
AN @(n.llog21) MAXIMUM-FLOW ALGORITHM

by

Yossi Shiloach |

STAN-CS-78-792

December 1978

COMPUTER SCIENCE DEPARTMENT

Schoo! of Humanities and Sciencas

STANFORD UNIVERSITY

|

2
An O(n-Ilog I) Maximum-Flow Algorithm

X

Yossi Shiloach -/

Computer Science Department

Stanford University

Stanford, California 94305

December 1978

Abstract. We present 1n this paper a new algorithm to find a maximum

flow 1n a flow-network which has n vertices and m edges in time of

, 2

O(n*I log” I) , where I = m+n is the imput size (up to a constant

factor). This result improves the previous upper bound of 7. Galil [g]

which was of 17/3) in the worst case.

. Keywords: Binomial queues, Dinic's algorithm, flow networks, maximal flow,

path sections.

Eo

X/ This research was supported by a Chaim Weizmann Postdoctoral Fellowship
and by National Science Foundation grant MCS 75-22870.

- HHH

1. Introduction.

A flow network is a quadruple (G,s,t,c) where

(1) ¢ = (V,E) 1s a directed graph.

(11) s and t are two distinguished vertices, the source and the

terminal, respectively.

(111) c: E = rR 1s the capacity function (R denotes the set of all

positive real numbers). Henceforth n and m will denote ll

and IE | respectively and I will stand for n+m. The notation

{u,~~ will represent a directed edge from u to v .

A function f: E oR 1s a flow if 1t satisfies:

(a) The capacity rule:

fle) < c(e) VeekE .

(b) The conservation rule:

IN(f,v) = OUT(f,v) ¥veV-{s,t}

where

N(f,v) = 2 (u,v) = total flow entering v
(u,v)€ E

fixed v

and

OuT(f,v) = 2 f(v,w) = total flow emanating from v.
(v,w)¢ E

fixed v

The total flow value {£| is defined by

|f] = OUT (f,s) ~- IN(f,s) .

A flowf£ is a maximum flow if |f| > |f' | for any other flow f'.

-

The maximum flow problem was first introduced and solved by Ford

and Nkerson [FF]. Since then, better and better solutions have

been found. The history and state of the art of this problem are given

in a very detailed and tabulated form in [G]. Thus, we allow ourselves

to proceed without paying the proper credit to all those researchers

who contributed so much to the study of this problem,

=

2. Dinic's Reduction.

E. A. Dinic showed in his paper, [DJ], that the maximum flow problem

can be solved by solving another much simpler problem at most n times.

The simplified problem can be stated, using the following three

definitions.

1. A layered network 1s a network whose vertices are partitioned into

disjoint sets Vor Vys «v0V, where Vy = {s} , Vv, = {t} and if

(u,v) €e E then ueV, and veV, 4 for some 0 < i < k-1,

2. Given a flow ff in a network, we say that an edge e ¢ E is

saturated 1f f(e) = c(e) . A saturated edge will also be called

a bottleneck. -The quantity c(e) - f(e) is the residual capacity

of e .

5. A flow f in a given network 1s maximal 1f every directed path

from s to t contains a saturated edge. Obviously, a maximum

flow 1s also maximal but the converse 1s not necessarily true,

Dinic's restricted problem 1s to find a maximal flow in a layered

network which has n vertices and at most m edges.

] Dinic himself solved the restricted problem in 0O(n.I) time and

all the improvements which followed his solution were, in fact,

improvements of the restricted problem's time bound. Our algorithm is

no exception. We show that Dinic's solution for the restricted problem

can be implemented in O(T log” I) time by using more efficient data

structures. The evaluation of the complexity 1s also more involved,

but fortunately it does not affect the algorithm. From now on, the

"oroblem" and a "solution" will always refer to the restricted yroblem

and its solutions.

#

3. The Underlying Algorithm.

In this section we'll describe our algorithm in a level which will

not involve any data-structure details. We want the reader to have a

clear picture of the underlying algorithm before we get into the data-

structure level. Moreover, we'll make 1t clear in this section, what

exactly are the features which our data-structure would have to support.

