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Abstract

We characterize and count opt 'nal.solutions to the zossip
lem in which no orne hears his own information, That is,
consider zrz»hs with n vertlces wnere the edges haVe a lin
ordering such that an increasinz vath exists from each verts
to every other, tut there is no increasing path from any ver-
tex to itself. Such grarhs exist only when n is even, in which
case the fewest number of edzzs is 2n-%, as in the orizinal zcs-
sip vproblem, e characterize optimal solutions of this sorz
(NCHO-graphs) using a correspvondence with a set of permutations
and binary sequences, This correspondence enables us t® count
-these solutions and several subclasses of' solutions. The rum-
‘bers of solutions in each class are simple powers of 2 and 3,

with exponents determined by n. We also show constructively
that NOHO-graphs are planar and Hamiltonian, and we mention
applications to related problems.
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A CLASS OF SOLUTIONS TO THE GOSSIP PROBLEY

There are two kinds of people who
blow through life like a breeze;
And one kind is gossipers, and the

other kind is gossipees,
—--0Ogden Nash

Gossip 1s mischisvcous, light and easy

to raise, but grievous to bear and

hard to get rid of. No gossip ever

dies away entirely, 1if many people

voice 1it; it too is a kind of divinity.
--Hesiod






1. Introduction

The "gossip problem" has the unusual distinction of being
solved four times within a year, Proposed by Boyd and popular-
ized by Erd6s, it considers a group of n people, each posses-
sing a distinct item of information, Telephone calls are ar-
ranged between two people at a time, in which they exchange all
the information they know. (It is also called the "telephone
problem.") We seek the minimum number of calls required to
transmit all the information to everyone. For nz4, it is 2n-4,
This was proved by Bumby and Spencer(unpublished), Baker and
Shostak{1], Tijdeman[12], and Hajnal, Milner, and Szemerédi[7].
These proofs were all different and fairly short.

Ways were quickly found to generalize the problem. The
calling scheme can be represented by a graph whose edges are
linearly ordered to represent the order of calls. We require
an "increasing path" from each vertex to every other. Edges
.may be repeated in the ordering, in which case they are counted
twice, representing repeated calls.

Moving from graphs to hypergraphs, we can ask the same
question when the medium of transmission is "conference calls"
of a fixed size k. The minimum number here was discovered by
Lebensold[10]. It is on the order of 2(n-1)/(k-1), with a num-
ber af techcnical adjustments. Bermond[2] recently rederived

the result with a shorter proof.



Thus far we have considered complete graphs, Suppose the
"allowable" calls are restricted to some subgraph. For example,
we don't wish to assign sworn enemies to talk to each other,

This problem was considered by Harary and Schwenk[8], and also
by Golumbic[6]. As long as the graph is connected, we can trans-
mit the information in 2n-3 calls using a spanning tree, with

the calls ordered to and then from some root. If the graph con-
tains a 4-cycle, we can still achieve 2n-4, Here we use the
4-cycle and edges which grow tree-like to the remaining vertices.
It is easy to find a suitable ordering. It is conjectured that
if the graph does not contain a 4-cycle, then 2n-3 edges are
required.

Instead of ordinary graphs, we could consider directed
graphs , representing one-directional transfers of information.
This is the "telegraph problem." Harary and Schwenk[8] and
Golumbic{6] have shown that if the digraph of allowed edges is
s£rongly connected, then the minimum number of messages for com-
plete transmission 1is 2n-2, Golumbic also examines how many
messages are required to tranmit whatever can be transmitted
when the digraph is not strongly connected.

Another variation asks for the minimum time of transmission,
where each vertex can participate in at most one call per time
unit. Knodel[9] solved this for complete graphs, and Schmitt[11]
for complete hypergraphs. Cockayne, Hedetniemi, and Slater[3]
consider this in terms of individual vertices. Entringer and

Slater[5] consider time of transmission in complete digraphs.



The behavior of all these minima is logarithmic in the number
of vertices, adjusted by constant terms depending on residue
classes of n.

Cot[4] discusses ways to vary the problem. We consider
here not a generalization of the situation, but a restriction
of the allowable calling schemes. We consider calling schemes
that transmit all information, with the additional requirement
that no one ever hears his own information. That is, no one
speaks to anyone who knows his original tidbit, In the graph-
ical formulation, with an ordering on the edges, this means we
can find no pathwhichleaves a vertex, continually "increases",
and returns to it, We determine when such solutions exist and
how many edges they require, and we characterize and count the
optimal ones.

We show that calling schemes completing all transmissions
and satisfying NOHO ("no one hears his own information") exist
only when n is even. We call such such a salution with fewest
edges (on n vertices) a NOHO-graph, NOHO-graphs have 2n-4
. edges, the usual gossip result. Particular examples include
Cy (the 4-cycle) and any regular graph of degree 3 on 8 ver-
tices having no triangles. The latter set we call Q%, since
it includes the cube. We characterize other NOHO-graphs by two
permutations and two binary sequences. Each of the four describes
the placement of approximately n/2=1 edges in the graph. We
show that any two of the four suffice to determine the other

two and hence the entire graph. We use this to count the num-



ber of realizable quadruples determining NOHO-graphs on n ver-
tices, (Realizable quadruples, or simply "solutions," are
those sets of sequences which correspond to NOHO-graphs.) Let-
ting p=(n-4)/2, this number is 3p'lﬂwr36, n even. NOHO-
graphs which are not symmetric are counted twice in this; that
is, they correspond to two realizable quadruples. We later
count the number of symmetric solutions, so the number of NOHO-
graphs is retrievable.

We also define an operation of "concatenation,” which puts
two solutions together two form a larger solution, This yields
a concept of an "irreducible" solution as one which admits no
concatenation from smaller solutions. We show the number of

solutions on n vertices concatenated from k irreducible parts

is (ﬁ:i)Zp-k.

tions concatenated from k irreducible parts. In particular,

We also determine the number of symmetric solu-

the number of irreducible solutions is ZP‘l, the number of sym-
metric solutions is BLP/QJ, and the number of symmetric irre-

ducible solutions 1is ZLP/ZJ. Ignoring the special graphs Cy

and Q* and eliminating the double-counting, the number of NOHO-
graphs is (Bp-l+3Lp/2J)/2‘

Additional results include constructive proofs that NOHO-
graphs are planar and Hamiltonian and applications to related
gossip questions. In the next section, we outline the steps of

the proofs toward these goals.



2. Summary of Proofs and Results

The original argument used by Baker and Shostak[l] begins
by showing that the smallest graph which could transmit all
information in fewer than 2n-4 edges would have to satisfy
NOHO, They use NOHO to discuss the "first edges" and "last
edges" of the graph and consider the components of the sub-
graph obtained by deleting those edges, They obtain a contra-
diction by showing that not all transmissions can be completed.
In our preliminary details, we parallel this argument, 1In a
graph satisfying NOHO, the set of edges which correspond to
first calls made by some vertex and the set of edges which
correspond to last calls made by some vertex each forms a com-
plete matching in the graph, As a corollary, we see that NOHC-
graphs must have an even number of vertices.

We consider, for each vertex x, a tree 0(x) of edges used
to pass its information elsewhere and a tree I(x) carrying in-
formation to it. Characterizing the edges which appear in the
intersection of the trees, we determine the number c(x) which

-appear in neither. c¢(x) turns out to be two less than the de-
gree of the vertex. Now we consider the graph M(G) obtained
by deleting the first edges and last edges. Considering where
edges of O(x) and I(x) can appear in it and bounding the "use-
less" edges by c¢(x), we obtain the major result of section 3.
For a NOHO-graph G, M(G) consists of exactly four components
which are all trees. Along the way we exhibit such solutions

with 2n-4 edges, The contradiction obtained by Baker and Shos-



tak does not arise because these graphs have enough edges,

In section 4 we consider the case where G has no vertex of
degree 2. The trees of M(G) must each contain an edgegy and ex-
amination of cases shows they must all consist of single edges,
This requires G to be a 3-regular graph on 8 vertices, and NOHO
prchibits triangles, All such graphs admit an edge-ordering
which transmits all information, so they are NOHO-graphs,

Returning in section 5 to graphs with vertices of degree 2,
we find Chyr which works. If n>4, then M(G) consists of two i-
solated vertices and two caterpillars on n/2-1 vertices each,

(A caterpillar is a tree with a path hitting every edge,) This
enables us t® label the vertices of the graphb%} where iefl1,2},
jefo0,1,...,n/2-1}, according to the order in which information
from the isolated vertices xé travels along the caterpillars,

The placement of edges in the caterpillars can be described by

th i

binary sequeces, where the s element describes how X541 is

joined to the earlier vertices.
To completely characterize the graph, we must describe how
the first edges and last edges may be added. To satisfy NOHO a

: .
first edge or last edge must always Jjoin xé and x§. with i#i',

So, the placement of these edges can be described by permuta-

th element of the permutation is k if xi is

the first (respectively, last) neighbor of x%.

tions, where the

In section 6 we derive necessary conditions for
pairs of these integer sequences to be realizable by NOHO-

One condition imposes inequalities relating elements

=R = B



of the two permutations. Another restricts where 1% occur in
the binary sequences in terms of where reversions occur in the
first-edge permutation, The reversions of that permutation are
explicitly characterized, (A reversion is a maximal con-
tiguous subsequence of a permutation where the first element is
the least.) The characterization is equivalent to forbidding
subsequences of length three (in a permutation) whose last ele-
ment is the largest. All these conditions follow from requir-
ing NOHO, transmission of all information, and the characteri-
zation of the graph in terms of the caterpillars. Other condi-
tions follow from the same basic reasons when the graph is re-
flected, which consists of relabeling the vertices of the graph
so the two caterpillars are switched. The sequences for the
reflected graph are easily obtained from the original sequences.
Having derived enough necessary conditions, we can show (sectin 7)
that any pair of sequences satisfying the appropriate ones u-
niquely determines the remaining pair, Furthermore, the result-
ing quadruple is realizable, so the conditions are sufficient.
Therefore, we need only count realizable pairs (P,S), where P
is the first-edge permutation and S is the sequence determining
the first caterpillar. There are (g:%) such permutations whth

2¥-1 realizable binary se-

r reversions (where p=(n-4)/2), and
quences for each of those, so a simple application of the bi-
nomial theorem gives 3P_l realizable quadruples.

