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Abstract.

Foursteplength algorithms are presented for minimizing a class

of nondifferentiable functions which includes functions arising from

4 and I approximation problems and penalty functions arising

from constrained optimization problems. Two algorithms are given

for the case when derivatives are avallable wherever they exist

and two for the case when they are not available. We take the view

that although a simple steplength algorithm may be all that 1s required

to meet convergence criteria for the overall algorithm, from the point

of view of efficiency 1t 1s important that the step achieve as large

a reduction in the function value as possible, given a certain limit

on the effort to be expanded. The algorithms include the facility

for varying this limit, producing anything from an algorithm requiring

a single function evaluation to one doing an exact linear search.

They are based on univariate minimization algorithms which we present

first. These are normally at least quadratically convergent when

derivatives are used and superlinearly convergent otherwise, regardless

- of whether or not the function 1s differentiable at the minimum.
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1. Introduction.

Descent methods for minimizing a function F(x), x ¢ EY , normally

construct a sequence of estimates rx Es to the minimum such that

(k+1)  _(k)+ (x) (x)
X = X od Pp

with

+

(x) | (x)
The vector p 1s known as the direction of search and g as

the steplength. Gill and Murray [1] describe a reliable and efficient

algorithm for-determining the steplength o (K) in the case that F(x)

1s continuously differentiable. In this report we show how to construct

a steplength algorithm that 1s equally efficient when minimizing certain

classes of nondifferentiable functions.

We will at first restrict ourselves to the ~z35e that F(x) is

either

m

Fg (x) > max (0,f, (x))
i=1

or (1.1)

Fy (x) = max f. (x)
l<i<m t

where the functions {f.3 are of the form

f, oR SET
1

and are continuously differentiable. We assume that every time the
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function F(x) is evaluated the values £1 (x),0. f(x) are also
made available. In Section5 we will indicate how the algorithms

developed for Fg (x) and Fy (x) could be modified to make them

applicable to a wider class of functions. Basically, the ideas to

be described here could be modified to construct a steplength algorithm

for any nondifferentiable function F(x) with the following properties:

LF :T c E' -» Br is continuous on T.

(2) The directional derivative F!' (x) (n) =

lim : (F(x + nn) - fF)
h-0

exists for all h 4 0 everywhere on [ .

(3) Any point z where the derivative FF! (z) does not exist

satisfies an equation

old) (z) = o

for some j , 1< 3 < J , where the functions CA CO
r C EY 5 E are known and are continuously differentiable.

In order to prove convergence for descent methods for multivariate

minimization the steplength must satisfy certain criteria. Such criteria

do not 1n general define a unique point, but a spectrum of values.

Although all points in a particular range may satisfy the criteria equally

well, they are not necessarily all of equal merit with regard to the

efficiency of the method. Usually if two steps both meet the convergence

criteria, the one that achieves the greatest reduction in F(x) is to be

preferred. The better the step, in this sense, the fewer iterations

usually required to obtain a satisfactory approximation to the minimum.

The question we face, therefore, 1n designing a steplength algorithm 1s

not merely how to choose a step which satisfies the required criteria for

2



convergence, but of the many that do how do we choose a "good" step.

At the same time, however, how good a step we can choose depends on

how much effort we are willing to expend, and hence all the algorithms

we present contain the facility for varying this limit on the expense,

producing anything from an algorithm requiring a single function

evaluation to one doing an exact linear search.

2. Notation.

As explained in the last section, we shall initially be concerned

with minimizing functions of the form

m

Fg (x) = max (0,£, (x))
h i=1

or

F(x) = max ff. (x)
1 <1i<m +

where the functions £. (x) are continuously differentiable on gg?

We denote the gradient vectors of £, (x) by v £, (x) and define

glx) = vf, (x) , in the case that F = Fg ,
i: £,(x) > 0

i

or

g(x) = Vv £5 (x) , where J(x) 1s the smallest index

such that F(x) = f. (x) ®) , 1n the case that F = F_ .JX M

Note that g(x) is the gradient of F(x) yherever the latter is defined,

and 1s one of the directional derivatives of F(x) at the points where

3
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the gradient 1s not defined.

Let x be the current iterate and p be the direction of search

along which the ste-p 1s to be taken. We are now omitting the super-

script k for simplicity. Then it 1s convenient to write

£. (a) = f(x + op), 1 =1,...,m

and

Fy) = F(x + o D) .

