
A POLYNOMIAL TIME ALGORITHM FOR SOLVING SYSTEMS OF LINEAR

INEQUALITIES WITH TWO VARIABLES PER INEQUALITY

by

Bengt Aspvall and Yossi Shiloach

STAN-CS-79-703

January 19 7 9

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

73 = 2
xITa

A Polynomial Time Algorithm for Solving Systems of

Linear Inequalities with Two Variables per Inequality

Bengt Aspvall and Yossi Shiloach

Computer Science Department

Stanford University
Stanford, California 94305

January, 1979

Abstract

We present a constructive algorithm for solving systems of linear inequalities (LI)
with at most two variables per inequality. The algorithm 1s polynomial in the size

of the input. The LI problem 1s of importance in complexity theory since it 1s

polynomial time equivalent to linear programming. The subclass of LI treated in

this paper 1s also of practical interest in mechanical verification systems, and we

believe that the ideas presented can be extended to the general LI problem.

Keywords: linear inequalities, linear programming, polynomial time, algorithm,
complexity, loop residue, hidden inequality.

This work was supported by National Science Foundation Grants MCS-75-22870 and MCS-77-23738,

by Office of Naval Research Contract NOQO14-78-C-0330, and by a Chaim Weizmann Postdoctoral
Fellowship, Reproduction in whole or in part is permitted for any purpose of the United States
government.

I INTRODUCTION

In this paper we give a polynomial time algorithm for solving systems of linear

) inequalities where each inequality contains at most two variables. We start this
chapter by introducing the problem and relating it to other problems and previous

results. In the second section we present the general approach to solving the

problem and in the last section we define the representation and the complexity

measure to be used throughout the paper.

1.1 Linear Inequalities

Given a rational m Xn matrix A and a rational m-vector ¢ the linear inequalities

(LI) problem is to determine whether or not there exists an n-vector x of rational
numbers such that

If such a vector x exists we say that the system is satisfiable and that x is a feasible
vector, otherwise the system 1s unsatisfiable and no feasible vectors exist. If the

| system 1s satisfiable one may, or may not, ask for a feasible vector x. The algorithm
presented in this paper does supply a feasible vector if the system is satisfiable.

The LI problem 1s of theoretical interest in complexity theory. It 1s well-

; known that the linear programming (LP) problem-where one wants to maxi-
mize a linear function subject to linear inequality constraints-is polynomial time

(Turing) equivalent to the LI problem [GJ], I, RD]. Since the complexity of the
LP problem 1s one of the foremost open problems, the complexity of LI 1s of the
same Interest.

We will use LI(k) to denote the class of LI problems with at most k¥ variables
per inequality. Any instance of the LI problem can be transformed into an equiv-

alen t LI(3) instance by introducing additional variables and constraints. (By using
a binary encoding scheme the coefficients of the new problem can be restricted

to {—1,0,-+1}[I].) The transformations can be done with at most a polynomial
increase in the number of variables and constraints. Thus if there exists an efficient

algorithm for LI(3) there is also one for LP and vice versa, IA this paper we will
give a polynomial time algorithm for LI(2). Hence if the general LI problem is

not polynomial time solvable the result shows that there must be an inherent

difference in complexity between LI(2) and LI(3). The LI(2) problem has practical

applications in, for example, mechanical verification systems [NO, PJ.
To denote a typical constraint of an LI(2) problem we will use

az + by Zc, (2)

where x and y are any two variables and a, b and c¢ are rational numbers. Vaughan

Pratt [P] has given an O(n?) algorithm for the case where the inequalities are of
the form x — y << c. Robert Shostak [S] has generalized Pratt’s idea to the general
LI(2) case, but his algorithm has an exponential worst-case behaviour. By using

a modified Fourier-Motzkin elimination method, Greg Nelson [N] has given an

O(mnl1°g2n1+4 [og n) algorithm for LI(2).

1.2 Outline of the Algorithm

It 1s well-known that the solution space of a system of linear inequalities forms

a convex polyhedron. Let %(S) be the projection of the solution polyhedron on
the x-axis for a given system S. We can also view %(S) as the set of values of
x for which a solution to the entire system can be constructed. If we can find

%(S), which is a convex interval on the x-axis, we can assign a value Z € %(S)
to the variable z. This reduces the number of variables by one and yields a new

system of inequalities that is satisfiable if and only if S is satisfiable, Hence if S is

satisfiable a solution can be constructed by recursively solving systems of linear

inequalities with fewer variables.

Our algorithm 1s related to a theorem by Shostak. In [S] he shows how to

construct an undirected graph from a given system of inequalities such that the

system 1s unsatisfiable if and only if the graph has what he calls an infeasible simple

loop. Since we use the same graph construction in our algorithm we will describe
Shostak’s ideas here.

Let S be the system of inequalities of the form (2) and let wy be an auxiliary

zero variable that always occurs with zero coefficient-the only variable that can

do that. Without loss of generality we can thus assume that all the inequalities

contain two variables. We construct the graph G(S) = (V,E) with n+ 1 vertices
and m edges as follows: (a) For each variable x occurring in S add a vertex named
x to G(S). (We will use x to denote both the variable and the vertex when no

confusion can occur.) (b) For each inequality az + by < c in § add an undirected
edge between x and y to G(S) and label the edge with the inequality (Fig. 1).

Let P be a path of G(S) determined by the vertices vj, vg, ..., vi41 and the
edges ey, eg, ...,e. We define the triple sequence of P as

(ai, by, c1), (az, ba, ca), JO (ai, bi, 2)

where, for 1 << 1, a;u; + bv;41 <¢; is the inequality associated with e;. If
a;41 and b; have opposite signs for 1 <u <{ then P 1s called admissible and we

3

v

z—2y<1

wt << —l1

vo v<l w z
v+2<0

—2w—zr<0
—z 42 <<

2

Figure 1. G(S) for

define (ap, bp, cp), the residue of P, as

(ap, bp, cp) —- (aj, bi, c1) © (ay, ba, Ca) O vee © (a, b, a), (3)

where (©) is the associative binary operator defined on triples by

!

(a, b, ©) © (@’, ¥',) = (kaa', —kbb', k(cd' — b)) and k = aT (4)
Intuitively the operator (¢) takes two inequalities and derives a new inequality

by eliminating a common variable, e.g. ax + by < c and a’y + tz << imply
—aad'z + bbz < —(ca’ — db) if a’ << 0 and b > 0. Note that the residue imposes
a direction on P although the graph 1s undirected and that the signs of ap and a;

agree as do the signs of bp and b. The significance of path residues is formalized

in the following lemma.

Lemma 1 [S]. If P is an admissible path with initial vertex x, final vertex y, and

residue (ap, bp, cp), then any point (1.e., assignment of rational values fo variables)

that satisfies the inequalities that label the edges of P satisfies apx + bpy < cp.

A path 1s called a loop 1f the initial and final vertices are identical. (A loop

1s not uniquely specified unless its initial vertex 1s given.) If all the intermediate

vertices of a path are distinct the path 1s simple. The reverse of an admissible path

1s always admissible, and the cyclic permutations of a loop are admissible if and

only if a; and §; have opposite signs. It follows that no admissible loop with initial
vertex 1 1s permutable.

