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Abstract

We characterize and count optimal solutions to the zossip »rob-
lem in which no one nears his own information, That 1s, we

consider zranhs with n vertices where the edges hae a lin=ar
ordering such that an increasinz path exists from each vertax
to every other, but there 1s no increasing path from any ver-
tex to itself. Such grarvhs exist only when n is even, 1n which

: case the fewest number of edzzs is 2n-4%, as in the orizinal gcs-
sip problem, We characterize optimal solutions of this sors
(NCHO-graphs) using a corresvondence with a set of permutations
and binary sequences, This correspondence enables us %o count
-these solutions and several subclasses of' solutions. The rum=-

‘bers of solutions in each class are simple powers of 2 and 3,
with exponents determined by n. We also show constructively
that NOHO-zravhs are planar and Hamiltonian, and we mention
applications to related problems.
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A CLASS OF SOLUTIONS TO THE GOSSIP PROBLEW

| There are two kinds of people who
blow through life like a breeze;

And one kind 1s gossipers, and the
other kind 1s gossipees,

——0gden Nash

Gossip 1s mischiasvcous, light and easy
to raise, but grievous to bear and
hard to get rid of. No gossip ever
dies away entirely, 1f many people
voice 1t; 1t too 1s a kind of divinity.

--Hesliod
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1. Introduction

The "gossip problem" has the unusual distinction of being

solved four times within a year, Proposed by Boyd and popular-

ized by Erddés, it considers a group of n people, each posses-

sing a distinct item of information, Telephone calls are ar-

ranged between two people at a time, in which they exchange all

the information they know. (It 1s also called the "telephone

problem.") We seek the minimum number of calls required to

transmit all the information to everyone. For nz#, it is 2n=-4,

This was proved by Bumby and Spencer(unpublished), Baker and

Shostak{1], Tijdeman[12], and Hajnal, Milner, and Szemerédi[7].

These proofs were all different and fairly short.

Ways were quickly found to generalize the problem. The

calling scheme can be represented by a graph whose edges are

- linearly ordered to represent the order of calls. We require

an "increasing path" from each vertex to every other. Edges

may be repeatedin the ordering, in which case they are counted

twice, representing repeated calls.

Moving from graphs to hypergraphs, we can ask the same

question when the medium of transmission 1s "conference calls"

of a fixed size k. The minimum number here was discovered by

Lebensold[10]. It is on the order of 2(n-1)/(k-1),with a num-

ber af technical adjustments. Bermond[2] recently rederived

the result with a shorter proof.
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Thus far we have considered complete graphs, Suppose the

"allowable" calls are restricted to some subgraph. For example,

we don't wish to assign sworn enemies to talk to each other,

This problem was considered by Harary and Schwenk 8], and also

by Golumbic[6]. As long as the graph is connected, we can trans-

mit the information 1n 2n-3 calls using a spanning tree, with

the calls ordered to and then from some root. If the graph con-

tains a U4-cycle, we can still achieve 2n-4, Here we use the

4-cycle and edges which grow tree-like to the remaining vertices.

It 1s easy to find a suitable ordering. It is conjectured that

if the graph does not contain a 4-cycle, then 2n-3 edges are

required.

Instead of ordinary graphs, we could consider directed

graphs, representing one-directional transfers of information.

This is the "telegraph problem." Harary and Schwenk[8] and

Golumbic[6] have shown that if the digraph of allowed edges is

strongly connected, then the minimum number of messages for com-

plete transmission 1s 2n-2, Golumbic also examines how many

messages are required to tranmit whatever can be transmitted

when the digraph 1s not strongly connected.

Another variation asks for the minimum time of transmission,

where each vertex can participate in at most one call per time

unit. Knodel{9] solved this for complete graphs, and Schmitt[11]

for complete hypergraphs. Cockayne, Hedetniemi, and Slater[3]

consider this in terms of individual vertices. Bntringer and

Slater{5] consider time of transmission in complete digraphs.



The behavior of all these minima 1s logarithmic 1n the number

of vertices, adjusted by constant terms depending on residue

classes of n.

Cot[4] discusses ways to vary the problem. We consider

here not a generalization of the situation, but a restriction

of the allowable calling schemes. We consider calling schemes

that transmit all information, with the additional requirement

that no one ever hears his own information. That 1s, no one

speaks to anyone who knows his original tidbit, In the graph-

ical formulation, with an ordering on the edges, this means we

can find no pathwhichleaves a vertex, continually "increases",

and returns to it, We determine when such solutions exist and

how many edges they require, and we characterize and count the

optimal ones.

We show that calling schemes completing all transmissions

and satisfying NOHO ("no one hears his own information") exist

only when n is even. We call such such a salution with fewest

edges (on n vertices) a NOHO-graph, NOHO-graphs have 2n-4

. edges, the usual gossip result. Particular examples include

Cy (the 4=-cyecle) and any regular graph of degree 3 on 8 ver-

tices having no triangles. The latter set we call Q%, since

it includes the cube. We characterize other NOHO-graphs by two

permutations and two binary sequences. Each of the four describes

the placement of approximately n/2=-1 edges in the graph. We

show that any two of the four suffice to determine the other

two and hence the entire graph. We use this to count the num-
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ber of realizable quadruples determining NOHO-graphs on n ver-

tices, (Realizable quadruples, or simply "solutions," are

those sets of sequences which correspond to NOHO-graphs.) Let-

ting p=(n-4)/2, this number is 3P=1 fr 26, n even. NOHO-

graphs which are not symmetric are counted twice in this; that

is, they correspond to two realizable quadruples. We later

count the number of symmetric solutions, so the number of NOHO-

graphs 1s retrievable.

We also define an operation of “concatenation,” which puts

two solutions together two form a larger solution, This yields

a concept of an "irreducible" solution as one which admits no

concatenation from smaller solutions. We show the number of

solutions on n vertices concatenated from k irreducible parts

is (P=3)2P 7X, We also determine the number of symmetric solu-
tions concatenated from k irreducible parts. In particular,

the number of 1rreducible solutions 1s oP-1 the number of sym-

metric solutions 1s sLe/2], and the number of symmetric 1rre-
ducible solutions 1s Le/2] Ignoring the special graphs Cy,
and Q* and eliminating the double-counting, the number of NOHO-

graphs is (3P-Laslp/2]y 75
Additional results include constructive proofs that NOHO-

graphs are planar and Hamiltonian and applications to related

gossip questions. In the next section, we outline the steps of

the proofs toward these goals.
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2, Summary of Proofs and Results

The original argument used by Baker and Shostak[1] begins

by showing that the smallest graph which could transmit all

information in fewer than 2n-4 edges would have to satisfy

NOHO, They use NOHO to discuss the "first edges" and "last

edges" of the graph and consider the components of the sub-

graph obtained by deleting those edges, They obtain a contra-

diction by showing that not all transmissions can be completed.

In our preliminary details, we parallel this argument, In a

graph satisfying NOHO, the set of edges which correspond to

first calls made by some vertex and the set of edges which

correspond to last calls made by some vertex each forms a com-

plete matching in the graph, As a corollary, we see that NOHC-

graphs must have an even number of vertices.

We consider, for each vertex x, a tree 0(x) of edges used

to pass 1ts information elsewhere and a tree I(x) carrying 1in-

formation to it. Characterizing the edges which appear in the

intersection of the trees, we determine the number c (x) which

—appear 1n neither. c(x) turns out to be two less than the de-

gree of the vertex. Now we consider the graph M(G) obtained

by deleting the first edges and last edges. Considering where

edges of 0O(x) and I(x) can appear 1n 1t and bounding the "use-

less" edges by c(x),we obtain the major result of section 3,

For a NOHO-graph G, M(G) consists of exactly four components

which are all trees. Along the way we exhibit such solutions

with 2n-4 edges, The contradiction obtained by Baker and Shos-
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tak does not arise because these graphs have enough edges,

In section 4 we consider the case where G has no vertex of

degree 2. The trees of M(G) must each contain an edgey and ex-

amination of cases shows they must all consist of single edges,

This requires G to be a 3-regular graph on 8 vertices, and NOHO

prchibits triangles, All such graphs admit an edge-ordering

which transmits all information, so they are NOHO-graphs,

Returning in section 5 to graphs with vertices of degree 2,

we find Cly» which works. If n*4, then M(G) consists of two 1i-
solated vertices and two caterpillars on n/2-1 vertices each,

(A caterpillar 1s a tree with a path hitting every edge,) This

enables us t® label the vertices of the graph {x} where ief1,2},
jef0,1,...,n/2-1}, according to the order in which information

from the isolated vertices xg travels along the caterpillars,
The placement of edges 1n the caterpillars can be described by

binary sequeces, where the ; Th element describes how Kia is
joined to the earlier vertices.

To completely characterize the graph, we must describe how

the first edges and last edges may be added. To satisfy NOHO a

first edge or last edge must always join x: and Xiu with if,
So, the placement of these edges can be described by permuta-

tions, where the 3th element of the permutation 1s k if x, 1s

the first (respectively, last) neighbor of x.
In section 6 we derive necessary conditions for

palrs of these integer sequences to be realizable by NOHO-

soso=. « One condition imposes 1nequalities relating elements
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of the two permutations. Another restricts where 1% occur 1n

the binary sequences in terms of where reversions occur 1n the

first-edge permutation, The reversions of that permutation are

explicitly characterized, (A reversion 1s a maximal con-

tiguous subsequence of a permutation where the first element 1s

the least.) The characterization 1s equivalent to forbidding

subsequences of length three (in a permutation) whose last ele-

ment 1s the largest. All these conditions follow from requir-

ing NOHO, transmission of all information, and the characteri-

zation of the graph in terms of the caterpillars. Other condi-

tions follow from the same basic reasons when the graph 1s re-

flected, which consists of relabeling the vertices of the graph

so the two caterpillars are switched. The sequences for the

reflected graph are easily obtained from the original sequences.

Having derived enough necessary conditions, we can show (sectin 7)

that any pair of sequences satisfying the appropriate ones u-

: niquely determines the remaining pair, Furthermore, the result-

ing quadruple is realizable, so the conditions are sufficient.

