STORING A SPARSE TABLE

by

Robert Endre Tarjan

STAN-CS-78-683
DECEMBER 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY







Storing a Sparse Table

Robert Endre Tarjanf/

Computer Science Department
Stanford University
Stanford, California 94305

August, 1978

Abstract.

The problem of storing and searching large sparse tables arises in
compiling and in other areas of computer science. The standard technique
for storing such tables is hashing, but hashing has poor worst-case
performance. We consider good worst-case methods for storing a table of
n entries, each an integer between O and N-1 . For dynamic tables,
in which look-ups and table additions are intermixed, the use of a trie
requires 0(kn) storage and allows O(logk(N/n)) worst-case access time,
where k is an arbitrary parameter. For static tables, in which the entire
table is constructed before any look-ups are made, we propose a method
which requires O(n 1é§)11) storage and allows O(Z log N) access time,

where [ is an arbitrary parameter. Choosing [ = log* n gives a method

* .
with O(n) storage and O((log Iﬂ(logn N)) access time.

CR Categories: 4.34, 3.74, 4.12, 5.25

f/ This research was supported in part by National Science Foundation
grant MCS75-22870-A02 and by Office of Naval Research contract
NOOO14-76-C-0688. Reproduction in whole or in part is permitted
for any purpose of the United States government.



1. Introduction.

The following table searching problem arises in many areas of computer
science. Given a universe of N names and an initially empty table, we

wish to be able to perform two operations on the table:

enter (x) : Add name x (and possibly some associated information)

to the table.
lookup(x): Discover whether x 1is present in the table, and if it

is, retrieve the information associated with it.

Compilers require such a table to store names of variables [2]. Methods
for LR parsing [2], sparse Gaussian elimination [6], and finding
equivalent expressions [3], require such a table to store ordered pairs
of integers.

In considering this problem we shall distinguish between the dynamic
case, in which entries and lookups are intermixed, and the static case
in which all entries occur before all lookups. We shall use a random
access machine with uniform cost measure [1] as the computing model,

We assume that the names are integers in the range 0 through py-1 and
that each storage cell in the machine can store an integer of magnitude
o) .

An ideal solution to the table searching problem would be a method
which requires 0(l) time per operation and which does not require
substantially more than 0(n) space, where n is the total number of
entries made in the table. If we use an array of size N to store the
table, each operation requires 0(1) time, but the storage is excessive

if n <N . (Note that the solution to exercise 2.12 in [1] allows



us to avoid initializing the array.) If we use a balanced binary tree
[4] or similar structure to store the table, the storage is O(n) but

each operation requires O0(log n) time. The best method in many practical
situations is the use of a hash table [L4], which requires O(n) space to
store the table and achieves an 0O(1l) time bound per operation on the
average, though not in the worst case.

Although for most practical purposes hashing solves the table lookup
problem, it is of interest to know how far the storage required for the
table can be reduced while maintaining an O(l) worst-case time bound
per table access. Reduction of the storage to O(nﬂ-\ﬁg) , for instance,
would allow storage of a 'fE x“ﬁ; matrix with n entries in O(n+ Jﬁj
space with O(1l) access time. If the method is simple enough we may be
able to beat hashing for some applications. Surprisingly little work
has been done on this problem; see for example [5].

In this paper we examine two good worst-case methods of storing sparse
tables. For the dynamic case, a trie data structure [L4] requires 0(kn)
storage while allowing O(logk(N/n)) access time, where k is a parameter
whose value is chosen in advance. The method supports table deletions as
well as insertions. We discuss this method in Section 2.

In Section % we present a more sophisticated method which handles the

static case. By precomputing the storage scheme before beginning the

*
lookups, the method achieves an O(n log(f) n) —/ storage bound with
0(4 log, ) access time, where [ is a parameter whose value is fixed

- fLony
in advance. By choosing { = log n we get a method

W log(l) = log2 n ; log(l+l) n = 1og(l)(log2 n)

**/1og* n = minfi | log™) n <13 .



with O(n) storage and O((log* n)(logn N)) access time. The method
combines the trie structure discussed in Section 2 with repeated application
of a method for compressing tables by using double displacements. Tpig
double displacement method is an elaboration of a single displacement method
suggested in [2,7] for compressing parsing tables.