In section 8 we consider symmetric NOHO-graphs., When the

operation of reflection yields the same sequences as before,



10

the graph is symmetric, Otherwise, two quadruples determine
the same graph. To count the number-of symmetric NOHO-graphs,
we first countthenumber of symmetric realizable first-edge
permutationg A simple fact about the number of entries in a
permutation enables us to construct such permutations step by
step, where at each step we have two options and determine two
elements with our choice. Then we count the number of symmetric
NOHO-graphs associated with it by counting the number of last-
edge permutations which can be pa&red with it. For the choice
made at each step in constructing the first permutation, making
it one way results in two options at a corresponding stage of
the second construction, while making it the other way leaves
only one. Boiling all this down, we have another simple appli-
cation of the binomial theorem to obtain altogether 3[p/2J Sym=
metric NOHO-graphs.

Section 9 treats concatenation, Concat-
enation creates a NOHO-graph from two smaller ones by identify-
ing two vertices and merging the edge-orderings in a natural
way., -Also, one vertex of degree two is deleted from each. So,
the resulting graph has four fewer vertices than the union of
the original two graphs. This is one reason to define p=(n-4)/2;
that quantity adds W€irectly under concatenation, With adjust-
ments for the deleted and identified vertices, the "top" cat-
erpillars, "bottom" caterpillars, first edges, and last edges
of the two small graphs are united to form those respective

sets in the new graph. The orderings are merged to make infor-
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mation flow properly along the caterpillars.

In section 10 we examine . irreducible NOHO-graphs-—those
which cannot be formed by concatenation. We show there is a
unique decomposition of any NOHO-graph as a concatenation of
irreducible ones, This follows because the "least refinement”
(in terms of compositions of integers) of two such decomposi-
tions 1is also a decomposition, and would lead to a decomposi-
tion of one of the original irreducible pieces, Now, using
concatenation and the number of compositions of p into k parts,
an induction shows there are Q:i)zp‘k realizable quadruples
formed from k irreducible parts, This holds for k=1 also,
since precisely that many remain when the others are subtracted
from the total. When we require symmetry also, the number with
k parts remains an ugly summation, but the proof is similar.

In the special case of symmetric irreducible solutions, the
summation can be computed, and the number of these is ZLP/ZJ.

In sectionll we show that NOHO-graphs (except Q*) have two
properties that are frequently investigated; they are Hamilton-
.lan and planar. Uniting the first edges and last edges of the
graph forms a Hamiltonian circuit. This is proved by dividing
it into two paths which are shown to meet at their endpoints
and be simple, disjoint, and exhaustive. For planarity, we take
those two paths and draw one inside and one outside of the "Ham-
iltonian caterpillar" formed by M(G). This accounts for all the

edges. Showing the no crossings exist completes the proof,

Finally, section 12 presents applications to a few related
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gossip questions, We note that every NOHO-graph contains a 4=
cycle and that NOCHO-graphs other than Cb and Q* contain dupli-
cated transmissions, A generalization of the gossip problem is

proposed, and some trivial special cases of it are solved.

3. Preliminary Results

To facilitate comprehension; we attempt certain rules of
notation. In general, the following apply. Upper case letters
indicate graphs or graph-valued functions, except that P through
T usually denote integer sequences, Where upper case letters
refer to sets of some sort, lower case letters refer to elements,
except for the elements of a sequence, which are simply sub-
scripted. a through e denote integer-valued functions. f,g,h
are vertex-valued functions, 1i,Jj,k,1 are indices or utility
integers, n,m,p are fixed integers with a particular relation-
sh%p. q,r,s8,t are utility integers, and finally, u through z
denote vertices of a graph.

We deal with undirected graphs G which have n vertices and
e (G) edges, Let V(G) be the vertex set, E(Q) the edge set.
iS] denotes the cardinality of a set S. The edges of a graph
are unordered pairs chosen, with possible repetition, from the
Cartesian product V(G)xV(G). (x,y) denotes the edge with x and
y as endpoints. d(x) denotes the degree of vertex x, which is
the number of edges to which it belongs. A regular graph of
degree k, or a k-regular graph, 1is one where each vertex has

degree k,
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A path of length k from vy to vk 1is an ordered sequence of
vertices (VO’vl""'vk)’ where'(vi.vi+l) € E(G) and v, are dis-
tinet, except possibly vy=vy. If vy=v, the path is a cycle.

A graph is connected if it has a path from each vertex to every
other, A tree is a connected graph for which e(G)=n-1l; equiv-

alently, a connected graph with no eycles. A spanning tree of

a graph is a subgraph which is a tree on all n vertices, A

caterpillar is a tree with a path that covers (contains one ver-

tex of) every edge. [Alternatively, it is a tree not containing
Y as a subgraph, where Y is obtained from the complete bipar-
tite K113 by subdividing each edge with a new vertex.] (ater-
pillars have also been called "hairy paths."

For a graph G whose edges are linearly ordered, we adopt the
following notation. We put (x,y) < (u,v) if (x,y) is less than
(u,v) in that ordering. Similarly for othernotations of order.

F(G) denotes the set of first edges of G. A first edge is the

least edge incident to some vertex. Similarly L(G) denotes the

set of last edges of G, any of which is the greatest edge inci-

dent to some vertex. Let M(G) be the graph obtained from G by
deleting the edges of F(G) and L(G), and let C(x) be the con-
nected component of M(G) containing x,

For any vertex X, let f(x) be its first neighbor, namely

the vertex adjacent to it via the least incident edge. gimi-

larly, h(x) denotes its last neighbor, adjacent via the great-

est incident edge. We use x-»y to replace the words "an inc-

reasing path from x to y," meaning a path from x to y where
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each successive edge ls greater than the prsvioua one,
Henceforth, whenever we refer to a graph, we assume its

edges are associated with a linear ordering, If for every x,

there is not x-+x, we say "no one hears his own information,"

or the graph satisfies NOHO,

REMARK (1). A graph satisfying NOHO has no loops, repeated

edges, or triangles.

Proof: The first two are immediate. If there is a triangle,
the edges obey some order, and the vertex at the intersection

of the least and greatest edges violates NOHO.[]

Expanding on this argument, we obtain

IEMMA (2), 1In a graph satisfying NOHO the first edges and the

last edges each form a disjoint matching.

Proof: Suppose F(G) is not a matching, so there exists y=f (x),
z=f(y), with z#x. Then (y,z)<(x,y). Since y=f(x), (x,y) is
no greater than the least edge in x-»z, If #hey are equal, re-
placing (x,y) by (z,y) at the beginning of the path creates
z=»%, If they are not equal,, adding (z,y) and (y,x) at the
beginning of x-»z again produces z=-»z, So, NOHO requires
x=f(y), and F(G) is a matching.

Similarly for L(G). If y=h(x), z=h(y), and z#x, we re-
quire (y,z)»(x,y) and (x,y) no less than the greatest edge in

z=-»x, This time the end of z-x can be adjusted to produce z-»z, []
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COROLLARY (3). Graphs satisfying NOHO exist only .on even

numbers of vertices,

Proof: Complete matchings exist,

If x-»y exists for all x#, then we say the graph "solves
the gossip problem," From previous results [1,10,12], we know
such a graph on n vertices has at least 2n-4 edges, 71f 3 graph
on n vertices solves the gossip problem, satisfies NOHO, and

has the fewest edges among all such graphs, we call it a NOHO-

graph,

LEMMA (4), NOHO-graphs have 2n-4 edges, for na4, n even.

Proof: A NOHO-graph solves the gossipproblem, so requires at

least 2n-4 edges, We exhibit such a graph with that many edges.

Let D be a graph on vertices {xéx i=1,2; j=0,1, . ..,n/&d}.

We write x1n/2=x?b, xr21/2=x%. Let F(D ) = {(xiz.xi/z_,_l_i): i=1,2,...,n/2}
- and L(Dn) = {(x%,xﬁ/z_l_i)t i=0,1,...,n/2-1}, The intermediate

edges of D are ﬁx§,x§+l): i=1,2; j=l....,n/2-2}, ordered by
(3§-l'x§)<(x§’x§+l)‘ Any linear ordering compatible with this
partial ordering is acceptable, Easy inspection shows that D,

solves the gossip problem and satifies NOHO, and it has 2n-4

edges. 0

Figure 1 illustrates Dlh' Whenever we draw a NOHO-graph, first

edges will be dotted and last edges dashed.
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Figure 1, le' a NOHO-graph

COROLLARY (5), For a NOHO-graph G, M(G) has at least four

components,

Proof: Recall M(G)=G-(F(G)VL(G)). By(2), e(F(G))=e(L(G))=n/2,
and they share no edges (1). So, (4) implies e(M(G))=n-b,

With n vertices, this means it must have at least 4 components. ﬂ

A graph solving the gossip problem is connected, so the
following conceptsare meaningful. For any vertex x, let 0(x)
be the "spanning tree of useful edges transmitting information
from x," or simply the out-tree from x. It can be defined u-
niquely and recursively as follows, Begin with x. At each
étep add the least edge incident to but not contained in the
tree that 1) does not create a cycle and ii) becomes the great-
est -edge of an increasing path from x along the tree, After
n-1 steps the result is O(x). Thr tree must exist, since x-»y
exists for all y#x. Similarly, I(x) denotes the in-tree to x.
It is defined recursively and uniquely like O(x) by adding at
each step the greatest non-cyclic edge which is the least edge
of an increasing path to x along the tree. Again, I(x) exists,
since y=»x exists for all y#x. Let c(x) be the number of edges

useless to x, Deleting them leaves increasing paths for x to
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and from every other vertex. We have c¢(x)= e(G)=-e(0(x)UI(x) ).

Now we can characterize the edges lying both in 0O(x) and in I(x).

LEMMA (6). If G solves the gossip problem and staisfies NOHO,
then (y,z)e(0(x)aI(x)) if and only if (y,z) is incident to x,

Proof: Suppose (y,2z)€(0(x)nI(x)). Then (y,2z) is the greatest
edge of some increasing path starting from x and the least edge
of some increasing path ending at x, Joining the two paths and
dropping (y,2) if they connect to it at the same endpoint, we
have x-»x, unless (y,z) was the only edge in both paths, in
which case it is incident to x.