4

An admissible loop P with initial vertex x 1s infeasible if ap + bp == 0 and

cp << 0, since by Lemma 1 any solution of S must satisfy the unsatisfiable loop

inequality (ap + bp)x < cp. Thus if G(S) has an infeasible loop the system of
inequalities S is unsatisfiable. However the converse is not true in general. We

say that two systems of linear inequalities S and T' are equivalent if they have the

same solution polyhedron. Next we show how to extend S to an equivalent system

S’, such that G(S’) has an infeasible simple loop if and only if S is unsatisfiable.
For each vertex x of G(S) and for each admissible simple loop P of G(S) with

ap + bp 0 and with initial vertex x, add a new inequality (ap + bp)z < cp
to S. We will call the new system S’ the Shostak extension of S (since it was first
introduced by Shostak [S]).

Theorem 1 [S]. Let S’ be the Shostak extension of S. The system of inequalities
S is satisfiable if and only if G(S’) has no infeasible simple loop.

This theorem can easily be used to design an algorithm for LI(2). However,

since the number of simple cycles in a graph on n vertices can be exponential in

n, the worst-case behaviour of the algorithm can be exponential in the number of

variables. We will now outline the method we use in order to avoid examining all

the cycles separately.

Assume that G(S) is a graph for S. For each variable x define

xmin = max/| Z| P is an admissible path from vp to x in G(S) and bp < 0 }P

xmax == min{ | P is an admissible path from vg to x in G(S) and bp > 0 },

(5)
where we define max{ } =—oo and min{ } = oo. Intuitively x => xmin is the
most restrictive lower bound on x that we can derive using a chain of inequalities

in S, where all but the first have two variables; a similar inequality holds for

xmax. Let xmin® and zmaz® be defined in the same way as xmin and xmax
but with P additionally restricted to length at most k. Thus zmin(®) = xmin
and zmaz(®) = zmaz.

Define a graph G(S) to be closed for S if [xmin, xmax] = %(S) for all vari-
ables x of S. Given a system S of linear inequalities, let 7 be a system of linear

inequalities with the same variables as S. We say that the system T is a closure

of S if the following 1s true: (a) The two systems S and T are equivalent and

(b) the graph G(T) 1s closed for T. Thus if we can find a closure 7 of S in

polynomial time and if there is way to compute [xmin, zmaz]= %B(T)=%(S)
from G(T) in polynomial time, we can construct a solution to S in polynomial
time. In section 3.1 we show that the Shostak extension Sis a closure of S and

5

[zmin(™, zmaz{™] = [xmin, xmax] so G(§') can in fact be used to reduce S to a
smaller system. However, constructing G(S') takes exponential time in the worst
Ccasc.

We construct in polynomial time a modified extension S* of S. The extension

S* will be a closure of § and we also have [gmin{™, zmaz(™] = [xm in, zmaz).
This enables us to compute [zmin{™,zmaz{™]= %(8*) = B(S) from G(S*) in
polynomial time.

In the construction of the Shostak extension S$’ from G(S) many redundant
inequalities are added to S. These inequalities will not be added in the construc-

tion of S*. Using a binary search technique we will compute from G(S) the non-
redundant, i.e. the most restrictive, inequalities x 2 slow and x << zhigh for
each variable x in polynomial time. In order to do this we keep, for each variable

x of S, two intervals [zlow], zlowl] and [zhigh], zhighl] such that either zlow&
[zlow], xlowf] or zlow= —o0, and analogously for zhigh. Initially the intervals
will be set to [—A, X], where A can be computed from the input.

The algorithm will guess values for the variables one at a time. A guessed

value of x will be “pushed” through G(S) in a breadth-first manner. This will
give new-but not necessarily true—upper and lower bounds on the variables. By

analysing the outcome of each guess it is possible to chop the interval for zlow

or xhigh by at least half. There will also be a way to decide if a new and more

restrictive bound on x can be derived or the intervals can be coalesced into single

points. Thus after a finite-and in fact polynomial-number of guesses we will be

able to determine the true values of zlow and zhigh for any variable x of S.
Chapter 2 is devoted to the computation of zlow and zhigh. After computing

the values of zlow and xhigh for each variable x of S' from the graph G(S), we con-

struct the extension S* from S by adding the inequalities x 2 xlow and x < zhigh
for each variable x. Given G(S*) it is rather straightforward to compute zmin{™
and zmaz{™ using a breadth-first search. This is explained in detail in chapter
3, where we give the LI(2)-Algorithm. In Chapter 4 we analyse the complexity
of the algorithm and show that the number of guesses needed is bounded by a

polynomial in the input size.

1.3 Representation and Complexity Measure

Our algorithm for LI(2) 1s polynomial in the size of the input. In order to establish

exactly what this means we have to say a few words about the way the input 1s

represented and how the complexity 1s measured.

We assume that an instance of LI(2) is described as a string of inequalities
of the form ax + by <c¢. Each rational number is represented as an ordered

6

pair of integers and each variable by an integer between 1 and n. All integers

are written in binary notation, and just enough additional symbols to delimit the

input unambigously are allowed. The wnput size is the total length of the string

describing a given instance.

Throughout this paper we will use a random access machine (RAM) model.

(For a detailed description see [AHU].) The complexity measure will be the worst-
case time using a uniform cost criterion, 1.e. all elementary arithmetic operations

and comparisons take one unit of time. However, we want to establish that the

algorithm 1s polynomial also in the Turing machine sense. The following theorem

relates the complexity for the two machine models.

Theorem 2 [AHU]. The random access machine under logarithmic cost and the
Turing machine are polynomially related models.

In chapter 4, where we examine the complexity of the algorithm, we will

therefore consider the logarithmic cost criterion as well. We will show that the 1n-

termediate results do not “blow up” establishing that the LI(2) problem is solvable

in polynomial time on a Turing machine.

2 FINDING THE EXTENSION S*

In this chapter we show how to find S* from G(S) using a binary search technique.
We start by classifying different kinds of admissible loops and examining their

behaviour under guesses. In the second section we describe how to push a guessed

value for a variable through G(S) and in the last section we construct the extension

S* and the graph G(S*) using the results from the previous sections.

2.1 Behaviour of Loops under Guesses

From a linear inequality az + by << ¢c we can derive an upper bound on y if 56> 0
or a lower bound if » << 0 that depends on z if a % 0. Let us see how this can
be employed in G(S). Let P be an admissible path from z to y (z, y 5% vp) with
residue {ap, bp, cp). If we assign a value to z, we can get a constant bound on y
from apz + bpy <cp. The residue of P is uniquely defined since the operator
(>) is associative. Hence the bound on y is unique with respect to P. For another

path P’ we might get another bound on y. The trouble is that we do not want to
compute the residues for all admissible paths between x and vy.

Let us ignore this problem for the moment and turn our attention to admis-

sible loops since they play a fundamental role in the algorithm. By making a guess

[

for a variable z at one end of an admissible loop we get a bound on the same

| variable at the other end of the loop. We now show how the guess and the result

| are related to the residue of the loop.

