two comparisons in step **T2**, one for equality and one for less-than! B. Sheil and V. R. Pratt have observed that these comparisons need not involve the same key, and it may well be best to have a binary tree whose internal nodes specify an equality test or a less-than test but not always both. This situation would be interesting to explore as an alternative to the stated problem,.)

3.451 line -3

3/21/77 242

put a small inverted U over the **ia** in *Akadamia*

3.456 Fig. 22

9/21/76 243

the arrows between boxes A2 and A3 should be reversed (downward arrow on left, upward arrow on right); also delete “P = A” **below** boxes A3 and A4 and insert the words “Leaf found” between the two arrows leading to **A5**

3.457 line 15

2/28/78 244

necessary. \nwarrow necessary. Essentially the same method can be used if the tree is **threaded** (cf. exercise **6.2.2-2**), since the balancing act never needs to make difficult changes to thread links.

3.457 line after (4)

11/29/77 245

K \nwarrow K

3.461 Table 1

11/29/77 246

I will recompute this table, since .144 should be ,143; also will modify the discussion on page 462 accordingly and will refer to **exercise 11**

3.461 line 2 after caption

11/29/77 247

change + and - to typewriter-style type (+ and -)

3.468 lines 6-9

2/28/78 248

I will rewrite this, as these trees have been studied almost too thoroughly by now

3.470 exercise 10

11/29/77 249

Does ... c? ↗ What is the asymptotic average number of comparisons **made** by Algorithm A when inserting the Nth item, assuming that items are inserted in random order?

3.470 exercise 16

11/29/77 250

the root node F were ↗ node E and the root node F were both

3.470 new exercise 11

11/29/77 25 J

[M24] (Mark R. Brown.) Prove that when $n \geq 6$ the average number of **external** nodes of each of the types +A, -A, ++B, +-B, -+B, --B is exactly $(n+1)/14$, in a random balanced tree of n internal nodes constructed by Algorithm A.

3.472 near the bottom

11/15/78 252

lines -7, -5, -4: $\log \nearrow \lg$

line -3: 350 ↗ 307

3.479 update to previous change 293

11/15/78 253

, to appear ↗ 9 (1978), 171-181

3.479 new paragraph before the exercises

12/19/76 254

It is possible for many independent users to be accessing and updating different parts of a large **B-tree** file simultaneously without "deadlock," if the algorithms are implemented properly; see B. Samadi, *Inf. Proc. Letters* 6 (1976), 107-112.

3.483 line 25

7/31/76 255

55 ↗ 49

3.486 lines 6 and -2

5/27/78 2 5 6

less ↗ fewer

3.491 line -14

5/27/78 2 5 7

text, e.g. ↗ text; e.g.,

3.505 line -14

5/27/78 2 5 8

to uniquely identify them ↗ to identify them uniquely

3.507 line 13, add new sentence

2/28/78 2 5 9

See R. Sprugnoli, **CACM** 20 (1977), 841-850, for a discussion of suitable techniques.

3.509 line 3

5/27/78 2 6 0

superimpose a / over the ■ sign

3.518 lines 5-7

4/19/77 2 6 1

using circular . . . complicated. ↗ hashing FIRE and searching down its list, as suggested by D. E. Ferguson, since the lists are short.

3.526 new paragraph after line 19

11/29/77 2 6 2

E. G. Mallach [**Camp. J.** 20 (1977), 137-140] has experimented with **refinements** of Brent's variation, and further recent work on this topic has been done by G. Gonnet and I. Munro [**Proc. ACM Symp. Theory Comp.** 9 (1977), 113-121]

3.527 insertion of new material after line 20

12/19/76 2 6 3

Algorithm R may move some of the table entries, and this is undesirable if they are being pointed to from elsewhere. Another approach to deletions is possible by adapting some of the ideas used in garbage collection (cf. Section 2.3.5): We might keep a “reference count” with each key telling how many other keys collide with it; then it is possible to convert unoccupied cells to empty status when their reference count is zero. Alternatively we might go through the entire table whenever too many deleted entries have accumulated, changing all the unoccupied positions to empty and then looking up all remaining keys, in order to see which unoccupied positions really require ‘deleted’ status. This procedure, which avoids relocation and works with any hash technique, was originally suggested by T. Gunji and E. Goto [to appear].