Conversely, suppose (X,y)#0(x)., Then there exists x-y
in O(x) disjoint from (x,y). To avoid having x-x, (x,y) must
be less than the greatest edge in that path. But then, accord-
ing to the construction for 0(x), at the time when that edge
was added (x,y) was also available, and we would have chosen it
instead, Similarly, we cannot have (X,y)¢I(x) unless we have

X-=p X, ﬂ

COROLLARY (7). In a NOHO-graph, c(x)=d(x)-2 for any vertex X,

Proof: c¢(x) =2n-4-e(0(x)vI(x)) =2n-4~(n-1)-(n-1)+e(0(x)nI(x))
= d(x)-2, since by (6) e(0(x)a(I(x))=d(x). ]

Vertices in a NOHO-graph always have degree at least 2, so
c(x)=d(x)=2 makes sense,

The next lemma investigates how the edges of 0(x) and I(x)
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are distributed. Recall that C(x) is the component of M(G)
containing x., We claim that edges of M(G) not in C(x) or C(f(x))
are useless for carrying information out of x, and those not in

C(x) or C(h(x)) are useless for bringing it in. In other words,

LEMMA (8). If G solves the gossip problem and satisfies NOHO,
then for any vertex x, (M(G)n0(x)) <€ (C(x)uC(f(x)) and
(M(G)nI(x)) e(C(x)uC(n(x)), so
e(M(G)) - e(C(x)uC(f(x))uC(h(x))) < c(x).

Proof: First consider 0(x), No edge of M(G) not im C(x) or
C(f(x)) can belong to an increasing path beginning at x., The
path would have to enter that component via a first edge or a
last edge. No first edge othethan (x,f(x)) exists on any in-
creasing path fromx, and any path which uses a last edge cannot
continue increasing thereafter. Applying similar reasoning to
I(x), no edge of M(G) not in C(x) or C(h(x)) can belong to an
ihcreasing path leading to x. Therefore, the number of edges
of M(G) not in C(x)vC(f(x))¥C(h(x)), all of which are useless

to x, is at most c(x). [

The "excess edges" counted in (8) can be fewer than c(x)
if one of the components of M(G) is not a tree or if some edge
in F(G) or L(G) is useless to x. As we see next, the former

cannot occur in a NOHO-graph,

LEMMA (9). For a NOHO-graph G, M(G) consists of exactly four

components, all of which are trees.
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Proof: By (6), M(G) has at least four components. In showing
it has at most four and they are trees, we consider two cases,

Case I, Every vertex of G has degree at least 3, This
means M(G) has no isolated vertices, and each component has at
least one edge. G must have at least 8 vertices eof degree ex-
actly 3, else the sum of all degrees will exceed 4n-8, which is
twice the number of edges, By (7), a vertex x of degree 3 has
c(x)=1. By (8), M(G) has at most one edge not in C(x)VC(f(x))
uC(h(x)), so there can be at most one other component. If any
component were not a tree it would have at least as many edges
as vertices. Then the remaining three components would have
together at least four morm vertices than edges. As before such
a situation requires at least four components,

Case II. G has some vertex x of degree 2. C(x) is an iso-
lated vertex in M(G). By (7), c(x)=0, Since M(G)n0O(x) and
M(G)nI(x) can have no cycles, (8) then implies C(f(x)) and
C(h(x)) are trees and all other components are isolated vertices
Two trees have two more vertices than edges. Since M(G) has n-4
edges, the two components have n-2 vertices, leaving x and one

other isolated vertex for a total of four components, ]

REMARK (10). For any x in a NOHO-graph G, M(G) contains at
least n/2-2 edges of 0(x) and of I(x).
Proof: At most one edge of O(x) lies in F(G) and at most n/2

in L(G), while I(x) has at most one edge in L(G) and n/2 in F(G), [
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The remaining lemma in this section becomes useful when we show
later that for a NOHO-graph every tree in M(G) is of the type
in its hypothesis, This lemma applies to all graphs, because
if G does not solve the gossip problem we can still define 0O(x)
and I(x) with the same construction, and simply grow the trees

as far as possible. They may not span.

LEMMA (11). A tree lyimin both 0(x) and I(y) for some x and

y 1s a caterpillar with an increasing path touching every edge.

Proof: Let (vo,vl) be the least edge in the tree, and let
(vo,vl....,vk)=V be the longest increasing path in the tree.
Suppose the assertion is false, and the tree contains an edge

(w,2z) with neither w nor z in Vi Since the tree is connect-

ed, there must be some path that joins V to this edge, say

w,z). Each edge is in 0(x) and must lie

U=(vj,ul.u2,...,ur.

on an increasing path from x. Consider (Vj'ul)‘ If the in-

creasing path containing it does not include (Vj-l’vj)' there
would be two increasing paths to vj, impossible in 0(x). If
it does, then (vj-l’vj) (thul).

Applying this argument to each successive edge of U, we

find that(vb’vl"”'Vj’ul'“"ur”“Z) is an increasing path.

Similarly, each edge is in I(y), and must lie on an increasing
path to y. V is part of such a path, Since I(y) is a tree, an

argument like that above yields (ul Yj) (vj,v: ) . Applying
?

j+l
the argument to each successive edge of U, we find that

(z,wou RET TASTRRRRA LY is also an increasing path. This can

r J
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happen only if (w,z) is the only edge in U, So, every edge
of the tree is incident to a single increasing path, If it
is not on the path, it occurs between the neighboring edges

of the path in the edge ordering, []

4, Q*, the "Generalized Cube"

The remainder of the characterization of NOHO-graphs var-
ies greatly depending on whether the graph has a vertex of de-
gree 2. In this section we consider the case where it does not.

Let Q* be the set of 8-vertex j-regular graphs with no tri-

angles, Q* contains the cube. We have

THEOREM (12). A NOHO-graph with no vertex of degree two may be

any graph in Q%, but no other.

Proof: By (9), M(G) consists of four non-trivial trees. Thus
nz8, If n=8, then M(G) consits of four single edges. So G ad-
mits a factorization into disjoint matchings F(G), M(G), and
L(G), and by (1) it must lie in Q¥, We claim any graph in Q%
can be suitably edge-ordered.

Suppose GeQ*, wewill assign first neigbors, last neigh-
bors, and "middle neighbors" (denoted g(x)) to satisfy all the
required conditions, Consider the passage of information out
from x, It can reach f(x),g(x),h(x),g(f(x)),h(f(x)),h(g(x)),
and h(g(f(x))). To reach all vertices, these must all be dis-
tinct, (This implies there is no duplication of transmission

in these solutions. See (40),) So, we find a spanning tree with
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two neighboring vertices of' degree 3, each of whose other nelgh-
bors have degrees 2 and 1, For a graph in Q%, this is always
possible, since it has no triangles. Place the central edge in
F(G), the end edges in L(G), and the remainder in M(G). Infor-
mation can come to x from h(x), g(x), f(x), g(h(x)), f(h(x)),
f(g(x)), and f(g(h(x))) along a similar tree. Five edgeés re-
main unassigned in G. This tree will use four of them, adding
three edges to F(G) and one to M(G), Again, for a graph in Q¥
it is possible to- find the additional tree, The remaining edge
is assigned to M(G),

In choosing and labeling this second tree we must take
care to preserve the matching property of F, L, and M and to
avoid completing a circuit with two edges of M and one each of
F and L, Such a circuit would result in duplicated transmission
between two other vertices. Having labeled these trees to sat-
isfy vertex x and these latter conditions, detailed checking
shows that all other information is also transmitted and NOHO
is satisfed.

. Suppose n>8 and G is a NOHO-graph., We will produce a con-
tradiction. Let x be an end-vertex of one of the trees in M(G),
d(x)=3, so c(x)=1 (7). (8) shows that at least one of the re-
maining components is entirely useless to x and must be a single
edge., Applying the same argument to an endpoint of that edge,

we obtain a second isolated edge in M(G),

o

1 1 0
Let (xi,xg) and.(xl,ng be such single edges. By (10),
i

C(f(x%)) contains increasing paths from f(x}) to at least n/2-3
J J
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other vertices, and C(h(xg)) contains increasing paths to h(xé))
from at least n/2-3 other vertices, gince c(x§)=l, f(x%) and

I3 J
h(x%) must lie in different components, each of which contains

half the remaining vertices. When n»>8 these components con-
tain more than two vertices, and all their edges must be use-
ful to x%. In particular, C(f(x%))co(x§) and C(h(x}))cI(xﬁ).

Suppose f(x%)and.f(ngflie in the same component of M(G).
That component is a tree of increasing paths out of each of
those vertices, so they must be joined by the least edge in
that component. Therefore, it is not possible for three such
vertices to lie in the same component, Similarly, no three of
ﬁﬂxg)} lie in the same component. Each of the "large" compo-
nents contains two each from {f(x%)} and {h(x%)}, so by (11)
they must both be caterpillars,

Let (v,w) be the least edge in one of the caterpillars,

so ve(x}), wet(x],). Let y=n(x}), 2=n(x3.). y and z lie in
the other caterpillar, For v and w both to be "roots" of the
caterpillar, one of them must be an endpoint, say v. pow
d(v)=3, c(v)=1, f(v)=x§ lies in a single-edge component; iy
other such component must be the edge useless to v, Therefore,

the other caterpillar must be a tree of increasing paths into
h(v), -However,, it already does that for y and z, also. y, z,
and h(v) are distinct, since their last neighbors are distinct,
but we saw in the last paragraph that three distinct vertices
could not all play this role, This gives us the final contra-

diction that eliminates the possibility n»8, {]
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Figure 2 gives several examples of NOHO-graphs in Q%, in-
cluding the cube. The usual conventions are observed for draw-
ing edges in F, M, and L.

LN LN

Figure 2, Some graphs in Q¥

~
P

5. NOHO-graphs as Quadruples of Sequences

We now embark on a journey to narrow down and finally
characterize NOHO-graphs having a vertex of degree 2, Hence-
forth when we refer to NOHO-graphs we generally ignore Q¥*, We
already know by (9) that the "middle edges" of such a graph
form four componenents, at least two of which are isolated ver-
tices. Proceeding from there, this section describes the edges
of a NOHO-graph with four integer sequences, The first edges
and last edges are described by permutations, and the middle edges

by two binary sequences.