Therefore, we need only count realizable pairs (P,S), where P

1s the first-edge permutation and S 1s the sequence determining

the first caterpillar. There are ®7) such permutations whth
r reversions (where p=(n-4)/2), and 2T-1 realizable binary se-

quences for each of those, so a simple application of the bi-

nomial theorem gives 3P-1 realizable quadruples.

In section 8 we consider symmetric NOHO-graphs. When the

operation of reflection yields the same sequences as before,
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the graph is symmetric, Otherwise, two quadruples determine

the same graph. To count the number-of symmetric NOHO-graphs,

we first countthenumber of symmetric realizable first-edge

permutation& A simple fact about the number of entries 1n a

permutation enables us to construct such permutations step by

step, where at each step we have two options and determine two

elements with our choice. Then we count the number of symmetric

NOHO-graphs assoclated with it by counting the number of last-

edge permutations which can be pa&red with it. For the choice

made at each step 1n constructing the first permutation, making

1t one way results 1n two options at a corresponding stage of

the second construction, while making it the other way leaves

only one. Boiling all this down, we have another simple appli-

cation of the binomial theorem to obtain altogether 3Lp/2] Sym=
metric NOHO-graphs.

Section 9 treats concatenation, Concat-

enation creates a NOHO-graph from two smaller ones by identify-

ing two vertices and merging the edge-orderings 1n a natural

way. -Also, one vertex of degree two 1s deleted from each. So,

the resulting graph has four fewer vertices than the union of

the original two graphs. This is one reason to define p=(n=4)/2;

that quantity adds directly under concatenation, With adjust-

ments for the deleted and identified vertices, the "tog" cat-

erpillars, "bottom" caterpillars, first edges, and last edges

of the two small graphs are united to form those respective

sets in the new graph. The orderings are merged to make infor-
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mation flow properly along the caterpillars.

In section 10 we examine . irreducible NOHO-graphs-——those

which cannot be formed by concatenation. We show there is a

unique decomposition of any NOHO-graph as a concatenation of

irreducible ones, This follows because the "least refinement”

(in terms of compositions of integers) of two such decomposi-

tions 1s also a decomposition, and would lead to a decomposi-

tion of one of the original irreducible pieces, Now, using

concatenation and the number of compositions of p into k parts,

an induction shows there are P=1)2Pk realizable quadruples
formed from k irreducible parts, This holds for k=1 also,

since precisely that many remain when the others are subtracted

from the total. When we require symmetry also, the number with

k parts remains an ugly summation, but the proof 1s similar.

In the special case of symmetric irreducible solutions, the

summation can be computed, and the number of these is Lp/2],

In sectionll we show that NOHO-graphs (except Q*) have two

properties that are frequently investigated; they are Hamilton-

. lan and planar. Uniting the first edges and last edges of the

graph forms a Hamiltonian circuit. This is proved by dividing

it 1nto two paths which are shown to meet at thelr endpoints

and be simple, disjoint, and exhaustive. For planarity, we take

those two paths and draw one inside and one outside of the "Ham=-

1ltonian caterpillar" formed by M(G). This accounts for all the

edges. Showing the no crossings exist completes the proof,

Finally, section 12 presents applications to a few related
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gossip questions, We note that every NOHO-graph contains a U-

cycle and that NOHO-graphs other than Cy, and Q* contain dupli-

cated transmissions, A generalization of the gossip problem is

proposed, and some trivial special cases of 1t are solved.

3, Preliminary Results

To facilitate comprehension; we attempt certain rules of

notation. In general, the following apply. Upper case letters

indicate graphs or graph-valued functions, except that P through

T usually denote integer sequences, Where upper case letters

refer to sets of some sort, lower case letters refer to elements,

except for the elements of a sequence, which are simply sub-

scripted. a through e denote integer-valued functions. f,g,h

are vertex-valued functions, 1i,J,k,1 are indices or utility

integers, n,m,p are fixed integers with a particular relation-

ship, q,r,8,t are utility integers, and finally, u through =z

denote vertices of a graph.

We deal with undirected graphs G which have n vertices and

e (G) edges, Let V(G) be the vertex set, E(Q) the edge set.

|S] denotes the cardinality of a set S. The edges of a graph

are unordered pairs chosen, with possible repetition, from the

Cartesian product V(G)xV(G)., (x,y) denotes the edge with x and

y as endpoints. d(x) denotes the degree of vertex x, which 1s

the number of edges to which it belongs. Aregular graph of

degree k, or a k-regular graph, 1s one where each vertex has

degree Kk,
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A path of length k from v, to vk 1s an ordered sequence of

vertices (vy, Vyseee,vy), where (Vive) € E(G) and v. are dis-

tinct, except possibly Vo=Vk+ If vy=v, the path is a cycle.
A graph 1s connected 1f 1t has a path from each vertex to every

other, A tree is a connected graph for which e(G)=n-1l; equiv-

alently, a connected graph with no eycles., 12 spanning tree of

a graph 1s a subgraph which is a tree on all n vertices, A

caterpillar 1s a tree with a path that covers (contains one ver-

tex of) every edge. [Alternatively, it is a tree not containing

Y as a subgraph, where Y 1s obtained from the complete bipar-

tite K, 3 by subdividing each edge with a new vertex.] C(ater-
pillars have also been called "hairy paths."

For a graph G whose edges are linearly ordered, we adopt the

following notation. We put (x,y)< (u,v) if (x,y) is less than

(u,v) in that ordering. Similarly for othernotations of order.

F(G) denotes the set of first edges of G. A first edge is the

~ least edge incident to some vertex. Similarly L(G) denotes the

set of last edges of G, any of which 1s the greatest edge 1inci-

dent to some vertex. Let M(G) be the graph obtained from G by

deleting the edges of F(G) and L(G), and let C(x) be the con-

nected component of M(G) containing x,

For any vertex X, let f(x) be its first neighbor, namely

the vertex adjacent to 1t via the least incident edge. gipi-

larly, h(x) denotes its last neighbor, adjacent via the great-

est incident edge. We use x-»y to replace the words "an inc-

reasing path from x to ¥," meaning a path from x to y where



14

each successive edge ls greater than the prsvioua one,

Henceforth, whenever we refer to a graph, we assume its

edges are assoclated with a linear ordering, If for every x,

there 1s not x-x, we say "no one hears his own information,"

or the graph satisfies NOHO,

REMARK (1). A graph satisfying NOHO has no loops, repeated

edges, or triangles.

Proof: The first two are immediate. If there 1s a triangle,

the edges obey some order, and the vertex at the intersection

of the least and greatest edges violates NOHO,[|

Expanding on this argument, we obtain

IEMMA (2), In a graph satisfying NOHO the first edges and the

last edges each form a disjoint matching.

Proof: Suppose F(G) 1s not a matching, so there exists y=f (x),

z=f(y), with 2z#x. Then (y,z)<(x,y). Since y=f(x), (x,y) is

no greater than the least edge 1n x=-»z, If #hey are equal, re-

placing (x,y) by (z,y) at the beginning of the path creates

2=»2, If they are not equal,, adding (z,y) and (y,x) at the

beginning of x-»z agaln produces z=»z, So, NOHO requires

x=f(y), and F(G) 1s a matching. |

Similarly for L(G). If y=h(x), z=h(y), and z#x, we re-

quire (y,z)»(x,y) and (x,y) no less than the greatest edge in

z=-»X, This time the end of z=x can be adjusted to produce z-z, 0
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COROLLARY (3). Graphs satisfying NOHO exist only .on even

numbers of vertices, :

Proof: Complete matchings exist, J

If x-»y exists for all x#, then we say the graph "solves

the gossip problem," From previous results [1,10,12], we know

such a graph on n vertices has at least 2n-4 edges, 1f 3 graph

on n vertices solves the gossip problem, satisfies NOHO, and

has the fewest edges among all such graphs, we call it a NOHO-

graph,

. LEMMA (4), NOHO-graphs have 2n-4 edges, for nal, n even.

Proof: A NOHO-graph solves the gossipproblem, so requires at

least 2n-4 edges, We exhibit such a graph with that many edges.

Let D, be a graph on vertices {x32 i=1,2; j=0,1, . . .,n/2-1},
1 _2 2 _.1 _ 2 1 .

We write Xp /2=Xo Xn/2=Xpe Let F(D_) = {x30 % p41 21) i=1,2,...,0n/2}
1.2 .

- and L(D_) = {(xi0x) sp 14) i=0,1,...,n/2-1}, The intermediate

edges of D are {5x34 i=1,2; j=l, ...,n/2-2}, ordered by
(x3_p0x5)<(x5, x04). Any linear ordering compatible with this
partial ordering 1s acceptable, Easy inspection shows that D,
solves the gossip problem and satifies NOHO, and it has 2n-4

edges. {

Figure 1 illustrates Dye Whenever we draw a NOHO-graph, first

edges will be dotted and last edges dashed.
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Figure 1, Dips a NOHO-graph

COROLLARY (5). For a NOHO-graph G, M(G) has at least four

components,

Proofs Recall M{(G)=G-(F(G)VL(G)). By(2), e(F(G))=e(L(G))=n/2,

and they share no edges (1). So, (#4) implies e(M(G))=n-4,

With n vertices, this means it must have at least 4 components. |]

A graph solving the gossip problem 1s connected, so the

following conceptsare meaningful. For any vertex x, let 0O(x)

be the "spanning tree of useful edges transmitting information

from x," or simply the out-tree from x. It can be defined u-

niquely and recursively as follows, Begin with x. At each

step add the least edge incident to but not contained in the

tree that 1) does not create a cycle and 11) becomes the great-

est -edge of an increasing path from x along the tree, After

n-1 steps the result 1s 0(x). Thr tree must exist, since x-dy

exists for all y#x. Similarly, I(x) denotes the in-tree to x.

It 1s defined recursively and uniquely like 0O(x) by adding at

each step the greatest non-cyclic edge which 1s the least edge

of an increasing path to x along the tree. Again, I(x) exists,

since y=»x exists for all y#x., Let c(x) be the number of edges

useless to x. Deleting them leaves increasing paths for x to



be]

17

and from every other vertex. We have c¢(x)= e(G)=e(0(x)UI(x) ).