Since Dinic's algorithm 1s the framework of ours, we'll describe

it briefly first.

Dinic uses a depth first search to find a flow-augmenting path

(f.a. pathj and then pushes as much flow as possible through this path,

deletes the bottlenecks, updates the residual capacities along the path

and then starts from s a new search for another f.a. path.

The main drawback in Dinic's algorithm 1s that it does not store

any information which is not relevant to the currently growing f.a. path.

Path-sections that have already been traversed during searches for

previous f.a. paths, are completely ignored. Our algorithm, though

basically following the lines of Dinic's algorithm, stores such path-

sections and makes use of them as soon as they are reencountered.

: Instead of describing the underlying algorithm precisely, we'll give

the reader the feeling of what's going on by illustrating a typical

example of generating the first three f.a. paths. The various steps

will be accompanied by a sequence of figures (Fig, 3.1-3.11}, showing

what are the path-sections that are stored after each step, Each figure

corresponds to the step with the same number.

d

i

Step 1. We find the first f.a. path from s to t ,

Step 2. Two bottlenecks (u,v) and (w,x) are found and deleted.

Three path sections are stored, the (s,u) section, the

(vy x) section, and the (y,t)) section.

Step 3. The search resumes from u . In general the search will

resume from the tail of the lowest bottleneck. The section

(s,u) will now be "growing" into a new f.a. path.

Step 4. We encounter an old path section, namely the (v,x) section

at w.

Step d. We cut the (v,x) section into two sections (v,w) and. (w,x)

and then ‘paste the (w,x) section with the (s,w) section.

Step 6. We continue the search from x .

Step 7. We encounter t . A new f.a. path has just been found.

Step 8. A bottleneck (a,b) 1s found and deleted. Two new path

sections (s,a) and (b,t) are formed.

Step 9. We resume the search from a and encounter the path section

(v, Ww) at z .

Step 10. We cut the (v,w) section into (v,2z) and (z,w) sections

and paste the (z,w) section with the (s,z) section, forming

an (s,w) section.

Step 11. Since we are now in Ww , we have just encountered the old

(b,t) section. Thus, we cut the (b,t) section into (b, w)

and. (w,t) sections and paste the (w,t) section with the

(s,w) section, forming a new f.a. path.

B

In order to complete the picture we have to add a few words, When

we use the word "search" we mean a depth first search. As in the original

algorithm of Dinic, this means that when we reach a dead end we backtrack

to 1ts predecessor and delete it together with the edges incident with it,

The algorithm terminates when s becomes a dead end. At each stage of

the algorithm, an edge can be 1n exactly one of the following states:

1. Never encountered.

2. Belongs to a (unique) path-section.

3, Deleted (because of being either saturated or incident with a

dead end.

The crucial rule 1n our algorithm 1s that when we encounter a path

section, we annex its upper portion to our growing f.a. path.

The rule implies the following lemma.

Lerma 3.1. At each stage of the algorithm, a given vertex can have at

most one out-going edge 1n State 2.

Following the lines of the underlying algorithm, one can verify

that the data structure should support the following operations.

1. Performing a depth first search.

2. Finding and deleting bottlenecks.

3. Updating residual capacities.

4. Inserting an edge to a path-section. (The growing f.a. paths

1s stored and regarded as a path-section.)

5. Cutting and pasting path sections.

Getting more into details, we find out that we also have to be able

to;

/

-n

6. Xnow that we've encountered a path section, when we encounter

one.

7. Know from where to resume the search after pasting two path

sections.

8. Compute the final residual capacity of each edge. (The flow

through each edge 1s obtained by subtracting the residual

capacity from the original one.)

-

4, Data Structure.

L.1 Sequential Binomial Queues.

Data structures which support depth first search have been

discussed in many papers. Therefore we'll concentrate on the

additional data structure which will enable us to store and manipulate

with path sections. This data structure is essentially a binomial queue.