3.528 update to previous change 307

11115178 264

[To appear.] ↗ J. Camp. Syst. Sci. 16 (1978), 226-214.

3.532 line after (48)

2/28/78 2 6 5

likely we, ↗ likely, we

3.534 line -5

3/ 2177 266

buckote ↗ pages or buckotr

3.537 line -8

4/19/77 2 6 7

access ↗ accesses

3.544 line 16

6/14/77 2 6 8

change one of ↗ change

3.549 exercise 60

1/ 5/79 2 6 9

M48 ↗ HM41

3.549 another quote, put above the other

11/16/77 270

She made a hash of the proper names, to be sure.
--GRANT ALLEN, *The Tents of Shem*, Ch. 26 (1889)

3.561 new paragraph to insert after line 18

3/2/77 271

If carefully selected nonrandom codes are used, it is possible to use superimposed coding without having any false drops, as shown by W. H. Kautz and R. C. Singleton, *IEEE Transactions IT-10* (1964), 363-377; see exercise 16 for one of their constructions.

3.563 line 11

5/27/78 272

the **N**D*D** \rightsquigarrow the form **N**D*D**

3.563 line 9

8/25/76 273

his Ph. D. thesis (Stanford University, 1973).] \rightsquigarrow
SIAM J. Computing 6 (1976), 19-50.]

3.566 Eq. (11)

3/2/77 274

this is all wrong, it should be the 31 sextuples shown in the first printing of vol. 3 on page 565

3.566 line -7

11/15/78 275

Pfefferneuse \rightsquigarrow Pfefferneusse

3.570 line 6

3/2/77 276

systems or \rightsquigarrow systems on

3.570 new exercise

3/2/77 277

16. [25] (W. H. Kautz and R. C. Singleton.) Show that a Steiner triple system of order v can be used to construct $v(v-1)/6$ codewords of u bits each such that no codeword is contained in the superposition of any two others.

3.576 new paragraph after answer 19

11/12/76 278

A similar algorithm can be used to find $\max\{x_i+x_j \mid x_i+x_j \leq c\}$; or to find, e.g., $\min\{x_i+y_j \mid x_i+y_j > t\}$ given t and two sorted files $x_1 \leq \dots \leq x_m, y_1 \leq \dots \leq y_n$.

3.576 line -6

12/19/76 279

junctions; \nwarrow junctions; STELA, an alternative spelling of 'stele';

3.579 answer 7, line 3

5/27/78 280

$> B_k$ and append $(B_k+1) \nwarrow \geq k - B_k$ and append $k - B_k$

3.585 new paragraph for answer 8

8/25/76 28 J

A simple $O(n^2)$ algorithm to count the number of permutations of $\{1, \dots, n\}$ having respective run lengths l_1, \dots, l_k has been given by N. G. de Bruijn, Nieuw *Archief voor Wiakunda* (3) 18 (1970), 61-65.

3.594 new answer

11/15/78 282

28. This result is due to A. M. Vershik and S. V. Kerov, *Dokl. Akad. Nauk SSSR* 233 (1977), 1024-1028. See also B. F. Logan and L. A. Shepp, Advances in *Math.* 26 (1977), 206-222.