Now we can characterize the edges lying both in 0O(x) and in I(x).

LEMMA (6), If G solves the gossip problem and staisfies NOHO,

then (y,z)e(0(x)aI(x)) if and only if (y,z) 1s incident to x,

Proof: Suppose (y,z)€(0(x)nI(x)). Then (y,2) is the greatest

edge of some increasing path starting from x and the least edge

of some increasing path ending at x, Joining the two paths and

dropping (y,2z) if they connect to it at the same endpoint, we

have x-»x, unless (y,z) was the only edge in both paths, in

which case 1t 1s incident to x.

Conversely, suppose (X,y)#0(x)., Then there exists x-sy

in O(x) disjoint from (x,y). To avoid having x=-+x, (x,y) must

be less than the greatest edge in that path. But then, accord-

ing to the construction for 0O(x), at the time when that edge

was added (x,y) was also available, and we would have chosen it

: instead, Similarly, we cannot have (x,y)¢I(x) unless we have

X-—=pX, 1

COROLLARY (7). In a NOHO-graph, c(x)=d(x)-2 for any vertex x,

Proof: c(x)=2n-4-e(0(x)vI(x)) =2n-4-(n-1)-(n-1)+e(0(x)n1(x))

= d(x)-2, since by (6) e(0(x)n(I(x))=d(x).{

Vertices in a NOHO-graph always have degree at least 2, so

c(x)=d(x)=2 makes sense,

The next lemma investigates how the edges of 0(x) and I(x)
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are distributed. Recall that C(x) 1s the component of M(G)

containing x. We claim that edges of M(G) not in C(x) or C(f(x))

are useless for carrying information out of x, and those not in

C(x) or C(h(x)) are useless for bringing it in. In other words,

LEMMA (8). If G solves the gossip problem and satisfies NOHO,

then for any vertex x, (M(G)n0(x)) <€(C(x)vC(f(x)) and

(M(G)nI(x)) e(C(x)uC(h(x)), so

e(M(G)) - e(C(x)uC(f(x))vC(h(x)))= c(x).

Proof: First consider O(x), No edge of M(G) not im C(x) or

C(f(x)) can belong to an increasing path beginning at x. The

path would have to enter that component via a first edge or a

last edge. No first edge othe than (x,f(x)) exists on any in-

creasing path fromX, and any path which uses a last edge cannot

continue increasing thereafter. Applying similar reasoning to

I(x), no edge of M(G) not in C(x) or C(h(x)) can belong to an

increasing path leading to x. Therefore, the number of edges

of M(G) not in C(x)vC(f(x))uUC(h(x)), all of which are useless

to x, is at most c(x). [|

The "excess edges" counted in (8) can be fewer than c(x)

1f one of the components of M(G) 1s not a tree or 1f some edge

in F(G) or L(G) 1s useless to x. As we see next, the former

cannot occur in a NOHO=graph,

LEMMA (9). For a NOHO-graph G, M(G) consists of exactly four

components, all of which are trees.
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Proof: By (6), M(G) has at least four components. In showing

it has at most four and they are trees, we consider two cases,

Case I, Every vertex of G has degree at least 3, This

means M(G) has no isolated vertices, and each component has at

least one edge. G must have at least 8 vertices eof degree ex-

actly 3» else the sum of all degrees will exceed 4n-8, which is

twice the number of edges, By (7),a vertex x of degree 3 has

c(x)=l., By (8), M(G) has at most one edge not in C(x)VC(f(x))

uC(h(x)), so there can be at most one other component. If any

component were not a tree it would have at least as many edges

as vertices. Then the remaining three components would have

together at least four more vertices than edges. As before such

a situation requires at least four components,

Case II. G has some vertex x of degree 2. C(x) 1s an 1so-

lated vertex in M(G). By (7), c¢(x)=0., Since M(G)n0(x) and

M(G)nI(x) can have no cycles, (8) then implies C(f(x)) and

C(h(x)) are trees and all other components are isolated vertices

Two trees have two more vertices than edges. Since M(G) has n-4

. edges, the two components have n-2 vertices, leaving x and one

other isolated vertex for a total of four components, [|

REMARK (10). For any x in a NOHO-graph G, M(G) contains at

least n/2-2 edges of 0(x) and of I(x).

Proof: At most one edge of O(x) lies in F(G) and at most n/2

in L(G), while I(x) has at most one edge in L(G) and n/2 in F(G), {
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The remaining lemma in this section becomes useful when we show

later that for a NOHO-graph every tree 1n M(G) 1s of the type

in 1ts hypothesis, This lemma applies to all graphs, because

1f G does not solve the gossip problem we can still define O(x)

and I(x) with the same construction, and simply grow the trees

as far as possible. They may not span.

LEMMA (11). A tree lyimin both O(x) and I(y) for some x and

y 1s a caterpillar with an increasing path touching every edge.

Proof: Let (Vgrvy) be the least edge 1n the tree, and let

(Var Vis eessVy)=V be the longest increasing path in the tree.

Suppose the assertion 1s false, and the tree contalns an edge

(w,2) with neither w nor z in v: + Since the tree is connect-

ed, there must be some path that joins V to this edge, say

U=(viyuysUpsenss Up, wyz). Fach edge is in 0(x) and must lie

on an increasing path from x. Consider (Vsoup). If the in-

creasing path containing it does not include (Vi1e Vs) there
would be two increasing paths to vj, impossible in 0(x). If

it does, then (Vii10Vy) (vu J,
Applying this argument to each successive edge of U, we

find that (Vor VyseeesVislyrensstp,W,2) is an increasing path.
Similarly, each edge is in I(y), and must lie on an increasing

path to y. V 1s part of such a path, Since I(y) 1s a tree, an

argument like that above yields (uy v..) (Vv. pa) . Applying
the argument to each successive edge of U, we find that

(2,WoU yee ullysVsyoee, VK) is also an increasing path. This can
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happen only if (w,z) is the only edge in U, So, every edge

of the tree 1s incident to a single increasing path, If it

1s not on the path, 1t occurs between the neighboring edges

of the path in the edge ordering, |]

4, @*, the "Generalized Cube"

The remainder of the characterization of NOHO-graphs var-

les greatly depending on whether the graph has a vertex of de-

gree 2. In this section we consider the case where 1t does not.

Let Q* be the set of 8-vertex j-regular graphs with no tri-

angles, Q* contains the cube. We have

THEOREM (12). A NOHO-graph with no vertex of degree two may be

any graph in Q%, but no other.

Proof: By (9), M(G) consists of four non-trivial trees. Thus

nz8, If n=8, then M(G) consits of four single edges. So G ad-

mits a factorization 1nto disjoint matchings F(G), M(G), and

L(G), and by (1) it must lie in Q¥, We claim any graph in Q¥

can be suitably edge-ordered.

Suppose GeQ*, wewilll assign first neigbors, last neigh-

bors, and "middle neighbors" (denoted g(x)) to satisfy all the

required conditions, Consider the passage of information out

from x. It can reach f(x),g(x),h(x),g(f(x)),h(f(x)),h(g(x)),

and h(g(f(x))). To reach all vertices, these must all be dis-

tinct, (This implies there 1s no duplication of transmission

in these solutions. See (40).) So, we find a spanning tree with
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two neighboring vertices of' degree 3, each of whose other nelgh-

bors have degrees 2 and 1, For a graph in Q¥%, this 1s always

possible, since it has no triangles. Place the central edge in

F(G), the end edges 1n L(G), and the remainder in M(G). Infor-

mation can come to x from h(x), g(x), f(x), g(h(x)), f(h(x)),

f(g(x)), and f(g(h(x))) along a similar tree. Five edges re-

main unassigned in G. This tree will use four of them, adding

three edges to F(G) and one to M(G), Again, for a graph in Q%

it 1s possible to- find the additional tree, The remaining edge

1s assigned to M(G),

In choosing and labeling this second tree we must take

care to preserve the matching property of F, .L, and M and to

avold completing a circuit with two edges of M and one each of

F and L, Such a circuit would result in duplicated transmission

between two other vertices. Having labeled these trees to sat-

1sfy vertex x and these latter conditions, detailed checking

shows that all other information 1s also transmitted and NOHO

1s satisfed.

~ Suppose n>»8 andG is a NOHO-graph. We will produce a con-

tradiction. Let x be an end-vertex of one of the trees in M(G),

d(x)=3, so ec(x)=1 (7). (8) shows that at least one of the re-

malning components 1s entirely useless to x and must be a single

edge, Applying the same argument to an endpoint of that edge,

we obtain a second isolated edge in M(G),

Let (x35) and (x5,x5) be such single edges. By (10),

c(£(x})) contains increasing paths from £(x3) to at least n/2-3
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other vertices, and C((x3)) contains increasing paths to h(x3))
from at least n/2-3 other vertices, Since c(x})=1, 20x) and
h(x) must lie 1n different components, czch of which contains
half the remaining vertices. [hen n»>8 these components con-

tain more than two vertices, and all their edges must be use-

ful to x In particular, C(£(x3))e0(x}) and C(h(x3))e1(x}).
Suppose 2x3) and 2x}, lie in the same component of M(G).

That component 1s a tree of 1ncreasing paths out of each of

those vertices, so they must be joined by the least edge in

that component. Therefore, it is not possible for three such

vertices to lie in the same component, Similarly, no three of

(n(x) lie in the same component. Each of the "large" compo-
nents contains two each from {£(x3)) and {n(x}, so by (11)
they must both be caterpillars,

Let (v,w) be the least edge in one of the caterpillars,

SO vet(xy), wef (x3). Let y=n(x}), 2=h(x},). y and z lie in
. the other caterpillar, For v and w both to be "roots" of the

caterpillar, one of them must be an endpoint, say v. pow

d(v)=3, c(v)=1, £(v)=x; lies in a single-edge component; tpg
other such component must be the edge useless to v, Therefore,
the other caterpillar must be a tree of increasing paths into

h(v). -However,, it already does that for v and z, also. vy, z,

and h(v) are distinct, since their last neighbors are distinct,

but we saw 1n the last paragraph that three distinct vertices

could not all play this role, This gives us the final contra-

diction that eliminates the possibility n»8.
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Figure 2 gives several examples of NOHO-graphs in Q%, in-

cluding the cube. The usual conventions are observed for draw-

ing edges in F, M, and L.

