AN Z(n-llog2!) MAXIMUM-FLOW ALGORITHM
by

Yossi Shiloach

STAN-CS-78-722
December 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Scien

C ’\(‘
STANFORD UNIVERSITY

.‘w /A\ 0

N
“ ':‘..\u‘ AR
‘ S SN
) A
M i = :-I!
o L Lo
- w\~ i
- e =
- - B

- ‘_,,;—ff,\

;_J






An O(n-T logg I) Maximum-Flow Algorithm

Yossi Shiloach ﬂ

Computer Science Department
Stanford University
Stanford, California 94305

December 1978

Abstract. We present in this paper a new algorithm to find a maximum

flow in a flow-network which has n vertices and m edges in time of
2

O(n+I log” I) , where I = m+n is the imput size (up to a constant

factor). This result improves the previous upper bound of 7. Galil [G]

which was 0 1’_7/5) in the worst case.

Keywords: Binomial queues, Dinic's algorithm, flow networks, maximal flow,

path sections.

*
—/ This research was supported by a Chaim Weizmann Postdoctoral Fellowship
and by National Science Foundation grant MCS 75-22870.



1. Introduction.

A flow network is a quadruple (G,s,t,c) where

(1) G = (V,E) 1s a directed graph.
(ii) s and t are two distinguished vertices, the source and the
terminal, respectively.

+ +
(iii) c: E - R is the capacity function (R denotes the set of all

positive real numbers). Henceforth n and m will denote yl
and |E| respectively and I will stand for n+m . The notation
{uw, will represent a directed edge from u to v .

A function f: E - R+ is a flow if it satisfies:

(a) The capacity rule:

f(e) < c(e) VeekE .

(b) The conservation rule:

IN(f,v) = OUT(f,v) ¥veV-{s,t}

where
IN(f,v) = 2 f(u,v) = total flow entering v
(u,v) € E
fixed v
) and

OuT(fyv) = & z(v,w

(v,w) e E

total flow emanating from v.
fixed v
The total flow value {£| is defined by

|f| = OUT(f,s) - IN(f,s) .

A flow £ 1is a maximum flow if \fl > \f' \ for any other flow £'.




The maximum flow problem was first introduced and solved by Ford
and Nkerson [FF]. Since then, better and better solutions have
been found. The history and state of the art of this problem are given
in a very detailed and tabulated form in [G]. Thus, we allow ourselves
to proceed without paying the proper credit to all those researchers

who contributed so much to the study of this problem,



2. Dinic's Reduction.

E. A. Dinic showed in his paper, [D], that the maximum flow problem
can be solved by solving another much simpler problem at most n times.
The simplified problem can be stated, using the following three

definitions.

1. A layered network is a network whose vertices are partitioned into

disjoint sets V.,V,,...,V, where V,= {s} , Vv, =10t} and if

(w,v) €E then ueV, and veV, , for some 0 < i< k-1,

i+l
2. Given a flow f in a network, we say that an edge e ¢ E is
saturated if f(e) = c(e) . A saturated edge will also be called
a bottleneck. -The quantity c(e) - f(e) is the residual capacity
of e
3. A flow f in a given network is maximal if every directed path
from s to t contains a saturated edge. Obviously, a maximum

flow is also maximal but the converse is not necessarily true,

Dinic's restricted problem is to find a maximal flow in a layered
network which has n vertices and at most m edges.
. Dinic himself solved the restricted problem in O(n.I) time and
all the improvements which follcwed his solution were, in fact,
improvements of the restricted problem's time bound. Our algorithm is
no exceytion. We show that Dinic's solution for the restricted problem
can be implemented in O(Ilog2 I) time by using more efficient data
structures. The evaluation of the complexity is also more involved,
but fortunately it does not affect the algorithm. From now on, the

"problem" and a "solution" will always refer to the restricted rrovlem

and its solutions.