3.599 exercise 14 line 7

11/29/77 283

13); \nwarrow 13), and still another by the identity in the answer to exercise 5.2.2-16 with $f(k) = k$;

3.603 exercise 33, comments to program

7/31/76 284

line 07: r12 \nwarrow r13

r13 \nwarrow r12

lines 09 and 15: To L4 \nwarrow To L4 with $q \leftrightarrow p$

3.604 replace lines 3 and 4 by the following new copy **6/14/77 2 8 5**

The ∞ trick also **speeds** up Program S; the following code **suggested** by J. H. Halperin use6 this idea and the MOVE instruction to reduce the running time to **$(6B + 11N - 10)u$** , assuming that location **INPUT+N+1** already contain6 the **largest** possible one-word value:

01	START	ENT2 N-1	1
02	2 H	LDA INPUT.2	N-1
03		ENT1 INPUT, 2	N-1
04		JMP 3F	N-1
05	4H	MOVE 1,1(1)	B
06	3H	CMPA 1,1	B+N-1
07		JG 4B	B+N-1
08	5H	STA 0,1	N-1
09		DEC2 1	N-1
10		J2P 2B	N-1

Doubling up the inner loop would save an additional $B/2$ or so unit6 of time.

3.605 exercise 4 **2/28/78 2 8 6**

lower **the** Σ sign and the relation below it

3.606 line 10 of the program **2/28/78 2 8 7**

ra \rightsquigarrow **ra**

3.606 answer 11 **11/29/77 2 8 8**

In general, . . . elements. \rightsquigarrow The situation becomes more complicated when $N = 64$; R. Sedgewick has shown how to compute **the** worst-case permutations, and he has proved that the maximum number of exchanges is $1 - \lg \lg N / \lg N + O(1/\log N)$ times the number of comparisons [*SIAM J. Computing*, to appear].

3.607 new answer 16

11/29/77 289

16. Consider the $\binom{2n}{n}$ lattice paths from $(0,0)$ to (n,n) as in Figs. 11 and 18, and attach weights $f(i-j)$ if $i \geq j$, $f(j-i-1)+1$ if $i < j$, to the line from (i,j) to $(i+1,j)$; here $f(k)$ is the number of bits 6, b_{r+1} in the binary expansion $k = (b_2 b_1 b_0)_2$. The total number of exchanges on the final merge when $N = 2n$ is

$$\sum_{0 \leq j \leq i \leq n} (2f(j)+1) \binom{2i-j}{i-j} \binom{2n-2i+j-1}{n-i-1}.$$

R. Sedgewick has simplified this sum to

$(1/2)n \binom{2n}{n} + 2\sum_{k \geq 1} \binom{2n}{n-k} \sum_{0 \leq j < k} f(j)$ and used the gamma function method to obtain the asymptotic formula $\binom{2n}{n} ((1/4)n \lg n + (\lg(\Gamma(1/4)^2/2\pi) + 1/4 - (\gamma + 2)/(4 \ln 2) + \delta(n))n + O(\sqrt{n} \log n))$, where $\delta(n)$ is a periodic function of $\lg n$ with magnitude bounded by .0005; hence about $1/4$ of the comparisons lead to exchanges, on the average, as $n \rightarrow \infty$. [SIAM J. Computing, to appear.]

3.610 second line of answer 31

11/29/77 290

step ↗ stop

3.611 last line of answer 37

2/28/78 291

↗ .]

3.612 exercise 48 line 4 in limits to the integral

2/28/78 292

1/2 ↗ -1/2 (twice)

3.616 line 26 of the program

2/28/78 293

rA ↗ rA

3.618 answer 20 line 2

5/27/78 294

0 ≤ q < k ↗ 0 ≤ q ≤ k

3.619 answer 27 line 1

5/27/78 295

d\|n ↗ d\|N

3.627 line 16

11/5/79 296

See also \rightsquigarrow See also P. A. MacMahon, *Proc. London Math. Soc.* (1891), 341-344;

3.627 bottom of page, new paragraph for answer 6 8/25/76 297

M. Paterson observes that if the multiplicities of keys are $\{n_1, \dots, n_m\}$, the number of comparisons can be reduced to $n \lg n - \sum n_i \lg n_i = O(n)$; see *SIAM J. Computing* 6 (1976), 2.