Km a Senlniiaiieh ~~=

- Lo JY MARS Gan ee GLA) ey A 3>

Figure 2, Some graphs in Q*

5. NOHO-graphs as Quadruples of Sequences

We now embark on a journey to narrow down and finally

characterize NOHO-graphs having a vertex of degree 2, Hence-

forth when we referto NOHO-graphs we generally ignore Q¥. We

already know by (9) that the "middle edges" of such a graph

form four componenents, at least two of which are isolated ver-

tices. Proceeding from there, this section describes the edges

of a NOHO-graph with four integer sequences, The first edges

and last edges are described by permutations, and the middle edges

by two binary sequences.

We begin by taking a closer look at the components of M(G).

LEMMA (13), If a NOHO-graph with a vertex of degree two has

adjacent vertices of degree two, then it is a H4-cycle, If

n>4, then it has exactly two non-adjacent vertices of degree

two, and the remaining components of M(G) are caterpillars

on n/2-1 vertices,



25

Proof: Suppose G has adjacent vertices {x,y} of degree 2,

(x,y) may lie in F(G) or in L(G). Suppose (x,y)eF(G) and con-

sider 0(x). O(x) contains (x,h(x)), (x,y), and (y,h(y)), but

after hitting these edges in L(G) there can be no further in-

creasing paths in 0(x). h(x)#n(y) by (1) or (2), so G con-

tains exactly 4 vertices and must have an edge in F(G) joining

h(x) and h(y). If (x,y)eL(G), then considering I(x) leads to

the same conclusion.

Now suppose n*»4, 'By (9) there are two vertices of degree

two, and the remaining two components may be two trees or a

tree and isolated vertex, Suppose the latter, so we have

{xy,%50%5} isolated in M(G). By the above they must be non-
adjacent in G. Consider the increasing paths by which infor-

mation 1s exchanged among them, Let Zs be the last vertex be-

fore X; =X and X;=dXy permanently diverge edgewlse, That is,

we have increasing paths (Ris eensdinZinty sone, xy) and
: (XgveeesYioZialypreeeiXy) where Ug HU 24 1s different from

Xs since all increasing paths from Xs to non-adjacent vertices

must pass through f(x), So, the edge (y;02;)€0(x;) is well-

defined. Simmilarly, let vi be the first vertex where X ~PX;

and x, -»x. share an edge. We have increasing paths S I EITY
Vi WsaeeesXy) and (Xpreoen bys VeaWesuoe, xs). Again, vs 1s dif-

ferent from X; since all paths from non-adjacent vertices pass

through h(Xi) when d(x; )=2, SO the edge (viow; )eI(x;) is well-
defined,

In fact, the paths fromx, to X; are all unique, so that
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z1 and vs lie on a single increasing path from x; to Vy sup-
pose there are two increasing paths from vertex r to vertex s,

where d(r)=2, Since O(r) is a tree containing the edges inci-

dent to r (6), some other edge in the paths is useless or lies

in I(r). The former is forbidden by (7) since c(x)=0, while

the latter creates r-sr, The same conclusion follows from

considering I(s) if d(s)=2,

Now, consider the ordering of zi and y- On X;~#Xy. We

have three cases:' Case I, vs strictly precedes Zz; On the

path, ie, (Viows)s(ysazg), Then for the remaining vertex Vy

there exists v,=»v, via (Fyn vaesBysaVineeanZialUspaenasXy).

Case II. z; strictly precedes y.on the path, ie. (2540 5)

S(ty 50v5). If (25.0; )€I(x), then (23005 5) lies on X;=X
and z; was not the furthest shared vertex from x;, or I(x) is

not a tree. If (z5,u; 5)€0(x,), then (235 0u; 5) lies on XX

and vs was not the first shared vertex on the way to Xi or

0(x,) is not a tree. But (235 0us 5) Cannot be useless to xk
since c(x)=0,

Case III. Neither of these possibilities can occur for

any pair (i,j), so we must have,v =L=V,S2,=V3=z24, To avoid

Xs =»X1 we must have (ve yw: )<lys,25) for all i, but to maintain

the other paths we need (ygo23)e(vs,ws) for i#j. But (vsyws)

<(y5023)<(vyw)<(y hz) (vy yw; ) is impossible.
So, there must be exactly two isolated vertices Xq and X,

in M(G), and the two remaining components are non-trivial trees.

f(x;) and h(x; ) appear in different components, since c¢(x;)=0,
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By (10) each of these components contains exactly n/2-2 or half

of the edges in M(G), and C(f(x;))e0(x;), C(h(x;))eI(x,). In

order to have X; Xs fx; ) and h(x;) must appear in the same
component, Now we can apply (11) and conclude that the two

non-trivial components of M(G) are caterpillars on n/2-1 ver-

tices each. {]

To facilitate the subsequent discussion, we 1ntroduce some

additional notation, Henceforth fix m=n/2-1. Label the ver-

tices of G x i=1,2; j=0,1,...,m}. Let x: be the vertices
of degree 2, and xT=f(x3). Let cl be the caterpillars of MN(G).

The vertices of ct get the labels x}, where j=1,2,.,..,m and x:
is the jth to receive the information originating from xg We
may refer to x3 as Xr

Since ct 1s a caterpillar of increasing paths from x: to
xt, the following properties are obvious.

REMARK (14), Let ct be defined as above. Then

i) ct contains xix, whenever J<k,
11) x: neighbors exactly one x; with Jj<k,
111) If x; neighbors any x. with r>k, it neighbors every

x} with k<jsr,
1v) XX within ol with j<k requires (xc, x3) €E(G).

Suppose we have a caterpillar C with a fixed initial and

final vertex, and an ordering of edges to make 1t a tree of

increasing paths both out of the former and into the latter.
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We claim C can be uniquely described by a forward sequence R(C)

or a backward sequence R'(C) of zeroes and ones. The length of

these sequences 1s one less than the number of edges in C, We

will not use the backward sequence, We merely note it exists,

arises from considering the edges in reverse order, and refers

to a different ordering of the vertices,

To ebtain R(C), proceed as follows, Begin with the least

edge and a null sequence for R(C), Call the initial vertex the

"active" vertex (x in the caterpillar Ci) and its neighbor the
"current" vertex, When the next smallest edge is added to the

caterpillar, adding also a vertex, the new vertex becomes the

current vertex. The label "active" stays where it is if the

new edge 1s incident to it. If the new edge is incident to the

former current vertex, then that vertex becomes the active ver-

tex. In the former case, append a 0 to R(C) as generated so

far, In the latter case append a 1.

As each edge 1s added to the tree 1n order, 1t can only be

incident to the active vertex or the current vertex, This fol-

lows-because the caterpillar must remain a tree of increasing

paths toward the final vertex, At any stage the tree is one of

increasing paths toward both the active and current vertices.

all 2F binary sequences of length r describe caterpillars

in this way and correspond one-to-one with caterpilars on r+l

edges and r+2 vertices, where the initial vertex and order of

edges 1s specified, The initial vertex must be specified to

distinguish between sequences that differ only 1n the first
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place.

If we add the edge (h(x3), x2) to cl, we still have a cat-
erpillar, since this 1s a last edge. It has paths from x: and
to x]. This is the caterpillar of interest. Note that n(x)
need not be x, Let S(G) be the assoclated sequence
R(CIU(h(x5), x5), and let T(G) be the associated sequence
R(C2U(h(x3),x3)), but written backwards. When we discuss ir-
reduciZbility and concatenation in section 8 it will become

clear why T{(G) is written backwards,

From S and T we can reconstruct M(G) and know the first

and last neighbors of x2, To complete the characterization of
G we need to know which pairs of sequences (S,T) can be assoc-

lated with a NOHO-graph and how the edges of F(G) and L(G) can

be placed to complete the graph,

No vertex 1n on can have a first or last neighbor in ou

By (14.1), having such an edge in F(G) or L(G) would violate

| NOHC, So, the edges in F(G) and L(G) can be described by per-

mutations P(G) and Q(G), where P:=] means £(xp)=x5, and Qs =]
means h(x) =x’. (Whenever R 1s a sequence of integers, we de-
note its i'h element by Rs.)

S and T have m-1 elements; P and Q as described have m

elements. P is a permutation of {2,3,...,m*l} which begins

with m+l, since xp=xd =f(x1). Q is a permutation of {0,1,...,m}
with some element deleted. The deleted element 1s Jj, where

h(xg)=x3. Note that 0 1s never deleted. We will see that 0
appears 1n Q at the same position as 2 in P, so that P and Q
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could be compressed to m-1 pieces of information. However,

bookkeeping and proofs will be easier 1f we leave them as 1s,

To align the useful information properly, we say that the ele-

ments of S and T as generated above appear 1n positions 2

through m. Ss indicates what happens when ct reaches Xs 41»
and Ts indicates what happens when ok grows to reach Xo 143°

We can summarize the construction of these sequences and

the properties required of them in the last few pages by the

following remark;

REMARK (15). The quadruple (P,Q,S,T) defined above completely

specifies a graph. Such a graph has the properties ascribed

to NOHO-graphs in (2) through (14).

If (p,Q,S,T) =(P(G),Q(G),s(G),T(G)) for some NOHO-graph G,

we call the quadruple realizable, We have not yet determined

what is required of (P,Q,S,T) to transmit all information and

to satisfy NOHO, For example, although any S or T except the

zero sequence can appear 1n realizable quadruples, 1t 1s not

true that every permutation P or Q defined above appears in a

realizable quadruple, nor is it true that every pair (8,T) is

realizable. In the next section we determine necessary

conditions for realizability.
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6, Necessary Conditions for Realizability

We will derive a number of necessary conditions for pairs

from (P,Q,S,T) to be realizable.

LEMMA (16). For a NOHO-graph G, the pair (P(G),Q(G)) satisfies

i) P.>Q. for all i=1,2,...,m,

ii) If P;=Qs, then i>].