We begin by taking a closer look at the components of M(G).

LEMMA (13), If a NOHO-graph with a vertex of degree two has
adjacent vertices of degree two, then it is a H4-cycle, If
n>4, then it has exactly two non-adjacent vertices of degree

two, and the remaining components of M(G) are caterpillars

on n/2-1 vertices,
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Proof: Suppose G has adjacent vertices {x.y} of degree 2.
(x,y) may lie in F(G) or in L(G). Suppose (x,y)eF(G) and con-
sider O(x). O(x) contains (x,h(x)), (x,y), and (y,h(y)), but
after hitting these edges in L(G) there can be no further in-
creasing paths in O(x). h(x)#h(y) by (1) or (2), so G con-
tains exactly 4 vertices and must have an edge in F(G) joining
h(x) and h(y). If (x,y)eL(G), then considering I(x) leads to
the same conclusion.

Now suppose n*»4, 'By (9) there are two vertices of degree
two, and the remaining two components may be two trees or a
tree and isolated vertex, Suppose the latter, so we have
{xl,xz,x3} isolated in M(G). By the above they must be non-
adjacent in G. Consider the increasing paths by which infor-
mation is exchanged among them, ILet z. be the last vertex be-

1

fore xi---bei and X3 =X permanently diverge edgewise, That is,

ij’...’xj) and

(xi'""yi’zi'uik""'xk), where uijhlik' 2 is different from

we have increasing paths (xi,..”y&,zi,u

X3 since all increasing paths from x; to non-adjacent vertices
must pass through f(xi). So, the edge (yi,zi)eo(xi) is well-
defined. Simmilarly, let vi be the first vertex where xj~¢xi
and X ~»Xs share an edge. We have increasing paths (ﬁﬂ...,tji,
Vi Wireee,Xg) and (xk....,tki,vi.wi....,xi). Again, v, is dif-
ferent from x; since all paths from non-adjacent vertices pass
through h(Xi) when d(xi)=2, SO the edge (Vi’wi)‘I(xi) is well-
defined,

In fact, the paths from Xy to xj are all unique, so that
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z1 and Vj lie on a single increasing path from X; to Vj' sup-
pose there are two increasing paths from vertex r to vertex s,
where d(r)=2, Since O(r) is a tree containing the edges inci-
dent to r (6), some other edge in the paths is useless or lies
in I(r). The former is forbidden by (7) since c(x)=0, while
the latter creates r-»r. The same conclusion follows from

considering I(s) if d(s)=2,

Now, consider the ordering of zi and X on X; ~#X We

J'O

have three cases:' Case I, Vj strictly precedes z; on the

path, ie. (Vj’wj )s(yi,zi). Then for the remaining vertex vy

there exists Vk—-)Vk via (xkpl-o,tkj’vj.ooo.zi.uikpoccsxk)o

Case II. z3 strictly precedes y-on the path, ie. (zi'uij)

J
and 2; Was not the furthest shared vertex from X;, Or I(xk) is

s(tij,vj). If (zi.uij)tl(xk), then (zi,ui.) lies on X;=»X)

not a tree. If (zi,uij)eo(xk), then (zi,u ) lies on Xy 9% 4

ij
and vj was not the first shared vertex on the way to )s,-, or

O(xk) is not a tree. But (z 'ujj) Cannot be useless to xk

i
since c(x,)=0,

Case III. Neither of these possibilities can occur for
any pair (i,j), so we must have,v =2 =V S,V =24, To avoid

xi—»xi we must have (v,

l,wi)<(yi,zi) for all i, but to maintain

the other paths we need (yi,zi)<(vj,wj) for i#j. But (vi,wi)
<(yi,zi)<(vj,wj)<(yj,zj)<(vi,wi) is impossible.
So, there must be exactly two isolated vertices X and X,

in M(G), and the two remaining components are non-trivial trees.

f(x;) and h(x;) appear in different components, since e(x;)=0,
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By (10) each of these components contains exactly n/2-2 or half
of the edges in M(G), and C(f(x;))e0(x;), C(h(x;))eI(x;). In

order to have x;-¥x f(xi) and h(xj) must appear in the same

?i
component, Now we can apply (11) and conclude that the two

non-trivial components of M(G) are caterpillars on n/2-1 ver-

tices each. {]

To facilitate the subsequent discussion, we introduce some
additional notation, Henceforth fix m=n/2-1, Label the ver-

tices of G {xgx i=1,2; j=0,1,...,m}. Let xé be the vertices

of degree 2, and xi=f(x8% Let ¢' be the caterpillars of M(G).

The vertices of C* get the labels xﬁ. where j=1,2,...,m and xt

J
is the jth to receive the information originating from xé.We

. .

J 1
may refer to X as Xp4qe

Since €' is a caterpillar of increasing paths from xé to
x;, the following properties are obvious.
REMARK (14), Let C' be defined as above. Then
i) c¢* contains x?-oxi whenever j<k,

11) xi neighbors exactly one xg with j<k,.

iii) If xi neighbors any x; with r>k, it neighbors every
x} with k<jsr,

iv) xi-*x} within ¢! with j<k requires (xi.x})eE(G).

Suppose we have a caterpillar C with a fixed initial and
final vertex, and an ordering of edges to make it a tree of

increasing paths both out of the former and into the latter.
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We claim C can be uniquely described by a forward sequence R(C)
or a backward sequence R'(C) of zeroes and ones. The length of
these sequences is one less than the number of edges in C, We
will not use the backward sequence, We merely note it exists,
arises from considering the edges in reverse order, and refers
to a different ordering of the vertices,

To ebtain R(C), proceed as follows, Begin with the least
edge and a null sequence for R(C), Call the initial vertex the
"active" vertex (ii in the caterpillar Ci) and its neighbor the
"current" vertex, When the next smallest edge is added to the
caterpillar, adding also a vertex, the new vertex becomes the
current vertex. The label "active" stays where it is if the
new edge is incident to it. If the new edge is incident to the
former current vertex, then that vertex becomes the active ver-
tex. In the former case, append a 0 to R(C) as generated so
ﬁgr, In the latter case append a 1,

As each edge is added to the tree in order, it can only be
incident to the active vertex or the current vertex, This fol-
lows-because the caterpillar must remain a tree of increasing
paths toward the final vertex, At any stage the tree is one of
increasing paths toward both the active and current vertices.

All 2F binary sequences of length r describe caterpillars
in this way and correspond one-to-one with caterpilars on r+l
edges and r+2 vertices, where the initial vertex and order of
edges is specified, The initial vertex must be specified to

distinguish between sequences that differ only in the first
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place.
If we add the edge (h(xg),xg)‘to Cl. we still have a cat-

erpillar, since this is a last edge. It has paths from xi and

to xg. This is the caterpillar of interest. Note that h(xg)

need not be x;. Let S(G) be the associated sequence
R(Clu(h(xg),x%)), and let T(G) be the associated sequence
R(CZUUﬂx%),xé)L but written backwards. When we discuss ir-
reduciZbility and concatenation in section 8 it will become
clear why T(G) is written backwards,

From S and T we can reconstruct M(G) and know the first
and last neighbors of xé. To complete the characterization of
G we need to know which pairs of sequences (S,T) can be assoc-
iated with a NOHO-graph and how the edges of F(G) and L(G) can
be placed to complete the graph,

No vertex in C-1 can have a first or last neighbor in Ci.
By (14,i), having such an edge in F(G) or L(G) would violate
NOHO, So, the edges in F(G) and L(G) can be described by per-
mutations P(G) and Q(G), where Pi=j means f(xi‘)ﬂt?. and Qi=j
means h(x%)=i%~ (Whenever R is a sequence of integers, we de-

note its ith

element by R;.)
S and T have m-1 elements; P and Q as described have m

elements. P is a permutation of {2,3,...,m+l} which begins

with m+l, since xé=xJ =f(xi). Q is a permutation of {0,1,...,m}

m+1
with some element deleted. The deleted element is j, where

h(xé)=x§. Note that 0 is never deleted. We will see that 0

appears in Q at the same position as 2 in P, so that P and Q
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could be compressed to m-1 pieces of information. However,
bookkeeping and proofs will be easier if we leave them as is,
To align the useful information properly, we say that the ele-
ments of S and T as generated above appear in positions 2
through m. S.1 indicates what happens when Cl reaches x%+l,
and T, indicates what happens when C2 grows to reach Xi—i+3'
We can summarize the construction of these sequences and

the properties required of them in the last few pages by the

following remark;

REMARK (15), The quadruple (P,Q,S,T) defined above completely
specifies a graph. Such a graph has the properties ascribed

to NOHO-graphs in (2) through (14).

If (P,Q,S,T) =(P(G),Q(G),s(G),T(G)) for some NOHO-graph G,
we call the quadruple realizable, We have not yet determined
what 1is required of (p,Q,S,T) to transmit all information and
to satisfy NOHO, For example, although any S or T except the
zero sequence can appear in realizable quadruples, it is not
true that every permutation P or Q defined above appears in a
realizable quadruple, nor is it true that every pair (S,T) is
realizable. In the next section we determine necessary

conditions for realizability.
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6. Necessary Conditions for Realizability

We will derive a number of necessary conditions for pairs

from (P,Q,S,T) to be realizable.

LEMMA (16). For a NOHO-graph G, the pair (P(G),Q(G)) satisfies

i) P;>Q, for all i=1,2,...,m,

ii) If Pi=Qj’ then i>j,

iii) P, is the element missing from Q, and Qj=0 iff Pj=2‘
Equivalently, f(x;)=h(xé).