Let P be an admissible loop with residue (up, dp, cp) and initial and final
vertex z 5% vy. We call apr + bps < cp the hidden inequality of the loop. If
up -+ bp 5% 0 we can-and often will-write the hidden inequality of P as either
x < h or x > h, where h =c¢p/(ap + bp). Without knowing the residue of P we
can obtain information about its hidden inequality by guessing a value g for z,

pushing the guess around P (as described in the next section) and examining the

result. There are four classes of admissible loops denoted =, T, TF, and + and
distinguished by the signs of up and bp (the upper sign corresponds to the sign of

ap). We will now classify their behaviour under guesses.
Let h = cp/ (ap + bp), r= (cp — apg)/bp, and u = —ap/bp so that r can be

written as r = ug -+ (1 — p)h. The hidden inequality for a == loop 1s of the form
x < h. If we guess the value g for x we get as the result the inequality x <r. The
situation for —Z loops is similar but with the inequalities in the opposite directions.

For these loops pw << 0 so either g < A <r, r<<h<<g,org=h==r and, since

the guess and the result are on opposite sides of kh, we will call them the flipping

loops (Figs. 2 and 3).

T=g << h z<<T Cz <T s<hx = ¢g
SS DEV—N———— US ES US Wr

Figure 2. Flipping == loops

X = g z>h z>r T>r t=>hx = g

| I X —r— z

| Figure 3. Flipping = loops

The I= loops are slightly more complicated. We always get a result of the form
| x <r but we have to distinguish three different cases for the hidden inequality:
| (a) If ap + bp > 0 we have x < h and 0 << iu << 1 so the result lies in the interval

| between g and h-the converging case (Fig. 4a). (b) If ap4bp << 0 we have x => h
and x > 1 so h and r are on opposite sides of g-the diverging case (Fig. 4b). (c)

If ap + bp = 0 the hidden inequality is O0_< ¢p and we get r < gif cp<< 0, i.e.
the hidden inequality is a contradiction, and r >> g otherwise-the contradiction

and tautology cases (Fig. 4c).

8

z= zs <r z<h z<h TT z=4g

_— z SSS EU S— W—— z

Figure 4a. Converging case for Ff loops

<r z= z>h z>h z= z<T

Figure 4b. Diverging case for Ir loops

zr z=yg z=g9 <r

aa ER —_—t1 sz

Figure 4c. Contradiction (left) and tautology cases for Ir loops

The = loops are similar to the J loops in their behaviour-the difference
1s that the inequalities go in the opposite directions. Thus the result 1s always

x 2 r and again there are three cases for the hidden inequality (Figs. 5a,b,c).

For the the converging and diverging cases of the I= loops and + loops we have
ignored the possibility that g== r, If this happens we must have h==g as for

the — loops and == loops. Table 1 summarizes the loop results for reference in
subsequent sections. Note that the directions of the hidden inequality and the

resulting inequality disagree only for diverging loops.

z=yg z>r z>h z>h T=>r T==gq
_ Eo —_ T

Figure 5a. Converging case for == loops

T> z=g z<h z<h g T>r

Figure 5b. Diverging case for = loops

z=g T>r T>T T=

EE —_—t1 5:

Figure 5e. Contradiction (left) and tautology cases for == loops

9

| Class of loop Hidden neq. | Result | Relations between g,r, and h | Figure |
+ | x <h r<r g<h<r g=h=rorr<h<g| 2 |

Toap+br>0 z<h <r g<r<hg=h=rorh<r<gl|4 a

Fortbe <0 r<g<hg=h=roh<g<r| tb |
— ap + bp = 0 | 0 < cp z <7 rl gorg<r | 4c

=, or tbr> 0 r<o<hg=h=rorh<g<r

orton

Table 1.

2.2 Pushing Guesses through G(S)

In the previous section we saw that we could obtain partial information about the

hidden inequality of a given admissible loop by guessing a value for a variable,

“pushing” it around the loop, and examining the result for the same variable. We

now describe how to “push” the guessed value through G(S) in order to obtain

the resulting inequality.

The hidden inequalities that we want to find are those that give the most

restrictive lower and upper bounds for each variable. All other hidden inequalities

are redundant and are therefore not added to S*. The algorithm will find the non-
redundant hidden inequalities after examining only a polynomial number of all

the hidden inequalities in G(S).

Clearly we do not want to “push” a guessed value for x separately around

each admissible loop with initial vertex z—not even around all the simple ones

since there might be exponentially many. We will instead “push” the guessed

value in a breadth-first way with at most n stages, This allows us to find a new

and more restrictive hidden inequality involving z.

We call an edge ¢ labeled ay + b2 << c a positive edge for y if a > 0 and

negative for y if a << 0. Note that the same edge can be, for example, positive for

y and negative for z. Given a lower bound on y we can derive a (lower or upper)

bound on z using a positive edge for y. We say that the vertex y sends the lower

bound on y over the edge e, the edge transfers this bound on y into a bound on 2,

which 1s then received by the vertex z. Similarly, a negative edge for y can transfer

only an upper bound on y into a (lower or upper) bound on z.

10

A guessed value g for z will be spread like a rumor through G(S). Whenever a

vertex y s# z receives a new and more restrictive lower (upper) bound the vertex
y records it as the current lower (upper) bound on y and in the next stage of the

algorithm y sends this new bound out over all its positive (negative) edges.

Algorithm 1 (The Grapevine). The input to the algorithm 1s the graph G(S) and

a guessed value g for x. The algorithm finds the most restrictive lower and upper

bounds on x that can be obtained from g using admissible loops of at most rn edges

with £ occurring only as the initial and final vertex. The algorithm stores enough

information that the loops corresponding to the most restrictive lower and upper
bounds can be reconstructed if desired.

Step 1. [Send guess from z.] Let + «+ 1. Transfer the guessed value g over all edges
incident to x. For each vertex y £ x record the most restrictive lower and
upper bounds received on y, and record also the edges over which they

were transferred together with the current stage number 1. (If the same

bound was received over several edges record one of them.)

Step 2. [Termination?] If t+<n set1 +1 + 1 and go to Step 3. Otherwise the

algorithm terminates and returns the current lower and upper bounds on
x as the result.

Step 3. [Stage ¢.] For each vertex y #% x do the following: (a) If the currently
most restrictive lower bound on y was recorded in stage ¢t — 1 send it over

all its positive edges. (b) If the currently most restrictive upper bound on

y was recorded in stage : — 1 send it over all its negative edges.

Step 4. [Record new bounds.] For each vertex y do the following: If a new, and

more restrictive, lower (upper) bound on y was received during stage 2

record it as the current lower (upper) bound, and record also the edge that

transferred the new bound together with the current stage number 2. (If

the same bound was received over several edges record one of them.) Go

to Step 2. 0

Later we need to trace the loop that gave the most restrictive lower or upper

bound on z. This can be done simply by tracing the loop backwards. The algo-

rithm stores for each vertex y the edges over which the lower and upper bounds

were received, Since only a lower (upper) bound on y can have been sent out over

a positive (negative) edge for y there 1s no ambiguity between lower and upper

bounds when tracing the loop backwards.
We call an admissible loop P of length at most »n, with x occurring only as the

initial and final vertex, and with hidden inequality (ap + bp)z << cp a lower loop
for x if bp << 0 and an upper loop for x if bp > 0. Thus a lower loop is either a =

loop or a == loop and an upper loop is either a + loop or a = loop. Transferring a

11

guess around a lower loop for x gives a lower bound on x as the result. Similarly,

by using an upper loop for x we get an upper bound on Xx. A lower (resp. an upper)

loop for x 1s optimal with respect to g if for all other lower (resp. upper) loops P’ for

x we have (cpi— apg) [bp < (cp—apg)/bp (resp. (cp—apg)[bp = (cp—apg)/bp).
Note that a simple admissible loop 1s either a lower or an upper loop for some

vertex. The proof of the following lemma 1s straightforward and left to the reader.