It should always be clear form the context whether we are thinking of

t or F as a function of a vector or of a steplength value y . Then
mn
wm

Flog) = max (0, f(a) in the case that F = F
i=1

or (2.1)

Flo) = max ff. (a) if F=F
. 1 M

1 <1i<m

We denote the derivative of £, () , which 1s the projected gradient

of f. (x + p) along p , by

r

£1 (g) =v £, (x + oP) P
1 1

1

and-denote the left and right derivatives of F(a) by F (gy) and
|

F, (or) where
1 + -

F (y) = lim Fy n)_ Fo)
h + 0O-

t

and F (o) is analagously defined.

4
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We also define

1 T

F (og) = gx + o p) p.

Thus

t !

F (qo) = fr, (or) , 1n the case that F = Fe

i: £(a)> 0 (2.2)
or

4 !

F (a) = fF, )* J (a) ©

where j(g) is the smallest index such that

F = . if F= .(a) £5 (¢) (a) 1 Fy

Furthermore, Ft (gy) is the derivative of F(y) whereverthe latter is

defined and otherwise is either the left or the right derivative of Fly).

le also define F"(y)to be the second derivative of F(y) where

1t exists.

A point where the derivative of F(y) does not exist will be

referred to as a point of derivative discontinuity, or just a discontinuity

for short. Note that in the case F = Fo the discontinuities occur at

) the zeros of the SC In the case F = Fu s the discontinuities z

satisfy F(z) = £, (z) = £, (2) for some i 4 k .

The term "convergence rate" will be used to mean the R-order of

convergence in the sense of Ortega and Rheinboldt [2,p.290] . In each of

our theorems, the corresponding stronger Q-order result also follows

except in pathological cases, but as pointed out by Brent [3,p.35], it is

often necessary to introduce rather artificial conditions to ensure this.

Thus, for simplicity, we use only the R-order.
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3, Univariate Minimization Methods.

In this section we present a number of algorithms to find a local

minimum of the univariate function F(a) , Where Fly) 1s defined by

(2.1). There 1s no loss of generality 1f we assume F'(0) < 0 and

that there exists a local minimum > > 0 . This 1s a valid problem in

its own right, but in developing our algorithms we shall bear in mind

their use for constructing steplength algorithms for minimizing functions

of several variables. This aspect of their use will be discussed in

Section 4 .

The inappropriateness of using an algorithm which assumes Fig)

1s continuously differentiable can be seen by examining Figure 1

Efficient methods for functions with continuous derivatives usually

determine o iteratively by successively approximating F(a) by a

cubic or quadratic polynomial and taking as the next approximation to

: the minimum of this approximating polynomial. The approximating

polynomialis matched to F(x) at the best known estimates tog .

It 1s quite clear in case (111) that the minimum of an approximating

polynomial may bear no relationship to J. In case (ii) the approach

is valid only 1f the approximating points all lie on the central portion

of the curve. Such a situation 1s unlikely to be true initially when

only a poor approximation to y 1s known. Consequently, the initial

performance of such algorithms 1s poor even when the solution is not

a discontinuity. It will be seen that from the point of view of step-

length algorithms it 1s the initial performance which 1s crucial.

The two types of minima possible for functions of the type (2.1)

illustrated in Figure 1 are emphasized in the statement of the necessary

6



Flo) Na
(1)

o

A continuously differentiable function.

(ii)
«

¥*

A function of the type (2.1) but with ¢ not a discontinuity.

Fla) No
(iii)

o

A function of the type (2.1) with o¢ a discontinuity.

FIGURE 1
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and sufficient conditions for g to be a minimum of Fla) :

Necessary condition: Either F! (&) = 0 with PF" (a) non-negative

1f it exists , or 3) 1s a derivative discontinuity of

Flo) with F'(@) < 0 and FL(&) > 0 .

Sufficient condition: Either F! (&) = 0 and F" (&) exists and

1s positive, or 5 is a derivative discontinuity of F(y) with

1 (gy) < 0 and F' (4) > 0 .