Proof: Consider (i). P1=mﬁh which is greater than any e-e-
ment of Q. For some k from 1 to m, Qkﬂh which is less than
any element of P. For i#l, i#k, f(x%) and h(x%) lie in C2,

If Pi<Qi' (14,1) guarantees xgl—oxg in CZ. Now we can add

1 2 i i

\
(xi,xP ) to the beginning and (xél,xg)to the end to ob-
i
tain x%—ax%.
For (ii), we argue similarly, If Pi=k=Qj with i<j, then

2 . : : 1.1 1.2
we can add (Xk'xi) at the beginning of X;=¥x: and_(xj,xk) at

J
its end to obtain ﬁ;»ii.
Finally, consider P,. By (ii), if it appears in Q it must
be Q. Then f(xé)=h(xi). The caterpillar ot always contains
the edge (xi,x;). so we have a triangle. Similarly, if Py =2

but Qk#O, (1) says Q=l. Now f(xé)=h(xf), and again we have

a triangle.

If P or.Q is not strictly decreasing, certain edges must

appear in the graph,
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LEMMA (17). For a NOUO-graph G, P(G) and Q(G) satisfy

) . .. . I 1, J2 2
<P, X
i) 1If P PJ with i<j, then E(G) contains {(Xl’xJ)’(XPi'xP )}.
ii) If Q1<Qj with i<j, then E(G) contains at least one of
1.1 2 2
{(xi'xj)' (le !XQj)}o

k4

Proof: Consider any increasing pair in P. Suppose P;=r and
Pj=s, where i<j and r<s, If (x%,x}) is not an edge, then (14,iv)

implies information from x} could reach x} only via the other

. 1 . .
caterpillar. So, we use (xj,ii)eF(G), continue to xi in 02
2 9
where tzs«or(x;,x%)is an edge, and finish with.(%}x%)eL(G),
t>r would imply Qi>Pi.'violating (16.1). therefore (xf,ii)

‘must be an edge, with t<re<s, By (lb.iii),(xi,xﬁ) is also an

edge, but this creates a triangle with x%.

Now suppose (xg,xg) is not an edge, By a similar chain of
reasoning that switches the roles of cl and C2, completing
xg—»xi will contradict (16.ii) or (1),

Finally, suppose Qi<QJi with i<j, but (x%}x%. is not an
edge. We use (1l4,iv) again to require x%.-ixg.in ¢? for
x}hai&. By (16.i) Qi<Qj<Pj' so (14,iv) ;xpir:s (xgj.x%i) as

an edge to complete that path, Now (14,iii) says

(XS.,XS_) must also be an edge, [
i

J

We define a reversion in a permutation to be a maximal
consecutive subsequence of the per-mutation where the first
element is the least. The reversions of a permutation parti-

tion it into segments, In a NOHO-graph, the reversions of P(G)
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have a very special form,

LEMMA (18), If G is a NOHO-graph, then P(G) has the following
form,
i) Every reversion of P is a single element or has the
form (r,s,s-1,...,r+l) with s-r+l elements,
ii) Equivalently, P has no subsequence of length 3 whose

last element is largest.

Proof: First we show equivalence, By definition, the first
elements of reversions form a decreasing subsequence, else the
reversions would not be maximal. If reversions are as in (i),
any increasing subsequence must lie entirely within a single
reversion, The form described in (i) prohibit6 two increasing
pairs with the same second element.

Conversely, assume (ii), Suppose a reversion has more
than one element and we drop the first element r, This must
leave a decreasing subsequence beginning with s, since any in-
creasing pair would violate (ii) with r. Suppose there is some

element t, r<t<s, that does not appear in this reversion. 1Its
appearance before r violates (ii) with r and s, and its ap-
pearance in a later reversion violates (ii) with r and the
first element of that reversion.

That (ii) holds for realizable P follows immediately from
(17.i), (14,iii), and (1). They provide a contradiction if

some such subsequence is assumed to exist.
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REMARK (10), A permutation P satisfying (18) 8 uniquely de-
termined by choosing a subset of Indices from {3,“..m}
at which reversions will begin in P, in addition to the
reversions beginning at P, and P,. Hence, there are 12

such permutations.

Note the equivalence of (18.i) and (18.ii) is independ-
ent of realizability, We will see that the necessary condi-
tions (16) and (18) together are sufficient. Also, it is easy
to see that for any P satisfying (18) there is at least one Q
satisfying (16),

Next, we derive a condition for the pair (P,S).

LEMMA (20) . If G is a NOHO-graph, then P(G) and S(G) satisfy
the following,
i) Suppose Pﬁ begins a reversion in P(G), Py begins the
next reversion, and k2j+2, Then Sj=l, and if k>j+2
then Sj+1=...=Sk_2=O.

ii) If Pt=2’ beginning the last reversion in P(G), then

St=l and any succeeding elements of S(G) are 0,

Proof v If Pj begins a reversion of length at least two, every
succeeding element of the reversion forms an increasing pair
with P By  (17.1),{(x},x})t 1=541,...,k-1}€E(G). Si indi-
cates what happens when o grows to meet x§+l. Considering
the edges we have just shown to exist, x§+l is Jjoined to the

. 1 . .
then-current vertex, and succeeding x; are joined to the active
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vertex, So Sj=l and succeeding S, are 0, if k>j+2, sk

L3

-1
tells what happens when the vertex beginning the next rever-

sion is added to the tree, so it is unrestricted,

Now consider the last reversion in P(G), which begins
with Py=2, By (16 iii) 0 =0 and (x},x.,,) is an edge, Apply-
ing (14,iii) to the caterpillar ClU{(x}c,xg)}, we deduce that

1
{(x‘%,xi‘)x i=t+1,...,m+1} are all edges, since t$m. As above

we conclude St=l and any succeeding Si are 0. U

REMARK (21), For each P satisfying (18), the number of se-
quences S satisfying (20) 1is ?.r'l, where r is the number

of reversions after Pl'

Proof: An element of S is unrestricted if and only if its po-
sition (S;_; in (20)) corresponds to the last element of a re-

version in P other than the last reversion. ]

Define (P'(G),Q'(G¢),S'(G),T7'(G)) as follows. Set PY=]
if Pj=i. Extend Q so that Q,=k where X§=h(xjé), then set ;=]
if QJ.-=i. Set SY=T ,,_:,» and set S'i=sm+2 j+ We call (A,Q,%,m™
the reflection of (P,Q,S,T). A little "reflection" shows

REMARK (22). The reflection of a realigable quadruple is also
realizable, in fact by the same graph.

Proof: Considering (P,&,S,T) instead of (P,Q,S,T) is equiva-

2

lent to interchanging the roles of Cl and C° and looks at the

graph upside down, [
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If G is a NOHO=-graph, we define the reverse graph K(G) as

the graph with the same vertices and edges as G, but with

(x,y) (u,v) in K(G) if and only if (x,y) (u,v) in G, All in-
creasing paths of G are increasing in the opposite direction
in K(G) and vice versa, so X(G) is clearly a NOHO-graph, Note
that the vertices need to be relabeled with Cl and C2 to o
tain the defining sequences for K(G). The "hairs" of the cat-
erpillar swing around as the wind blows from the other direc-
tion.

By reflecting and reversing, we obtain additional neces-

sary conditions.

REMARK (23), If G is a NOHO-graph, then
i) (P(@),T(G)) issuch that (P'(G),S'(G)) satisfies (20),0m.
ii) (Q(G),S(G)) is such that (P(X(G)),S(K(G)) satisfies (20),08).
iii) (Q(G),T(G)) is such that (PYX(G)),S'®(G)) satisfies (20),08k

(16), (20), and (23) are necessary conditions for any pair
from {P,Q,S,T} except (S,T) to be realizable. There are appro-
priate conditions for (S,T), but we have no simple expression

for them, We will soon see that when paired with (18) each of

these conditions is sufficient,

7. The Number of Realizable Quadruples

Besides showing the sufficiency of the previous conditions,

we will show that any pair from {P,Q,S,T} satisfying them
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is realized by a_unigue NOHO-graph, To prove this, we need a
lemma that will enable us to generate one sequence in {P(G),
Q(G),S(G)} when we know the other two, By reflection we can
apply it to {P, dﬂ?}to obtain similar results for {P,Q,T}.

S(G) is a binary sequence indexed from 2 through m, On
its index set we can define a function b that points to the
previous 1 in the sequence. Let b(i) be the greatest positive
integer such that jci and Sj=1’ if such exists. If there is

no such integer, set b(i)=l. Then we have

LEMMA (24). For a NOHO-graph G, P(G), Q(G), and S(G) are re-
lated by
i) Si=1 if and only if Pi+l=Qb(i)‘
ii) Si=0 if and only if Pi+l=Qi'
Proofs In one direction the lemma is trivial, Recall the
construction of S from active and current vertices. Si:o if
and only if (x%(i),x%+l) is an edge, and $;=1 if and only if
1.1

(x;yXj47) is an edge, So, if P,

1+1=Qi' then choosing S;=1 cre-

ates a triangle, while if P;41=Qb (i) then $,=0 creates a tri-
angle,

We prove the other direction by induction. For the basis
step, b(2)=1l, and by (16.ii,iii) we always have P3=Q2 or P3=Ql'
If Sz=0,then choosing P3=Ql creates a triangle, while if
Sz=l then P3=Q2 creates a triangle.

Now we prove the lemma for k, assuming it holds for all

2si<k, By (16.ii,iii) we know that Pk+1=Qj=r for some j with
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j$k. Suppose j=k. Then if SkBO we are finished, while If
§,=1 we have a triangle, Suppose j-b(k), Now if Sk=l we are
finished, and if Sk=0 we have a triangle, So, if the lemma
fails we may assume Jj<k, Jj#b(k). If Sj=0' then by induction
we have Pi+l=Qi=r, which contradicts P being a permuation,

So assume Sj=l, in which case jsb(k) by the definition of b,
We assumed j#b(k), so let t be the least integer greater than
j such that St=1' j=b(t), and t<k since Sb(k)zl' so we have
je<t=sb(k)<k., Applying induction, Pt+1=Qb(t)=Qj=r’ which again

contradicts P being a permutation, ]

Now we proceed to the main results. Henceforth, fix

p=(n-4)/2=m-1,

THEOREM (25), Any pair from (P,Q,S,T) which satisfies the cor-
responding necessary conditions for realizibility in (16),

(18), (20), (23) is realized by a unique NOHO-graph,

Proof: First we show how to uniquely generate the remaining
sequences from any pair satisfying the necessary conditions,
Then we show the resulting quadruple is realizable.