3.630 answer 20 5/27/78 298

line 5: $Z-1 \rightsquigarrow l+1$

line 6: $2-l+1 \rightsquigarrow 2-l$

line 6: $2-l \rightsquigarrow 2-l-1$

line 6: $2^l \rightsquigarrow 2^{l+1}$ (twice)

line 7: Llg NJ+1 \rightsquigarrow Llg NJ

3.634 exercise 6

11/29/77 299

$\lg(\dots) \rightsquigarrow \lceil \lg(\dots) \rceil$

3.635 answer 10

3/2/77 300

[*Inf. Proc. Letters* \rightsquigarrow

]. \rightsquigarrow .

3.637 supplement to new answer 22

9/21/76 301

[See C. K. Yap, *CACM* 19 (1976), 501-508, for a **further** improvement.]

3.637 new answer

12/19/76 3 0 2

25. (a) Let the vertices of the two types of components be designated a ; $6 < c$. The adversary acts as follows on nonredundant comparisons: Case 1, $a:a'$, make an arbitrary decision. Case 2, $x:b$, say that $x > 6$; all future comparisons $y:b$ with this particular 6 will result in $y > 6$, otherwise the comparisons are decided by an adversary for $U_t(n-1)$, yielding $\geq 2+U_t(n-1)$ comparisons in all. This reduction will be abbreviated "let $6 = \min; 2+U_t(n-1)$." Case 3, $x:c$, let $c = \max; 2+U_{t-1}(n-1)$.

(b) Let the new types of vertices be designated $d_1, d_2 < e; f < g < h > i$. Case 1, $a:a'$ or $c:c'$ arbitrary decision. Case 2, $a:c$, say that $a < c$. Case 3, $x:b$, let $b = \min; 2+U_t(n-1)$. Case 4, $x:d$, let $d = \min; 2+U_t(n-1)$. Case 5, $x:c$, let $c = \max; 3+U_{t-1}(n-1)$. Case 6, $x:f$, let $f = \min; 2+U_t(n-1)$. Case 7, $x:g$, let $g = \min; 3+U_t(n-2)$. Case 8, $x:h$, let $h = \max; 3+U_{t-1}(n-1)$. Case 9, $x:i$, let $i = \min; 2+U_t(n-1)$.

(c) For $t=1$ we have $U_t(n) = n-1$, so the inequality holds. For $1 < t \leq n/2-1$, use induction and (b). For $t = (n-1)/2$, use induction and (a). For $t = n/2$, $U_t(n-1) = U_{t-1}(n-1)$; use induction and (a). Exercise 14 now yields the following lower bound for the median: $V_t(2t-1) \geq 3t+Lt/2-4$.

3.640 update to previous correction number 345

2/28/78 3 0 3

(To appear.) \rightsquigarrow IEEE Trans. C-27 (1978), 84-87.

3.641 line -2

1/16/77 3 0 4

Pollard.] \rightsquigarrow Pollard.] All such identities can be obtained from a system of four axioms and a rule of inference for multivalued logic due to Eukasicwicz; see Rose and Rosser, Trans. Amer. Math. Soc. 87 (1958), 1-53.

3.641 exercise 43

3/ 2177 305

A. Waksman and M. Green have proved that \rightsquigarrow By slightly extending a construction due to L. J. Goldstein and S. W. Lcibhoiz, IEEE Trans. EC-16 (1967), 637-641, one can show that $P(n) \leq P(\lfloor n/2 \rfloor) + P(\lceil n/2 \rceil) + n - 1$, hence Eq. 5.3.1-3, cf. ... Green also has proved \rightsquigarrow Eq. 5.3.1-3; M. W. Green has proved (unpublished)

3.642 line 14

5/27/78 3 0 6

$\leftarrow \rightsquigarrow \rightarrow$

3.645 new paragraph after answer 10

2/28/78 3 0 7

One might complain that the algorithm compares KEY values that haven't been initialized. If such behavior is too shocking, it can be avoided by setting all **KEYs** to 0, say, in step **R1**.

