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Abstract.

Two graphs G and G' are said to be k-isomorphic if their edge
sets can be partitioned into E(G) = ELUE,U . . . UE and
B(G') =EJUE,U.. . UE such that as graphs, E, and El are

isomorphic for 1 < i <k . In this note we show that it is NP-complete

to decide whether two graphs are 2-isomorphic.
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*
Given two graphsJ G= (V, E) and G' (V',E') with the same number

of edges, by a k-isomorphism of G and G' we mean a partition of

E = EJ_UEQU---UEK and a partition of E' = EiU Eé U . . .1 E}': such
that as graphs, Ei and EJ’_ are isomorphic for 1 < i <k . Let
U(G,G') be the minimum value of k for which a k-isomorphism of G
and G' exists. (See [1] for a study of k-isomorphism of graphs.)
In general, the determination of whether U(G,G') < k for two

graphs G , G' , and positive integer k is an NP-complete problem.

For, it clearly belongs to NP; and if we take G' to be a star graph

(with the same number of edges as G ), then U(G,G') is simply the
minimum size of a vertex cover for G , a well-known NP-complete
-problem [4]. The question "Is U(G,G') = 1 ?" is the familiar graph
isomorphism problem, which is not known to be NP-complete or not [2],[k].

In this note we show that _graph-2-isomorphism (G2I), i.e., to decide

whether U(G,G') < 2, is an NP-complete -problem.
We will use a transformation from the following problem, which is

known to be NP-complete [2].

Exact Cover by 3-Sets (X3C).

Instance: Set X = {L,2,...,n} and a family & = {Ai} of 3-element
subsets of X

Question: Does & contain an exact cover for X , i.e., a subfamily
&' c_& such that every element of X occurs in exactly

one member of &' ?

Theoremn. X3C is polynomially transformable to G2I. Therefore, the

graph 2-isomorphism problem is NP-complete.

f/ We follow [3] for the terminology on graphs.



Proof. Given an instance of X3C, we may assume without loss of generality
m+ /

that n =3m >6, |& =mg>m, and Xc U A.. e shall construct
i=1

a pair of graphs G and H corresponding to (X,.4) , as shown in Figure 1.
Graph G contains a connccted component TSi corresponding to each

Ai in &% . If Ai = {pyq,r} , then TSi is a triangle, with, additionally,

three stars of size ptl , gtl and r+l attached to the vertices of the

m+
triangle. We will denote UTS; by TS . 1In addition to TS ,
i=1

graph G contains a connected component M , which is a complete graph
on n vertices with m disjoint triangles removed.

Graph H is the disjoint union of four subgraphs KS , N, T , and S
In KS , we have a complete graph on n vertices {vl,vQ,...,vn} 3
together with an i-star attached to each V; - The complete graph of KS
will be referred to as Kn henceforth. Subgraph N consists of n
disjoint edges, and T consists of f disjoint triangles. Finally,

S consists of 3¢ disjoint stars, one of size ptl for each p that

mt
occurs in the multiset U A ]l -Xx.
i=1 7
Clearly, G and H can be constructed from (X,%) in polynomial
time. Since G and H are not isomorphic, U(G,H) is at least 2

We now show that U(G,H) < 2 if and only if % contains an exact cover

for X.

Lemma 1. U(G,H) < 2 if & contains an exact cover for X

Proof of Lemma 1. Without loss of generality, assume that {Al’AE"°"Am}
forms an exact cover for X . We decompose G and H in two steps as

follows.
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Figure 1. The graphs G and H ,




Step 1. Suppose Ai = {pyar} , where 1 <i<m. In the corresponding
TSi , we take a subgraph consisting of the triangle together with stars

of size P, q, r, and map it into the triangle in KS incident at
{_vp,vq,vr} with the matching stars. At the same time map the triangles

of Ts.J , for m+l f__j < mt{ , onto the [ triangles of T

Step 2. The subgraph that is left in G consists of n = 3m isolated

m
edges from U TS.l, which are isomorphic to N ; 3/ stars from
) 1= l

U TS. , isomorphic to S ; and subgraph M , which is isomorphic
J=mtl

to the remainder of KS . 3

We mention in -passing that actually U(G,H) < 3 for the graphs (G, H)
constructed from any (X,%) . For we can first map all m+¢ triangles of
TS into Kn and T ; next map the 3(mtf) stars of TS into KS and S ;
what is left then in both graphs is isomorphic to MyUN . The rest of this

note is devoted to proving the converse of Lemma 1.

Lemma 2. U(G,H) < 2 only if 4 contains an exact cover for X

We first introduce some notations. Under the assumption U(G,H) <2,

2)

let E(G) = G(l) U G(E) s E(H) =I§Il) UH( be fixed -partitions of the

S 5 4 58 _ (2

edge sets, with isomorphism mappings K and Py

For any subgraph F of G (or H),weuse F(i) to denote FDG(i)
(or FﬂH<i>, respectively); also, let (F(i)) be the isomorphic image
of F(i) under cp(i) (or (qo(i))—l , respectively). For a graizh

F = (V,E) , we use e(F) to denote \E\ . Define vertexcover to

be the minimum size of a subset V' ¢ V such that for every edge (w,v) e E,



at least one of u and v belongs to V' . The following facts will

be useful.

Fact A. If F’gi@l and vertexcover <_a , then QJF contains an

(n-a) -clique.