111) P, 1s the element missing from Q, and ;=0 iff Ps=2.

Equivalently, £(x3)=n(x3).
Proof: Consider (1). P,=m+l, which 1s greater than any e:e-

ment of OQ. For some k from 1 to m, Q, =0, which 1s less than

any element of P. For i#l, i#k, £(x7) and h(x) lie in C°.
If P.<Q,, (14,1) guarantees x5 —x in ce, Now we can add
(x3 ,%5 ) to the beginning and : “x2 x) to the end to ob-
taln ' xt =x. :

For (11), we argue similarly, If P;=k=Q, with i<j, then

we can add (x, x1) at the beginning of Ax, and (331%) at
1ts end to obtain XX,

Finally, consider P,., By (ii), if it appears in Q it must

be Q;. Then £(x3)=h(x1). The caterpillar oh always contains
the edge (x3, x3), so we have a triangle. Similarly, 1f P, =2
but Q, 70, (1) says Q=1. Now £(x5)=h(x}), and again we have
a triangle. {|

If P or. Q 1s not strictly decreasing, certain edges must

appear 1n the graph,



—

32

LEMMA (17). For a NOlO-graph G, P(G) and Q(G) satisfy

i) If Pi<P. with i<j, then E(G) contains gx), 2 xg 0}.
11) If Q; <Q with i<j, then E(G) contains at least one of

{(xg, x3), (x2 xg 0}.
01 J

Proof: Consider any increasing palr 1n P. Suppose P.=r and

Ps=s, where i<j and r<s, If (xd, x1) 1s not an edge, then (14.iv)

implies information from 3 could reach xi only via the other
caterpillar. SO, We use (x3,x5)€r(a), continue to x in ok
where tes or (x50 x5) is an edge, and finish with (£r xt) ens).
t>r would imply U>F., violating (16.i)., therefore (x, x5)
‘must be an edge, with t<r<s, By (14,iii), (x2, x2) is also an
edge, but this creates a triangle with X;

Now suppose (x5, x2) 1s not an edge, By a similar chain of
reasoning that switches the roles of cl and c?, completing

xox will contradict (16.,ii) or (1).

Finally, suppose Q;<Q, with i<j, but (x3 x) is not an
edge. We use (l4,iv) again to require Xp —%7% in c* for
xox-, By (16.,i) Q.<Q.<P., so (14.,iv) requires (x2 , x% ) as
yo 17557 Pi'Qy

an edge to complete that path, Now (14,iii) says

(xg +xg ) must also be an edge, [|
1 J

We define a reversion 1n a permutation to be a maximal

consecutive subsequence of the per-mutation where the first

element 1s the least. The reversions of a permutation parti-

tion 1t 1nto segments, In a NOHO-graph, the reversions of P(G)
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have a very special form,

LEMMA (18), If G is a NOHO-graph, then P(G) has the following

form,

i) Every reversion of P is a single element or has the

form (r,s,s~1,...,r+l) with s-r+l elements,

11) Equivalently, P has no subsequence of length 3 whose

last element 1s largest.

Proof: First we show equivalence, By definition, the first

elements of reversions form a decreasing subsequence, else the

reversions would not be maximal. If reversions are as in (i),

any 1lncreasing subsequence must lie entirely within a single

reversion, The form described in (i) prohibit6é two increasing

pairs with the same second element.

Conversely, assume (11), Suppose a reversion has more

than one element and we drop the first element r, This must

] leave a decreasing subsequence beginning with s, since any 1n-

creasing palr would violate (ii) with r. Suppose there is some

elementt, r<t<es, that does not appear in this reversion. Its

appearance before r violates (11) with r and s, and its ap-

pearance 1n a later reversion violates (11) with r and the

first element of that reversion.

That (11) holds for realizable P follows immediately from

(17.i), (14,iii), and (1). They provide a contradiction if

some such subsequence 1s assumed to exist.
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REMARK (19), A permutation P satisfying (18) is uniquely de-

termined by choosing a subset of Indices from {3,0.0,m}

at which reversions will begin in P, 1n addition to the

reversions beginning at Py and P,., Hence, there are p12
such permutations.

Note the equivalence of (18.1) and (18.ii) is independ-

ent of realizability, We will see that the necessary condi-

tions (16) and (18) together are sufficient. Also, it is easy

to see that for any P satisfying (18) there is at least one Q

satisfying (16),

Next, we derive a condition for the pair (P,S).

LEMMA (20). If G is a NOHO-graph, then P(G) and S(G) satisfy

the following,

i) Suppose Ps begins a reversion in P(G), P, begins the

) next reversion, and k2j+2, Then S;=1, and 1f k>j+2

then S410 =k 270,

ii) If P,=2, beginning the last reversion in P(G), then

S.=1 and any succeeding elements of S(G) are 0,

Proofyw If Pj begins a reversion of length at least two, every

succeeding element of the reversion forms an increasing pair

with P,. By (17.4), {(xj, x1) i=j+l,...,k-1}€E(G). Si indi-
cates what happens when oh grows to meet Xs 41 Considering
the edges we have just shown to exist, X41 1s joined to the
then-current vertex, and succeeding xX; are jolned to the active
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vertex, So S,=1 and succeeding S, are 0, if k>j+2, Sk 1
tells what happens when the vertex beginning the next rever-

sion 1s added to the tree, so 1t 1s unrestricted,

Now consider the last reversion 1n P(G), which begins

with P,=2, By (16 111) Q =0 and (x, x: is an edge, Apply-
ing (1%4,iii) to the caterpillar ctuf(xt,x2)}, we deduce that

1

{(x},x7) i=t+l,...,m+l} are all edges, since t$m., As above
we conclude S.=1 and any succeeding Si are 0. []

REMARK (21), For each P satisfying (18), the number of se-

quences S satisfying (20) 1s 2r-1, where r 1s the number

of reversions after Ps

Proof: An element of S 1s unrestricted if and only if 1ts po-

sition (Sy in (20)) corresponds to the last element of a re-

version in P other than the last reversion. |

Define (P'(G),Q'(G),S'(G),T7'(G)) as follows. Set P%=]

if Pi=i, Extend Q so that Q3=k where xZ=h(x3), then set ds =
if Q=1. Set SL =T po ss and set SI 3+ We call (A, @,%,T)
the reflection of (P,Q,S,T)., A little "reflection" shows

REMARK (22). The reflection of a realigable quadruple is also

realizable, in fact by the same graph.

Proof: Considering (P,@Q,S,T) instead of (P,Q,S,T) is equiva-

lent to interchanging the roles of ol and ok and looks at the

graph upside down, {]
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If G is a NOHO-graph, we define the reverse graph K(G) as

the graph with the same vertices and edges as G, but with

(x,y) (u,v) in K(G) if and only if (x,y) (u,v) in G, All in-

creasing paths of G are increasing 1n the opposite direction

in K(G) and vice versa, so X(G) 1s clearly a NOHO-graph, Note

that the vertices need to be relabeled with C! and c to o

tain the defining sequences for K(G). The "hairs" of the cat-

erplllar swing around as the wind blows from the other direc-

tion. ,

By reflecting and reversing, we obtain additional neces-

sary conditions.

REMARK (23), If G is a NOHO-graph, then

i) (P(G),T(G)) issuch that (P'(G),S*'(G)) satisfies (20),0m.

ii) (Q(G),S(G)) is such that (P(X(G)),S(K(G)) satisfies (20),08).

iii) (Q(G),T(G)) is such that (P'X(G)),S'®(G)) satisfies (20),08k

(16), (20), and (23) are necessary conditions for any pair

from {P,Q,S,T} except (S,T) to be realizable. There are appro-

priate conditions for (S,T), but we have no simple expression

for them, We will soon see that when paired with (18) each of

these conditions 1s sufficient,

7. The Number of Realizable Quadruples

Besides showing the sufficiency of the previous conditions,

we will show that any pair from {r,q,s,7} satisfying them
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1s realized by a_unique NOHO-graph. To prove this, we need a

lemma that will enable us to generate one sequence in {P(G),

Q(G),S(G)} when we know the other two, By reflection we can

apply it to {P, 3,5} to obtain similar results for {P,Q,T}.

| S(G) 1s a binary sequence indexed from 2 through m, On

| its index set we can define a function b that points to the

previous 1 1n the sequence. Let b(i) be the greatest positive

integer such that jci and 5:1, 1f such exists. If there is
no such integer, set b(i)=l., Then we have

LEMMA (24). For a NOHO-graph G, P(G), Q(G), and S(G) are re-

lated by

i) S:=1 if and only if Pie1™Q(1)e

ii) S8,=0 if and only if Pi i17Qs

Proofs In one direction the lemma 1s trivial, Recall the

construction of S from active and current vertices. S;=0 if

| : and only if (X51) Xia) is an edge, and S;=1 if and only if
(X31, X7T 4p) 1s an edge, So, 1f Pi 41=Q; then choosing S.=1 cre-
ates a triangle, while if P; 41=Qb (1) then S;=0 creates a tri-
angle,

We prove the other direction by induction. For the basis

step, b(2)=1l, and by (16.ii,iii) we always have Py=Q, or P=.
If S,=0, then choosing P3=Q) creates a triangle, while if

S,=1 then P3=Q, creates a triangle.
Now we prove the lemma for k, assuming it holds for all

2si<k, By (16.ii,iii) we know that Py =9;=r for some j with
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j$k. Suppose j=k. Then if 5, =0 we are finished, while if

5, =1 we have a triangle, Suppose j-b(k), Now 1f 5, =1 we are

finished, and if 5,=0 we have a triangle, So, 1f the lemma

fails we may assume J<k, Jj#b(k). Tf S5=0, then by induction

we have P: 4159; =r, which contradicts P being a permuation,

SO assume 5 5=1, in which case jgb(k) by the definition of b,
We assumed Jj#b(k), so let t be the least integer greater than

J such that S.=1. J=b(t), and t<k since Sp(k)=1s sO we have

jetsb(k)<k. Applying induction, Pi+1 = (1) QT which again
contradicts P being a permutation, [

Now we proceed to the main results. Henceforth, fix

p=(n-4)/2=m=-1,

THEOREM (25), Any pair from (P,Q,S,T) which satisfies the cor-

responding necessary conditions for realizibility in (16),

. (18), (20), (23) is realized by a unique NOHO-graph.