3.658 line 7

5/27/78 3 0 8

increase **l** by 1, set and return ↗ set increase **l** by 1, and return

3.665 exercise 3 line 7

11/12/76 3 0 9

Trabb-Pardo ↗ **Trabb Pardo**

3.671 exercise 2

2/28/78 3 1 0

line 1: RTAG ↗ RTAG(**Q**)

line 2: RLI NK(**P**). ↗ RLINK(**P**) and RTAG(**P**) ← +. In step T4, change the test **RLINK(P) ≠ A** to **RTAG(P) ≠ +**.

last line: .] ↗ . Similar remarks apply with simultaneous left and right threading.)

3.673 tree illustration in answer 23

11/15/78 3 11

5 ↗ 9

3.675 new answer 11

11/29/77 3 1 2

11. Clearly there are as many +A's as --B's and +-B's, when **n≥2**, and there is symmetry between + and -. If there are **M nodes** of types +A and -A, consideration of all possible **cases** when **n≥1** shows that the **next** random insertion produces **M-1** such nodes with probability **3M/(n+1)**, otherwise it produces exactly **M+1** such nodes. The result follows. [To be published.]

3.676 new answer to exercise 16

11/29/77 3 1 3

Delete E; Case 3 rebalancing at **D**. Delete G; replace F by G; Case 2 rebalancing at **H**; balance factor adjusted at **K**.
(a new illustration, in the same style as before, must be supplied now)

3.677 answer 20

8/25/76 314

the line following the tree should **become** the following (instead of what was stated in the former correction number 355):

It is perhaps most difficult to insert a new node at the extreme left of a tree like this. An insertion algorithm taking at most $O(\log n)^2$ steps has been presented by D. S. Hirschberg, **CACM** 19 (1976), 471-473.

3.678 update to previous change 678

11/15/78 315

, to appear ↗ 9 (1978), 171-181

3.679 changes to answer 5

6/14/77 316

450. The worst . . . chars. ↗

Interpretation 1, trying to **maximize** the stated minimum: 450. (The worst . . . chars.)

Interpretation 2, trying to equalize the number of keys after splitting, in order to keep branching factors high: 155 (15 short keys followed by 16 long ones).

3.680 bottom, new paragraph for answer 4

7/31/76 317

A more versatile way to economize on trie storage has been proposed by Kurt Maly, **CACM** 19 (1976), 409-415.

3.681 line -8

2/28/78 3 18

$n \rightsquigarrow N$

3.687 exercise 1

2/28/78 3 19

-38 ↗ -37

3.687 answer 4

6/14/77 3 20

change line 1 to: Consider cases with k pairs. The smallest n such that in line 2 (the displayed formula), interchange m and n everywhere, then add ", for $m = 365$,"

3.687 update to previous change number 365

6/14/77 321

Computing, to appear. ↗ Computing 6 (1977), 201-234.

3.688 new answer

12/19/76 322

10. See F. R. K. Chung and R. L. Graham, *Ars Combinatoria* 1 (1976), 57-76.

3.689 exercise 14

6/14/77 323

line 2: keys ↗ all keys

line 12: until ↗ until TAG (P) = 1 and

line 12: points ↗ points (perhaps indirectly through words with TAG = 2)

3.693 replace all but first line of answer 37 by:

12/19/76 324

$$\begin{aligned} M^N NS_N &= \frac{1}{3} \sum_{k_1, \dots, k_M} \binom{N}{k_1, \dots, k_M} (k_1(k_1 - \frac{1}{2})(k_1 - 1) + \dots + k_M(k_M - \frac{1}{2})(k_M - 1)) \\ &= \frac{1}{3} M \sum_k \binom{N}{k} (M-1)^{N-k} k(k - \frac{1}{2})(k - 1) \\ &= \frac{1}{3} MN(N-1)(N-2) \sum_{k=3} \binom{N-3}{k-3} (M-1)^{N-k} + \frac{1}{3} MN(N-1) \sum_{k=2} \binom{N-2}{k-2} (M-1)^{N-k} \\ &= \frac{1}{3} MN(N-1)(N-2)M^{N-3} + \frac{1}{3} MN(N-1)M^{N-2}. \end{aligned}$$