Lemma 2. Algorithm 1 returns no lower (upper) bound on x if no lower (upper)
loop for X exists. Otherwise there exists an optimal lower (upper) loop P for x

with respect tog and Algorithm 1 returns x 27 {& <7), where r =(cp—apg)/bp.

2.3 Constructing the Extension S* using Binary Search

In this section we show how to construct the extension S* of §' without explicitly
examining all simple admissible loops as is done in the construction of S’, the
Shostak extension of S. In the construction of S' there might be exponentially
many inequalities involving the variable x added to S. However all but at most
two of these inequalities are redundant. We define

xlow = max{ hp|P is a lower loop for x with hidden inequality x => hp} (6)
zhigh = min{ hp | P is a upper loop for x with hidden inequality x << hp}.

Using a binary search technique and the results from the two previous sections we

can compute the values of slow and zhigh for all vertices x without examining all
admissible simple loops. To obtain the extension S* we then add for each variable
x the two inequalities x >> xlow and x < zhigh to S.

It is now an easy task to construct G(S*) as follows: For each variable x add
two edges between x and vy to G(S) and label the edges x = zlow and x < zhigh

respectively. The graph G(S*) will be a subgraph of G(S’) in the following sense:
(a) There is an edge between x and y (Xx, y 5 wv) in G(S*) if and only if there is an
edge between x and y in G(S’) with the same label, (b) If e is an edge between x

and vp in G(S*) with label x_ > c, then there exists an edge ¢ between x and vp in
G(S') with label x => ¢, where ¢ 2c. (¢) If e is an edge between x and vp in G(S*)
with label x << ¢, then there exists an edge €’ between x and vy in G(S’) with label
x <c!, where c <¢’.

In order to find the values of slow and zhigh we keep, for each variable

x of S, two intervals [zlow],zlow?] and [zhigh},zhight] such that either zlow €
[zlow], zlow?] or xlow == —o0 and analogously for zhigh. Initially the intervals
will be set to [—A, h], where A can be computed from the input as explained in
section 4.1,

12

The two intervals [zlow], zlow?] and [zhigh], zhight] will be identical for some
number of steps of the binary search and we will use Algorithm 2 to chop their joint

interval by at least half in each iteration. If the intervals become non-identical

we switch to Algorithm 3 and continue the search. The intervals will either be

identical or have at most one point in common. We will always take the midpoint

of an interval as a guess and use Algorithm 1 to provide the most restrictive lower

and upper bounds with respect to this guess.

Algorithm 2 (Chop Joint Interval). The input to the algorithm 1s G(S), a variable x,

and an initial bound N such that either zlow € [—\, A] or zlow = —o0, and either
xhigh &[—N\,\] or zhigh = oo. In each iteration the algorithm chops the joint
interval for xlow and xhigh by at least half. The algorithm terminates when either

an infeasible loop is found or the two intervals [zlow], xlowf] and [xhighl, xhighf]
become non-identical. In the latter case xlowf = xhighl, xlow € [zglow|, xlow[] or
xlow == —oo, and xhigh € [xhighl, zhighl]or xhigh = co.

Step 1. [Initialize.] Let zlow] + —N\ and xhighf « A.

Step 2. [Distribute guess.] Let g t (zlow]+ zhight)/2. Use Algorithm 1 to find
x =r and x << r'—the most restrictive lower and upper bounds on x with
respect to g.

Step 3. [Chop or split?] If x >r and r > g go to Step 4. Otherwise if x <r! and
r' << g go to Step 5. Otherwise go to Step 6.

Step 4. [Use lower result.] Trace the loop giving the bound x_>r > g and
compute its hidden inequality. If x > h and h > g let zlow] « h else if

Xx < h and h < g let zhight «+ h else terminate the algorithm due to an
infeasible loop. Go to Step 2.

Step 5. [Use upper result.) Trace the loop giving the bound x<7'< g and
compute its hidden inequality. If x <h and A < g let zhigh] « h else if
Xx 2h and h > g let zlow| « h else terminate the algorithm due to an

infeasible loop. Go to Step 2.

Step 6. [Split interval and terminate.] Let xlowf « zhigh] « g. Terminate the

algorithm and return the two intervals [zlow], xlowf] and [xhighl, xhighf]
as the result. Cl

The following lemma will be very important in the proofs of correctness for

Algorithms 2 and 3.

Lemma 3. The following two statements are equivalent:

(a) Algorithm lreturns either x 2>r > gor x <r <4.

(b) In G(S) th ere exists a lower loop for x with hidden inequality Xx > h > g, or
an upper loop for x with hidden inequality x < h << g, or an infeasible loop
of length at most n with initial vertex x.

13

Proof. From the behaviour of different classes of loops (Table 1) and Lemma 2

it 1s easy to see that (a) implies (b). We will therefore only show that (b) implies

(a). If there exists a lower loop P for x in G(S) with hidden inequality x > h > ¢g

: we know from Table 1 that we can derive either x => r> gor x <r << g from
P. Since Algorithm 1 finds an optimal lower loop P’ either x >r' >r> gor

: x <r'<r< g must be returned. The proof for an upper loop for x is similar.
If there exists an infeasible loop P of length at most » and with initial vertex x

we know, from the behaviour of the contradiction case for I= loops and = loops,
that either x 2>r> gor x <r < g can be derived from P. Since P is either a

lower or an upper loop for x, Algorithm 1 must return either x > >7r> g or
r<r<r<gbyLemma2 [OO

Theorem 3. In each iteration Algorithm 1 chops the joint intervalfor xlow and

; xhigh by at least half. Algorithm I terminates either because an infeasible loop
has been found or the two intervals [glow], zlow?] and [zhigh|, thigh] have be-
come non-identical. In the latter case zlowt = zhigh], zlow € [zlow], xlowf] or
xlow = —o0, and xhigh € [zhigh],zhighl] or xhigh = oc.

| Proof. It 1s easy to see that each time the algorithm returns to Step 2 the interval

[zlow], zhight] has been chop by at least half, Furthermore, the new endpoint
corresponds to a bound on x that has been obtained from a new hidden inequality.

Since the algorithm has to go to Step 2 in each iteration and since there are only

: finitely many lower and upper loops of length at most n in G(S) the algorithm

must terminate. Clearly if the algorithm terminates in Step 6 the two intervals

: for slow and xhigh have only one point in common.
Let us now show that if the algorithm terminates in Step 4 an infeasible loop

| has been found, Suppose the algorithm terminates in Step 4 without having found
: an infeasible loop. The loop that gave the result x =r > g must then have either

X=>h>gorx<h< g as its hidden inequality according to Lemma 3. But in
: this case we do not terminate the algorithm so we have a contradiction. The proof

for termination in Step 5 is similar.