3. The Underlying Algorithm.

In this section we'll describe our algorithm in a level which will
not involve any data-structure details. We want the reader to have a
clear picture of the underlying algorithm before we get into the data-
structure level. Moreover, we'll make it clear in this section, what
exactly are the features which our data-structure would have to support.

Since Dinic's algorithm is the framework of ours, we'll describe
it briefly first.

Dinic uses a depth first search to find a flow-augmenting path
(f.a. pathj and then pushes as much flow as possible through this path,
deletes the bottlenecks, updates the residual capacities along the path
and then starts from s a new search for another f.a. path.

The main drawback in Dinic's algorithm is that it does not store
any information which is not relevant to the currently growing f.a. path.
Path-sections that have already been traversed during searches for
previous f.a. paths, are completely ignored. Our algorithm, though
basically following the lines of Dinic's algorithm, stores such path-
sections and makes use of them as soon as they are reencountered.

Instead of describing the underlying algorithm precisely, we'll give
the reader the feeling of what's going on by illustrating a typical

example of generating the first three f.a. paths. The various steps
will be accompanied by a sequence of figures (Fig, 3.1-3.11), showing
what are the path-sections that are stored after each step, Each fiqure

corresponds to the step with the same number.



Step 1.

Step 2.

Step 3.

Ster 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

We find the first f.a. path from s to t ,

Two bottlenecks (u,v) and (w,x) are found and deleted.
Three path sections are stored, the (s,u) section, the

(v, x) section, and the (y,t) h section.

The search resumes from u . In general the search will
resume from the tail of the lowest bottleneck. The section
(s,u) will now be "growing" into a new f.a. path.

We encounter an old path section, namely the (v,x) section
at w.

We cut the (v,x) section into two sections (v,w) and. (W,x)
and then paste the (w,x) section with the (s,w) section.
We continue the search from x

We encounter t . A new f,a. path has just been found.

A bottleneck (a,b) is found and deleted. Two new path
sections (s,a) and (b,t) are formed.

We resume the search from a and encounter the path section
(v, w) at z

We cut the (v,w) section into (v,z) and (z,w) sections
and paste the (z,w) section with the (s,z) section, forming
an (s,w) section.

Since we are now in w , we have just encountered the old
(b,t) section. Thus, we cut the (b,t) section into (b, w)
and. (w,t) sections and paste the (w,t) section with the

(s,w) section, forming a new f.a. path.



In order to complete the picture we have to add a few words, When
we use the word "search" we mean a depth first search. As in the original
algorithm of Dinic, this means that when we reach a dead end we backtrack
to its predecessor and delete it together with the edges incident with it,
The algorithm terminates when s becomes a dead end. At each stage of
the algorithm, an edge can be in exactly one of the following states:

1. Never encountered.

2. Belongs to a (unique) path-section.

3. Deleted (because of being either saturated or incident with a

dead end.

The crucial rule in our algorithm is that when we encounter a path
section, we annex its upper portion to our growing f.a. path.

The rule implies the following lemma.

Lemma 3.1. At each stage of the algorithm, a given vertex can have at

most one out-going edge in State 2.

Following the lines of the underlying algorithm, one can verify
that the data structure should support the following operations.
1. Performing a depth first search.
2. Finding and deleting bottlenecks.
3. Updating residual capacities.
4. Inserting an edge to a path-section. (The growing f.a. paths
is stored and regarded as a path-section.)

5. Cutting and pasting path sections.

Getting more into details, we find out that we also have to be able

to:



Know that we've encountered a path section, when we encounter
one.

Know from where to resume the search after pasting two path
sections.

Compute the final residual capacity of each edge. (The flow
through each edge is obtained by subtracting the residual

capacity from the original one.)



