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Abstract

A simple algorithm is described which determines the satisfiability over the reals
of a conjunction of linear inequalities, none of which contains more than two
variables. In the worst case the algorithm requires time o(mnﬂoxz nl+3 log n),
where n is the number of variables and m the number of inequalities. Several
considerations suggest that the algorithm may be useful in practice: it is simple to
implement, it is fast for some important special cases, and if the inequalities are
satisfiable it provides valuable information about their solution set. The algorithm
is particularly suited to applications in mechanical program verification.
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Introduction

Consider the problem of verifying that one linear inequality is a consequence of
several other linear inequalities—for example. that 2> 0 is a consequence of
z>zand 2 > —z, or that y < 2z 1 is a consequenceof y < x and y 2> —z. A
practical algorithm for this problem is essential to mechanical program verification,
since reasoning about linear inequalities occurs so frequently in proofs of program
correctness. The problem arises in many other areas-indeed, it is equivalent
to the ubiquitous general linear programming problem-but the instances of the
problem which arise in verification work seem to differ significantly from those
which arise elsewhere, so verification researchers have designed new methods, or
modified traditional linear programming methods, to handle the cases they en-
counter in practice. (See references [1, 4, 5, 6,7, 8].) The continuing activity in
this area is sufficient evidence that none of the methods, new or old, has been
entirely satisfactory for verification work.

The results in this paper extend earlier work by V. Pratt and R. Shostak on
a subcase of the general problem. Pratt [6] reports that most of the inequalities
encountered in verification work are of the form x <y -k (where x and y are
variables and k is a constant), and gives a polynomial-time algorithm for this
special case. Shostak [7] generalizes Pratt’s method to allow inequalities of the
form az + by <k (or ax 4+ by < k) where x and y are variables and a, b, and
k are constants. The algorithm described in this paper handles the same subcase
considered by Shostak, but it is simpler than Shostak’s algorithm and faster in
the worst case.

In several of the classical linear programming problems there are only two
variables per constraint. This is true of the transportation problem, of some more
general network problems, and of the problem Dantzig [2] calls the weighted dis-
tribution problem. The algorithm described in this paper can be used to find an
initial “feasible” point for such problems, but it cannot be used for maximizing
an arbitrary objective function.

If C is a conjunction of linear inequalities and L is a linear inequality, then
C implies L if and only if the conjunction of C with the logical negation of L is
unsatisfiable. The logical negation of L can be written as a linear inequality (strict if
L is non-strict, non-strict if L is strict). Thus the problem of verifying implications
between inequalities can be reduced to that of establishing the unsatisfiability of
conjunctions of inequalities. By a constraint we mean a linear inequality. By a
two-variable constraint we mean one which contains at most two variables. The
algorithm described in this paper determines the satisfiability over the reals of a
conjunction of two-variable constraints.

An important feature of the algorithm is that it computes the two-dimensional
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coordinate projections of the solution set. That is, if C is a satisfiable conjunction
of two-variable constraints, and z and ¥ are any two variables, then at the con-
clusion of the algorithm the set of all constraints involving only z and y which
are consequences of C is explicitly represented, in the form of a polygonal set in
the zy plane.

This feature is useful in verification work in at least three ways. First, it is
often essential to determine the equalities between variables which are implied by
the constraints. The algorithm determines these equalities at no extra cost, since if,
say, £ =y is a consequence of C, this fact will be manifest from the projection of
the solution set on the xy plane. Second, if a number of implications with the same
antecedant are to be tested, say C D L;,C D Ly, . . ., where C is a conjunction
of two-variable constraints and the L's are two-variable constraints, the algorithm
can be used to construct the solution set of C, by means of which each implica-
tion can be tested rapidly. Third, if some two-dimensional projection contains no
integer lattice point, then it follows that the constraints are not satisfiable over
the integers; this piece of information is often valuable. (Of course, if every such
projection contains an integer lattice point, the constraints may or may not be
satisfiable over the integers.) It is interesting to compare this method with the
Sup-Inf method of W.Bledsoe (see Bledsoe [1] and Shostak [8]), which computes
the minimum and maximum of every variable, thus effectively computing the
projection of the solution set onto every one-dimensional coordinate axis.