It has been described and studied in detail in [B]., A binomial queue

1s a forest of binomial trees (b-trees and b-queues in short). In a

b-tree we store sets of size which 1s a perfect power of 2 , A b-queue

which 1s a forest of such trees enables us to store sets of any given

size. These-sets must be well ordered and in our case they will be sets

of numbers which represent edge capacities. A binomial tree which stores

the set {71,52,63,11,7,k4,22,20} is shown in Figure 4.1. Basically

all the values are stored in the external nodes and each other node

contains the minimal value of its two off-springs. The root contains

the minimal value of the entire set.

In our b-queues, we'll store the capacities of edges of path

sections. Being a path, such a group of edges has a sequential structure

] and therefore we would like that our b-trees will represent sequences

rather than sets. Figure 4.2 shows a b-tree which represents the sequence

71,52 ,63% , 11,7, 4 ,22 ,20, In general, the external nodes of these

trees will have a left to right order which will be imposed by the sequence.

These trees will be denoted as s-b-trees (sequential binomial trees) and

the corresponding queues will be s-b-queues. Another modification should

still be made. Instead of storing the right capacity values at each node,

we will store the riaht value of the root only. Each other node will

9

—

store the difference between his value and his father's value, Thys,

the tree of Figure 4.2 will be modified to that of Figure 4.3. This

modification will enable us to update residual capacities fast.

In the coming discussion we would like to distinguish between

vertex-layers (v-layers) and edge-layers (e-layers). The vertex s

composes the 0-th v-layer, while the edges which emanate from it,

form the 0 -th e-layer, In general, the heads of the edges of the i-th

e-layer will form the i+l1 -st v-layer and the edges which emanate from

them will form the i1+l -s-t e-layer. We shall also assume for the sake

of simplicity that the number of e-layers 1s a perfect power of 2 ,

say oH . (If this number is between pil and ok we can add a path

which starts fromt and has the appropriate length. The edges along

this path will have infinite capacities and + will be moved to its end.)

We have described in detail how one s-b-tree looks like. We'll now

describe how a path section 1s represented by an s-b-queue. The following

definition is required. Given a full binary tree T and a set g of

external nodes of T , we say that & is the forest determined by S if

it is the (unique) forest of maximal full sub-trees of T such that its

external nodes set is § . In Figure 4.4 we show a full binary tree T

which has 8 external vertices and the forests which are determined by

{1,2,3,1) , {5,6}, and{0,1,2,3,4} .

Let's recall now that there are 2% e—layers 1n our network, and

letT be a full finary tree with oF external nodes which are numbered

from left to right by 0,1,...,2°-1 . The following rule specifies

exactly the structure of an s-b-queue which represents a given path

section.

10

The Frame Rule. A path section that extends from the i-th e-level to

the j-th e-level will be represented by an s-b—queue which is isomorphic

to the forest determined by the set {i,...,j} of external nodes in T .

The rule is called "the frame .rule" since T 1s used as an

underlying frame for all the queues which represent path sections.

In Figure 4.5 we show a path section together with his representing

s—-b-queue and with all the features that we have already mentioned. We

assume that the total number of e-layers 1s 8 . Note that the left-to-

right order among the trees in the queue 1s significant.

L.2 Path Sections Algorithms.

In this subsection we'll present the algorithms for finding and

deleting bottlenecks, updating residual capacities, inserting an edge

to a growing f.a. path and cutting and pasting path sections. (These

are algorithms # 2 -5 in the list at the end of Section 3.) Each of

these algorithms will take at most logarithmic time.

The other operations that should be supported by our data structure

(# 6,7,8 in the list) will be described in the next subsection where an

auxiliary data structure will be introduced and a more detailed discussion

about storage schemes, pointers and space will be made. This discussion

will also make the description of algorithms # 2 -5 more complete.

Finding and Deleting Bottlenecks.

These operations are performed after a whole f.a. path has been

found. Such a path 1s always represented by an s-b-queue which 1s a

single s-b-tree (since the number of layers 1s 2K). The residual

11

-

capacity of the bottlenecks 1s exactly the value which 1s stored in the

root of this s-b-tree. "Pushing" that amount of flow through the path

1s tantamount to reducing the root's value to zero. Then we delete the

root and obtain two s-b-trees of equal size. At least one of them will

have a root with value zero. The algorithm continues on such a tree 1in

the same way. When we get to the level of the external nodes, deleting

a node also means that we delete the corresponding edge from the graph.