Finally we show that if the algorithm terminates in Step 6 then either zlow €

[zlow], zlowt] or xlow = —oo. Suppose to the contrary that slow & [zlow], xlowf]
; and slow % —o0. Then cither —oo << xlow << zlow] or zlow > zlow! = g, where

g is the last guess used in Step 2. By assumption zlow> zlow| or zlow= —o0

after Step 1. The only statements that change zlow| are zlow|+ h in Steps

4 and 5, and at those points we know that x > h. Thus the first case cannot

| happen. If zlow > zlowl = g there must be a lower loop with hidden inequality

: Xx => h>g. By Lemma 3 we see that Algorithm 1 must return either x <r<<g
or Xx => r >> g. But in this case we do not go to Step 6 from Step 3 so we have a

contradiction. Hence we conclude that xlow € [zlow], xlowf] or zlow = —o0. We
omit the corresponding proof for zhigh since it is analogous to the one for zlow. (]

By using Algorithm 2 we can compute an interval [zlow],zlowl] such that
zlow € [zlow], xlowf] or zlow = —oo, and zhigh > zlowt. We now show how to
use this result to compute the correct value of xlow with an iterative technique

similar to the one used in Algorithm 2. The main difference 1s the termination

criterion. Guessing zlow], the left endpoint of the interval for zlow, allows us to

determine if there exists a lower loop with hidden inequality x > h > zlow]. If
this is not the case we can coalesce the interval [zlow], xlowf] into the single point
zlow].

Algorithm 3 (Chop Lower Interval). The input to the algorithm 1s G(S), a variable

x, and an interval {zlow], xlowf] such that xlow € [zlow], xlowf] or zlow = —()0.
Furthermore zlow?! <<zhigh is assumed. In each iteration the algorithm chops

the interval [zlow|,zlow?] by at least half. The algorithm terminates if either
an infeasible loop is found or xlow is determined to be either zlow = zlow] or

Xlow = —o0. In the latter case the point zlow] is returned.

Step 1. [Chop or coalesce interval?] Let g « zlow]. Use Algorithm 1 to find

x =r and x < r’-the most restrictive lower and upper bounds on x with
respect to g¢. If x >r andr > g, or x <r and < g go to Step 3.

Step 2. [Coalesce interval and terminate.] Terminate the algorithm and return

zlow| as the result.

Step 3. [New guess.] Let g + (zlow] + zlow?)/2. Use Algorithm 1 to find x =>
and x << r'—the most restrictive lower and upper bounds on x with respect
to g.

Step 4. [Which end to chop?] If x >r and r > g go to Step 5. Otherwise if x <7’
and r¥ << g go to Step 6. Otherwise set xlowf + g and go to Step 3.

Step 5. [Use lower result.] Trace the loop giving the bound x >> 7 >> g and com-
pute its hidden inequality. If x > h and A > g let zlow] «— h and go to

Step 1. Otherwise terminate the algorithm due to an infeasible loop.

Step 6. fuse upper result.] Trace the loop giving the bound x <7 << g and
compute its hidden inequality. If x => h and h > g let zlow] + h and go

to Step 1. Otherwise terminate the algorithm due to an infeasible loop. (Cl

Lemma 4. Algorithm 3 terminates; furthermore in each iteration the interval

[zlow], zlowl] is chopped by at least half.

Proof. The test in Step 1 guarantees, according to Lemma 3 and the assumption

that zhigh >> zlowt, that whenever we get to Step 3 there exists either a lower

15

loop for x with hidden inequality x > A > zlow| or an infeasible loop of length at

most n with initial vertex z. If there is an infeasible loop or A is in the right half

of [zlow], xlowf] this will be detected in Step 4, according to Lemma 3, and the
algorithm will proceed to Step 5 or 6. Otherwise the right half of [zlow], zlowT]
will be chopped and the algorithm will return to Step 3. Thus h must fall in the

right half of [zlow], xlowf] after finitely many executions of Steps 3 and 4 and the
algorithm will proceed to Step 5 or 6.

To show that Algorithm 3 terminates it remains to be shown that it cannot

return to Step 1 infinitely many times. It 1s easy to see that each time the algorithm

returns to Step 1 the interval [zlow],zlowt] has been chopped by at least half.
Furthermore the new left endpoint corresponds to a bound on x that has been

obtained from a new hidden inequality, Since there are only finitely many lower

loops 1n G(S) the algorithm must terminate, [J

Theorem 4. If there exist any infeasible loops of length at most n with initial

vertex x in G(S) Algorithm 3 finds one and terminates. Otherwise the algorithm

terminates and returns zlow| such that either zlow = slow) or zlow = —o0.

Proof. From Lemma 4 we know that Algorithm 3 terminates. Let us first show that

if the algorithm terminates in Step 5 an infeasible loop has been found. Suppose

the algorithm terminates in Step 5 without having found an infeasible loop. The

loop that gave the result x_=>r > ¢ must then have either x <h<gorx=>h>g

as its hidden inequality according to Lemma 3. By assumption xlowf << zhigh at
the beginning of the algorithm and xlowf is never increased so x < h << g cannot

be the case. If x > h > g is the case in Step 5 we do not terminate the algorithm.

Hence we have a contradiction. Termination in Step 6 1s handled similarly.

We now show that if there exists an infeasible loop of length at most » with

initial vertex x the algorithm terminates in Step 5 or 6. Suppose to the contrary

that the algorithm terminates in Step 2 despite the fact that such a loop exists

and let g be the last guess used in Step 1. Lemma 3 tells us that Algorithm 1 must

return either x >r > gor x <r << g in Step 1. But if this is the case we do not

go to Step 2. Hence we have a contradiction.

It remains to be shown that if the algorithm terminates in Step 2 either

slow == zlow] or slow = —o0. In order to prove this we need the following claim,
which 1s proved below.

® Whenever the algorithm gets to Step 1 we have either zlow € [zlow|, low]
or slow = —oo0.

Let us assume that the algorithm terminates in Step 2 but neither zlow = zlow|

nor slow = —oo is true. From the claim above we conclude that zlow > zlow| =

g, where g is the last guess used in Step 1. Thus there must be a lower loop P for

16

x with hidden inequality x 2 h > g¢. Algorithm 1 would therefore, according to
Lemma 3, return either x <r< gor x >r> g in Step 1. But in this case we
do not go to Step 2 so we have a contradiction.

Proof of claim: By assumption the claim 1s true the first time the algorithm reaches

Step 1. Suppose the claim 1s violated for the first time when the algorithm returns

to Step 1 the 7*® time. Then either —oo < slow < zlow| or xlow > xlowf . The
only statements that change zlow| are zlow| « h in Steps 5 and 6. At those points
we know that x >> h so the first case cannot have happened. Thus zlow > xlowf

which implies that there exists a lower loop P for x with hidden inequality x =>

h > xlowf. Hence xlowf must have been erroneously changed since the previous

execution of Step 1. The only statement that changes zlowt is xlowf « g in Step

4, where g is the last guess used in Step 3. Due to the existence of a lower loop

P with hidden inequality x > h > zlowl = g Algorithm 1 must, according to
Lemma 3, return either x <r << gor Xx > r > g as the result in Step 3. But then

we would not change xlowf in Step 4 so we have a contradiction. Cl

After using Algorithm 3 we know that either zlow == zlow] or slow = —o0,

but we do not know which alternative is the true one. However, if A is sufficiently

large, so that initially zlow == —oo or slow € (—A\, \), then xlow = —o0 if and
only if zlow] == A.