4. Data Structure.

4.1 Sequential Binomial Queues.

Data structures which support depth first search have been
discussed in many papers. Therefore we'll concentrate on the
additional data structure which will enable us to store and manipulate
with path sections. This data structure is essentially a binomial queue.
It has been described and studied in detail in [B]. A binomial queue

is a forest of binomial trees (b-trees and b-queues in short). 1In a

b-tree we store sets of size which is a perfect power of 2 , A b-queue
which is a forest of such trees enables us to store sets of any given
size. These-sets must be well ordered and in our case they will be sets
of numbers which represent edge capacities. A binomial tree which stores
the set {71,52,6%,11,7,4,22,20} is shown in Figure 4.l1. Basically
all the values are stored in the external nodes and each other node
contains the minimal value of its two off-springs. The root contains
the minimal value of the entire set.

In our b-queues, we'll store the capacities of edges of path
sections. Being a path, such a group of edges has a sequential structure
and therefore we would like that our b-trees will represent sequences
rather than sets. Figure 4.2 shows a b-tree which represents the sequence
71,52 ,63 , 11,7 , 4 ,22 ,20, 1In general, the external nodes of these
trees will have a left to right order which will be imposed by the sequence.
These trees will be denoted as s-b-trees (sequential binomial trees) and
the corresponding queues will be s-b-queues. Another modification should
still be made. Instead of storing the right capacity values at each node,

we will store the riaht value of the root only. Each other node will



store the difference between his value and his father's value, Thys,
the tree of Figure 4.2 will be modified to that of Figure 4.3. This
modification will enable us to update residual capacities fast.

In the coming discussion we would like to distinguish between

vertex-layers (v-layers) and edge-layers (e-layers). The vertex s

composes the 0-th v-layer, while the edges which emanate from it,

form the 0 -th e-layer, In general, the heads of the edges of the i-th
e-layer will form the i+l -st v-layer and the edges which emanate from

them will form the i+l -s-t e-layer. We shall also assume for the sake

of simplicity that the number of e-layers is a perfect power of 2 ,

say ot (If this number is between oL

and 2k we can add a path
which starts from t and has the appropriate length. The edges along
this path will have infinite capacities and t will be moved to its end.)
We have described in detail how one s-b-tree looks like. We'll now
describe how a path section is represented by an s-b-queue. The following

definition is required. Given a full binary tree T and a set g of

external nodes of T , we say that & is the forest determined by S if

it is the (unique) forest of maximal full sub-trees of T such that its
external nodes set is 5§ . In Figure 4.4 we show a full binary tree T
which has 8 external vertices and the forests which are determined by

{l,z?é?),hl. ) {5)6} ’ wd{oyl:E)B:h}

J

Let's recall now that there are 2° e-layers in our network, and

.
L

let T be a full finary tree with 27 external nodes which are numbered
from left to right by O,l,”.,zk-l . The following rule specifies
exactly the structure of an s-b-queue which represents a given path

section.

10



The Frame Rule. A path section that extends from the i-th e-level to

the j-th e-level will be represented by an s-b-queue which is isomorphic

to the forest determined by the set {i,...,j} of external nodes in T

The rule is called "the frame.rule" since T is used as an
underlying frame for all the queues which represent path sections.

In Figure 4.5 we show a path section together with his representing
s-b-queue and with all the features that we have already mentioned. We
assume that the total number of e-layers is 8 . ©Note that the left-to-

right order among the trees in the queue is significant.

L.2 Path Sections Algorithms.

In this subsection we'll present the algorithms for finding and
deleting bottlenecks, updating residual capacities, inserting an edge
to a growing f.a. path and cutting and pasting path sections. (These
are algorithms # 2 -5 in the list at the end of Section 3.) Each of
these algorithms will take at most logarithmic time.

The other operations that should be supported by our data structure
(# 6,7,8 in the list) will be described in the next subsection where an
auxiliary data structure will be introduced and a more detailed discussion
about storage schemes, pointers and space will be made. This discussion

will also make the description of algorithms # 2 -5 more complete.

Finding and Deleting Bottlenecks.