In Section 4 we mention some applications of our results and make a

few additional remarks.



2. Storing a Dynamic Table.

To store a dynamic table, we use a trie [ 4] with n-way branching
at the root and k-way branching at every other node, where k > 2 is
an integer whose value is selected in advance. Each node in the trie
contains one table name and either n or k pointers to nodes one level
deeper in the trie. (Some or all of the pointers may be null.) Figure 1
gives an example of such a data structure.

[Figure 1]

To look up a name x 1in the trie, we divide x by n and then
repeatedly by k . We use the successive remainders to specify a search
path in the trie. For instance, to search for 190 in the trie of
Figure 1, we look for 190 in the root. Not finding it, we divide 190
by 8 , leaving 23 with remainder 6 , which leads us to node e
Again not finding 190 , we divide 23 by 4 to get 5 with remainder 3
This leads us to node i , where we find 190 . To insert a name in the
trie, we first search for it. The search leads to an external node, in
which we place a pointer to a new node containing the new name. See
Figure 1.

Our tries differ from those discussed by Knuth [L4 | only in that we
allow the root to have a higher branching factor than the other nodes;
this reduces the time required by the method without increasing the space
bound, but requires that we know n (at least approximately) before we
begin to construct the table. It is straightforward to implement the
method, and we leave the details as an exercise. Note that by choosing
the branching factors to be powers of two, we can replace division by
shifting, and we can allocate space for the pointers out of a single array,

avoiding initialization by using the solution to exercise 2.12 in [1].



The total space required by the method is O(kn) in the worst case.
The time required for either a look-up or an insertion is proportional
to the length of the search path, which is [210g,(N/n) 1 in the worst
case. On the average, the method requires O(1l) look-up and insertion
time, since it is at least as fast (ignoring constant factors) as hashing
with separate chaining [L .

If we add to each trie node a list of the non-null pointers in it,

then our data structure will support deletions. To delete a given table

entry, we first search for the node containing it, say p . We then
locate some external node g which is a descendant of p . We replace
the entry in p by the entry in g and delete node g . If p itself
is an external node, we merely delete p . See Figure 1. With careful

implementation this method requires O(log, (I/n)) time in the worst case

for a deletion.



3. Storing a Static Table.

Section 2 shows that by using tries the worst-case time to access a
table can be decreased as much as desired, at the expense of additional
storage. If the table to be stored is static, i.e., all the entries take
place before all the look-ups, then we can improve the method of Section 2
substantially. We shall show that for an arbitrary value of ¢ , it is
possible to store n entries selected out of N in Of(n 1J¥)11) space

with O0(4 log, N) access time.

For simplicity we shall assume that N is a perfect square, i.e.,

N = m2 for some integer m . We can represent the table to be accessed
by an mxm array A . Position (i,j) in the array corresponds to
name k , where i = _k/m|+1 and j = k mod m + 1 . Position (i,])

contains the information associated with %k 1f k is present in the
table and contains zero if k is absent from the table.

We shall describe a method for compressing A into a smaller
array C , by giving a mapping from positions in A to positions in C
such that no two non-zeros in A are mapped to the same position in C

Oour mapping is defined by a _displacement r(i) for each row i ;

position (i,j) in A is mapped into position r(i)+j in C . The
idea is to overlap the rows of A so that no two non-zeros end up in
the same position. See Figure 2.

[Figure 2]

Each entry in C indicates the position in A (if any) mapped
to that position in C , along with any associated information. To
look up a name k , we compute 1 = Lk/mJ+l and j =k mod m + 1
If C(r(i)+j) contains k , we retrieve the associated information.

If not, we know k is not in the table. The access time with this



method is O(l) ; the storage required is m for the row displacements
plus space proportional to the number of positions in C . Aho and
Ullman [2] and Ziegler [7] advocate this scheme as a way of compressing
parsing tables, but they provide no analysis.