The variance is $SN - ((N-1)/2M)^2 = (N-1)(N+6M-5)/12M^2 \approx \frac{1}{2}a + \frac{1}{12}a^2$.

3.698 new answer

11/5/79 325

60. No; see M. Ajtai, J. Komlós, and E. Szemerédi, *Inf. Proc. Letters* 7 (1978), 270-273.

3.700 new answer

3/2/77 326

16. Let each **triple** correspond to a codeword, where each codeword has exactly three 1 bits, **identifying** the elements of the **corresponding** triple. If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are distinct codewords, \mathbf{u} has at most two 1 bits in common with the superposition of \mathbf{v} and \mathbf{w} , since it had at most one in common with \mathbf{v} or \mathbf{w} alone. [Similarly, from quadruple systems of order \mathbf{v} we can construct $\mathbf{v}(\mathbf{v}-1)/12$ codewords, none of which is contained in the superposition of any **three** others, etc.)

3.703 update to previous correction number 373

11/12/76 327

appear in the ↗ appear in Eq. 5.2.3-19 and in the

3.710L

11/5/79 328

Ajtai, Miklos, 698.

3.710L

11/16/77 329

Allen, Charles Grant Blairfindie, 549.

3.710L

4/19/77 330

add **p576** to *AND* entry

3.711

11/15/78 331

delete index entries for R. M. Baer and P. **Brock**

3.711R

11/29/77 332

Brown, Mark **Robbin**, 470.

3.712L

4/19/77 333

delete Circular lists entry

3.712L

12/19/76 334

Chung, Fan Rang King, 688.

3.712R de Bruijn entry

8/25/76 335

add **p.** 585

3.712R

12/19/76 336

Deadlock, 479.

3.713

6/14/77 3 3 7

accent over o in **Erdös** should be " not . '

3.713L

J/16/77 338

Drysdale, Robert Lewis (Scot), III, **229**.

3.713R

4/19/77 3 3 9

add **p576** to Exclusive or entry

3.713R

J/12/76 340

Espelid, Terje Oskar, 259.

3.714L

4/19/77 3 4 1

add **p518** to Ferguson entry

3.714L line 5

9/21/76 3 4 2

Feurzig \nwarrow Feurreig

3.714R

2/28/78 3 4 3

Connet Haas, Gaston Henry, 526.

3.714R

3/2/77 3 4 4

Goldstein, Larry Joel, 641.

3.714R

6/14/77 3 4 5

Halperin, John Harris, 604.

3.714R

6/14/77 3 4 6

h-ordered, 86-92, **103-104**, *see* %-ordered.
h-sorting, 86-92.

3.714R

11/29/77 3 4 7

add **p607** to Gamma function entry

3.714R

12/19/76 3 4 8

Goto, Eiichi, 527.

3.714R

12/19/76 3 4 9

Cunji, Takao, 527.

3.715L

4/19/77 3 5 0

Index mod p , 9.

3.715L

9/21/76 35 J

Hirschberg, Daniel Syna Moses, 677.

3.715R new entry

5/27/78 3 5 2

Interchanging blocks of data, 598 (exercise **6**), 664 (exercise **3**).

3.716L

11/5/79 3 5 3

Komlós, János, 698.

3.716L Kleinman entry

2/28/78 3 5 4

640 \nwarrow 639

3.716L *3/2/77 3 5 5*

Lehmer, Derrick Henry, 419.

3.716L *3/2/77 3 5 6*

add pp. 561, **570** to Kau **tz** entry

3.716L *11/15/78 3 5 7*

Kerov, S. V., 594.