These operations are performed after a whole f.a. path has been
found. Such a path is always represented by an s-b-queue which is a

single s-b-tree (since the number of layers is 2k Y. The residual

11



capacity of the bottlenecks is exactly the value which is stored in the
root of this s-b-tree. "Pushing" that amount of flow through the path
is tantamount to reducing the root's value to zero. Then we delete the
root and obtain two s-b-trees of equal size. At least one of them will
have a root with value zero. The algorithm continues on such a tree in
the same way. When we get to the level of the external nodes, deleting
a node also means that we delete the corresponding edge from the graph.
This algorithm might take more than logarithmic time if more than one

edge is deleted. However, 1t is easy to verify that it does not take

more than logarithmic time per a deleted edge. In Figure 4.6 we show

an f.a. path of length 8 and all the stages of deleting its bottlenecks.

Updating Residual Capacities.

Due to our way of storing differences between residual capacities,
rather than capacities themselves, we don't have to do anything, it is

done "automatically".

Inserting an Edge to a Growing f.a. Path.

Let P be a growing f.a. path of length / and let Q(P) be its
torresponding queue. The binary representation of the number [ contains
all the information about the structure of the underlying forest of Q .
More precisely, the i-th digit from the right is 1 iff there is an
s-b-tree of height i-1 in the forest. For example, a path of length 6
is represented by a forest that contains one tree of height 1 and one
tree of height 2 . (Note that this property holds only for path sections

that start at s .)

12



When we insert an edge to P , we always insert it from the "right"
(assuming that s 1is on the left and t is on the right) and by doing
that we increase the length to f+1 . As far as the forest structure of
the new queue is concerned, we just-make a binary addition of ¢ and 1,
(see also [B], pp. 2l-27). Obviously, since the nodes of the s-b-trees
contain some numerical values, we have to do a little bit more. When we
add a bit of 1 to a bit of 0 we don't have to do anything. However,

adding two bits of 1 means the following:

1. Take the corresponding two trees (which are of equal size) and

connect their roots to a new single root, forming one tree which

is one level higher.
2. Put the minimal value of the two old roots in the new one, zero in
the old root that contributed the minimal value and the difference

between the two values in the other old root. It is easy to see

that insertion is logarithmic.

In Figure 4.7 we show how an edge e is inserted to a path P of

length 3.

Cutting and Pasting Path Sections.

Given a path section P we want to cut it in a given vertex, and make
two path sections, say Pl and PE’ out of it. If the cut point turns
out to be exactly between two trees of Q(P) then all the trees to the
left of the cut point form QGH) and the others form Qﬁb)

If the cut-point is inside a tree T of Q(P) then all the trees
to the left of T belong to Q(Pl) and those on its right hand side

belong to Q(PE) . We now cut T in the following way:

13



1. We delete the root of T and add its value to both sons which now
become the roots of the resulting trees Tl and T2 ‘ Let's
assume that T1 is to the left of T2 ‘

2. If the cut point is exactly between nTl and T2 , then Tl is
added to Q(Pl) and Tg is added to Q(PZ) and we are done.

to

If the cut point is inside Tl (Tg) we add T (T

2 l)

Q(PE) (Q(Pl)) and apply the same procedure to cut T, (TE)

Cutting is obviously logarithmic.

to the set of "do it yourself" algorithms.

Thus, instead of describing it formally, we start with an example.
Let's assume that the total number of layers is 32 and we have to paste

.a path section Pl which extends from the third to the 18-th layer with

another path section P extending from the 19-th layer to the 25-th,

2 )
The underlying structure of Q(Pl) and Q(PE) is given in Figure 4.8. only

the roots of the trees of QG&) and QG%) play a role in the pasting.

We start with the leftmost root of Q(PE)’ R6 in our case, The
frame tree (the full binary tree with 32 external nodes) tells us whether
its competant is to its right or to its left. In any case it is the
closest root and in our example it is R5 . The values of Ré and R5
are compared and a new root R9 is formed. Its sons are R5 and Rg .
The minimal of the values of R5 and Re is stored in R9 . The node
that contributed the minimum gets zero as its new value and the other one

gets the difference between the two values as its new value -- exactly as

we did in the insertion algorithm. Following the frame tree R9 should

1k



now be compared with Rh and a new root RlO will be formed. The value

transformations are the same as before. Now RlO is compared with the

closest root to its right, namely R7 and a new root Rll is formed.