The two-dimensional coordinate projections of the solution set might be useful
in operations research applications, since they give the “trade-off’ between any
two variables.

The worst-case time bound for the algorithm is non-exponential, being ap-
proximately mn!°8 " where m is the number of constraints and n is the number
of variables. It is the only non-exponential algorithm for this problem reported
in the literature. Yossi Shiloach [9] has described to me an ingenious method he
is working on for solving the problem in polynomial time, but his approach is
very complicated. The worst case time bound for the algorithm described in this
paper can be improved in special cases. If all coefficients are one or minus one,
the algorithm takes O(n®) time; asymptotically this is as fast as the algorithms
designed for this special case. If all coefficients are in the set {42,4-1,41/2},
the time bound is O(n*log n). In general if the coefficients are restricted to any
finite set of reals, the running time can be bounded by a polynomial function of n.
The degree of the polynomial is three greater than the rank of the multiplicative
group generated by the absolute values of the coefficients. Even with arbitrary
coefficients, I have not been able to construct examples showing that the bound
is tight. It is not impossible that the algorithm is polynomial.
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1. The Algorithm

We begin with a description of the Fourier-Motzkin elimination method for deter-
mining the satisfiability of a set of constraints. This method was discovered by J.
Fourier in 1826, and reintroduced by T. Motzkin in 1936. (For a comprehensive
bibliography of early work in linear inequality systems, see Dantzig [2).)

From a constraint involving a variable x, either an upper bound or a lower
bound on X can be obtained, but never both. In either case, the bound obtained
(regarded as a function of the other variables) is unique; that is it does not depend on
how the original constraint is written. For example, the constraint z—2y+22>0
bounds x from below by 2y —2, and bounds y from above by x/2 + 1. In general,
the constraint Y a;z; < k bounds z; from above if a; > 0, from below if a; < 0.

If we are given two constraints which are not strict, one of which bounds x
from below and the other of which bounds £ from above, we can write them in
the form L < x, x <U, where L and U are expressions which do not contain
z. We define the x-resultant of the two constraints to be the constraint L <U.
Evidently the x-resultant is a logical consequence of the two constraints, and it
is the strongest consequence in the following sense: any assignment of values to
the variables in L and U which satisfies the resultant can be extended to assign
a value to x which satisfies the original two constraints (simply by choosing for z
any value between the values of L and U).

We also define the xc-resultant when one or more of the constraints is strict:
the x-resultant of L << x and x <U, or of L < x and x < U, or of L << x and
x <U,is L <U.

Note that the resultant of two two-variable constraints is a two-variable con-
straint.

Proposition. Let S be a conjunction of constraints, each of which contains a
variable x, T a conjunction of contraints, none of which contains x, and W the
conjunction of all x-resultants of pairs of constraints of S. Then SAT is satisfiable
if and only if W A T is satisfiable.

Proof. For notational convenience we assume that none of the constraints in S is
strict; the proof is similar if the restriction in lifted.
We can write the constraints of S in the form:

Li<x =z=U
<z U

= 0
Lpn<z z < Un



where the L’s and U’s do not contain &. Then W is the conjunction of the nm z-
resultants of these equations, that is

A LigU; (2)
1<s<n
I<j<m

Now given an assignment of values to the variables other than x which satisfies
W A T, choose % to maximize the value of L; under the assignment, and j to
minimize the value of U; under the assignment. The value of L; does not exceed
that of Uy, since the assignment satisfies W, which contains the constraint L; < Uj.
Hence we can choose x between the values of L; and Uj. This choice satisfies the
sharpest upper and lower bounds of (1), hence it satisfies all the bounds of (1).
The converse is trivial, so the proof of the proposition is complete. |

The replacement of (1) by (2) is the general step of the Fourier-Motzkin
method. By eliminating variables one by one, we eventually obtain a system of
constraints which contains only numerical constants and is satisfiable if and only
if the original conjunction is. Unfortunately, the number of constraints increases
quadratically with each application of the general step, so if originally there are
m constraints in n variables, it appears that the only bounds we can get on the
number of constraints at successive steps are approximately m, m?,m4, m8, ...,
m?2", Possibly more sophisticated analysis would lead to a less astronomical bound,
but clearly this method cannot be used on large problems.