We now know how to compute the correct value of slow. The algorithm

for computing zhigh is almost identical to Algorithm 3 and is therefore omitted.
Given the values of zlow and zhigh for each variable x of S we can construct the

extension S* and the graph G(S*) as described at the beginning of this section.

3 THE LI{2)-ALGORITHM

The LI(2)-Algorithm is given and proved to be correct in this chapter. We start
by showing that the Shostak extension $’ is a closure of S. In the first section we
also show that [zmin{™, zmaz{™) = [zmin, zmaz] for G(S"). In the second section
we use these results to show that the extension $* is also a closure of S and that

[zmin{™, z2maz{™] = [xmin, zmaz] holds for G(S*) too. This allows us to present
the polynomial algorithm for LI(2).

3.1 The Shostak extension S’ is a closure of S

In this section we show that S' is a closure of S and that [zmin{™, zmaz{™]=
LB(S") = B(S) for G(S"). If an infeasible simple loop in G(S) is found during the
construction of S* we know that S is unsatisfiable by Theorem 1 and we therefore

define [zmin{™, zmaz(™)] to be equal to the empty set 8. The following lemma is
immediate from the proof of Theorem 1.

17

Lemma 5 [S]. Let xmin and zmaz be determined from G(S’), letx be any variable
in S, and let Z be any value such that Z € [zmin, zmaz]. The system of inequalities
S is satisfiable if and only if S|J{z<Z,x =>%},i.e. S with x =Z, is satisfiable.

We call an algorithm for LI(2) constructive if it supplies a feasible vector

whenever the system of inequalities 1s satisfiable. Lemma 5 does not directly lead

to a constructive algorithm for LI(2). We now give three preliminary lemmas that

allow us to prove Lemma 9—the constructive version of Lemma 5.

Lemma 6. The Shostak extension S’is a closure of S.

Proof. In order to establish the lemma we have to prove that S and S’ are equivalent

systems and that G(S') is closed for S’. From Lemma 1 and the construction of
the extension S’ it 1s easy to see that S and S’ are equivalent.

From Lemma 5 we have [zmin,zmaz])C B(S). Thus G(S') is closed for S’
if we can show that [xmin, zmaz]3 %(S). Let Z € %B(S). If xmin = —oo then
obviously Z> zman. If xmin > —oo we know from the way S’ is constructed

that the inequality Xx > xmin can be derived from S and therefore any solution

must satisfy it. Thus Zz > zmin. In the same way we can show that £ < xmax

and therefore [xmin, zmaz] 2D %(S). C(l

Lemma 7. If there is an admissible path P from wy to x in G(S'), there is an
admissible simple path Q from vy to x in G(S') such that the sign of bg agrees with
the sign of bp.

Proof. Given bp let Q be a shortest admissible path from 2g to x in G(S’) such that
the sign of bg agrees with the sign of bp. We claim that Q is simple. Suppose to the
contrary that Q 1s not simple. By the admissibility of Q, the intermediate vertices

of & are distinct from vp. Thus Q can be expressed as @1&2&3, the concatenation

of three admissible paths @;, @9, and @3, where 5 is a simple loop. Let (a;, b;, ¢;),

1 <<< 3, be the residues of the three paths and let (ag, bg,cg) be the residue of
¢). We have two cases to consider, depending on whether €y is permutable.

(a) If @9 is permutable then agby < 0, i.e. ag and by are of opposite signs. Since Q

is admissible this implies that bja3 < 0 so Q’ = 1&3 is also admissible. Let

az + by < ¢; be the inequality labelling the last edge of Q, and recall that

the signs of bg and 4 agree. Since az + by < ¢ also labels the last edge of Q’
the signs of bg and bg agree, which contradicts the choice of Q as a shortest
admissible path.

18

(b) If @ is not permutable then ashy > 0 and there cxists (by definition of S’)
an edge e labelled (as + bo)y < ¢3 from 1 to y in G(S), where y is the initial
vertex of ¢s. By the admissibility of Q we have baz << 0, which implies that

Q' = eQ; is also admissible, Since the two paths Q and @ both end with the
same edge we know that the signs of bg and bg agree. Thus we again have a
contradiction to the choice of Q. [I

Lemma 8. If G(S’) has no infeasible simple loops, zmin{™ = xmin and zmaz™ =
rmaz.

Proof. We show that zmin{™ = xmin; the proof of the other case similar. Trivially
zmin{™ < xmin so it only remains to be shown that zmin{™> xmin. If there is
no admissible path from wp to x in G(S') with bp < 0 then xm in = zmin{™ = —oo
so let us assume that such paths exist and let P be one for which ¢cp/bp = xmin.
Since simple paths are of length at most n there exists an admissible path Q of

length at most n from vp to x in G(S) such that the signs of bp and bg agree
(Lemma 7). Let Q be one for which cg/bg = zmin(™,

Let us add a new edge e between x and wy to G{S’) and label the new edge
x < zman{™, The only admissible loops of length at most n formed by adding this
edge are of the form Q’e (or e€’), where Q’ is an admissible path of length at most

n-1 from vp to x with bg << 0. Thus from the edge e we have x < zmin{™ = cg/bg
and from the path @ we have x 2 cg//bgy, where cg/bg => cgi/bgy by the definition
of Q and Q’. This implies that the hidden inequality 0 < ¢g/bg — cg/bg of Q’e
1s a tautology. Since G(S) did not contain any infeasible simple loops and adding

the edge e did not introduce any, the modified graph has no infeasible simple

loops. Thus it follows from Theorem 1 and Lemma 1 that x < zmin{™ = cg/bg
and Xx => xmin = cp/bp must be satisfiable simultaneously. We therefore have
xmin < xmin(.,

Lemma 9. If Sis the Shostak extension of S then [zmin{™, zmaz{™] = %(S) for
G(S).

Proof. From Lemmas 6 and 8 it follows that this lemma is true when G(S) has no

infeasible simple loops, so let us assume that G(S) has an infeasible simple loop P.
Thus S is unsatisfiable (Theorem 1) and therefore %&(S)=0. We have two cases
to consider depending on whether the initial vertex of P is vp. If it is, then there

exists a vertex x such that x => xmin™®, x < zmaz{™, and zmin(™ > zmaz{"™.
Thus [zmin{™, zmaz(™]=0. Otherwise G(S) has an infeasible simple loop and
by definition [zmin™, maz) =0. CI

19

3.2 Constructing a Solution

We will now show how to compute zmin{™ and zmaz{™ from the graph G(S*) and
how to use them to construct a feasible solution assuming that one exists. If the

system of inequalities S 1s unsatisfiable then no feasible vector exists and we will

detect that during our construction. However before we describe the algorithms

we must show that [zmin{™,zmaz(™]= B(S*) = B(S) for G(S*). If an infeasible
simple loop in G(S) is found during the construction of S* we know that %6(S)=10
and we define [zmin{™, zmaz{™] to be equal to the empty set 0.