Now R should be compared with the closest root to its right, namely

11

R8 ) However R8 is not in the same level as Rll

algorithm terminates yielding the queue shown in Figure 4,9, The reader

and therefore the

can easily extend this example to a general algorithm, which obviously

has a logarithmic time bound.

4.3 storage Schemes and Space Bounds.

In this subsection we shall specify exactly how s-b-queues are stored
in a way which supports all the path section algorithms that have been
described above and also operations # 6, 7 and 8.We'll conclude with a

very short discussion on the space linearity.

Definition. We say that a vertex v belongs to a path section P if
v 1is the tail of an edge in P (i.e., the last vertex of P does not

belong to P ).

Following the underlying algorithm, it is easy to verify that a vertex
does not belong to more than one path section at a given moment. (See Lemma 3.1.)
This fact enables us to store the information associated with a given
path section P and its s-b-queue Q(P) , not only in its edges but also
in the vertices which belong to P . As we shall soon see, there is a
very "natural" way to do it. In Fiqure 4.10 we show a path section P

and its associated s-b-queue. The dashed lines demonstrate a natural

15



mapping of the tree nodes into the edges and vertices of P , The
external nodes are mapped into edges and the rest -- into vertices,
The edges of the s-b-trees represent two-way pointers that enable
us to move up and down in the trees and perform the cutting and the
bottlenecks deleting algorithms. The insertion and pasting algorithms

require another set of pointers which are called peak pointers. Two

such pointers are associated with every root node of an s-b-tree and
enable us to locate the neighbor root nodes (of other s-b-trees in the
same s-b-queue) from left and right, in constant time. Another couple
of peak pointers is required for each path section P . One is stored
at the first (leftmost) vertex of P and points to the first peak and
the other is stored at the last vertex of P and points to the last
peak. In Figure L.11 we give a one-dimensional picture of the s-b-queue
of Figure 4.8, indicating the way in which the queue nodes are stored in
their corresponding edges and vertices, The "curly" pointers are the
peak pointers. All the pointers are two way pointers and therefore they
are drawn as undirected edges.

Note that we can get from any vertex of P to the last one in
-logarithmic time by climbing to the root of the tree in which we are and
then use the peak pointers to get to the rightmost vertex. This solves
the problem of locating the vertex from which we have to resume the
search. Marking all the vertices that belong to any path section will
solve the problem of recognizing that we have encountered a path section.

If we want to be completely rigorous we still have to show exactly

how peak pointers are used and updated in each of the path-section algorithms,

However, this is quite a straightforward technique and we leave it to the

reader.

16



Finally, the most important thing, how do we compute the final
residual capacities of each edge. Obviously, all the deleted edges
have zero residual capacity and those which have not been encountered
have zero flow. Those which have been encountered and not deleted are
stored in an s-b-queue upon termination of the algorithm. If we sum up
the values of the nodes from the one representing a given edge upwards
to the root of the s-b-tree to which it belongs, we obtain its residual
capacity. This operation can be done in linear time if we start from

the root and go to all the edges in the tree simultaneously.

Space Linearity.

Conventional data structures for representing a flow network and
supporting a depth first search in linear space, can be found all over.

Our additional data structure requires six more fields for each
vertex and four for each edge, and therefore uses linear space too.

The six vertex fields are: One for the value of the node associated
with it, two pointers to the vertices which represent its sons and one to
its father. Finally we need two peak pointer fields.

An edge needs one field for the value of its node, one to point to

its father, and two peak pointer fields.

17



5. Complexity.

In this section we'll evaluate the complexity of the restricted
problem, showing that it is bounded by O(Ilog2 I) . This yields an
O(n I log2 I) time bound for the whole algorithm.