The algorithm given below for the two-variable-per-constraint satisfiability
problem is somewhat similar to the Fourier-Motzkin method. Instead of forming
resultants from only one variable at each step, the algorithm forms resultants
from every variable at every step, This means that more new constraints are
generated at every step, but has the advantage that only about logn steps are
required instead of n, as will be shown. In some sense the algorithm eliminates
the variables in parallel instead of sequentially. The algorithm also “filters out”
manifestly redundant constraints.

If S is a set of constraints and V is a set of variables, we use the notation Sy
to denote the subset of S consisting of all those constraints in which occur only
variables of V.

If S is a set of constraints and C is a constraint, then C is a direct consequence
of S if C is implied by Sy where V is the set of variables appearing in C. Thus x > 1
is a direct consequence of {x > 2}, but not of {x =y, y>2). Also, x +y=>0
is a direct consequence of {x 2 0,y = 0}, but not of {x >0,y > 2,2>0}.

If S is a set of constraints, to filter S is to repeatedly perform the following
step: if S contains a constraint C which is a direct consequence of S- {C}, then
remove C from S. The process terminates when S contains no such constraint.
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We use “Ig n" to denote the logarithm of n to the base two.

Satisfiability Algorithm. Given a set S of two-variable constraints among n vari-
ables v, vy, ..., vy, the following algorithm determines whether they are satisfiable.

begin
for 1 <i<[lgn]— 1 do
begin
let 8’ be the set of all resultants of pairs of
elements of S, then replace S by S U S’;
for | <j<k<ndo
if S{y,,um} 1s unsatisfiable
then return “unsatisfiable”;
filter S;
end;
return “satisfiable”;
end

Obviously the algorithm is correct if it answers “unsatisfiable”, since all the
resultants which are generated are consequences of the original constraints.

We will call the body of the for-loop on % the general step of the satisfiability
algorithm. To prove that the algorithm is correct if it answers “satisfiable”, we
must show that if the constraints are unsatisfiable then in [lgn]— 1 application8
of the general step enough resultants will be generated to make some Sgy, vy}
unsatisfiable. Here is an example which gives an idea why this is so: let the initial
constraints be '

1< <2< <z<0.

(This is an example of a chain of constraints. A formal definition for a chain is
given in the next section.) After the first elimination step, the set of constraints
will contain (among others) the constraints 1 <z, 22 < x4, ..., Tn—2 < Tp,
z, << 0 (if n is even), so the set of constraints will contain an unsatisfiable chain
of length n/2. After about lgn applications of the general step the constraint
set will contain an unsatisfiable chain with no more than two variables, and the
unsatisfiability will be detected.

Unfortunately it is not the case that every unsatisfiable set of constraints
contains an unsatisfiable chain. However, we will show in the next section that
every unsatisfiable set of constraint8 contains an unsatisfiable subset which consists
of several long chains hooked together, and this will be enough to establish the
correctness of the algorithm.

The running time of the algorithm depends critically on the growth of the
number of constraints. If the number of constraints grew quadratically with each
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step, then at successive steps the number could be as large as

ign
m, m,mi ... mt ~mh,

We will show in section 3 that the filtering step keeps the set from growing by
more than a factor of n at each step; since there are about Ign steps, the final
number of constraints is bounded by approximately mn'8", In section 3 we will
also consider a representation for the set of constraints which allows the general
step to be performed rapidly.

2. The Proof of Correctness

The proof of correctness begins with the following famous theorem.

Theorem (Helly). Let F be a finite family of convex sets in d-dimensional space.
If any d + 1 sets of F have a common point, then there is a point common to all
the sets of F.

Figure 1 illustrates the two-dimensional case of this theorem.
The theorem was discovered by E. Helly in 1913; the first proof was given by
J . Radon. Several proofs and generalizations are given in references [3] and [10]. §

The solution set of a single constraint is a half-space, which is a convex set.
-Thus if S is a set of constraints on k variables, and if every subset of S with no
more than k 4 1 constraints is satisfiable, it follows from Helly’s theorem that
S is satisfiable. Thus a minimally unsatisfiable set of constraints on k variables
contains no more than k + 1 constraints. Since each constraint contains at most

A

%

Figure 1. If a fourth convex set intersects the three regions A (B, B\ C,and
A ) C, then it must intersect A (B [)C.
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two variables, this suggests that most of the variables appear in only two of the
constraints; that is that a large minimally unsatisfiable set of constraints must
contain long chains, Theorem 1 below gives a complete classification of minimally
unsatisfiable constraint sets, It is interesting that its proof uses nothing but Helly’s
theorem.