To use this method, we need a way to find a good set of displacements.
Ziegler suggests the following "first-fit" method: Compute the row
displacements for rows 1 through m one-at-a-time. Select as the
row displacement r(i) for row i the smallest value such that no
non-zero in row i1 is mapped to the same position as any non-zero in
a previous row. An even better method, also suggested by Ziegler, is
to sort the rows in decreasing order by their number of non-zeros and
then apply them first-fit. We shall employ this "first-fit decreasing"

method. See Figure 2.

Theorem 1. Suppose the array A has the following "harmonic decay"

property:

(H) For any £ , the number of non-zeros in rows with more than /

non-zeros is at most n/(#+1)

Then every row displacement r(i) computed for A by the first-fit

decreasing method satisfies 0 < r(i) <n .

Proof. For any row i , consider the choice of r(i) . Suppose r(i)

contains [ > 1 non-zeros. By (H) the number of non-zeros in previous
rows is at most n/f . Each such non-zero can block at most [ choices
for r(i) . Altogether at most n choices are blocked, and

0<r(i) <n. O



The following algorithm is a straightforward implementation of the

first-fit decreasing method. Input to the algorithm is a list of the

non-zero positions in A .

First-Fit Decreasing Algorithm.

Step 1: for i := 1 untilm CLOV

I~ AL~

count(i) := 03 list(i) := p od;

for each non-zero position do

A A

add one to count(i); put J in list (i) od;

Step 2: for ¢ := 0 until n do bucket(c) := @ od;
for i := 1 until m do put i in bucket(count(i)) od;

Step 3: for k ;= 0 until n+m-1 do entry (k) := false_ od;

A~~~ AN

for ¢ := n step -1 until 0 do

A
A~~~

for each i in bucket (c) 919\,

A NN

r(i) := 0;

check overlap: for each j in list(i) do

I~~~

if entry(r(i)+j) then

r(i) := r(i)*l; go to check overlap fi od;

for each j in list(i) do

A~~~

entry(r(i)+j) := true od od od;
After Step 1, list(i) is a list of the non-zero columns in row i
and count (i) 1s a count of these non-zeros. Step 2 is a radix sort of
the rows by their number of non-zeros. 1ne initialization in Step 3

assumes that A has harmonic decay, Wwhich is the case in which we shall
be interested. If A does not have harmonic decay, more space must be

allocated for C

Theorem 2. If A has harmonic decay, then the first-fit decreasing

algorithm requires o(npm_) time to compute row displacements for A ,



Proof. Steps 1 and 2 and the initialization in Step 3 require O(n+m)
time. For 1 < i <m , let row i contain ¢, non-zeros. Then the

time to compute the displacement for row i is o@ui) , and the total

m
2
time to compute row displacements is O(, 2 ng,+ m) = O(n™m) . O
i

i=1
If the array A has harmonic decay, then the row displacement
method provides O(l) -time table access while requiring only nt2m-1
storage, not counting storage of the information associated with each
name. If A does not have harmonic decay, we must smooth out the
distribution of non-zeros among the rows of A before computing row
displacements. To accomplish this we apply to A a set of column

displacements c(j) , mapping each position (i,Jj) into a new position

(i+c(J),J) . This transforms A into a new array B with an increased

number of rows (namely max c(j) + m-1 ) but with the same number of

columns. See Figure 3.
[Figure 3]
We choose the column displacements so as to satisfy an exponential
decay condition defined as follows. Let B3 be the array consisting of

the first j shifted columns of A . Let n. be the total number of

non-zeros in B.J . Let n.l:J be the number of non-zeros in %. which
appear in rows of Bj containing more than i non-zercs. Let b be

an arbitrary integer.

2i(2—nj/n)

E.(b): F 0 <1i<5b>D < n,
J( ) or <1< , n < J/

1
Note that Em(Llog2 n)) implies B = B has harmonic decay. To

satisfy Ej(b) for all j , we employ the first-fit method as follows:

10



Compute the displacements for columns 1 through m one-at-a-time.