Proof: First we show how to uniquely generate the remaining

sequences from any pair satisfying the necessary conditions,

Then we show the resulting quadruple 1s realizable.

Suppose the two known sequences lie in {P,Q,S}. We gen-

erate S from (P,Q) satisfying (16) ,(18) so as to satisfy (24).

Initialize k=l, Then for i=2,3,...,m 1n order, 1f Pi =

set S;=1 and reset k=i, If Pip set S;=0 and leave k un-

changed, This is well-defined for (P,Q) satisfying (16). P,

disappearing leaves ore index "free." As we proceed in P, the
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only previous elements of Q which have not been encountered in

P are @Q and Qj.

We claim the resulting (P,S) satisfies (20). It is easy

to show the requirement for when Si must be 1 holds. Other-

wise, we have Pi 4159 when P1 starts a reversion and 1s less

than Ps violating (16.1). For the other requirement, con-

sider the first time Si 1s set to 1 by P11 =Q with i+l1 in the
midst of a reversion, k is the previous 1, so it is the start-

ing position-of the reversion, Thus P:417P» and we violate
(16,i) again,

Next we generate Q from (P,S) satisfying (18),(20) so as

to satisfy (24). Set Q;=0 if P.=2, If k is the least integer

such that S;=1, set Q,=P,1+ (If S has no ones, xo=h(£(x3)).
With (16,1ii), this contradicts n»4,) For all other i, if

S,=0 set Q;=P;,;, while if S.=1 set Q(1)=Fi47 Again, this
1s well-defined, The Qi skipped by the first option are those

: with s;=1, sO that subsequence 1s just shifted within itself

from P to Q. P, disappearing makes room for the shift, and

0 under P,=2 fills the hole left at the end, since that's where

the last 1 occurs in S.

We claim the resulting (P,Q) satisfies (16). (16,ii,iii)

are obvious by construction, so assume some Pisa, The algo-
rithm set Q,=P; for some i>»j, soby (18) LF must begin a re-

version containing P.. By (20) S;=1, 50 Q; is set the next
time a 1 is encountered in S, 1l.e., at Si ; with i-1>j., (20)

then implies P1 must be in a later reversion than Ps
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For the remalning cases, we give less detail. To gener-

ate P from (Q,S), set P,=m+l, and fet P, be the element in

{1,...,m} missing from Q. For all other i, if S. _,=0 set

P.=Q; 1» while 1f S; 171 set Pi=Qp (1-1) This 1s well-defined
for (Q,8) satisfying (23), since the only elements of Q not

placed in P at the ith stage are 0i_,and Ap (1-1) The re-—
sulting (P,Q) clearly satisfies (16.,ii,ii)) and can be shown

to satisfy (16,1) and (18). By the construction, they also

satisfy (24).

To generate T from (P,Q,S), form (P',Q') and use the first

algorithm above to get S'., Then T=(S')",

To generate the unknown sequences knowing T and one of

{p,q}, reflect them and apply the above algorithms for S and

one of {P,Q}. This generates T' and the unknown element of

{r',q'}, and reflecting again gives the desired quadruple.

This leaves the case of generating (P,Q) knowing (S,T).

Set P,=m+l, Ps=] where T m+2- 3 1s the first 1 in T, and Pi=2
where Ss 1s the last 1 in S. These requirements follow from

(16,111), since those elements of S and T determine h(x}.
The remaining elements of P and Q can be uniquely generated

by refusing to violate (17), (24), or (1). We omit the details

of this algorithm.

By (24), etec., the unknown sequences can only be as gen-

erated above. We have shown uniqueness, now we show suffi-

ciency. No matter what pair we started out with, we have shown

that for the generated quadruple all the necessary conditions
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are satisfied, We must show that increasing paths exist be-

tween all ordered pairs of vertices and NOHO 1s satisfied.

As noted in (14,1), xix, with j€k exists, Next we show
KP exists, If P;=s with ssk or Q.=k with raj, we are done
by (14,1) again. Suppose both of these possibilities fail and

P.=k, If t<j, the (PyoPs) form an increasing subsequence of P,
The condition (20) on (P,S) was determined so that G would

satisfy (17.i). So, (x2, x2) 1s an edge of G, and (8%,x2,%0)
1s the desired path. Suppose instead t»j, and apply (24).

Since r<j<t, we have t#r+l but P,=Q., so we must have r=b(t-1)

and Sy_1=1. So, (xl, x3 1) €E(G), By (l&iii), (x0 %3) is
also an edge, making (X50, Xp) the desired path. ]

We must also have XX, even 1f rcj, Let s=P, and k=Q_,
If (x5, x3) or (x5,x5) is an edge or if ssk, then we are done,
In considering XP above, we showed that if r<j and s»k we

1 1 2D

must have (xy xX.) or (xg ,X,) as an edge.

That paths xox, and Xx, also exist follows from
reflection and the preceding two paragraphs,

As constructed, G trivially satisfies NOHO, v-v cannot

occur using the edges 1n a single tree, so 1t must cross to

f(v) and return from h(v), Suppose £(v)=x and h(v)=xi, Com-
pleting the path requires (x55) to be an edge or 7Jsk, The
former never occurs because we've constructed a graph with no

triangles, and the latter never occurs because (P,Q) satisfies

(16). So, the graph determined by the generated quadruple is

a NOHC-graph. []
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THEOREM (26). The number of realizable quadruples 1s 3P-1

where p=(n-4)/2, n even, ngb, |

Proof: By (25), pairs (P,S) determine the rest of the quad-

ruple, so we count those. As noted in (21), a realizable P

has 2°°1 realizable S associated with it satisfying (20),

where r is the number of reversions atter Pj. By (19), there

are (M2) such realizable P. Using the binomial theorem, the
' ' n = & r-1 -]

total number of realizable quadruples 1s ¢ oe = 3p | \

Figure 3 exhibits the quadruples and associated graphs

for n=6 and n=8,

J, “ > ot \ oY \

EER . Wood NS
“a a \ Ka hi oo \ Wo \ or

(32,10,1,1) (432,210,11, 1)

2,120, 01,1

pai (423, 30 1,110,010)

NG =. Sa we . ra

Figure 3. Small NOHO-graphs

G has 180" rotational symmetry when drawn as in Figure 3

if and only if (P',Q',8',7')=(P,Q,S,T), This occurs for all

the graphs in Figure 3, If (P',Q%,3',T7")#(P,Q,S,T), then G is

counted twice when the quadruples are enumerated. In the next

section we enumerate the symmetric solutions, so we will know

the extent to which NOHO-graphs are overcounted here,
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8. Symmetric NOHO-graphs

In this section we count the symmetric NOHO-graphs., We

define a symmetric quadruple as a realizable quadruple for

which (pP',Q',s',7')=(P,Q,S,T)., A symmetric NOHO-graph is one

where the vertex permutation interchanging Xi and x; for all k
leaves the graph unchanged, As noted earlier,

REMARK (27). G 1s a symmetric NOHO-graph 1f and only 1f

(P(G),Q(G),S(G),T(G)) is a symmetric quadruple,

The following remark applies to all P(G), and 1s useful

in determining the number of symmetric ones.

REMARK (28). In a realizable P, P.=] implies i+je m+3,

Proof: By (18,i), the number of positions after i in P must

be at least as big as one less than the number of elements less

than P., so m-i2 j-3, 1

LEMMA (29), The number of symmetric realizable P is oL(m-1)/2]

Proof: P symmetric requires F.=l if P. =], so P corresponds to
a matching of the positions (2,.,..,m). Some positions maybe

matched to themselves, 1f Pb, =1, (In fact, this can only happen

twice. ) Note we always have P;=m+l and P_..=l. We construct

P match by match from m down to [(m+3)/2], matching P, on step
m-J.

At each step there are two choices. By (18.1),P _e{2,3}
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and at step J Pre j€42030 000 im=j43), However, J] of these have
already been matched with higher positions on previous steps,

This leaves two choice for Pres one of which is m=j+3, since

1t was not available before, Upon reaching Pr (m+3)/27° the
choices are [(m+3)/2]| and one lower value. If m is odd, we

choose between matching them to each other or to themselves.

If m 1s even, set Pr (n+3)/2] equal to one of them and match
the remaining one to itself, Now we have made m=[ (m+3)/27+1

= | (m-1)/2] choices and completed the matching, Every P so

coustructed satisfies (18), and these are all the symmetric P

which do so. By (21),(25), they are all realizable. {]

Examining the construction in the proof above, we can de-

fine a binary sequence B(P), indexed from | (m+3)/2] to m,

where B4=0 1f Pi =m-]+3 and Bi=1 if Pjem- +3, Now we can count
the graphs associated with each P.

LEMMA (30), Suppose P is realizable by a symmetric NOHO-graph.

Then the number of symmetric NOHO-graphs realizing P 1s 24

where gq 1s the number of ones in B(P).

Proofs We consider how many ways symmetric Q can be construct-

ed so that (P,Q) satisfies (16). We claim that each way deter-

mines a unique symmetric quadruple, By (25) it determines a

unique realizable quadruple. Using the algorithms in (25) we

generate S and T. Reflecting and applying the algorithms again,

we find S'=S and T'=T, since P and Q are symmetric. So by (27),
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the NOHO-graph realizing the quadruple 1s symmetric,

First suppose B(P)=(0,.,..,0)., Then P=(m+1,2,m,m-1,,..,4,3).

There is one reversion after Pj, so (21) and (25) imply there

1s one realizable quadruple with this P. The corresponding Q

is (m,0,m=1,...,4,3,1), which is symmetric as desired,

Now suppose B(P)#(0,...,0). By the way B(P) is construct-

ed, By=l implies. Pk begins a reversion in P, The uppermost

1 occurs when P, =2, beginning the last reversion. That post-

pones picking m-k+3 until the next lower 1 in B, at which point

it must begin a reversion, and so on.