We say that a sequence of two-variable constraints (Cg, . . ., Cy) is a chain
with internal variables vy, ..., v, if for each ¢, 1 <+ < n, C;—; and C; have a
vi-resultant, and furthermore v; does not occur in any of the other C's. Cp may
contain another variable besides vy if so we call this other variable the left end
variable of the chain. If Cj contains only one variable, we say that the chain has no
left end variable. The right end variable of a chain is defined similarly. Note that
the left and right end variables may be the same, in which case we say that the
chain is circular. A circular chain has one end variable; a non-circular chain may
have zero, one, or two end variables. A circular chain must contain at least one
internal variable. Two chains intersect if they have a common internal variable.
Note that the constraints outnumber the internal variables by one in any chain.

Theorem 1. Let S be an unsatisfiable set of two-variable constraints such that
every proper subset of S is satisfiable. Let V be the set of variables occurring in
constraints of S. Then one of the following cases holds:

e (trivial case) Vis empty and S contain6 one constraint;

e (line case) There is a chain with no end variables which contains all the
constraints in S;

o (circle case) There is a circular chain which contains all the constraints in S;

e (circle-line case) S can be partitioned into two non-intersecting chains, one
circular with end variable u, the other non-circular with u as its only end
variable;

e (theta case) S can be partitioned into three pairwise non-intersecting, non-
circular chains, each of which have the same pair of end variables;

o (eyeglass case) S can be partitioned into three pairwise non-intersecting
chains, two of which are circular with distinct end variables u and u, the
third of which has « and u as end variables;

o (figure eight case) S can be partitioned into two non-intersecting circular
chains which have the same end variable.

Furthermore, each of the seven cases can occur.
The six non-trivial cases of the theorem are illustrated in figure 2.

Proof. Let k; be the number of variables of V which occur in exactly # constraints
of S. Clearly k; = 0, by the minimality of S. By Helly's theorem S can contain no
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more than k< 1 constraints. Since no constraint contains more than two variables,
the sum, over all variables u, of the number of constraints containing u, is at most

twice the number of constraints; that is
Y ki <2k+2.
Since Y k; =k and ky =0, 3, o ks =k — ky, so from (3) we obtain
2y + 3(k — k) < 2k +-2

whence
ks > k-2.

(3)

(4)

Thus we have proved that at most two variables appear in more than two con-

straints.
Now doubling (4) and subtracting it from (3) gives

Y ik <e.

$>2

i @, O

Line Civc\e Cilrc\e.~\ine
Thelho G tt&%\asses Y g fe-¢ \5\\‘(

the chains may have any number of internal variables.

Figure 2. Dots represent variables and lines represent chains in these diagrams
of the six types of minimally unsatisfiable sets of constraints. The lines with
one undotted end represent non-circular chains with one end variable; the loops
represent circular chains. Only end variables are represented by explicit dots;
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This inequality has only finitely many solutions in non-negative ks; the remainder
of the proof considers each solution separately.

If kg > 0, then ks = 1 and k; = O for ¢ # 2,68, There are four cases, which
can be diagrammed (using the conventions of Figure 2) as follows:

X % Kk ok

But each of these cases contradicts Helly’s theorem, since the constraints outnum-
ber the variables by 5, 4, 3, and 2 (going from left to right).
If ks > 0, then ks =1 and k; = 0 for ¢ % 2,5. There are three cases:

X A F

The constraints outnumber the variables by 4, 3, and 2; so none of these cases

can occur.
If k¢> 0, then kg==1 and k; = 0 for ¢ £ 2,4. There are three cases:

X

The first two cases cannot occur, since the constraints outnumber the variables by
3 and 2. The third case is the figure-eight case. Here is an example showing that
this case can occur: {z >y, = —y,2 <2,z <—z}. The first two constraints
imply that £ 2 0, the second two imply that £ < 0.
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If k3 > 1, then k3 = 2 and k; = 0 for ¢ 7 2, 3. There are five cases:

X L & oo

In the first two cases the constraints outnumber the variables by 3 and 2, so these
cases are impossible, The third case is the eyeglasses case. An example of this case
is {t>y 2> —y,u=>v u>—vz4+u<0}; the first four constraints
imply that x 2 0 and u 2 0, contradicting the fifth constraint. The fourth case
is impossible, since the constraints outnumber the variables by 2. The fifth case
is the theta case, an example of which is {x 2y, x =2 —y,y = 2x + 1).

If k3 == 1, then k; = 0 for ¢ % 2, 3. There are two cases:

&

in the first case the constraints outnumber the variables by 2. The second case is
the circle-line case, an example of which is {# 2>y, 2> —y, x <0}.

The only cases which remain are those in which k;== 0 for ¢ % 2; the only
such cases (other than the trivial case) are the circle and line cases. Examples of
these are {x 2y, x <y} and {z21,2<0}.

This completes the proof of theorem 1. 1§

Actually, theorem 1 is a stronger result than we need to establish the correct-
ness of the algorithm. All we really need is the inequality (4), which says that at
most two variables appear in more than two constraints.

Lemma 1. Let S be an unsatisfiable set of two-variable constraints, every proper
subset of which is satisfiable, V the set of all variables appearing in constraints
of S, k the number of variables in V, and &' the set of all resultants of pairs of
constraints in S. Then there exists a subset V’ of V, containing no more than
|k/2] + 1 variables, such that (S|JS")vr is unsatisfiable.

Proof. Suppose that vy, vz, ..., vs are the internal variables of some chain and
that none of the u’s appears in more than two constraints of S. If the Fourier-
Motzkin method were used to eliminate vy, v3, v5, . . . , only one resultant would
be added for each variable, and these resultants would involve only w, vy, . . . and
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the end variables of the chain. Thus if V! contains every variable of V except vy,
v3, ..., then (S{US")v» must be unsatisfiable.

This argument shows that we can omit from V' at least half the internal
variables of any chain with the property that each of its internal variables appears
in only two constraints. Now each case of theorem 1 gives a division of S into a
set of such chains which together contain at least k — 2 internal variables. Thus
we can omit from V' at least [(k — 2)/2] variables, leaving no more than

k—([k/2]— 1) =k/2] + 1

variables in V’. 1
It is easy to show that if the map =+ |2/2]+ 1 is applied [lgn]—1 times
to the integer m, the result is less than three. Thus if the set of constraints given
to the satisfiability algorithm is inconsistent, then in the last application of the
general step some Sg. ) Will become inconsistent. Thus the algorithm is correct.
We will now show that if the constraints are satisfiable, then at the conclusion
of the algorithm the solution set of St} is exactly the projection of the solution

set onto the ay-plane, for any twe variables # and y: This in a conrequence of the
following stronger version of lemma 1, whose proof is omitted since it is essentially

the same as the proof of the first version.

Lemma 1b. Let S be a set of two-variable constraints, C a two-variable constraint
such that S|J{C} is unsatisfiable, and suppose that T J{C?} is satisfiable for all
proper subsets T of S. Let V be the set of variables appearing in constraints of S, k
the number of variables in V, and &' the set of all resultants of pairs of elements of
S. Then there exists a subset V! of V, containing no more than |k/2|+ 1 variables,
such that (S S)v|J{C?} is unsatisfiable. §

Note that lemma 1 is a special case of lemma Ib, since we can take C to be
the constraint 0 < 0. Lemma 1b says that the size of a miminal set entailing some
constraint C shrinks by a factor of two for each application of the general step,
so we know that at the conclusion of the algorithm C will be entailed by some set
of constraints involving only two variables.

Note that if the general step were repeated more than [lgn]— 1 times, the
extra steps would have no effect-every resultant generated would immediately
be filtered out.

When the constraints are satisfiable it is sometimes required to find a point
which satisfies them. Let x and y be any two variables; since the algorithm com-
putes the projection of the solution set onto the xy plane, we can choose for x and
y any pair of values which lies in this projection. By substituting these values for
x and y and running the algorithm again, we can determine the set of values for
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the other variables consistent with the choices made for £ and y. By continuing
in this way we can find a satisfying point after n/2 applications of the algorithm.