Select as the column displacement c(j) for column j the smallest
value such that B.J satisfies Ej(b) . See Figure 3.
Theorem 3. The set of column displacements c¢(j) computed by the first

fit method to satisfy Ej(b) for all j is such that

05c(j)5hnlog2b+0(n) for 1 <j<m.

Proof. For any column j , consider the situation when c(j) 1is chosen.
In order for a possible choice of c(j) to violate EjOﬂ , there must

i(2-n./n)
be some i such that By 5 > nj/E J . Since Ej l(b) holds,

i(2-nj_l/n)

Ne. , <0, -/2 Each row of B. with i non-zeros in the
ij-1 — " j-1 J

first j-1 columns and an additional non-zero in column j contributes

i+l to n . Each row of Bj with more than i non-zeros in

1574 19-1
the first j-1 columns and an additional non-zero in column j contributes

1 to n..-n.. Thus there must be more than
g i3-1 .

i(e-n./n) i(E-n._l/n)
( nj/E J - nj-l/2 J /Qi+l) rows in B. with more than

i-1 non-zeros in the first j-1 columns and an additional non-zero in

non-zeros, i>0.

column j . Since column j contains exactly nj_nj—l

We also have



i(2-n./n) i(2-n. ./n)
(nj/z Il n, /2 i1 )/(i+l)

i(n.-n. n
i(2-nj_l/n) ns2 J j_l)/
> (rﬁ_l/z ) n -1 /&i+1)
i(2-n, ) i(n.-n.
> ( nj-l/zl( J—]_/n)) (2 3 j—l)/n 1 )/(l+l)

i(2-n._4n)
(nj_l/zl j_fn )(‘1(nj-nj_l)(ln 2) /n) / (i+1)

i(e-n. ,/n)

. -1 .
(lrLj—l(nj_nj-l) In 2)/ (:2 J n_(1+l))

Consider the set of ordered pairs whose first element is a row of

with more than i-1 non-zeros and whose second element is a non-zero

By

of column j . There are at most ni-lj-l(nj_nj-l)/l such pairs. Each
i(2-n./n)

choice of c(j) for which Ny > nj/E J accounts for more than

i(2-n._l/n)
(i n}d‘njﬂﬁ-l)ln 2) (2 97 n (i+1) Jistinct pairs. Thus

i(2-n./n)
the number of choices of c(j) for which nij > nj/E J is
bounded by
i(2-n. n
n (n,-n, .)2 ( J_l/ )11(i+l)
i-1j-1Y75 7j-1
2
i n, n.-n. In 2
J 1 J J-l)
1(2-n,_l/n)
n. 42 J n (i+l)
J- by E._4(b)
= (i-1 (2-n l,n) J-
.2
2 i n, In 2
j-1

12



(E-nj-l/n) .
< 2 . n i+l < (b log, e)n(i+l)/i2
B i% In 2

Summing over i, we find that at most
b

2 (& Log, e)n(i+l)/i2 <(k log2 e)n(ln b + 1 + n2/6)
i=1

< lmlog2 b + O(n

choices of c(j) are blocked, and 0 < c(j) < M1]pg2 b + O0(n) . Od

It is not hard to implement the first-fit method so that it computes
. 2 .
column displacements to satisfy E.(b) for all j in O(n™*m) time.
We leave the details to the reader.
By combining row and column displacements, we obtain the following

table storage scheme.

Table Construction.

Step 1. Construct a set of column displacements c(j) for array A
by using the first-fit method to satisfy Ej(\_log2 ny) for
all j . Compute the transformed array B .

Step 2. Construct a set of row displacements r(i) for B by using
the first-fit decreasing method. Construct the transformed

array C

Table Look-up.

Let k be the name to be accessed. Compute i = |k/m |+l ,
j=%kmodm+ 1, and k* = r(i+c(j))+j . If C(k*) contains k ,

retrieve the associated information. If not, k is not in the table.