Suppose the two known sequences lie in {P,Q,S}. We gen-
erate S from (P,Q) satisfying (16) ,(18) so as to satisfy (24).

Initialize %=1, Then for i=2,3,...,m in order, if Pi+1=Qk'

set Si=l and reset k=i, If Pi+1=Qi’ set Si=0 and leave k un-

changed, This is well-defined for (P,Q) satisfying (16). P,

disappearing leaves ore index "free." As we proceed in P, the
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enly previous elements of Q which have not been encountered in
P are Q, and Q.

We claim the resulting (P,S) satisfies (20). It is easy
to show the requirement for when Si must be 1 holds. OQther-
wise, we have Pi+1=Qi when Pi starts a reversion and is less
than Pi+1' violating (16,1), For the other requirement, con-
sider the first time Si is set to 1 by Pi+l=Qk with i+l in the
midst of a reversion, k is the previous 1, so it is the start-
ing position-of the reversion, Thus Pi+1’Pk’ and we violate
(16,i) again,

Next we generate Q from (P,S) satisfying (18),(20) so as
to satisfy (24). Set Q; =0 if Pi=2' If k is the least integer
such that Sy=l, set Q,=P, ;. (If S has no ones, x§=h(f(xé)).
With (16,iii), this contradicts n»4,) For all other i, if
S;=0 set Q;=P;,;, while if S.=] set Qb(i)=Pi+1' Again, this
is well-defined, The Qi skipped by the first option are those
with si=l. so that subsequence is just shifted within itself
from P to Q. P2 disappearing makes room for the shift, and
0 under Pi=2 fills the hole left at the end, since that's where
the last 1 occurs in S.

We claim the resulting (P,Q) satisfies (16). (16,ii,iii)
are obvious by construction, so assume some P3‘<Qj' The algo-
rithm set&:Qj=Pi for some i»j, soby (18) Pj must begin a re-
version containing Pi' By (20) Sj-'l,sij is set the next
time a 1 is encountered in S, i.,e, at Si 1 with i-1>j.  (20)

then implies Pi must be in a later reversion than Pj‘
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For the remaining cases, we give less detail. To gener-
ate P from (Q,S), set P1=m+1,and fet P, be the element in
{1,...,m} missing from Q. For all other i, if $;_1=0 set
P,=Q;_y, while if S, ;=1 set Pi:Qb(i—l)' This is well-defined
for (Q,8) satisfying (23), since the only elements of Q not
placed in P at the fﬂlstage are Qi_,and Qb(i-l)' The re-
sulting (P,Q) clearly satisfies (16.ii,ii)) and can be shown
to satisfy (16,1) and (18). By the construction, they also
satisfy (24).

To generate T from (P,Q,S), form (P',Q') and use the first
algorithm above to get S', Then T=(S')°",

To generate the unknown sequences knowing T and one of
{P,Q}, reflect them and apply the above algorithms for S and
one of {P,Q}. This generates T' and the unknown element of
{P'.Q'}, and reflecting again gives the desired quadruple.

This leaves the case of generating (P,Q) knowing (S,T).

Set P1=m+l, P2=j where T is the first 1 in T, and Pj=2

m+2-j
where Sj is the last 1 in S. These requirements follow from
(16,iii), since those elements of S and T determine h(xéL
The remaining elements of P and Q can be uniquely generated
by refusing to violate (17), (24), or (1). We omit the details
of this algorithm.

By (24), etc., the unknown sequences can only be as gen-
erated above. We have shown uniqueness, now we show suffi-

ciency. No matter what pair we started out with, we have shown

that for the generated quadruple all the necessary conditions
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are satisfied, We must show that increasing paths exist be-
tween all ordered pairs of vertices and NOHO is satisfied.

As noted in (14,i), x%—éx}% with j<k exists, Next we show
x'g-o'x}f‘ exists, If Pj=s with ssk or Qr=k with r&j, we are done
by (14,i) again. Suppose both of these possibilities fail and
Pt=k. I t<j, the (Pt'Pj) form an increasing subsequence of P,
The condition (20) on (P,S) was determined so that G would
%,xs,xz)

is the desired path. Suppose instead t»j, and apply (24).

satisfy (17.i). So, (xg,xi) is an edge of G, and (s

Since rej<t, we have t#r+l but Pt=Qr' so we must have r=b(t-1)

C 1 .1, .
and S;_;=l. so, (XJIZ. 1 l)CE(G). By (l&iii), (xr,xj) is

also an edge, making (x%,xl i) the desired path.
We must also have x%-bxl, even 1f rcj, Let s_p and k=Q,..
If (xsj,xf,) or (xg xk) is an edge or if ssk, then we are done,

:!-)xf above, we showed that if r<j and s»k we

J
must have (x.l, xl) or (xg xk) as an edge.

7 r’
That paths x?-)xi and xj?‘-)xf also exist follows from

In considering x

reflection and the preceding two paragraphs,

As constructed, G trivially satisfies NOHO, v~v cannot
occur using the edges in a single tree, so it must cross to
f(v) and return from h(v), Suppose f(V)=x§ and h(v)=x}i{. Com-
pleting the path requires b%,xi)to be an edge or jsk, The
former never occurs because we've constructed a graph with no
triangles, and the latter never occurs because (P,Q) satisfies
(16). So, the graph determined by the generated quadruple is
a NOHC-graph. {]
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THEOREM (26) . The number of realizable quadruples is BP‘l,

where p=(n-4)/2, n even, n26f,

Proof: By (25), pairs (P,S) determine the rest of the quad-
ruple, so we count those. As noted in (21), a realizable P
has 2°°1 realizable S associated with it satisfying (20),
where r is the number of reversions atter P;. By (19), there
are ( ) such realizable P. Using the binomial theorem, the

total number of realizable quadruples is %I(“'_" 211 o jp'l, \

Figure 3 exhibits the quadruples and associated graphs

for n=6 and n=8,
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Figure 3. Small NOHO-graphs

G has 180" rotational symmetry when drawn as in Figure 3
if and only if (p',Q',8',7')=(P,Q,S,T), This occurs for all
the graphs in Figure 3, If (P',Q',S',T")#(P,Q,S,T), then G is
counted twice when the quadruples are enumerated. 1In the next
section we enumerate the symmetric solutions, so we will know

the extent to which NOHO-graphs are overcounted here,
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8, Symmetric NOHO-graphs

In this section we count the symmetric NOHO-graphs, we

define a symmetric quadruple as a realizable quadruple for

which (P',Q',s',T7')=(P,Q,S,T), A symmetric NOKO-graph is one

where the vertex permutation interchanging xll{ and x]%. for all k

leaves the graph unchanged, As noted earlier,

REVMARK (27). G is a symmetric NOHO-graph if and only if
(P(G),Q(G),s(G),T(G)) is a symmetric quadruple,

The following remark applies to all P(G), and is useful

in determining the number of symmetric ones.

REMARK (28). In a realizable P, Pi=j implies i+j2 m+3,

Proof:s By (18.,i), the number of positions after i in P must

be at least as big as one less than the number of elements less

than Pi' so m-i2j-3, ﬂ

LEMVA (29), The number of symmetric realizable P is 2L(m—l)/2_].
Proof: P symmetric requires P3.=i if P;=j, so P corresponds to
a matching of the positions (2,...,m). Some positions maybe
matched to themselves, if Pi=i. (In fact, this can only happen
twice. ) Note we always have Py=m+l and P_,.=l. TWe construct

P match by match from m down to [(m+3)/27], matching P.j on step
m-j.

At each step there are two choices. By (18.1),Pme{2,3}
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and at step j Pm_j({Z.B.....m-j+3}. However, j of these have
already been matched with higher positions on previous steps,
This leaves two choice for Pm-j’ one of which is m=j+3, since
it was not available before, Upon reaching P[-(m+3)/2-], the
choices are [(m*3)/2] and one lower value. If m is odd, we
choose between matching them to each other or to themselves.
If m is even, set Pr(m+3)/2] equal to one of them and match
the remaining one to itself, Now we have made m=[(m+3)/27+1
= [ (m=1)/2] choices and completed the matching, Every P so
coustructed satisfies (18), and these are all the symmetric P

which do so. By (21),(25), they are all realizable. {]

Examining the construction in the proof above, we can de-
fine a binary sequence B(P), indexed from [(m+3)/21 to m,
where B.=0 1f P.=m-j+3 and B.=1 if P.<m-j+3, Now we can count

J J J J
the graphs associated with each P.

LEVNMA (30). Suppose P is realizable by a symmetric NOHO-graph,
Then the number of symmetric NOHO-graphs realizing P is 24,

where g 1is the number of ones in B(P).

Proof:s We consider how many ways symmetric Q can be construct-
ed so that (P,Q) satisfies (16). We claim that each way deter-
mines a unique symmetric quadruple, By (25) it determines a
unique realizable quadruple. Using the algorithms in (25) we
generate S and T. Reflecting and applying the algorithms again,

we find S's=S and T'=T, since P and Q are symmetric. So by (27),
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the NOHO-graph realizing the quadruple is symmetric,

First suppose B(P)=(0,...,0). Then P=(m+l,2,m,m-1,...,4,3),
There is one reversion after Pl’ so (21) and (25) imply there
is one realizable quadruple with this P. The corresponding Q
is (m,0,m=1,.,..,,%,3,1), which is symmetric as desired,

Now suppose B(P)#(0,...,0). By the way B(P) is construct-
ed, B,=l implies. Pk begins a reversion in P, The uppermost
1 occurs when Pk=2. beginning the last reversion. That post-
pones picking m-k+3 until the next lower 1 in B, at which point
it must begin a reversion, and so on.

Recalling (20), the elements of S are unrestricted if and
only if they correspond to the last element of a reversion
other than the last one, So, covering the index range [ (m+1)/2]
to m, there are 24 ways to write down this portion of a realiz-
able (P,S), Using the algorithm in (25), we can write down
what the corresponding segment of @ must be.

Determine the rest of Q by setting Qjﬂcif'Qk=L where
ka(m+1)/2, That this is well-defined is ensured by (28). Q
is now symmetric and campletely defined, We need only verify
that (P,Q) satisfies (16).