Theorem 5. The extension S*is a closure of S. Furthermore [gmint™, zmaz{™] =
[xmin, xmux] for G(S*).

Proof. From Lemma 1 and the construction of the extension G(S*) it 1s easy to

see that S* and S are equivalent systems. We now show that G(S) is closed for

S*. If an infeasible loop in G(S) is detected during the construction of S* we have
by definition [zmin,zmaz]C [zmin{™,zmaz{™]= %(S)=0. Let us therefore
assume that no infeasible loop was found during the construction of S*. This
implies by Theorem 4 that there exists no infeasible simple loop in G(S). From

the definition (6) of xlow and zhigh we see that the inequalities x => xlow and

x << zhigh are as restrictive as any hidden inequality of a simple admissible loop.

Thus the inequalities added to S in the construction of S* are at least as restrictive
as those added to S in the construction of S’.

Hence if we compute zmin{™ and zmaz(™ from G(S*) instead of from G(S")
we get an interval [zmin{™, zmaz(™)], which is a subinterval of %(S’') = %(S)
by Lemma 9. Let xmin and xmux be defined in terms of G(S*). We have by

definition [xmin, zmaz]C [zman(™), zmaz{™)]. Since x >> xmin and x < xmax
can be derived from S they must clearly be satisfied in any feasible solution.

It follows that %(S*)C [xmin, zmaz]C [zminl™, zmaz{™)C %(S). Since S
and S* are equivalent we have %(S) = %(5*). Hence G(S*) is closed for S* and
[zmin(™, zmaz(™] = [xmin, xmux]. O

In the algorithms presented in chapter 2 the auxiliary zero variable vg has

never had any significance since it always occurs with zero coefficient. Thus all

inequalities in S with only one variable have been ignored so far. Now 1s the time

for vy to play its role.

The algorithm to compute zmin{™ and zmaz{™ will be quite similar to
Algorithm 1. It works on G(S*) insted of G(S) and starts by sending the guess
w = 0 (any other value will do) from vp and recording the most restrictive lower

and upper bounds received at vertices adjacent to vg. What this intuitively means

1s the following: If x 1s adjacent to vy the lower (upper) bound on x received 1s

the most restrictive lower (upper) bound obtained from the original inequalities

20

with only one variable, and the inequality x => slow (x < xhigh) added in the

construction of G{S*). The algorithm then proceeds to transfer new and more
restrictive bounds on variables other than vp in a breadth-first way with n stages.

Algorithm 4 (The Projector). The input to the algorithm is the graph G(S*). The

algorithm finds zmin{™ and zmaz(™ for each variable x 4 v,.

Step 1. [Send guess from wp.) Let 7 +1. Transfer the value g == 0 over all edges
incident to vy. For each vertex x vy record the most restrictive lower
and upper bounds received on Xx.

Step 2. [Termination?] If 2 <n seti1+12 + 1 and go to Step 3. Otherwise the

algorithm terminates and returns for each variable x £ 1p the current
lower and upper bound on x as the result.

Step 3. [Stage i.] For each vertex x =v do the following: (a) If the currently
most restrictive lower bound on x was recorded in stage 7 — 1 send it over

all its positive edges. (b) If the currently most restrictive upper bound

. on x was recorded in stage : — 1 send it over all its negative edges. (c)
Record new, and more restrictive, bounds on z. Go to Step 2. OI

Lemma 10. Algorithm 4 computes zmin{™ and zmaz™for each variable x 54 vp.

The proof of Lemma 10 1s essentially the same as the proof of Lemma 2 and

is omitted. Having found the values of zmin{™ and zmaz{™ we can use Theorem
5 and the definition of a closure of S to construct a feasible solution if one exists.

The theorem and the definition of %(S) tell us that if x is any variable of S and z
is any value such that Z € [zmin™, zmaz(™)] = %(S) then S is satisfiable if and
only S| J{z < %, x > Z} is satisfiable. Since adding the two inequalities x< Z and
x => z forces x to be equal to Z in any solution we have the following constructive
algorithm to decide whether S is satisfiable.

Algorithm 5 (LI{2)-Algorithm). The input to the algorithm is the system of in-
equalities S. The algorithm determines whether S 1s satisfiable. If S is satisfiable

the algorithm supplies a feasible vector.

Step 1. [Construct G(S).] Construct the graph G(S) for S as described in section

1.2. Compute A from S as described in section 4.1 and mark all variables

unassigned.

Step 2. [Construct S*.] Use Algorithms 1, 2, and 3 to compute zlow and xhigh
for each variable x $v. Add the corresponding inequalities x => zlow
and x < xhigh to S.

Step 3. [Construct G(S*).] For each variable x 5% vy add two edges between x
and vg to G(S) and label the edges x > zlow and x < xhigh respectively.

21

Step 4. [Compute %(S).] Use Algorithm 4 to compute %(S) = [zmin{™, zmaz™]
for each variable x 5£ vy.

Step 5. [Terminate?] If all variables are marked assigned terminate the algorithm

and return the constructed feasible vector. Otherwise let x be any variable

marked unassigned.

Step 8. [Assign value to z.] If the interval %(S) = [zmin{™, zmaz{™] is empty ter-
minate the algorithm and return unsatisfiable. Otherwise mark x assigned

and let x « %, where % & [zmin(™, zmaz{").

Step 7. [Reduce the system.] Add two edges between x and vp to G(S*) and label
the edges x > Z and x < Z respectively. Go to Step 4. U

4 COMPLEXITY

In this chapter we analyse the complexity of the LI(2)-Algorithm. We first show
how to compute A, which is needed as an initial bound in the algorithm and also

enters into the analysis. In the same section we show that the algorithm runs

in O(mn? I|) time on a random access machine, where |I| is the input size. We
then turn to the Turing machine model in the second section and show that the

algorithm 1s also polynomial time on a Turing machine.

4.1 Random Access Machine Model

In this section we show that the LI(2)-Algorithm runs in polynomial time on a
random access machine. We start by showing how to compute A, which is needed

in the algorithm and also enters into the complexity analysis,

Let I denote an instance of LI(2), and let || be the length of the string
encoding I. Let k be the product of the absolute value of the non-zero integers

that represent the rational coefficients in the input. Clearly log, << |I|.
We will now determine A such that either slow &€ (--X/2, h/2) or zlow = —o0

(the reason for dividing by two will be explained below). If zlow € (--X/2, N/2)
then by (6) there exists a lower loop P for x with hidden inequality x => h ==

cp/(ap + bp). Since a lower loop is of length at most n, it follows from (3) and the
definition of x that up = 0 or kK}< |ap|<k,bp= 0 or ks <|bp| < k, and
cp ==0 or k! <|cp| < nk. Since up + bp5%4 0 we have k 2 < lap + bp| < 2
and ¢p = 0 or k~ 2/2 <|cp/(ap + bp)| < mxd. Let A ==3nk3 and we have either
slow &€ (--X/2, N\ /2) or zlow = —oo. Obviously, either xhigh € (--h/2, N/2) or
xhigh = oo for the same choice of A.