This algorithm might take more than logarithmic time if more than one

edge is deleted. However, 1t 1s easy to verify that 1t does not take

more than logarithmic time per a deleted edge. In Figure 4.6 we show

an f.a. path of length 8 and all the stages of deleting its bottlenecks.

Updating Residual Capacities.

Due to our way of storing differences between residual capacities,

rather than capacities themselves, we don't have to do anything, 1t 1is

done "automatically".

Inserting an Edge to a Growing f.a. Path.

Let P be a growing f.a. path of length/ and let Q(P) be its

corresponding queue. The binary representation of the number [contains

all the information about the structure of the underlying forest of Q .

More precisely, the i-th digit from the right 1s 1 1ff there is an

s-b-tree of height i-1 in the forest. For example, a path of length 6

1s represented by a forest that contains one tree of height 1 and one

tree of height 2 . (Note that this property holds only for path sections

that start at s .)

12

-

When we insert an edge to P , we always insert it from the "right"

(assuming that s 1s on the left and t 1s on the right) and by doing

that we increase the length to {+1 . As far as the forest structure of

the new queue 1s concerned, we just-make a binary addition of ¢ and 1,

(see also [B], pp. 21-27). Obviously, since the nodes of the s-b-trees

contain some numerical values, we have to do a little bit more. When we

add a bit of 1 to a bit of 0 we don't have to do anything. However,

adding two bits of 1 means the following:

1. Take the corresponding two trees (which are of equal size) and

connect their roots to a new single root, forming one tree which

1s one level higher.

2. Put the minimal value of the two old roots in the new one, zero 1n

the old root that contributed the minimal value and the difference

between the two values in the other old root. It is easy to see

that insertion 1s logarithmic.

In Figure 4.7 we show how an edge e is inserted to a path P of

length 3.

Cutting and Pasting Path Sections.

Given a path section P we want to cut it in a given vertex, and make

. two path sections, say Py and Py» out of it. If the cut point turns

out to be exactly between two trees of Q(P) then all the trees to the

left of the cut point form (2) and the others form Q(®,) :

If the cut-point 1s inside a tree T of Q(P) then all the trees

to the left of T belong to Q(Py) and those on its right hand side

belong to Q(E,) . We now cut T in the following way:

15

—

1. We delete the root of T and add 1ts value to both sons which now

become the roots of the resulting trees Ty and I, | Let's

assume that I 1s to the left of I,

2. If the cut point 1s exactly petween Ty and Ty then I, is

added to Q(P,) and T, is added to Q(P)) and we are done.

If the cut point is inside Ty (T,) we add I, (71) to

Q(P,) (Q(P{)) and apply the same procedure to cut T, (T,)

Cutting 1s obviously logarithmic.

Pasting 1s a little bit more involved to {describe but also belongs

to the set of "do it yourself" algorithms.

Thus, 1nstead of describing it formally, we start with an example.

Let's assume that the total number of layers 1s 32 and we have to paste

.a path section Py which extends from the third to the 18-th layer with

another path section FP, y extending from the 19-th layer to the 25-th,

The underlying structure of (Py) and Q(P,) is given in Figure 4.8. only

the roots of the trees of QE) and QE) play a role in the pasting.

We start with the leftmost root of (7) , Re in our case, The

frame tree (the full binary tree with 32 external nodes) tells us whether

its competant 1s to 1ts right or to its left. In any case it is the

closest root and in our example it 1s Rs The values of Ry and Rs

are compared and a new root Rg 1s formed. Its sons are By and Re .

The minimal of the values of Rg and Re 1s stored in Ry The node
that contributed the minimum gets zero as its new value and the other one

gets the difference between the two values as 1ts new value —-- exactly as

we did in the insertion algorithm. Following the frame tree Rg should

1h

|

now be compared with R), and a new root Ro will be formed. The value

transformations are the same as before. Now Rig is compared with the

closest root to 1ts right, namely Ry and a new root Ry is formed.