3. The Proof of Correctness of the Time Bound

The correctness of the time bound for the satisfiability algorithm rests on the
following theorem:

Theorem 2. Let S be a set containing n two-variable constraints, each of which
contains both x and y; T a sef containing m two-variable constraints, each of
which contains both y and 2; and U the result of filtering the set of all y-resultants
of constraints in S with constraints in 7. Then U contains no more than 2(n - m)
constraints.

This theorem is illustrated in Figure 3.In zyz space, the solution set of the
zy constraints is a cylinder parallel to the 2 axis, with cross-section a polygon in
the zy plane. Similarly the solution set of the yz constraints is a cylinder parallel
to the z axis, with cross-section a polygon in the yz plane. The intersection of
these cylinders is the solution set of alln 4 m constraints. The projection of the
intersection is a polygon in the zz plane, and each edge of this polygon corresponds
to a resultant of some xy constraint with some yz constraint. Thus it suffices to
bound the number of edges of the projection.

The shape of the intersection is between that of a ball and a lens, with an
upper surface and lower surface meeting in an edge curved like the seam of a
baseball. It is easy to see that each vertex of the intersection must lie on an edge

g - —"] V
L J'z
< \\}

Figure 3
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of one of the cylinders, and that no cylinder edge contains more than two vertices
of the intersection. Thus the intersection has no more than 2(n- m ) vertices; but
then the same bound applies to the number of vertices-hence to the number of
edges-of the projection of the intersection.

This argument neglects certain possibilities, such as the possibility that either
the xy or the yz solution set was unbounded. The argument can be made perfectly
rigorous; but rather than do so we will present, later in this section, an algebraic
proof of theorem 2. The second proof may give more insight into the theorem,
and moreover it provides an O(n- m) algorithm for constructing U from S and T,

It is natural to expect that the Fourier-Motzkin method would run faster
for the two-variable-per-constraint case if the set of constraints were filtered after
every application of the general step. In fact, it follows easily from theorem 2 that
the worst case of this method is no more than singly exponential.

In the remainder of this section we assume that none of the constraint6 are
strict; the modifications necessary to handle strict constraints are straightforward.

The solution set of a conjunction of constraints on two variables is a polygonal
region whose edges correspond to the constraints. It is convenient to view the
boundary of the polygon as a single piece-wise linear function instead of as many
linear functions, For example, consider the three constraints

2y>z—1
y=a (5)
y=2r—1.

These are graphed in figure 4. They are equivalent to the single constraint y 2> f(x)
where f is defined by

z/2—1/2 if x_< -1
f(x) =(x f—lI<z<li
2x- 1 ifz2>1.

In general, any set of constraints, each of which bounds x from above and y
from below, is equivalent to the single constraint y 2> f(x), for some increasing
~ piece-wise linear function f. Although we are taking this point of view primarily
in order to prove theorem 2, it happen6 that the general step of the satisfiability
algorithm can be implemented efficiently if the set of constraints is represented
using such piece-wise linear functions.

We will now be more precise: A linear function is a function whose graph
is a straight line. A function f is piece-wise linear if either (a) it is a linear
function or (b) there exist n real numbers a;<... < a,, and n -+ 1 linear
function6 fo, . . ., fa such that f(x) = fo(z) for x < ay, f(x) = f,,(x) for X > ap,

14



R

Figure 4. Solution set for the constraints (5).

and f(z) = fi(x) for a; < x < a4y, | <1< n. We call the f; the components of
f. A boundary function is a continuous piece-wise linear function which is either

strictly increasing or strictly decreasing.
The next lemma is a collection of facts about boundary functions whose proofs