22

From the previous chapters we know that the LI(2)-Algorithm terminates,
but we do not know how many iterations are performed in Algorithms 2 and 3.
We now bound the total number of iterations in the two algorithms. Let x => h ==
cp/{ap-+ bp) and x > h' = cpif/(ap: + bp) be the hidden inequalities of two lower
loops for x. By using our previous bounds on ap, bp and cp we find that A and A’
must be equal if [bh — A'|<< (k2/2)%. Clearly this argument does not depend on
the fact that we have two lower loops—it holds as well for two upper loops, or one

upper and one lower loop. Let ¢ =x ~*/4. If h and A' correspond to lower and/or
upper loops for some variable then hs A’ implies |h — h'| >.

We know that in each iteration of Algorithm 2 the joint interval for zlow

and zhigh is chopped by at least half, and that the new endpoint is obtained

from a hidden inequality of a lower or an upper loop. Thus when the interval

1s of size less than e the algorithm must terminate. Initially the interval 1s of

size 2\ so the maximum number of iterations in Algorithm 2 is [logqg(2N\/€)]=
O(log n + logn) == O(|1]).

Let us now turn to Algorithm 3. From Lemma 4 we know that each time

Algorithm 3 returns to Step 3 the interval [zlow], zlow?] has been chopped by at
least half and that there exists a hidden inequality x => h with Ah > zlow|. We

also know that zlow| has been obtained from a hidden inequality of a lower loop

for x unless zlow] = —A\. By the choice of A we can only have zlow| = —N\ the
first time the algorithm gets to Step 3. This follows since initially the interval

[zlow], xlowf] is of size at most A. Therefore g = (zlow] + zlow?)/2 << —N/ 2 in
Step 3 when zlow| = —\. By definition A > -X/2. Thus A lies in the right half

of [zlow], zlow?] and zlow] « h will be executed in Step 5 or 6 during the first
iteration.

We conclude that Algorithm 3 returns to Step 3 at most [loga(N/e€))] =
O(log & + log n) =0O(|I]) times and the same bound holds when computing zhigh.
Thus the total number of iterations to compute xlow and zhigh is at most O(|Z}).
It is straightforward to see that Algorithm 1 takes O(mn) time to perform the n
stages of the breadth-first pushing of the guess. For both Algorithms 2 and 3 the

amount of work in each iteration 1s dominated by the call of Algorithm 1. Hence

the time to compute slow and zhigh is at most O(mn|I|).

Let us now bound the amount of time necessary to reduce the number of

variables by one using Algorithm 5. The time to construct the graph G(S) from S

is O{m + n). Since there are n different variables the total time to compute zlow
and zhigh for each variable x, i.e. to find S’, is O(mn?|I|). We can then construct
G(S*) from G(S) in O(n) time. To compute zmin{™ and zmin{™ for each variable

I z requires one call of Algorithm 4, which 1s of complexity O(mn) (the same as
Algorithm 1). The remaining steps of Algorithm 5 take O(m-n) time, so the total

23

| time to reduce the number of variables by one is at most O(mn?|I|). Since the
construction of the extension S* only has to be done once and the total contribution

to the running time from the other steps is O(mn?) we have the following theorem.

Theorem 8. The time complexity of the LI(2)-Algorithm is O(mn?|I|) on a random
access machine with uniform cost criterion.

4.2 Turing Machine Model

Since the Turing machine is polynomially related to theRAM model under logarith-

mic cost criterion we will start by examining the complexity of the algorithm on

a RAM under logarithmic cost. In order to simplify the discussion we assume

that all the coefficients in the input are integers, otherwise we multiply through

by their greatest common denominator 7 (logey <<|I|). We will also make one
assumption of the way we choose & [zmin{™, zmaz(™] in Step 7 of the LI(2)-
Algorithm. Let Z be any value in [zmin{™ zmaz{™)] if the interval is finite. If the
interval [zmin{™, zmaz{™]is infinite but has one finite endpoint let Z be equal to
this endpoint, otherwise let z = 0.

The number of memory cells required by the LI(2)-Algorithm on a RAM is
at most O(m + n?), where the non-linear term comes from Step 4 of Algorithm
I. We will now bound the size of the numbers that can occur. It is enough to

consider results from operations involving multiplication. From (3) it follows that

ap, bp, and cp are integers 1f the coefficients in the input are integers. Since we only

consider paths of length at most » in the algorithm we know that up, bp, and cp are

bounded in magnitude by nk. Thus bounds on variables obtained from lower or

upper loops can be represented as pairs of integers whose magnitudes are bounded

by nx. The only other intermediate results obtained using multiplications are the

bounds resulting from guesses in Algorithm 1 and in Algorithm 4. A guessed value

can always be represented by a pair of integers whose magnitudes are bounded by

A. It is easily seen that the results obtained can be represented as pairs of integers

whose magnitudes are bounded by n«A. We conclude that no operation takes more

than O(log m + log n + log & + log A + log 7) == O(|I|) time under the logarithmic
cost criterion. Thus the LI(2)-Algorithm runs in time O(mn®|I]?) on a RAM under
the logarithmic cost criterion and by Theorem 2 we have the following theorem.

Theorem 7. The time complexity of the LI(2)-Algorithm is polynomial in the size
of the input on a Turing machine.

24

5 CONCLUSIONS

Solving the LI(2) problem, we have pushed the frontier of the problems in 9 a little

bit further. As we have pointed out, extending the method presented to systems

of linear inequalities with three variables per inequality will yield an algorithm for

LP and therefore this extension 1s apt to be quite hard to find. Another possible

extension would be to allow a fixed number of inequalities with more than two
variables.

We have presented a new technique for tackling the LI(2) problem. Our main

concern has been that the algorithm runs in polynomial time, so we have not

mentioned several short-cuts that can reduce the practical running time. One of

them is to use inequalities of the forms x > c¢ and x < ¢’, which are given in

the system S as initial bounds for zlow| and zhigh] instead of the theoretically

derived A. Many other modifications are possible and can make the algorithm

more practical.

We hope that the techniques that have been introduced in this paper will

prove useful in attacking the general LI problem and hence the LP problem. First

steps in this direction have already been made by Shostak in [S].

REFERENCES

[AHU|] Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Massachusetts (1974).

[GJ] Garey, M. R., and D. S. Johnson, Computers and Intractability, W. H.
Freeman and Company, San Francisco, California (1979).

[1] Itai, A., “Two-commodity flow,” J. ACM 25:4 (1978), 595611.

[N] Nelson, C. G., “An nlegn algorithm for the two-variable-per-constraint
linear programming satisfiability problem,” Technical Report AIM-319,

Computer Science Dept., Stanford University (1978).

[NO] Nelson, C. G., and D. C. Oppen, “Simplification by Cooperating Decision
Procedures,” Comm. ACM, to appear.

[P] Pratt, V. R., “Two easy theories whose combination is hard,” unpublished
manuscript (1977).

[RD] Reiss, S. P., and D.P. Dobkin, “The complexity of linear programming,”
Technical Report No. 69, Dept. of Computer Science, Yale University
(1976).

[S] Shostak, R., “Deciding linear inequalities by computing loop residues,”
Proc. Fourth Workshop on Automatic Deduction, Austin, Texas (1979), to
appear.

25

—