Now Ri should be compared with the closest root to its right, namely

Rg However Rg 1s not 1n the same level as Riq and therefore the

algorithm terminates yielding the queue shown in Figure 4.9, The reader

can easily extend this example to a general algorithm, which obviously

has a logarithmic time bound.

4.3 Storage Schemes and Space Bounds.

In this subsection we shall specify exactly how s-b-queues are stored

in a way which supports all the path section algorithms that have been

described above and also operations # 6, 7 and 8.We'll conclude with a

very short discussion on the space linearity.

Definition. We say that a vertex v belongs to a path section P if

v 1s the tail of an edge in P (i.e., the last vertex of P does not

] belong to P).

Following the underlying algorithm, it is easy to verify that a vertex

. does not belong to more than one path section at a given moment. (See Lemma 3.1.)

This fact enables us to store the information associated with a given

path section P and its s-b-queue Q(P) , not only in its edges but also

in the vertices which belong to P . As we shall soon see, there is a

very "natural" way to do it. In Figure 4.10 we show a path section P

and 1ts associated s-b-queue. The dashed lines demonstrate a natural

15

mapping of the tree nodes 1nto the edges and vertices of P , The

external nodes are mapped into edges and the rest -- into vertices,

The edges of the s-b-trees represent two-way pointers that enable

us to move up and down 1n the trees and perform the cutting and the

bottlenecks deleting algorithms. The insertion and pasting algorithms

require another set of pointers which are called peak pointers. Two

such pointers are associated with every root node of an s-b-tree and

enable us to locate the neighbor root nodes (of other s-b-trees in the

same s-b-queue) from left and right, in constant time. Another couple

of peak pointers is required for each path section P . One is stored

at the first (leftmost) vertex of P and points to the first peak and

the other 1s stored at the last vertex of P and points to the last

peak. In Figure 4.11 we give a one-dimensional picture of the s-b-queue

of Figure4.8, indicating the way in which the queue nodes are stored in

their corresponding edges and vertices, The "curly" pointers are the

peak pointers. All the pointers are two way pointers and therefore they

are drawn as undirected edges.

Note that we can get from any vertex of P to the last one in

—logarithmic time by climbing to the root of the tree in which we are and

then use the peak pointers to get to the rightmost vertex. This solves

the problem of locating the vertex from which we have to resume the

search. Marking all the vertices that belong to any path section will

solve the problem of recognizing that we have encountered a path section.

If we want to be completely rigorous we still have to show exactly

how peak pointers are used and updated in each of the path-section algorithms,

However, this 1s quite a straightforward technique and we leave it to the

reader.

16

-

Finally, the most important thing, how do we compute the final

residual capacities of each edge. Obviously, all the deleted edges

have zero residual capacity and those which have not been encountered

have zero flow. Those which have been encountered and not deleted are

stored 1n an s-b-queue upon termination of the algorithm. If we sum up

the values of the nodes from the one representing a given edge upwards

to the root of the s-b-tree to which it belongs, we obtain its residual

capacity. This operation can be done in linear time if we start from

the root and go to all the edges in the tree simultaneously.

Space Linearity.

Conventional data structures for representing a flow network and

supporting a depth first search in linear space, can be found all over.

Our additional data structure requires six more fields for each

vertex and four for each edge, and therefore uses linear space too.

The six vertex fields are: One for the value of the node associated

with 1t, two pointers to the vertices which represent its sons and one to

1ts father. Finally we need two peak pointer fields.

An edge needs one field for the value of its node, one to point to

its father, and two peak pointer fields.

17

-

5. Complexity.

In this section we'll evaluate the complexity of the restricted

problem, showing that it 1s bounded by O(T log” I) . This yields an

O(n I on I) time bound for the whole algorithm.

The depth first search and the final evaluation of the flow value

at each edge take linear time.

Deletions of bottlenecks and insertions of new edges to growing

f.a. paths, take logarithmic time per edge (deleted or inserted) and

thus, they sum up to a total of O(I log I) time. Both cutting and

pasting take logarithmic time. Since they always occur together (in fact,

1f we encounter the first vertex of a path section, cutting 1s not

required but we'll assume that it 1s performed) we shall consider them as

one unit time operation and call it CP . Thus, in order to establish our

time bound, we just have to show that the number of CP's is O(T log I)

and that's what we are going to do.