Recalling (20), the elements of S are unrestricted if and

only 1f they correspond to the last element of a reversion

other than the last one, So, covering the index range |(m+l)/2]

to m, there are 24 ways to write down this portion of a realiz-

able (P,S). Using the algorithm in (25), we can write down

what the corresponding segment of Q must be.

- Determine the rest of Q by setting Q,=k 1f Q.=Jy where
ka(m+l)/2, That this is well-defined is ensured by (28). 0

1s now symmetric and campletely defined, We need only verify

that (P,Q) satisfies (16).

For (16,iii), we have guaranteed Q, =0 placed where P, =2,
since B(P)#(0,++4,0) and the last reversion begins in the "good"

segment. By symmetry P,=k and k 1s the element missing from Q,

(16,i,1i) hold for all elements of Q at (m+l)/2 or later. sup-

pose Q;=P.=k with jeig(m+l)/2, Then by symmetry and (28),

P,<Q with k>(m+l)/2, violating (16.i). Finally, suppose P <Q;
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with j<(m+l)/2, Applying symmetry and (28) again, we violate

(16,ii) in the good segment, )

To summarize, we have shown that there are 2% symmetric Q

that might be paired with P, and that all such pairs are real-

izable and determine symmetric quadruples, |

THEOREM (31). The number of symmetric NOHO=-graphs is skp/2]

Proofs If B(P) has gq ones, they may occur at any of the [p/2]

steps in constructing P. So (29), (30), and the binomial
vay

theorem yield PACIASIES = 3Lp/2] as the number of symmetric
solutions, {|

Symmetric quadruples are one-to-one with symmetric NOHC-

graphs. Other realizable quadruples are two-to-one with other

NOHO-graphs, So we have from (26), (27), (31)

COROLLARY (32), The number of NOHO-graphs on nz6 vertices, n

even (other than Q* when n=8) is (3P-143LD/2]y /5

J. Concatenation of NOHO-graphs

Before defining the concept of an irreducible NOHO-graph,

we need to define a way of combining NOHO-graphs, Suppose we

have two NOHO-graphs Gy and G, on ny and n, vertices {x3} and
{rib with associated quadruples (pt, ql, st, ol) and (P%,Q%,8%, 1%),
We define the concatenation of G, and G,, denoted G,+G,, as a

new graph Gs constructed as follows.
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To obtain the edge set of Gy unite those of Cl and Go
deleting the edges incident to x2 and yg. The vertex set of

G4 1s the union of the vertex sets of Gy and Go with x3 and
vy deleted, Furthermore, identify h(xg) with y1 and n(yg)
with x: Now Gy 1s a graph on Nan, +n,-4 vertices, with
2n, -4+2n,-4-4 = 2nq-k edges.

For the ordering of edges, any edge that was a first edge

or last edge in Gy or Gy remains a first edge or last edge,

The order between two edges from the same Gi 1s preserved, In

addition, every edge from ct (ey) 1s set less than every edge
from clay), and every edge from c4,) 1s set less than every
edge from c?(6,),

Figure 4 gives an example of concatenation,

‘ oe | . TSU . Ct \ . NM ar : ae \
Xo S10 a A SE hE Ne Xe_| LTS yl

Tse | I NOL Tel PS =)

G, G, 6, + 6,
Figure 4, Concatenation

Note that concatenation 1s not a commutative operator,

Also, if we label the vertices of theld-cycle {xg x75, x5}, 1t
becomes an identity element under concatenation. In fact,

NOHO-graphs not 1n Q¥%¥ form a non-commutative semi-group under

concatenation, Associativity is clear from the construction.

The next lemma verifies closure,
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LEMMA (33), If Gy and G, are NOHO-graphs, then the concatena-

tion GG, 1s also a NOHO-graph,

Proof: We need only show that Gy tG, contains paths between

all pairs of vertices and satisfies NOHO, We may consider the

E identified vertices as elements of either of the original

graphs, Any path wholly within one of the component graphs 1s

still present in Gy +G,, unless 1t used one of the deleted ver-

tices,\ The only paths which used them as non-endpoints are

(x2, x2, h(xZ) ) and (y7,¥5,h(yg) In the concatenation these
paths can be replaced as follows. Since we have identified

x: with h(yg) and h(xg) with y1» we can consider the endpoints
as originating from the other summand graph, The transmission

path between these vertices 1n that graph uses nore of the de-

leted edges,

Obtaining an increasing path from a vertex of Gi to a ver-

tex 1n G. 1s quite simple, If v lies in G4 and w 1n Go V—dW

can be formed by attaching yu from G, to the end of vn (x3)
from Gyo Similarly, w-»v can be formed by attaching x) =»
from Gy to the end of wh (yg) from Goo These constructions
work because every edge incident to ¥, in Gy +G, that comes from
G, is greater than every such edge from Gyo and every edge in-

cident to x3 in Gy +G, from Gy 1s greater than every such edge
from Gye The edges that could have violated that were the

edges deleted from the union.

Finally, to prove NOHO we note that no 1ncreasing path

which starts at a vertex from Gi can leave those vertices and
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later return, This would require traveling along ct (6,46,),
crossing to d (Gy +G,), and returning, The crossover could
only use a first edge or last edge, which would prohibit in-

cluding the earlier or later portion of the path. On the other

nand, no path violating NOII0 can lie entirely within the edges

coming from one of the summands, since they are NOHO-graphs. |

To determine (P,Q,S,T) for G1 +G,=G, we obtain S(Gy) and

(Gs) by concatenating in the usual sense S(G;) and T(G,) with

5(G,) and 7(G,). That 1s, with my =n, /2-1, (G5) contains 5(Gy)
in positions 2 through m, and it contains $(G,) in positions

my +1 through my =mq +my-1, Smi G3) describes what happens
when ct (G4) reaches Yoo which 1s the same as what happened
when ( reached x: +1° The remainder of cl (G1) 1s as before,
The same argument spplics to T, P and Q can be determined as
in (25), or they can be determined directly by adjusting and

combining P(G; ) and Q(G;) as was done with S and T, This re-

quires dropping an element, adding py or p, to the elements in

one portion, and concatenating.

If 1s natural to call a realizable quadruple or a NOHO-

graph 1rreducible 1f 1t cannot be expressed as a concatenation

of two smaller ones, In the next section we will count the

number of realizable quadruples 1n subclasses 1nvolving

irreducibility.
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10, Irreducibility and NOHO-graphs

Before discussing irreducibility, we 1ntroduce some stan-

dard terminology about compositions of integers. A composition
of mative intgqers

of an integer p 1s an ordered sequence,whose parts sum to p.

Again, we are using p here because (n-4)/2 adds simply in con-

catenation. The 1 th partial sum q; of a composition 1s the
sum of the first 1 parts, A refinement of a composition of p

1s a compositionof p with as least as many parts whose par-

tial sums contain the partial sums of the original composition,

The least refinement of two compositions is the composition

whose partial sums are the union of the partial sums of the

original compositions. For example, the least refinement of

(2,3,5) and (1,3,1,4,1) is (1,1,2,1,4,1).

This terminology will be useful for the following lemma,

which states a very convenient fact about concatenation,

Namely, NOHO-graphs are "uniquely factorable" 1nto irreducible

pleces, In algebraic terms, this means the 1rreducible solu-

tions are the generators of the semigroup of NOHO-graphs under

concatenation.

LEMMA (34). Any realizable quadruple can be uniquely expressed

as a concatenation of irreducible quadruples,

Proof: Any such decomposition of a quadruple breaks up (S,T)

into segments which each determine NOHO-graphs., For example,

describing graphs as G(S,T), we have G(101010,111101) = G(1,1)
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+ (010,111) + G(10,01). We can describe the decomposition

by a composition of the integer p=(n-4)/2,

We claim the least refinement of two compositions of p

which correspond to decompositions of G also corresponds to

a decomposition of G, If one composition 1s a refinement of

the other, we are finished, If not then the least refinement

has two consecutive partial sums q;=r and 3417S» where r 1s

a partial sum for exactly one of the compositions, and s 1s

a partial sum only for the other. Performing the decomposi-

tion, we have indices J and k such that the segments (S415)

through (S_ qs Tg4y! and (S,,51 Typ) through (Sy,T,) determine

NOHO-graphs G; and G,. (We have assumed r<s.)

Define another graph Gas whose vertices and edges include

the vertices and edges that lie both in Gy and in G,, plus two

vertices y and z of degree two. (By "both in G; and in G," we

mean when the vertices are labeled as the fit into G.) The

neighbors of y and z are defined by fo, (Vpn, hg, (¥)=
ng, (fg, (pa) fo, (Dg and ng (2)=hg (Tg (xg):

G3 is a NOHO-graph, and the proof of this rests on the

fact that increasing paths which leave Gy can never return to

it, When such a path leaves Gy it simultaneously leaves Gy, or

G,. By the same argument used to verify NOHO in (33),it can-

not return, So, the increasing paths in G between vertices of

Gy must lie wholly within Ge Information 1s transmitted for
y and z also, since y takes the place of a vertex in G, Of



D2

degree 2 and z does the same 1n Gyo That NOHO 1s true follows

because any increasing path in Gy appears 1n Gy Or 1n G,
(except y-»z and z-vy), and they satisfy NOHOC,

Let Gy be obtained from Gy by deleting vertices and edges

belonging to Gyo Add a vertex w of degree two with faa(w)=
hg, and hoy (W)=1g (vy). By the arguments in (33) and above,
1t 1s easy to see GJ 1s a NOHO-graph and Gy Gy =G SO Gy was
not irreducible,

Repeating-this argument over all decompositions of G, we

see the only decomposition into irreducible segments 1s the

least refinement of all the decompositions. |]

Having proved unique decomposition, 1t becomes easy to

count various classes of solutions by induction.

THECREY (35). The number of realizable quadr ples formed by

) concatenating k irreducible quadruples 1s ®-1)2P7K,

Proof: By induction on p., Examining Figure 3 yields the

basis steps for p=l and p=2, Assume the theorem is true for

smaller values than p.