13



With this method, the access time is 0(l1) , the storage is m-
for the column displacements plus Ln log2 log2 n+m+ O(n) for the
row displacements (by Theorem %) plus n+m-1 for C (by Theorem 1),
not including space required to store the information associated with
each name. The total space is thus kLn log2 logg n+3m + O(n) . The
time required to construct the storage scheme is Oh@+m).

If we are willing to allow a little slower access time, we can
further decrease the space required to store the table, We construct
not Jjust one set of row and column displacements, but several. Each
set of displacements is used to compress a different part of the table.
To look up a name, we use each set of row and column displacements in
turn until either finding the name or running out of mappings to try.
The algorithm, described below, uses a parameter [ whose value

determines the time-space trade-off.

Table Construction.

(0
Initialization. Let bl = Flog nl and for 2 <h< ¢,

b
h-1
let bh = 2 . Let Al

stored. For h from 1 to [ , repeat the following steps.

be an array representing the table to be

Step 1. Construct a set of column displacements ch(j) for Ah
by using the first-fit method to satisfy Ejﬂﬁﬁ for all j
Compute the transformed array Bh .

Step 2. For each row i of Bh containing more than bh
non-zeros, let rh(i) = A . Construct a set of row displacements
rh(i) for the remaining rows of Bh (those containing at

most bh non-zeros) by using the first-fit method. Construct

the transformed array Ch for these rows.

1k



Step 3. Form a new array Ah*l by replacing with a zero each
non-zero in Ah mapped to a position in Cp . (The non-zeros

replaced are exactly those mapped into rows of Bh with at

most bh non-zeros.)

Table Look-up.

Let k be the name to be accessed. Compute i = |k/mj+1l and

j=kmodm+1 . Let h be minimum such that rhﬁ&ch(j))¢ A
*

Compute k* = ﬁ4i+chtn)+j . If Chﬂc) contains k , retrieve

the associated information. Otherwise, k is not in the table.

2 .
This multiple displacement method requires O(n”+ m) time to
construct the table and allows Of(1l) access time. The next theorem

bounds the space required.

Lo (L)
Theorem 4. The multiple displacement method requires ©O(n 1og n+ fm)

space to store the table.

(4-h+1) n

Proof. For _1<h< b, >[log In particular

b£ > l'log2 n] . Furthermore, since B, satisfies Emaﬁﬂ » at most
P ini b
n/2 non-zeros appear in rows of By ~containing more than

b
. h
non-zeros. This means 4, , contains at most n/2 ~ = n/b,,, non-zeros.

The storage required for the first set of displacements is m for
(#+1) +m for th 1
the row displacements plus O(n log n)+m for the column
displacements (by Theorem 3) plus O(n)+m for Cl . For 2 <h <1,
the storage required for the h-th set of displacements is m for the

row displacements plus O((n/bh)lpg bh) +m for the column displacements

15



plus O(n/bh)+m for C, . Summing over h we find that the total

(4+1)

storage is O(n log n + /m) . O

We now combine the multiple displacement method with the tree
structure of Section 2 to obtain a static table storage method good
for arbitrary values of n and N . Our first step is to construct
a trie as in Section 2 with k = [/h|-1 . The trie has O(lOgn N)
depth and contains n+(n—1)(|_«/;1-_| -1) < nB/2 pointers, of which
only n-1 are non-null. We can regard the pointers in this trie as
consisting of a table of n-1 entries selected from nB/2 possible
names; O(logn N) look-ups of pointers in this table are required
to look up an entry in the original table. We use the multiple
displacement scheme with m = l'n5/l;1 to store the pointer table.
()

We thus obtain a method which requires 0(n log storage space

-and allows O(f lOgn N) access time. If m grows only polynomially
with n, the access time is 0(f) . Choosing / = log* n gives
an O(n) -space method with O((log* n)(logn N)) access time.

16



4.  Remarks.

There are several possible applications of our table storage schemes.
The dynamic algorithm of Section 2 can be used to keep track of the
fill-in when carrying out sparse Gaussian elimination [6] and to keep
track of signatures when finding equivalent expressions [3]. The static
algorithm of Section 3 can be used to store tables for LR parsing [2,7].