Fact B. Let F be a connected component in G . Any edge of H that
is incident with a vertex of (F(l)) but not contained in (F(l)) must

(2)

belong to H

Proof of Lemma 2. First, we show that any 2-isomorphism of G and H

must decompose KS into M and a collection of triangles with stars.
Indeed, since KS has more edges than M , we must have either

(Ks(l))r)TS £ 0 or (KS(E))f]TS # ¢ . Assume it is the former.

ey

Proposition.  Under the assumption that U(G,H) = 2 and (K YNTS # 0,

we must have (KS(E)) = (K£2)> =M .

Proof of Proposition.  Let TS, be such that (KS(l))r\TSi £ 9 . Consider

the image of TS(l) in H . Let {v.,v. ,sunV., } be the vertices of
i i i i
1 2 h
(1)

K that are incident with (TSi ) .

n
Fact C. (1) (TSSi))(ﬁ K contains at most h edges.

(ii) (TS(l))rnKn contains < n edges; equality holds only if

(M(l)> nK, =9 .

Proof. (i) is true since TSi with one edge removed is a tree.

(ii) follows from (i) immediately. U



Proof. (a) Suppose h > n-1 . Then since Kn has no edges disjoint

[
from {V. sV, ;e =%V, } , we must have K<l) c (TS.J')) . This implies
1,771 1 n = i

1 2 h
that vertexcover(Kr(ll)) < vertexcover(TSi) =3 . By Fact A, KI(]E)
must contain a (n-3)-clique. Since G does not contain a (n-3) -clique

when n >6, this is impossible.

(b) Next suppose h =1 . Then by Fact B, an (n-1) -star R must

be contained in (Igr‘l) . Since the maximum degree of a vertex in M is
n-3 , we must have R C (TS§2)> for some j . But then (ész-% is

incident with n vertices of Kn s and the same argument as given in (a),
with step 1 and step 2 interchanged, shows that this is impossible, This

proves Fact D. O
Fact E. (ng 2= (KI(IE)> c M.

Proof. Given 2 < h < n-2 , and that an h x (n-h) bipartite graph Y

. . 2 N
must be contained in Krg ) because of Fact B, it is easy to see that Y
must lie in (M(2)> , thus (M(2)> is incident with all n vertices

(2
{V]_’Vg’ ...,vn} . It follows that (KS(Z)) = <Kr\1)) cM . O



To finish the proof of the Proposition, note that by Fact E, the
edges of Kn are divided into those in (TS(l))ﬂ Kn and those in
((M(l))u (M(2)>) NK, . This is possible only if the latter contains

e (M) = n)--n edges and the former contains n edges, because of

(2

Fact C (ii). But then, (M(l))ﬂKn = ¢ by Fact C, which implies that
2

e((M(2)>nKn) = (2 )-n , and hence <Kr(1 )) = M . This proves the

Proposition. O

We can now complete the proof of Lemma 2. It follows from the

Proposition that KS(Q) is the isomorphic image of M , while KS(l)
consists of m disjoint triangles, each attached with three stars.
Without loss of generality, write (KS(1)> = TSJ(_l) UTSE(,l) U ... UTSril)

1
where for 1 < i <m, TS:E ) is a subgraph of TS; and moreover, they

are triangles with stars of size {P'5q'>r'} and f{ptl, q+l,r+l}
respectively, with p'<p, q'<gqg and r'<r.
If % does not contain an exact cover for X , then we will not

have p'=p , @' =g, r' =1r in TS,(l) and TX.1 for all 1 <i<m.

(2) ) 15(2) i

Hence TSl 5

U . ..UTSISIQ) will contain fewer than n isolated edges.
This makes it necessary, because of the subgraph N in H , for

T .. UTS

-y to yield % > 1 isolated edges in either

Sl U Topp.

step 1 or 2. Assume without loss of generality that Tsm+l contributes

an isolated edge (u,v) in step 1. We examine two cases.

(2)
1. Then TS 4

contains a path of length L , which does not exist in NUTyS$

Case 1. Suppose (u,v) 1is in the triangle of TS,

of H (Figure 2(a), 2(b)).

Case 2. Suppose (u,v) 1s in one of the stars of Tsml . Then in
Tsélf{ » u 1is a vertex of degree 23 , and hence must be



mapped by Ps into a star of S This implies that Tséii

contains a path of length >3, which again does not exist

in NUTU S (Figure 2(c), 2(d)).

Thus we can have U(G,H) = 2 only if % contains an exact cover

for X , and this completes the proof of Lemma 2 and the Theorem. O
(a) () v
u X
TS A subgraph of TS(2>
m+1 w1
() (4)
X Y
(1)
T%ml A subgraph of ﬂ%ﬁl

Figure?2



We wish to point out that in our construction, it is necessary to
employ a different representation for elements of X in TS than in KS
(such as using (p+l) -stars versus p-stars for peX ). The following
example shows that, for instance, if just p-stars were used in both G'
and H' , then one could have U(G',H') = 2 even though % does not

contain an exact cover for X .

Example. Let X = {1,2,...,6} and & = {Al= {1,2,5},A2 ={4,5,61,
A3 = {2,3,4}} . (See Figure 3.We use Rp to denote a p-star.) One
can first map two of the edges of R5 in TSl into the R5 of s 3
the triangle of TX3 into T ; and M into Kn . The remaining subgraphs

of G' and H' are then isomorphic. Such unwanted phenomena cannot be

2
remedied simply by choosing other representations, say, using p ~—stars

for peX , in both G' and H'

10
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An example with U(G',H') = 2 .
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