First consider k»1, To obtain such a quadruple we deter-

mine a composition of p and fill the quadruple with 1rreducible

(S,T)-segments of those lengths. p is the eventual length of

S and T from positions 2 through m=n/2-1, By induction, each

segment of length r can be filled by pr=1 irreducible pairs,

Filling each segment in all possible ways, (33) says these are
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realizable, and (34) says there are no others. go, for each

composition rytesetry, =p with-k parts, there are 2f17L, orl

—oP=X quadruples of this type, There are ®1) Compositions
of P with k parts, so the total number of solutions is

(P21)2P7k,
This holds also for k=l, since that 1s precisely how many

remaln of the 3P-1 quadruples counted in (26). The binomial

theorem says there are pP-1 irreducible quadruples, 0

THECREN (36). The number of symmetric NOHO=-graphs formed by

concatenating k irreducible parts 1s tok? where

[ (R)2-1)z(p-k)/2 ; p even, k even

oy ] awn i p odd, k evenp> rel ; k odd, k»1, r=(k=1)/2
Los] ; k=1

Proofs We use a similar induction to the above. Figure 3

| again provides the basis, though now p=l and p=2 are both nec-
essary. Assume the theorem 1s true for smaller values ofan p,

First consider k»1, If k is even, p must be even to allow

symmetry. We determine a composition of the first p/2 places

into k/2 parts, fill it with irreducible (S,T)-segments, and

then obtain the rest by reflection (27). (33) and(34) again

justify the conclusion that this counts everything, There are

pr2-1 compositions and 2 (p-k)/2 solutions for each one.
If k 1s odd and k>1, determine a composition of g with
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r=(k-1)/2 parts, where 2q<p. The middle. segment of (S,T)

will have length p-2q9. In that segment we place a symmetric

irreducible segment, of which by induction there are oL(p-2a)/2]

There are 2%°T ways to fill the remainder, With the usual ar-

guments about reflection, number of compostions, and the cor-

Up-22]

rectness of the count, we have ts p= > (971)29-75l (p-24)/2]317 {1 q=1 I=

To compute ts 1 We subtract the other to . from 3Lp/2],y H

the total number- of symmetric NOHO-graphs, derived in (31),

Note that

Lgl) p02) lp-11/2) q
L 2lp/2l-r7pa-1y | TF Llp/20-a § (_y),0-r-1 (q 1)2
rel gel = o-0af

. olp/2]-1g, 0-1
ql

2-1

_ 2.3% - 20/2 i p even
-1)/2 -

“hen p 1s even, we must also consider k even. Tf g=k/2, we

have (P/2-1)pp/2= = 3p/2-1 as the number of these solutions,
So,

X 2 3P/2-145,3P/2-1_,0/2 } P even
pl = 3kP/2) (pe1)/-1)/2 -
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11. Planarity and Hamiltonicity

In this section we note two properties of NOHO-graphs

that are commonly of interest. Constructions are given for

both, First, a quick lemma,

LEMMA (37). In a NOHO-graph, consider a path R that begins

at xg and alternates along first edges and last edges, Then
i) The path alternates between cl and oy reaching ol al-

ways on first edges and ok on last edges,

11) R eventually reaches -
111) From x to xe, R 1s a simple path.
1v) Among the xy and x] that appear along R until xe, the

indices 1 1ncrease and the indices J] decrease,

Proof: (1) 1s obvious, We verify the remainder in reverse or-

der. For (iv), 1t suffices to consider pairs of consecutive

. appearances, If Xp £(h(x;)) so that F(x.) =h(x3), then (16.1)
says i'»i, If x%=h(£ (x9) SO that Xa= h(x) and x% = £(x;),
then (16.1) says j'«<j. (1) implies the consecutive appearances

are as described. (1v) immediately implies (111). Since the

path connot contiue in the same direction forever, (1v) also

implies (ii), []

THECREWV (38). In a NOHO-graph (other than Q*), uniting the

first edges and last edges yields a Hamiltonian circuit,

Proof: Consider the alternating paths guaranteed by (37) that
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emerge from x and proceed to x. One begins with a first edge,

one with a last edge, Call them Rr, and Ro, respectively. We

claim Rl and R, intersect only in {tx},

If not, let v be the first vertex where they meet after xg.
If 1t 1s before x5, it lies in cl or in ct Sy (37.1), both
paths reach it via the same type of edge, i.e, first or last,

But F(G) and L(G) are matchings by (2), so there is only one

such edge incident to v. This means the paths had to meet at

the previous vertex,

So, uniting R; and R, yields a simple circuit, It is easy

to see 1t must be Hamiltonian, If v lies outside it, we can

begin paths there that proceed alternately along first edges

and last edges, By the argument of (37), one such path R, pro-

ceeds to x4, The next-to-last vertex on 1t 1s 1n Ry or Rss
since Ry and R, reach x2 separately and d(x{)=2, It also lies
in cl or cl, As 1n the preceding paragraph, all of Ry includ-
ing v lies in that same R, or R,.[|

THECREN (39). Every NOHO-graph (excludingQ%*) is planar.

Proof: We construct a planar representation. place the ver-

tices on the boundary of the shadow of a sausage. put xg at
the left end, x; at the right end, x] along the top edge from
left to right, and Xs to x along the bottom edge from right
to left,

Let Ry and R, be as 1n the previous proof, Draw in Ry as
a path of chords, By (37.iii,iv), there are no crossings,
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Blur the boundary of the sausage so that the top and bottom

boundaries become doubled, still meeting at the endpoints,

Let the vertices of Ry remain on the inside boundary, and move

the vertices of R, tO the outside boundary, R, can be drawn

as a path of non-crossing chords in the outside infinite face,

again by (37).

We still must show that the edges 1n the caterpillars can

be added without crossings, The interior of the boubled bound-

ary has not yet been entered by any edge, Io edge of the cat-

erpillars joins two vertices on the same R:y 1.e, on the same

side of the doubled boundary, If so, (14.,iil) and (37.iv)

require a triangle. So, we can draw the caterpillar edges as

chords across the interior of the boundary,

We claim there are no crossings. Since the vertices have

been placed in order, (x55) cannot cross (xt, x0) with
max {j,k}<min{r,s}. If a crossing exists, we may assume J<r<k,

. rcs, By (Lb.1ii), (x},%}) is an edge. Similarly, 1f k<s then
(x, x5) is an edge, while if k>s then (x5, x5) is an edge.
Either way, we have created a triangle 1na tree, using 5
Xp and one of {xt,x}.

Figure 5 shows a representation drawn with this method.

TS
ay | PACE JRE Nd
ITT

Figure 5. A planar representation
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12, Related Gossip Questions

Golumbic[6] and Harary and Schwenk[ 8] have shown that any

connected graph withn vertices, 2n-4 edges, and a k4-cycle ad-

mits an edge-ordering which solves the usual gossip problem.

By 2n-4 edges, we mean 2n-4 calls will be made using “allowed"

edges, Of course, most of these violate NOHO, The question

remains open, however, whether every optimal solution of the

gossip problem contains a 4-cycle, An affirmative answer would

characterize these solutions, Examining (12) and(16.iii), we

note

REVARK (40). Every optimal solution of the gossip problem

satisfying NOHO has a #4-cycle,

It may be possible to prove the conjecture by applying this

remark,

- Graph theorists have also considered solutions of the

gossip problem in which no transmission of information 1s dup-

licated, so there is a unique increasing path from each vertex

to every other, Usually this includes the condition NOHO,

Paradoxically, forbidding wastage requires more work, if in-

deed the problem can be solved at all. In other words, the

information cannot be transmitted in 2n-4 calls unless n=4 or

n=8, which follows from
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REFARY (41), Every NOHO graph other than Cy, and those in Q*
duplicates some transmission,

Proof: Cy, and graphs in Q*, as remarked in (12), duplicate no

transmission. Consider any other NOHO-graph, and suppose

5=0, We claim there are two paths from x5 to x. By (16,111),

(x5) =h(x2), By (14.iii), (3n(x5)) is an edge. So (x5,
nixg), xt) forms one such path. By (14,i) there is an increasing
pathe 1n o from x: to every other vertex of c?, including
n(x), which completes the path, On the other hand, if S.=1,
then x =n(x2). Applying (16,iii) again, there exist increasing
paths (x5, x7, 0 (x5), x5) and (x5,%5) 0

Finally, we describe a generalization of the problem con-

sidered here, Consider an n by n "transmission matrix" on

vertices {viseenv } with entries from {1,0,-1}. If a; <1,
we require an increasing path from v, to IT If ay $ =-1 we
forbid such a path, If ay 570 we don't care, We ask whether
a calling scheme satifying the matrix exists, what 1s the least

number of calls in such a scheme, what schemes achieve the min-

imum, and so on. The original gossip problem results when di-

agonal entries are 0 and off-diagoanal entries are 1, Chang-

ing the diagonal entries to -1 yields the subject here, The

problem with ones above the diagonal and zeros on or below it

1s clearly optimized by a chain of n-1 edges, For a matrix

in block diagonal form, we require the sum of the calls re-

quired by the smaller problems. Here's another example:



n

00

REVARY (42), Consider a transmission matrix with a; .=0,

a; 370 for i»r2], and all other a; 5=1. The smallest graph
solving this gossip problem has 2n-7 edges, This remains

true 1f aii=-1, n even, r even,

Proof: Take an ordinary (2r-4)-edge solution Hy on Vive}

and an ordinary (2n-2r-4)-edge solution H, on {Vogyreeniv bo

Order the edges so all those of H, occur after all those of

dy, Add an edge joining a vertex of the last edge in iy

to the first edge in H,, and let it occur between them. This

uses 2n-7 calls and satisfies the matrix.

To show optimality, take any solution and delay all edges

not wholly within {viseenav } in order, until after every
edce within that set, The resulting scheme still satisfies

the matrix, But now 1t must consist of an ordinary scheiie on

r vertices, followed by at least one connecting edge and a

solution on n-r vertices, So, there are at least 2n-7 calls,

If aii=-1, simply use NOHO-graphs in the Hy, i, con-

struction. This requires n and r even.

There are innumerable variations.
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