In all these applications N = OOf)

Although we have not studied

the practicality of our methods, they are simple enough to be competitive
with hashing in some situations. Indeed, the row displacement method
described in Section 3 has been proposed as a practical way to store
parsing tables [2,7]. It is important to note that our bounds are
worst-case and that the worst cases are unlikely in practice.

Our algorithms make use of array storage; they cannot be implemented
using only list structures as storage. Thus they indicate a difference
in power between random access machines and pointer machines. They also
suggest a time-space trade-off for the table storage problem, at least
in the dynamic case. Whether such a time-space trade-off exists is a
question deserving further study. For the static case, an affirmative
answer to the following question would imply the existence of an
O(n) -space, O(logn N) -access time storage scheme:

Is there a constant ¢ such that, for any mym array A

containing n non-zeros, there is a set of column displacements

selected from {0,1,2,...,cn} for which the transformed array B

has harmonic decay?

17



Acknowledgment.

My thanks to Yossi Shiloach for extensive discussions which contributed

greatly to the ideas presented here.

18



References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 197L.

[2] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-
Wesley, Reading, Mass., 1977.

(3] P. J. Downey, R. Sethi, and R. E. Tarjan, "Variations on the common

subeqression problem," submitted to Journal ACM.

[L] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting

and Searching, Addison-Wesley, Reading, Mass., 1973.

[5] R. Sprugnoli, "Perfect hashing functions: a single probe retrieving
method for static sets," Comm. ACM 20 (1977), 841-849,

[6] R. E. Tarjan, "Graph theory and Gaussian elimination," Sparse Matrix

Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,
New York (1976), 3-22.

[7] S. F. Zeigler, "Smaller faster table driven parser," unpublished

manuscript (1977).

19






* Y °Spou o39Tep
pue ‘ .1 AR © utT (QGT ©ooerdex ‘ y Aes ‘/ o JO JUPPUSOSSP B ST UYOTUYM SPOU TRUIDIXS

ue 93007 Y © opou UT 3T 93007 oM ‘ (GT ©38T°p O  'POILOTPUT SB SPOU MSBU B JISSUT
~ € « 0¢ buratb ‘ y Aq

€ 9
ATpejeadsx pue g Aq (¢ 9PTATP &M ‘ (¢ IISSUT OL ° GGZ ‘¢oz ‘06T‘PLT 0GT ‘OST ‘18 ¢ ¢

oM SI9UM ‘ T S9pouU 01 pPeST £ pue 9 SsIspuTrewsdlI SYL oOT 0

SOTIJUS pue ‘sIsymesTe butyoueiq Aem-y ‘3001 oyl e burtyoueiq Aem-8 4 TG = W YITM 2TI3 ¥ ‘1 2anbT4
FTT°T T,
T U
¢ |oétT HlT
] r ) q
1 i
¢ k ﬁ 0¢T ¢oc 0¢T 3

o4
o
[ o
[ =
M

20




1 - * - - %
2 * * - * -
5 * - * -~ -
L - - - * -
5 * - - - *
A
* - - * r(l) =1
* - * - r2) =0
* - * - _I r(3) = L
| - - r(h)= 5
- - - ] =5=1
5 1 8 10 L4 12 20 18 - - 2%
C
Figure 2. Row displacements computed for an array using "first-fit

decreasing" strategy. Asterisks denote non-zeros;

dashes denote zeros. Each position in array C contains
the position in A (if any) mapped to that position

in C . Positions in A are numbered row-by-row starting
from zero. Row displacements are computed in the order
271)3)5)h‘.

21



* *
* * *
A * *
*
* *
— I
* - - - -
* - x - -
- - - - - c(l) =0
¥ - - - * C(E) =5
B
-l - - - c(3) =0
* - - - C(L\) = 6
- - * - c(5) =0
- - * -
Figure 3. Column displacements computed using first-fit to satisfy

Ej<Llog2 n|) for all j . This constraint requires no
rows with more than one non-zero in B2 , at most one
such row in B and_Bh , and at most two such rows

3
in B

5

22






