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Abstract.

Two graphs G and G' are said to be k-isomorphic if their edge

sets can be partitioned into E(@) = E UE, Jo. . . UE, and

E(G') = Ej UE} Ue. . UE, such that as graphs, EE. and E! are1 1

isomorphic for 1 <i <k . In this note we show that it is NP-complete

to decide whether two graphs are 2-isomorphic.
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Given two graphs X/ G= (V,E) and G' (V',E') with the same number

of edges, by a k-isomorphism of G and G' we mean a partition of

E = BLUE U... UE, and a partition of E' = EV E Uo. . Ey such

that as graphs, Bs and Bs are isomorphic for 1 < 1 < k . Let

U(G,G') be the minimum value of k for which a k-isomorphism of G

and G' exists. (See [1] for a study of k-isomorphism of graphs.)

In general, the determination of whether U(G,G')< k for two

graphs G , G' , and positive integer k 1s an NP-complete problem.

For, it clearly belongs to NP; and if we take G' to be a star graph

(with the same number of edges as G ), then U(G,G') is simply the

minimum size of a vertex cover for G , a well-known NP-complete

-problem [4]. The question "Is U(G,G') = 1 ?" is the familiar graph

isomorphism problem, which is not known to be NP-complete or not [2], [kL].

In this note we show that graph—-2-isomorphism (G2I), i.e., to decide

whether U(G,G') < 2, 1s an NP-complete -problem.

We will use a transformation from the following problem, which 1s

known to be NP-complete [2].

Exact Cover by 3-Sets (X3C).

Instance: Set X = {1,2,...,n} and a family 4 = {A;} of 3-element
subsets of X .

Question: Does 4 contain an exact cover for X , 1.e., a subfamily

#' Cc 4 such that every element of X occurs in exactly

one member of 4% 9

Theorem. X3C 1s polynomially transformable to G2I. Therefore, the

graph 2-isomorphism problem is NP-complete.

*/ We follow [3] for the terminology on graphs.
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Proof. Given an instance of X3C, we may assume without loss of generality
m+J

that n = 3m > 6 , |&| = mtg >m, and Xc U A.. Te shall construct
i=1

a pair of graphs G and H corresponding to (X,&) , as shown in Figure 1.

Graph G contains a connccted component TS, corresponding to each

A, in & . If A; = {p; gsr} , then TS; is a triangle, with, additionally,

three stars of size ptl , gtl and r+l attached to the vertices of the

m+/

triangle. We will denote U TS; by TS . In addition to TS ,
i=1

graph G contains a connected component M , which 1s a complete graph

on n vertices with m disjoint triangles removed.

Graph H 1s the disjoint union of four subgraphs KS , N, T , and S .

In KS , we have a complete graph on n vertices ASEAZYRERTA SN 5

together with an i-star attached to each Vv. - The complete graph of KS

will be referred to as K, henceforth. Subgraph N consists of n

disjoint edges, and T consists of { disjoint triangles. Finally,

S consists of 3%{ disjoint stars, one of size ptl for each p that

mtJf

occurs 1n the multiset U A. | -X.
i=1 *

Clearly, G and H can be constructed from (X,%) in polynomial

time. Since G and H are not isomorphic, U(G,H) is at least 2 .

We now show that U(G,H) < 2 if and only 1f % contains an exact cover

for X.

Lemma 1. U(G,H) < 2 if & contains an exact cover for X .

Proof of Lemma 1. Without loss of generality, assume that {Ap Aye oA]

forms an exact cover for X . We decompose G and H in two steps as

follows.
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Figure 1. The graphs G and H ,
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Step 1. Suppose A, = {pyayr} , where 1 <i <m . In the corresponding

TS, , we take a subgraph consisting of the triangle together with stars

of size p, q, r , and map it into the triangle in KS incident at

(Vor vr Vy} with the matching stars. At the same time map the triangles

of IS. , for mtl < J < mt{ , onto the [ triangles of T .

Step 2. The subgraph that 1s left 1n G consists of n = 3m isolated

m

edges from U TS. which are isomorphic to N ; 34 stars from

mt J 1=1
U TS. , isomorphic to S ; and subgraph M , which 1s isomorphic

J=mtl J
to the remainder of KS . 3

We mention 1n -passing that actually U(G, H) < 3 for the graphs (G, H)

constructed from any (X,&) . For we can first map all mtj triangles of

TS into K and T ; next map the 3(mt+4) stars of TS into KS and § ;

what 1s left then in both graphs 1s isomorphic to MUN . The rest of this

note 1s devoted to proving the converse of Lemma 1.

Lemma 2. U(GyH) < 2 only if 4 contains an exact cover for X .

We first introduce some notations. Under the assumption U(G,H) < 2 ,

let E(G) = cL) U 52) , E(H) _ Ge) be fixed -partitions of the
1 1 2 2

edge sets, with isomorphism mappings Pq: 6! ) 3 gl ) and Pr: ot ) - ) .
- (4) (1)or any subgraph F of G (or H),weuse F to denote FNG

(or rout) respectively); also, let ry be the isomorphic image
1 . - -1 i

of pl) under oD) (or (0) , respectively). For a graph

F = (V,E) , we use e(F) to denote |E| . Define vertexcover to

be the minimum size of a subset V' c¢ V such that for every edge (wv) e &,
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at least one of u and v belongs to V' . The following facts will

be useful.

- Fact A. If FC K and vertexcover < a , then KF contains an

(n-a) -clique.