3.716R *11/16/77 3 5 8*

add **p641** to Eukasiewicz entry

3.716R *3/2/77 3 5 9*

Leibholz, Stephen W., 641.

3.716R *6/25/76 3 6 0*

Lozinski **i**, Eliezer **Leonid** Solomonovich, 621.

3.717L MacMahon entry *11/5/79 3 6 1*

add **p.** 627

3.717L *7/31/76 3 6 2*

Maly, Kurt, 680,

3.717L *11/29/77 3 6 3*

Mallach, Efrem Cershon, 526.

3.717L

12/19/76 3 6 4

add p. 637 to the entry for Median

3.717R

2/28/78 3 6 5

Munro, James Ian, 526.

3.717R

5/27/78 3 6 6

Mahon, Maurice Hartland (* Magenta), ix.

3.717R

6/14/77 3 6 7

ROVE, 604.

3.718L

3/ 2/77 3 6 8

add p.215 to Noshita entry

3.718L

4/19/77 3 6 9

delete Newell entry

3.718L

12/19/76 3 7 0

Nitty gritty ↗ Nitty-gritty

3.718R

4/19/77 371

Packed data, 401.

3.718R new entry

5/27/78 3 7 2

Pardo, see Trabb Pardo.

3.718R Paterson entry

8/25/76 3 7 3

add p. 627

3.719L

11/15/78 3 7 4

add **p.** 576 to Pollard entry

3.719R

11/16/77 3 7 5

Rose, Alan, 641.

Rosser, John Barkley, 641.

3.719R

3/ 2/77 3 7 6

Rearrangeable network, **see** Permutation network.

3.719R new entry

5/27/78 3 7 7

Rotation of data, 598.

3.720L

11/29/77 3 7 8

add pp. 606, 607 to Sedgewick entry

3.720L

12/19/76 3 7 9

Samadi, Behrok h, 479.

3.720L

12/19/76 3 8 0

add p. 220 to **Schönhage** entry

3.720R

3/ 2/77 381

add pp. 561, 570 to Singleton entry

3.720R entry for SLB

8/25/76 3 8 2

add p. 509

3.720R

12/19/76 3 8 3

Sheil, Beaumont Alfred, 450.

3.721L

2/28/78 3 8 4

Sprugnoli, R , 507.

3.721R replacement for previous change 416

11/5/79 3 8 5

Szemer édi, Endre, 528,698.

3.721R

1/16/77 3 8 6

Shanks, Daniel Charles, 575.

3.722L

2/28/78 3 8 7

Ting, T. C., 260.

3.722L Threaded tree entry

2/28/78 3 8 8

add p457

3.722L

11/12/76 3 8 9

Trabb-Pardo ↗ Trabb Pardo

3.722R

1/16/77 3 9 0

delete p229 from Van Voorhis entry

3.722R**2/28/78 3 9 1**

Wang, Y. W., 260.

3.722R**3/ 2/77 3 9 2**Wiener, **Norbert**, 8.**3.722R****3/ 2/77 3 9 3**delete **p641** from **Waksman** entry**3.722R****4/19/77 3 9 4**

Wang, Yihsiao, 128.

3.722R new name6**6/25/76 3 9 5**Venn, John **L**.
Windley, Peter F.**3.722R****11/12/76 3 9 6**

Yap, Chee-Keng, 637.

3.722R**11/15/78 3 9 7**

Vershik, Anatolii Moiseevich, 594,

3.723R**6/14/77 3 9 8****2-ordered**, 87, 103, 112, 135.**3.726**

(namely the endpapers of the book)

4/ 19/77 3 9 9also make any changes specified for pages **136-137** of volume **1**

add p. 450 to Vaughan Pratt entry

3.745 addendum to previous change 324

11/15/78 401

John M. Pollard has discovered an **elegant** method for index computation in about $O(\sqrt{p})$ operations mod p , requiring very little memory, based on the theory of random mappings. See Math. Comp. 32 (1978), 918-924, where he also suggests another method based on numbers $n_j = r^j \pmod{p}$ that have only small prime **factors**.