The depth first search and the final evaluation of the flow value
at each edge take linear time.

Deletions of bottlenecks and insertions of new edges to growing
f.a. paths, take logarithmic time per edge (deleted or inserted) and
thus, they sum up to a total of O(I log I) time. Both cutting and
pasting take logarithmic time. Since they always occur together (in fact,
if we encounter the first vertex of a path section, cutting is not
required but we'll assume that it is performed) we shall consider them as
one unit time operation and call it CP . Thus, in order to establish our
time bound, we just have to show that the number of CP's is O(I log I)
and that's what we are going to do.

Let E = {el,...,%n} and let 7,7y, ..., 7, be all the f.a. paths
in the order in which they were generated. Since each such path is
associated with at least one bottleneck that disconnects it, we can
deduce that r < m .

We are going to show that the number of CP's is bounded by lm(l + log r)
by demonstrating a way to assign all the CP's to edges in such a way that
no edge will be associated with more than L4(1+ log r) CP's.

Given two f.a.pathsi& and ﬂ.fnd a vertex v , we say that

ﬂj splits e at v 1if ﬂj is the first path aftern& that enters v

not through the same edge as =« Note that one path can split several

L
others but can be split by at most one other path. Moreover, every CP that

occurs at v 1s caused by some path ﬂj splitting another path ﬂi for

some 1< J.
18



The Charging Rule. Given a CP that occured at v when th split Jt.l ’

let ﬁk

This CP will be charged to the right account of' {t if either

be the path that split Jﬂ. at v (if such a one exists).

J-1 £ k=J or m does not exist, and will be charged to the left account

of nk if k-3 < j-1

Thus, for every f.a. path we'll maintain two accounts in which we'll
store the CP's assigned to it. 1In the right account we'll store CP's
that were caused by later paths and in the left account we'll store those
that were caused by previous paths.

Let's try now to trace the right account of a given f.a. path nio
The CP's that are charged to this account can be ordered according to the

vertices at which they occur —- from s to t . Let e, ,...,eb be the
1 r

bottlenecks of T Removing these bottlenecks we split ni into r+l
0 0
. 0 .
sections ﬂi yeees < We are going to show that no more than 1 + log r
0 0

CP's will be charged to our account in any of these sections. If we show

that we are almost done, the edge eb will be charged for the CP's that

1
occured along Jr(j)_ and rr:.__lL' and ey will be charged for the CP's that
o . 0] J
occured along ﬂi for 2 < j<r . The right account of I=C, will
0 0
thus be cleared. Since these edges were saturated by :ri they cannot

0
clear the right account of any other path. Later on we'll see that each

of them might be used once more to clear the left account of a given path,

namely the first path that passed through it.

Given any section ﬂg we have to show now that no more than

0
1 + log r CP's were charged to our account in this section. Let's assume

that all the CP's that were charged to ni 's right account at this section
0

occured at vy ,...,vi (numbered in the s -t direction) and were caused
1 k

19



by 7. ,...,7, respectively. Since =, did not saturate any edge
1 Tk 0
between v. and v. we know that either =, or some m  for
gl 2 11 !
iO < g < il passed through vl. - In any case, since the right account
2
of rri was charged for the CP that was 'caused by rti at v. , w:
0 2 N
know that ig'io < % (il- io) . This argument can be repeated k times

to yield

which implies that k < 1+ log r

An almost symmetric arqgument holds for left accounts. 1In this case,
however, we don't use bottlenecks to split =. but those edges for which

"

Hio was the first to pass through. The detaigs are left to the reader.
In general an edge can be charged for L(1+log r) CP's at most and that
bounds the number of CP's by lm(l+log r) .

The following example shows that this bound is tight up to a constant
factor. In Figure 5.1 we show a network in which 8f.a. paths are

generated and 22 CP's are performed. This structure can be easily

generalized to a network in which r = 2° f,a, paths are generated and

"3 gttt O(r log r) CP's are executed. O(r log r) = O(m log r)
i=1

since. m =3r-1 in these networks, Note that the order in which the
f.a.-paths are generated, 1is very important and the number of CP's might

decrease i1f we generate them in another order.