Fact B. Let F be a connected component in G . Any edge of H that

1s incident with a vertex of F1) but not contained in ry must

belong to £2)

Proof of Lemma 2. First, we show that any 2-isomorphism of G and H

must decompose KS into M and a collection of triangles with stars.

Indeed, since KS has more edges than M , we must have either

xs)y prs £9 or &sP)y 1s 4 0 . Assume it is the former.

| Proposition. Under the assumption that U(G,H) = 2 and xs NTS 4 0,

we must have (xs @)y = x2), = M .

Proof of Proposition. Let TS. be such that a'Mynrs, £ § . Consider
the image of rg (1) in H . Let {v. 2 V. 3 eo se V. 1 be the vertices of

i 1.71 i
1 2 h

K, that are incident with ast) :

| (1)
Fact C. (1) (TS: >N K, contains at most h edges.

(11) ast nx contains < n edges; equality holds only if
(1

Proof. (i) 1s true since IS. with one edge removed 1s a tree.

(ii) follows from (i) immediately. O
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Fact D. 2 <h <n-2.

Proof. (a) Suppose h > n-1 . Then since K, has no edges disjoint
(1) 1) SE

from {v. ,v, ,em=V, } , we must have K c (TS)’) . This implies
1.7 1 1 n - i
1 2 h

that vertexcover (x1) < vertexcover (TS, ) =3 . By Fact A, x2)
must contain a (n-3)-clique. Since G does not contain a (n-3) -clique

when n >6, this is impossible.

(b) Next suppose h = 1 . Then by Fact B, an (n—-1) —-star R must

be contained in @) . Since the maximum degree of a vertex in M 1is

n-3 , we must have R C (zs\®)) for some j . But then (is) is
incident with n vertices of K » and the same argument as given in (a),

with step 1 and step 2 interchanged, shows that this is impossible, This

proves Fact D. [J

Fact E. (x 7 ) = (x2) cM.

Proof. Given 2 < h < n-2 , and that an h yx (n-h) bipartite graph Y

must be contained in x(2) because of Fact B, 1t 1s easy to see that Y
must lie in wt?) , thus at?) is incident with all n vertices

(2) (2)
{vy57,) cous] . It follows that (KS ) = CK, )y <M. Od

/
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To finish the proof of the Proposition, note that by Fact Eg, the

edges of K are divided into those in (rs yn K, and those in
(uty arty) NK, . This is possible only if the latter contains
e(M) = (5 )-n edges and the former contains n edges, because of

Fact C (ii). But then, ay nx = 0 by Fact C, which implies that
(uy nk) = (5 )—n , and hence x2), = M . This proves the
Proposition.

We can now complete the proof of Lemma 2. It follows from the

Proposition that ks (8) 1s the isomorphic image of M , while xg (1)

consists of m disjoint triangles, each attached with three stars.

Without loss of generality, write sty = sit) ursit lo. urs)
where for 1 <1 <m, rs!t) 1s a subgraph of TS, and moreover, they
are triangles with stars of size {P'5q'>r'} and (p+l, qtl, r+1}

respectively, with p' <p , q' <q and r' <r.

If &% does not contain an exact cover for X , then we will not

have p'=p , ¢' =g, r' =r 1in 15,1) and IX. for all 1 <1<m.
Hence rs?) U rs?) | : ums) willl contain fewer than n 1solated edges.
This makes 1t necessary, because of the subgraph N in H , for

IS, 1 u IS oe. UTS, to yleld 8 > 1 isolated edges in either

step 1 or 2. Assume without loss of generality that TS eq contributes

an isolated edge (u,v) in step 1. We examine two cases.

Case 1. Suppose (u,v) 1s in the triangle of TS Then 152)
— mt+l . . ml

contains a path of length 4 , which does not exist in NUTysS

of H (Figure 2(a), 2(b)).

Case 2. Suppose (u,v) is in one of the stars of TS 1 - Then in

rs?) , UU 1s a vertex of degree > 3 , and hence must be

8
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| WR (1)
mapped by Dry into a star of S . This implies that ES)

| contains a path of length >3, which again does not exist

| in NUTU S (Figure 2(c), 2(d)).

Thus we can have U(G,H) = 2 only if % contains an exact cover

for X , and this completes the proof of Lemma 2 and the Theorem. Cl

| (a) v (0) v

u X u X

TS A subgraph of rs?)
m+1 m+1

(c) u (4)

j X y X Y

TS A subgraph of TS (1)m+1 STEPH OL Topi

FigureZ2
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We wish to point out that in our construction, it 1s necessary to

employ a different representation for elements of X in TS than in KS

(such as using (pt+l) -stars versus p-stars for peX ). The following

example shows that, for instance, 1f just p-stars were used in both G'

and H' , then one could have U(G',H') = 2 even though & does not

contain an exact cover for X .

Example. Let X = {1,2,...,6} and & = {Ay = {1,2,5}, A, = {4,5,6},

A, = {2,3,4}} . (See Figure 3.We use Ry to denote a p-star.) One

can first map two of the edges of Rs in TS, into the Re of s ;

the triangle of TX, into T ; and M into Ky . The remaining subgraphs
of G' and H' are then isomorphic. Such unwanted phenomena cannot be

remedied simply by choosing other representations, say, using 0° -stars

for peX , in both G' and H' .

10
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Figure 3. An example with U(G',H') = 2 .
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