Let E = {eqs . ve} and let Tyr Tiny eens TT, be all the f.a. paths

in the order in which they were generated. Since each such path 1s

assoclated with at least one bottleneck that disconnects it, we can

deduce that r < m .

We are going to show that the number of CP's is bounded by m(l + log r)

by demonstrating a way to assign all the CP's to edges in such a way that

no edge will be associated with more than 4(1+ log r) CP's.

Given two f.a. paths 7, and tT. and a vertex v , we say that

“ splits NE at v if Ts is the first path after =n, that enters v

not through the same edge as To Note that one path can split several

others but can be split by at most one other path. Moreover, every CP that

occurs at v 1s caused by some path ms splitting another path T for
some 1< J .

18

—

The Charging Rule. Given a CP that occured at v when oF split To

let Te be the path that split mr. at Vv (1f sucha one exists).

This CP will be charged to the right account of' ro if either

j-1 < k=J or nm does not exist, and will be charged to the left account

of Te if k-j < j-1i .

Thus, for every f.a. path we'll maintain two accounts 1n which we'll

store the CP's assigned to 1t. In the right account we'll store CP's

that were caused by later paths and in the left account we'll store those

that were caused by previous paths.

Let's try now to trace the right account of a given f.a. path "i
The CP's that are charged to this account can be ordered according to the

vertices at which they occur —- from s to t . Let € eres&y be the

bottlenecks of I . Removing these bottlenecks we split Te tate r+l1
sections RE . We are going to show that no more chan 1 + log r
CP's will be charged to our account 1n any of these sections. If we show
that we are almost done, the edge eb will be charged for the CP's that

occured along and 0 and . will be charged for the CP's that
occured along ’ J for 2<J< ; . The right account of IC. will

- thus be cleared. Since these edges were saturated by TL they cannot
clear the right account of any other path. Later on rll see that each
of them might be used once more to clear the left account of a given path,

namely the first path that passed through it.

Given any section ea we have to show now that no more than
1 + log r CP's were charged to our account in this section. Let's assume

that all the CP's that were charged to EP right account at this section
occured at Ve seeesVs (numbered 1n the s = t direction) and were caused

1 k

19

by 7. s...,T, respectively. Since mm, did not saturate any edge
iq 1. 15

between v. and v. we know that either m=. Or some 1 fp
1 1 1 {
1 2 1

1 < 4 < 11 passed through v, . In any case, since the right account
2

of a was charged for the CP that was 'caused by =. at v. , Ww:
0 to ,

know that 1,-1 < L (1, - is) . This argument can be repeated k times
to yield

i : 1 . : 1
~ —_— - < —.IL 2 5 = 3 < 53 Uy - 3) < goer

2 2

which implies that k <1l+logr .

An almost symmetric argument holds for left accounts. In this case,

however, we don't use bottlenecks to split =. but those edges for which
"0

nm. was the first to pass through. The details are left to the reader.
0

In general an edge can be charged for L{(l1+ log r) CP's at most and that

bounds the number of CP's by Lm(1l+ log r) .

The following example shows that this bound is tight up to a constant

factor. In Figure 5.1 we show a network in which 8 f.a. paths are

generated and 22 CP's are performed. This structure can be easily

generalized to a network in which r = 2% f.a. paths are generated and

TC|
2. ie? = O(r log r) (P's are executed. O(r log r) = O(m log r)

1=1

since m =3r-1 in these networks, Note that the order in which the

f.a.-paths are generated, is very important and the number of CP's might

decrease 1f we generate them in another order.

20

6. Summary.

The maximum-flow problem has a long history of solutions which keep

improving all the time.

This one 1s somewhat different from the last three improvements of

Karzanov, Cherkasky and Galil in two points.

1. Its underlying algorithm 1s much simpler and its complexity 1s shifted

to the data structure.