9.1 changes for the book Mariages Stables

11/17/77 402

p12 line 18: Ac \rightsquigarrow Aa
 p14 line 4: Ab \rightsquigarrow Bb
 p18 line -5: $B_i \rightsquigarrow B_j$ and $A_i \rightsquigarrow A_j$ (four changes)
 p18 line -4: $b_i \rightsquigarrow b_j$ and $a_i \rightsquigarrow a_j$ (four changes)
 p18 line -3: $a_n \rightsquigarrow a_k$
 p22 line -5, -4, -3: $d: \rightsquigarrow b: b: \rightsquigarrow c: c: \rightsquigarrow d:$
 p32 line 6: exercises \rightsquigarrow exercices
 p32 line -5 exercise \rightsquigarrow exercice
 p35 illustration: delete arc from 4 of clubs to 8 of hearts
 p38 line -11: C \rightsquigarrow B
 p47 line 2: Chsbyshav \rightsquigarrow Tchébichev
 p50 lines -12, -10, -3 and p51 line 5: Chebyshev \rightsquigarrow Tchébichev
 p52 line -6: c \rightsquigarrow C
 p65 line -4: m \rightsquigarrow m
 p66 line -10, denominator of third term in sum: n+l \rightsquigarrow n-l
 p71 line 8: que R_A . \rightsquigarrow que
 p74 line -1: X \rightsquigarrow x
 p78 line -7: X \rightsquigarrow x
 p78 line -4: Q[A] \rightsquigarrow Q[t]
 p86 line 10: fcmmes. \rightsquigarrow femmes?
 p87 line -10: ZZ' \rightsquigarrow Zx'
 p92 line -8: exercise \rightsquigarrow exercice
 p93 line 4: et (Aa, Bb, Cc \rightsquigarrow et (Aa, Bc, Cb
 p93 lines -6, -3, -2: crossed-out e should be crossed-out c
 p95 line 3: $n!P_n \rightsquigarrow n!p_n$
 p95 line 9: $\Sigma \rightsquigarrow \Sigma_i$
 p95 line -2: formula should be preceded by (3)
 p95 line -2: $dx_2 \dots dx_n dy_1 dy_2 \dots dy_n \rightsquigarrow dx_2 \dots dx_n dy_1 dy_2 \dots dy_n$

p86 lines 13-14 should say: $\text{II}(y, X_L, z)$, $\text{II}(Y_R, x, z)$.

p86 line -2, change final comma to a period

p86 line -1, ~~delete~~ this line

p112 line -5: **p.** The $\nwarrow p$. [See his incredible book *On Numbers and Games*, published by Academic Press in 1976.] The

p113 *Mathematik* \nwarrow *Analysis*

THE TEX/ METAFONT PROJECT.

WHAT HAS BEEN DONE:

Don Knuth has finished (and frozen) the implementation of TEX (the typesetting system) and is currently involved in the implementation of METAFONT (the font generator).

WHAT WE WANT TO DO:

We want to complement TEX / METAFONT with a suitable hardware environment, namely:

- * An XGP type device that will provide hardcopy **capabilities** both for proofreading and for (medium quality) originals.
- * A high resolution typesetting device for high quality originals.
- * A high resolution CRT terminal, capable of displaying TEX output.

We also want to make the system widely available, thus it is needed to implement it in a more widespread language (PASCAL).

And finally we would like to try our hand in making TEX more interactive than what it is now. (This one is a tougher cookie.)

IF YOU ARE INTERESTED:

There are many things to be done. There are learning opportunities. There are academic goodies (units, CS293 projects, etc). And there **is** also monies.

FOR MORE INFO:

Send a message to LTP, or call 74425 or 74377.