6. Summary.

The maximum-flow problem has a long history of solutions which keep
improving all the time.
This one is somewhat different from the last three improvements of

Karzanov, Cherkasky and Galil in two points.

1. Its underlying algorithm is much simpler and its complexity is shifted
to the data structure.

2. It seems that this algorithm can be generalized to finding maximal
(not maximum) flow in any directed acyclic flow network within the
same time bound of 0(I lOg2 I) . The complexity proof obviously
works for general acyclic graphs. In a first glance, the data
structure seems to rely heavily on the layered structure of the graph.
However, directed acyclic graphs also have a natural layered structure.
It seems that the s-b-queues and the path section algorithms can be
generalized to these graphs with minor modifications. This observation
suggests that we might reduce the number of phases in Dinic's algorithm

by taking larger graphs in each phase.

21



References

[B] Brown, Mark R., "The analysis of a practical and nearly optimal
priority queue," Stanford University Computer Science Department
Technical Report STAN-CS-77-600 (1977).

[C] Cherkasky, B. V., "Algorithm of construction of maximal flow in

3 -
networks with complexity of 0(V" +/E ) operations," Mathematical

Methods of Solution of Economical Problems 7(1977), 117-125

(in Russian).

[D] Dinic, E. A., "Algorithm for solution of a problem of maximal flow

in a network with power estimation," Soviet Math. Dokl. 11(1970),

1277 -1280. ——

[E] Even, S., "The max-flow algorithm of Dinic and Karzanov: An exposition,"

M.I.T., LCS, TM-80, (December 1976).

[rr] Ford, L. R. and D. R. Fulkerson, "Maximal flow through a network,"

Canadian J. of Math. 8(1956),399-40kL.,

[G] Galil, Z., "A new algorithm for the maximal flow problem," Proceedings

19th IEEE Symposium on Foundations of Computer Science, Ann Arbor, Mich.,

October 1978, 231-2L45,

(K] Karzanov, A. V., "Determining the maximal flow in a network by the

method of preflows," Soviet Math. Dokl.15(197k4), 434-437.

22



o0 ¥ € O O C
+ > » e 3 > =3 [
OO0 (= O¢ O O
o > X 5 > = “
(e O C
o > X P
O—0O O o«/m O
» - % > 3 @
€0 OO0 Ce—C
® - % > 0 @
O @)

11

10

50]—:1-.

Figures 3 1

23



Figure k.1.

ol



25



O

The forest determined by:

{1,2,3,4} (5,0} {0,1,2,3,4}

s S ol oo | S db o

l_.l
NS}
W
=
Ul
(@)
[a)
=
[Ne)
w
~—

Figure &bk,

N
(&)Y



The path:

©w ¢

21 15 32 A1

The corresponding queue:

O @ ©

Figure 4.5.

27

¥

26

38

4



The path:

Its representation:

-Step 1. Deleting the root.

28



Step 2.

Step 3.

Step 4.

Step 5.

Deleting a

zero-valued
root at
second

level.
) ©

Deleting zero valued
roots at third
level

Deleting zero valued
roots at fourth

level.

The 5-th and 8-th edges are deleted from the graph.

Figure 4.6.

29



Q(P): Qe):

O 0 ¢

we add 3 = (ll)2 and 1

@ corresponds to this

Step 1: Q@ —> addition = V¥

1
O © © ©

10 0

corresponds to th/isj

&
0:
1
10 O

Step 2: Q —> \10

Figure 4.7.

350



Figure 4.8

J\ f\ /\f\ /<\f'\

Figure 4.9

*
1{1 A /’\ 1?8
N B EN NN
l;
a(E,)
R

\R7
J\ VAN

-



Figure L4.10.

Figure L,11,



Figure 5.1.

33