2. It seems that this algorithm can be generalized to finding maximal

(not maximum) flow 1n any directed acyclic flow network within the

same time bound of O(I log” IT) . The complexity proof obviously

works for general acyclic graphs. In a first glance, the data

structure seems to rely heavily on the layered structure of the graph.

However, directed acyclic graphs also have a natural layered structure.

| It seems that the s-b-queues and the path section algorithms can be

generalized to these graphs with minor modifications. This observation

suggests that we might reduce the number of phases in Dinic's algorithm

by taking larger graphs in each phase.

21

a

References

[B] Brown, Mark R., "The analysis of a practical and nearly optimal

priority queue," Stanford University Computer Science Department

Technical Report STAN-CS-77-600 (1977).

[C] Cherkasky, B. V., "Algorithm of construction of maximal flow in

networks with complexity of (FE) operations," Mathematical

Methods of Solution of Economical Problems 7 (1977), 117-125

(in Russian).

[D] Dinic, E. A., "Algorithm for solution of a problem of maximal flow

in a network with power estimation," Soviet Math. Dokl, 11 (1970),

1277 —-1280. —-

[E] Even, S., "The max-flow algorithm of Dinic and Karzanov: An exposition,"

M.I.T., LCS, TM-80, (December 1976).

[Fr] Ford, L. R. and D. R. Fulkerson, "Maximal flow through a network,"

Canadian J. of Math. 8(1956),399-40k,

[G] Galil, Z., "A new algorithm for the maximal flow problem," Proceedings

19th IEEE Symposium on Foundations of Computer Science, Ann Arbor, Mich.,

October 1978, 231-245,

K) Karzanov, A. V., "Determining the maximal flow in a network by the

method of preflows," Soviet Math. Dokl.15 (1974), 434-437.

22

N

O t 1 i Bj 1 t CGA y y y y O y
XO x x x nN iL x

| | Wo w * Ww
Vv O VO v Vv C v O Vv

uO i u u u u| S s 0 S S Ss
1 2 p lL 5 6 7

t C t t t 0)

y © y y ¢ hy
x x @ x x

Ww WwW ¢ w AY

Z Z Z

v O v O od
u RV u TA

b b b Cb

| a a a
s O ES Ss S

8 9 10 11

Figures3 1 3.11.

25

a

Figure L.1.

PU

(3

(11) nC

KH00I ds Jb

Do
0 :

ovedud de

-

0 1 2 3 L 5 6 7

The forest determined by:

{1,2,3,4} {5,60} {0,1,2,3,4}

12 3k 5 6 0 1 2 3 4

Figure «.b,

26

The path:

s 21 15 32 11 7 26 30

The corresponding queue:

C

Figure 4.5.

27

The path:

se Se 8 >a Se vs app
S 21 15 32 11] 26 38 f t

Its representation:

-Step 1. Deleting the root.

g ©

: © O

Sudo d 3 J ©

28

F-

Step 2. Deleting a

zero-valued)
root at

. second

level. 1, 0 ; 0 A

Step 3. Deleting zero valued

roots at third _..

level 4

O :

SINC & D0 6 © ©
Step 4. Deleting zero valued

roots at fourth

level. y

Step 5. The 5-th and 8-th edges are deleted from the graph.

Figure 4.6.

29

1

P: ———So—— e: ——2e
S 12 15 2 3

QP): as ale):
we add 3 = (11), and 1 .

(12) corresponds to this
Step 1: Q —> addition 7,¥

1

OBONOMNO.
10 0

corresponds to this

Q “
§ :

Step 2: Q =>» \10 Fe) 10 0

0 © © ©

Figure 4.7.

30

5

"2 aN 7

—+)ee1

(ry) ar)

Figure 4.8

3 R11

R, SN Ry0 ~~. Ry

° ZN Fe: / x 2\ Rg
Ry Rg

Figure 4.9

-

1 -

ANN NNTN IN IN
br EERIE EEA
FENSRINERENERIN EEN ERIN

Figure 4.10,

AAANANAAMNAANAAL

Figure L.11.

u

tT

| co

x0 cc co oo 00) co co 0 0]

1 1 1 17 1 1

4 AN

1 \ : ie

S

Figure 5.1.

33