For (16.iii), we have guaranteed Q=0 placed where P, =2,
since B(P)#(0,+44,0) and the last reversion begins in the "good"
segment. By symmetry P,=k and k is the element missing from Q.
(16,i,i1) hold for all elements of Q at (m*l)/2 or later. sup-
.=k with jei¢(m+l)/2, Then by symmetry and (28),

J
P, <Q, with k>(m+l)/2, violating (16.i). Finally, suppose Pquj

pose Qi=P
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with je(m+l)/2., Applying symmetry and (28) again, we violate
(16.ii) in the good segment,

To summarize, we have shown that there are 2% symmetric Q
that might be paired with P, and that all such pairs are real-

izable and determine symmetric quadruples, [

THEOREM (31). The number of symmetric NOHO-graphs is 3LP/2J,

Proofs If B(P) has g ones, they may occur at any of the [p/2]
steps in constructing P. So (29), (30), and the binomial

vy
theorem yield Eo(LpéZJ)Zq = BLP/?‘J as the number of symmetric

solutions, ]

Symmetric quadruples are one-to-one with symmetric NOHC-
graphs. Other realizable quadruples are two-to-one with other

NOHO-graphs, So we have from (26), (27), (31)

COROLLARY (32), The number of NOHO-graphs on nz6 vertices, n
even (other than Q* when n=8) is (3p'l+3Lp/2-])/2.

9. Concatenation of NOHO-graphs

Before defining the concept of an irreducible NOHO-graph,
we need to define a way of combining NOHO-graphs. Suppose we
have two NOHO-graphs Gy and G, on ny and n, vertices {x%} and
{y%}, with associated quadruples (Pl,Ql,Sl,Tl) and (Pz,Qz,sz,Tz).

We define the concatenation of G, and G,, denoted G;+G,, as a

new graph G3 constructed as follows.
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To obtain the edge set of G3, unite those of Cl and GZ'
deleting the edges incident to x% and y%. The vertex set of
G3 is the union of the vertex sets of G, and G,, with xg and
y(l) deleted, Furthermore, identify h(xg) with yiL and h(yé)
with xi. Now G3 is a graph on n3=nl+n2—4 vertices, with
2nl-4+2n2-1+-1+ = 2n3-l+ edges.

For the ordering of edges, any edge that was a first edge
or last edge in Gl or G2 remains a first edge or last edge,
The order between two edges from the same Gi is preserved, In
addition, every edge from Cl(Gl) is set less than every edge
from Cl(Gz), and every edge from CZ(GZ) is set less than every
edge from CZ(Gl).

Figure 4 gives an example of concatenation,

\ \ v \ \ \ & X;
Xl K" * z X *’_’-—-—'g_\Yl
. T -‘-V“-\.Qs % ‘\ ':l N SN
b FPE A N N . . NI N . \
<l 1™ =%, )‘\ N ‘.‘)‘3 "-\.L T N Y
IS ' NN e SR
. 2 a . [ P :
I am——— 1
o T X o SR
G, G, 6, + 6

Figure 4, Concatenation

Note that concatenation is not a commutative operator,
Also, if we label the vertices of thel4-cycle {xé,xi’,xg,xg}, it
becomes an identity element under concatenation. 1In fact,
NOHO-graphs not in Q* form a non-commutative semi-group under
concatenation, Associativity is clear from the construction.

The next lemma verifies closure,
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LEMMA (33), If G1 and G, are NOHO-graphs, then the concatena-

tion G1+G2 is also a NOHO-graph,

Proof: We need only show that G1+G2 contains paths between
all pairs of vertices and satisfies NOHO, We may consider the
identified vertices as elements of either of the original
graphs, Any path wholly within one of the component graphs is
still present in Gl 2 unless it used one of the deleted ver-
tices,\ The only paths which used them as non-endpoints are

( %. 2 h(xz) ) and y%.yé. (y%). In the concatenation these

paths can be replaced as follows. Since we have identified

x2
“1

as originating from the other summand graph, The transmission

with h(yé) and h(xg) with y%, we can consider the endpoints

path between these vertices in that graph uses nore of the de-
leted edges,

Obtaining an increasing path from a vertex of Gi to a ver-
tex in GD is quite simple, If v lies in G, and w in Goy VAW
can be formed by attaching §i-+w from G, to the end of v-+h(x§)
from G, Similarly, w=v can be formed by attaching xi-iv
from Gl to the end of w-ah(yé) from G2. These constructions
work because every edge incident to §1 in G1+G2 that comes from
G2 is greater than every such edge from Gl, and every edge in-
cident to xi in G1+G2 from Gl is greater than every such edge
from Goo The edges that could have violated that were the
edges deleted from the union.

Finally, to prove NOHC we note that no increasing path

which starts at a vertex from Gi can leave those vertices and
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later return, This would require traveling along Ci(Gl+G2L
crossing to C] (G1+G2), and returning, The crossover could

only use a first edge or last edge, which would prohibit in-
cluding the earlier or later portion of the path. On the other
hand, no path violating NOCI0 can lie entirely within the edges

coming from one of the summands, since they are NOHO-graphs. []

To determine (P,Q,S,T) for G1+G2=G3, we obtain S(GB) and
T(GB) by concatenating in the usual sense S(Gl) and T(Gl) with
S(Gz) and T{GZ). That 1is, with m1=pf/2-l,S(G3) contains S(Gl)

in positions 2 through m, and it contains S(G,) in positions
™ 2

i, +1 through mq=my +my-1, Smg%ﬂ describes what happens

when Cl(GB) reaches y%, which is the same as what happened

when Cl(Gl) reached x# +1° The remainder of Cl(Gi) is as before,
1

The same argument applies to T, P and Q can be determined as
in (25), or they can be determined directly by adjusting and
combining P(G:) and Q(G;) as was done with S and T, This re-
quires dropping an element, adding py or p, to the elements in
one portion, and concatenating.

If is natural to call a realizable quadruple or a NOHO-

graph irreducible if it cannot be expressed as a concatenation

of two smaller ones, In the next section we will count the
number of realizable quadruples in subclasses involving

irreducibility.
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10, Irreducibility and NOHO-graphs

Before discussing irreducibility, we introduce some stan-

dard terminology about compositions of integers. A composition
. . of mstiive inteqers
of an integer p is an ordered sequence,whose parts sum to p.

Again, we are using p here because (n-4)/2 adds simply in con-

catenation. The ith

partial sum q; of a composition is the

sum of the first 1 parts, A refinement of a composition of p

is a composition of p with as least as many parts whose par-
tial sums contain the partial sums of the original composition,

The least refinement of two compositions is the composition

whose partial sums are the union of the partial sums of the
original compositions. For example, the least refinement of
(2,3,5) and (1,3,1,4,1) is (1,1,2,1,4,1).

This terminology will be useful for the following lemma,
which states a very convenient fact about concatenation,
Namely, NOHC-graphs are "uniquely factorable" into irreducible
pieces, In algebraic terms, this means the irreducible solu-
tions are the generators of the semigroup of NOHO-graphs under

concatenation.

LEMMA (34). Any realizable quadruple can be uniquely expressed

as a concatenation of irreducible quadruples,

Proof: Any such decomposition of a quadruple breaks up (S,T)
into segments which each determine NOHO-graphs., For example,

describing graphs as G(S,T), we have G(101010,111101) = G(1,1)
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+ G(010,111) + G(10,01). We can describe the decomposition
by a composition of the integer p=(n-4)/2,

We claim the least refinement of two compositions of p
which correspond to decompositions of G also corresponds to
a decomposition of G, If one composition is a refinement of
the other, we are finished, If not then the least refinement
has two consecutive partial sums q;=r and 341 7S» where r 1is
a partial sum for exactly one of the compositions, and s 1is
a partial sum only for the other. Performing the decomposi-
tion, we have indices J and k such that the segments (Sj'Tj)
through (Sg,;sTg4y) and (SpypiTpyp) through (Sy,Ty) determine
NOHO-graphs G; and G,. (We have assumed r<s.)

Define another graph G3, whose vertices and edges include
the vertices and edges that lie both in Gl and in GZ’ plus two
vertices y and z of degree two. (By "both in G, and in G," we

mean when the vertices are labeled as the fit into G.) The

1
neighbors of y and z are defined by fGB(y)=xr+l' hGB(y)=

1 a2 _ 2
y T =x~ , and h, (z)=h, (f. (x>__)).
th(fGZ(xr+l)) GB(Z) xm-s an G3 z Gl Gl m-s

G3 is a NOHO-graph, and the proof of this rests on the
fact that increasing paths which leave G3 can never return to
it, When such a path leaves G3 it simultaneously leaves Gl or
G,. By the same argument used to verify NOHO in (33), it can-
not return, So, the increasing paths in G between vertices of
G3 must lie wholly within G3' Information is transmitted for

y and z also, since y takes the place of a vertex in G, Of
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degree 2 and z does the same in Gl' That NOHO is true follows
because any increasing path in %f appears in Gl or in G2

(except y=-»z and z-9y), and they satisfy NOHOC,

Let Gi be obtained from G, by deleting vertices and edges
belonging to G3. Add a vertex w of degree two with fG.(w)=
1

h, (y) and h,,(w)=f, (y). By the arguments in (33) and above,
G3 Gl G3
it 1s easy to see Gi 1s a NOHO-graph and Gi+%3=%f So Gl was
not irreducible,

Repeating-this argument over all decompositions of G, we
see the only decomposition into irreducible segments 1is the

least refinement of all the decompositions. ]

Having proved unique decomposition, it becomes easy to

count various classes of solutions by induction.

THEOREM (35). The number of realizable quadr ples formed by

concatenating k irreducible quadruples 1is (ﬁ:i)zp‘k.

Proof: By induction on p., Examining Figure 3 yields the
basis steps for p=l and p=2, Assume the theorem is true for
smaller values than p.