-are trivial and will be omitted.
Lemma 2. Let f and g be two boundary functions with » and m components
respectively. Then:
a) The composition gf off and g is a boundary function with no more than
n + m components. If one of/, g is increasing and the other is decreasing,
then gf is decreasing; otherwise gf is increasing.
b) If f and g are increasing (decreasing) then both min(f, g) and max(f, g)
are increasing (decreasing) boundary functions with no more than n+4+ m
components.
c¢) The inverse f~! off is a boundary function, and it is increasing or decreasing
according as f is.
Let S be a conjunction of k constraints involving x and y. Then:
d) If each constraint of S bounds x from above and y from below, S is equiv-
alent to the inequality h(x) <y, for some increasing boundary function
h with at most k components.
e) If each constraint of S bounds both x and y from below, S is equivalent to
the inequality h(x) <y, for some decreasing boundary function h with
at most kK components.
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f) If each constraint of S bounds both x and y from above, S is equivalent to
the inequality h(x) 2y, for some decreasing boundary function h with
at most k components. §

Given a set S of constraints between x and y, it follows from the last three
parts of this lemma that we can find four boundary functions L, U, {, and u, where
L and U are increasing and | and u are decreasing, such that a point (X, y) satisfies
S if and only if the following four conditions are satisfied:

sy
7)<y
Ulz) >y ()
uz) >y

(To simplify the discussion, we ignore the possibility that S might contain no
constraints of one of the four “types,” for example, no constraint bounding x from
below and y from above.) In this case we say that the quadruple

U u

| L
represents S in the xy-plane. The functions are arranged in a square to suggest
which edges of the solution set they correspond to, as shown in figure 5.

AN

w*

'

“ L’*)

40 ()

3

Figure 5. A polygon which contains no edges parallel to the axes can be repre-
sented as the solution set of four inequality constraints using piece-wise linear

monotonic functions.
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This definition is not symmetric between x and y.If L, {,U, and u represent
S in the xy-plane, then we can rewrite the inequalities (6) (using the fact that L
and U are increasing and [ and u are decreasing):

z < L7y
z>1"(y)

z>U(y)
z<uly)

so the representation of S in the yx-plane is
L-—l u—l
l-—l U-—l ‘

Lemma 3. Let S be a set of constraints between x and y, S’ a set of constraints
between y and z, and Jet the representations of S and S' in the xy and yz planes

be respectively
U u U W
( l L)’ ( I L')' (M)

Then the set of y-resultants of constraints in S with constraints in S’ is represented
in the zz-plane by
(min(U'U, ul), min(U'y, u'L)\ ()

max(L"l, VU ), max(L'L, l'u) "

Proof. Let T be the conjunction of all constraints in S which bound x from above
and y from below, T' the conjunction of all constraints in S* which bound y from
above and z from below, and R the conjunction of all resultants of constraints in
T with constraints in T". Then (x, y) satisfies T if and only if L(x) <y, and (y, z)
satisfies T' if and only if L'(y) < 2. We will show that (x, ) satisfies R if and only
if L'L(z) < z.

By the correctness of the Fourier-Motzkin elimination method, a pair (z,z)
satisfies R if and only if there exists a y such that (x, y) satisfies T and (y, 2)
satisfies T'; suppose that (x, z) satisfies R and choose such a y. Then L(x) <y and
L'(y) < z; since L' is increasing we have L'L(z) <z as was to be proved. Now
suppose L'L(z) < 2, then L(x) < L' );choose y between L(x) and L'"!(z). With
this choice of y, (x, y) satisfies T and (y, 2) satisfies T’, hence (x, z) satisfies R.

Thus we have shown that the inequality L'L(z) < z is equivalent to the con-
junction of all resultants which can be formed from constraints in S which bound
x from above and y from below with constraints in S’ which bound y from above
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and z from below. By a similar argument it can be shown that the inequality
I'u(z) < z is equivalent to the conjunction of the resultants which can be formed
from constraints in S which bound x and y from above with constraints in S’ which
bound y and z from below, Since this accounts for all resultants which bound z
from above and z from below, we have proved that the lower right entry of (8) is
correct. The correctness of the other entries can be established similarly. |

Each of the eight boundary functions appearing in (7) occurs twice in (8). By
lemma 2, parts a and b, it follows that the sum of the numbers of components of the
four functions in (8) is no more than twice the sum of the numbers of components
of the eight functions in (7). We have therefore proved theorem 2.