First consider k»1, To obtain such a quadruple we deter-
mine a composition of p and fill the quadruple with irreducible
(S,T)-segments of those lengths. ©p is the eventual length of
S and T from positions 2 through m=n/2-1, By induction, each

2r-l

segment of length r can be filled by irreducible pairs,

Filling each segment in all possible ways, (33) says these are
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realizable, and (34) says there are no others. go, for each
composition rj+...+r, =p with-k parts, there are Zrl'l.,,zrk-l

p-1

Rl
of P with X parts, so the total number of solutions is
p=-1,,p=k

-X .
=2P™* quadruples of this type, There are | ) Compositions

This holds also for k=1, since that is precisely how many
remain of the 3P71 quadruples counted in (26). The binomial

theorem says there are 2P-1 jirreducible quadruples, [

THECREN (36). The number of symmetric NOHO-graphs formed by

concatenating k irreducible parts 1is tp " where
L

- -k)
r(ﬁﬁg_%)z(p k,/2 ; p even, k even
0 ; .k
tp x _ 4 /2_J ru,.n/“ . p odd even
’ = ZLp 3 (g:l) i k odd, k=1, r:(k_l)/z
LZLP/ZJ i k=1
Prooft We use a similar induction to the above. Figure 3

again provides the basis, though now p=1 and p=2 are both nec-
essary. Assume the theorem is true for smaller values ofan p,
First consider k»1., 1If k is even, p must be even to allow

symmetry. We determine a composition of the first p/2 places
into k/2 parts, fill it with irreducible (S,T)-segments, and
then obtain the rest by reflection (27). (33) and(34) again
justify the conclusion that this counts everything, There are
(i¢§:%) compositions and 2(P=¥)/2 (o1t iong for each one.

If k is odd and k>1, determine a composition of g with
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r=(k-1)/2 parts, where 2q<p. The middle segmnent of (S,T)
will have length p-29. 1In that segment we place a symmetric
irreducible segment, of which by induction there are 2L(p—2q)/2j.
There are 2%1°T ways to fill the remainder, with the usual ar-
guments about reflection, number of compostions, and the cor-

up.
rectness of the count, we have t = Z:(Qfl)zq- 2[(P~ZQ)/2]

Prk  qa1 r-1
= sz/ZJ' ‘% (“T“L i r=(k=1)/2,

To compute tp,1» We subtract the other t . from 5p/2]
1

the total number- of symmetric NOHO-graphs, derived in (31),

Note that
L2l 2l (-2
E 2l /Zl'rqg (&h = 1); 2Lp/2]-q El(q -1)29°F
oozl 1“’2 h1-a50-1
- /200 )L e-1/2 191 (5211
‘{ 2.3P/2-1_ ,p/2 i p even
3(p-1)/2_,(p-1)/2 ' b odd
-Wihen p is even, we must also consider k even. TIf s=k/2, we
have (p/2-l)2p/2- = 3p/2-1 as the number of these solutions,
So,-
. /o 3p/2-l+2.3p/2-1_2p/2 i p even
p,1 _ BLP ] -
3(p=1)/2_,(p-1)/2 D odd

gLP/éj ﬂ
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11. Planarity and Hamiltonicity

In this section we note two properties of NOHO-graphs
that are commonly of interest. Constructions are given for

both, First, a quick lemma,

LEMMA (37). In a NOHO-graph, consider a path R that begins

at xé and alternates along first edges and last edges, Then
i) The path alternates between Cl and C2, reaching C1 al-

ways on first edges and C2

on last edges,
11) R eventually reaches xg.
iii) From xé to xg, R is a simple path.
iv) Among the X% and x? that appear along R until xg, the
indices 1 increase and the indices j decrease,

Proof: (i) 1is obvious, We verify the remainder in reverse or-
der. For (iv), it suffices to consider pairs of consecutive

appearances, If x?{.= f(h(x}t)) so that f(x}L.)=h(xi), then (16,i)

says i'»i. If x§.=h(f(X%)) SO that x§.=h(xi) and x§=f(x}l{),
then (16.i) says j'<j. (i) implies the consecutive appearances
are as described. (iv) immediately implies (iii). Since the
path connot contiue in the same direction forever, (iv) also

implies (ii), [

THECREM (38). In a NOHO-graph (other than Q*), uniting the

first edges and last edges yields a Hamiltonian circuit,

Proof: Consider the alternating paths guaranteed by (37) that
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emerge from x% and proceed to x%. One begins with a first edge,
one with a last edge, Call them Rl and R2. respectively. We
claim Rl and R, intersect only in {}gxg}.

If not, let v be the first vertex where they meet after xé.

If it is before x%, it lies in ¢l or in cz, 3y (37.1), both
paths reach it via the same type of edge, i.e. first or last,
But F(G) and L(G) are matchings by (2), so there is only one
such edge incident to v. This means the paths had to meet at
the previous vertex,

So, uniting R; and R, yields a simple circuit, It is easy
to see it must be Hamiltonian, If v lies outside it, we can
begin paths there that proceed alternately along first edges
and last edges, By the argument of (37), one such path R, pro-
ceeds to xg. The next-to-last vertex on it is in Rl or RZ’

since Ry, and R, reach xg separately and d(x§)=2. It also lies

1 2

in C* or C®, As in the preceding paragraph, all of Ry includ-

ing v lies in that same R, or RZ'D

THECREM (39). Every NOHO-graph (excluding Q%) is planar.

Proof: We construct a planar representation. Place the ver-

tices on the boundary of the shadow of a sausage. pyt xl at

0
the left end, xg at the right end, xi along the top edge from

left to right, and xf to x2 along the bottom edge from right

m
to left,

Let R1 and R2 be as in the previous proof, Draw in Rl as

a path of chords, By (37.iii,iv), there are no crossings,
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3lur the boundary of the sausage so that the top and botton
boundaries become doubled, still meeting at the endpoints,

Let the vertices of Rl remain on the inside boundary, and move
the vertices of R, to the outside boundary, R, can be drawn
as a path of non-crossing chords in the outside infinite face,
again by (37).

We still must show that the edges in the caterpillars can
be added without crossings, The interior of the boubled bound-
ary has not yet been entered by any edge, Yo edge of the cat-
erpillars joins two vertices on the same Ri,i.e. on the same
side of the doubled boundary, If so, (14.iii) and (37.iv)
require a triangle. So, we can draw the caterpillar edges as
chords across the interior of the boundary,

lle claim there are no crossings. Since the vertices have

been placed in order, (x%,xi) cannot cross (xl.Xl) with

J r'’s
max{j,k}<min{r,s}. If a crossing exists, we may assume jer<k,
r<s. By (lu.iii).(xﬁ,xi) is an edge. Similarly, if k<s then
(xi,xi) is an edge, while if k»s then (xg,x;) is an edge.

Either way, we have created a triangle in a tree, using xg.

ﬁi. and one of {xi,x;}.ﬂ

Figure 5 shows a representation drawn with this method.

-~
B - - tq

N -

Figure 5, A planar representation
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12, Related Gossip Questions

Golumbic[6] and Harary and Schwenk[8] have shown that any
connected graph with n vertices, 2n-4 edges, and a 4-cycle ad-
mits an edge-ordering which solves the usual gossip problem.

By 2n-4 edges, we mean 2n-4 calls will be made using “allowed"
edges, Of course, most of these violate NOHO, The question
remains open, however, whether every optimal solution of the
gossip problem contains a 4-cycle, An affirmative answer would
characterize these solutions, Examining (12) and (16.iii), we

note

REVARK (40). Every optimal solution of the gossip problem
satisfying NOHO has a 4-cycle,

It may be possible to prove the conjecture by applying this

remark,

Graph theorists have also considered solutions of the
gossip problem in which no transmission of information is dup-
licated, so there is a unique increasing path from each vertex
to every other, Usually this includes the condition NOHO,
Paradoxically, forbidding wastage requires more work, if in-
deed the problem can be solved at all. In other words, the

information cannot be transmitted in 2n-4 calls unless n=4 or

n=8, which follows from

1] ]
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RENARY (41), Every NOHO graph other than €, and those in g

duplicates some transmission,

Proof: €, and graphs in Q*, as remarked in (12), duplicate no

transmission. Consider any other NOHO-graph, and suppose
s,=0r We claim there are two paths from xg to x#. By (16,1iii),

>
f(x§)=h(x§). By (14.4iii), hﬁ(xa))is an edge. So (x%,

h(Xé3.X£) forms one such path, By (14,i) there is an increasing
pathe in C2 from x% to every other vertex of CZ, including

h(xé?, which completes the path, On the other hand, if Sm=1,
then xi=h(x§). Applying (16,1ii) again, there exist increasing

2
paths (xg,x;,h(xf),xf) and.(xz,xf). 0

Finally, we describe a generalization of the problem con-
sidered here, Consider an n by n "transmission matrix" on
vertices {vl,...,vn} with entries from {1,0,-1}., 1If aijzl'
we require an increasing path from vi to Vs If alf =1 we
forbid such a path, If alj=o we don't care, We ask whether
a calling scheme satifying the matrix exists, what is the least
number of calls in such a scheme, what schemes achieve the uin-
imum, and so on. The original gossip problem results when di-
agonal entries are 0 and off-diagoanal entries are 1, Chang-
ing the diagonal entries to -1 yields the subject here, The
problem with ones above the diagonal and zeros on or below it
is clearly optimized by a chain of n-1 edges, For a matrix

in block diagonal form, we require the sum of the calls re-

quired by the smaller problems, Here's another example:
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REVARK (42), Consider a transmission matrix with a; 1 =0,
aij=0 for isr2j, and all other“aij=l. The smallest graph
solving this gossip problem has 2n-7 edges, This remains

true if aii=-1, n even, r even,

Proof: Take an ordinary (2r-4)-edge solution i, on ﬁﬁj""vr}
and an ordinary (2n-2r-4)-edge solution H, on {v. . s..esV }.
Order the edges so all those of HZ occur after all those of

Hl, Add an edge Jjoining a vertex of the last edge in Iy

to the first edge in H,, and let it occur between them. This
uses 2n-7 calls and satisfies the matrix.

To show optimality, take any solution and delay all edges
not wholly within {vl,...ﬂQ}, in order, until after every
edge within that set, The resulting scheme still satisfies
the matrix, But now it must consist of an ordinary scheiie on
r vertices, followed by at least one connecting edge and a
_solution on n-r vertices, So, there are at least 2n-7 calls,
If aii=-1, simply use NOHO-graphs in the iy, i, con-

struction. This requires n and r even. [

There are innumerable variations.
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