We can now bound the growth of the set of constraints in the satisfiability
algorithm. Instead of using the total number m of constraints, it is easier to con-
sider ‘the maximum, over all pairs of variables (u, u), of the number of constraint6
involving both u and v. We will call this maximum the degree of the set of con-
straints. Let k be the degree of the set of constraints before some execution of
the general step, and k' the degree after. We show that k' < 2nk, where n is the
number of variables. Let x and z be any pair of variables. How many constraints
involving both x and z can be added in this execution of the general step? Given y,
the number of new zz constraints which are y-resultants is at most 2k, by theorem
2. There are n— 2 other variables, so at most 2k{(n — 2) constraints can be added
to the (at most) k constraints already present. So k' < 2k(n — 2) + k < 2kn.

The original degree is bounded by m, the original number of constraints.
Hence we can bound the degree of the set of constraints after successive executions
of the general step by

m, 2nm, (2n)?m, . . ., (2n)8 "= Im, (10)

How much time is required to execute the general step of the algorithm, if
there are n variables and the degree of the set of constraints is k? Using the
obvious representation for boundary functions, the operations needed to form (8)
from (7) can be performed in O (k) time. For each of the O(nz) pairs of variables
(z,2), there are O(n) variables y for which we must perform the operations; thus
it requires O(lcna) time to form the resultants. In addition we must compute the
intersection of the zz polygons obtained from the different choices of y; there are
O(n) such polygons, each of which has O(nk) sides. Using an obvious divide and
conquer strategy, we can form their intersection in O(kn? log 1) time. The amount
of time required to handle the 2n constraints which involve only one variable may
be ignored, Thus the total time required for one execution of the general step is

O(kn®) + nO(kn? log n) = O(kn® log n). (11)
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From (10) and (11) we therefore find that the total running time of the algo-
rithm s

0 (mn3 log n Z (2n)‘) = O(mn/&"1+3og p).
0<s<lgn

This completes the proof of correctness of the time bound,

Worst-case behavior by the algorithm seems very unlikely. Let k be the degree
of the constraint set before some execution of the general step and z and y any
two variables. For each variable 2, distinct from # and y, a new polygon with as
many as 2k sides is intersected into the sy-solution set during the execution of
the general step; thus n— 2 such polygons are intersected. The worst case growth
occurs only if the resulting polygon has 2k(n — 2) sides. This can only happen
if each edge of the second truncates a vertex of the first, each edge of the third
truncates a vertex of the intersection of the first two, and so forth.

The algorithm is fast in the special case that no coefficients other than plus or
minus one occur. In this case, there are never more than four constraints involv-
ing any given pair of variables, so the algorithm requires O(n?) space and O(n?)
time. This is comparable to the time bounds for algorithms which are designed
specifically for this special case,

More generally, if the original coefficients lie in any multiplicative subgroup
of the reals, then the coefficients of any resultants will lie in the same group. This
follows from the expression (8) for the resultants, and the fact that the slope of
the composition of two linear functions is the product of their individual slopes.

We can use this fact to prove that the algorithm is polynomial in many other
cases. For example, suppose that the initial coefficients have absolute values in
the set {1/2,1,2}. After the first execution of the general step, the absolute values
of the coefficients must lie in the set {1/4,1/2,1,2,4}. After the ith execution of
the general step, the absolute values of the base-two logarithms of the absolute
values of the coefficients lie in the set {0,1,2,...,2°+t!}. Thus the total number
of coefficients which can ever appear is bounded by 4 .2M€"+1 < 16n. Since a
polygon can have at most two edges with a given slope, the degree of the set of
constraints is bounded by 32n, and the running time by O(n* log n).

In general, if initially every coefficient’s absolute value can be written in the
form gi'g®...g¥, where the g’s are real numbers and the absolute values of the i’s
are bounded by B, then after one execution of the general step the absolute values
of all new coefficients can be written in the same form, with the absolute values
of the exponents bounded by 2B. After j steps the bound becomes 2?B; hence at
the conclusion of the algorithm every coefficient can be written in the given form
with the exponents bounded by O(nB). Thus no more than O(nB)' coefficients can
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occur. We have proved that if the coefficients are restricted to any finite set, then
the behavior of the algorithm is polynomial in the number of variables. We have
proved that if the coefficients are restricted to any finite set, then the behavior of
the algorithm is polynomial in the number of variables.
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