Two algorithms are described (one with low overhead and one with

higher overhead) with two variants (one which utilizes derivatives and

one which does not). The essential feature of all the algorithms is that

at each iteration the option of converging to either type of minimum 1s

kept open. The step taken may be an estimate of either type, depending

on which is considered more likely and/or prudent. When 2 is not a

discontinuity the higher overhead algorithms are comparable in efficiency

(in terms of the number of function evaluations) to the algorithms of

[1] applied to just the continuously differentiable function which coincides

with F(a) near o . When o 1s a discontinuity the algorithms are

comparable in efficiency to efficient rootfinding algorithms applied

directly to the function of which 0 is a root.

~ Before describing the new algorithm in detail we shall review the

algorithms of [1]. It is worth noting that because of the safeguards

built into them they will work even if Flo) is not differentiable

although for the reasons mentioned earlier their performance will usually

be poor.

8



3.1 The Differentiable Case.

Here we present the basic ideas of the algorithms of Gill and Murray

[1] for the univariate minimization problem when F(ow) is differentiable.

These 1deas will be needed in Section 3.2. We do not make any attempt to

present all the details of the algorithms and refer the reader to [1] for

these.

We assume that at each iteration of the minimization we know an

interval [a,b] in which the minimum o is knownto lie. The interval

[a,b] is called the interval of uncertainty and the points a andb

are sald to bracket the minimum. (Initially a 1s zero, butb is un-

known. This situation 1s handled later).

Two cases—-are treated, the case where both the function values Flo)

and the derivatives F'(y) are used, and the case where the function

values only are used. The latter case may occur either because the

derivatives are not available, or because they are relativelyexpensive

to compute. In the first case we assume that two points x and w are

also known. The point x 1s the lowest point obtained so far, (i.e.

F(x) < Fg) for any value of o at which the function has been evaluated),

and W 1s either the second lowest or the last evaluation point. There

- are four possible configurations for x, w, a and b

(1) X =a and w<a

(i1) x=a and w=b

(iii) x=b and w = a (3.1)
(iv) x=b and w > Db .

In the case that the derivatives are not used, we assume that three points

X, W and v are known, where XxX is the lowest point obtained so far,

W 1s the second lowest, and v is either the third lowest or else is the

9
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most recent point. Then a < x < b and the possible values for w

and v are :

(1) Ww =a and vv< a

(ii) w=a and v=D (3.2)

(111) w = Db and Vv =a

(iv> wW=Db and wv >Db

The basic strategy of the algorithm is to use successive polynomial

interpolation with safeguards. (We use interpolation to mean actually

either extrapolation or interpolation). Thus at each iteration, a new

point 4 1s chosen-as the minimum of a polynomial approximating F(a)

at some of the points already evaluated. Provided #} satisfies certain

conditions, u 1s set to 4 , but otherwise the point 1s rejected and

U 1s set to something different. The function is then evaluated at u .

In the case that derivatives are used, the polynomial 1s a cubic chosen

to agree in both function value and derivative with Fla) and F' (a) at

the points x and w , and in the case that derivatives are not used,

a quadratic is chosen to agree in function value with F(y) at the

'points x,w andv . Then u is set to A except 1n the following

situations:

(1) a lies outside the interval of uncertainty [a,b]. This

normally only occurs in cases (i) or (iv) of (3.1) or (3.2)

when the step from x to A 1s an extrapolation step.

However, because of round-off error, it could occur even 1in

an interpolation step. Whenever 4 does not lie in[a,b]

10
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it is rejected and u is instead set to a point u

obtained by a function comparison method which 1s guaranteed

to lie in [a,b] . The function comparison method used is

somewhat complicated and will not be described here.

(11) a 1s obtained by extrapolation and although 0 lies in [a,b],

4 lies between 4 and x . In this case too the point is

rejected and u is set to u instead. By extrapolation we

mean that case (i) or (iv) applies in (3.1). Justifying this

would require going into details about the function comparison

method, but basically if i 1s not close to the best two points

but close to a known poor point some change would seem warranted.

(111) The step from x to a 1s greater in magnitude than half of

the step taken at the iteration before last. Here too u is

instead set to u . The purpose of this restriction is to

ensure that the algorithm does not produce a sequence of points

oscillating back and forth at each iteration and reducing the

interval of uncertainty by very little.

(1v) The point A lies too near one of the points already evaluated.

In this case u is instead set to another point which is

separated from those already evaluated by at least a certain

tolerance to0l(x) defined by

tol (¢) = e lal + (3.3)

11
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The function is then evaluated at u and the various points are

updated as follows:

Case with derivatives:

If Flu) < F(x) then

if Fru) < 0 then a « u otherwise b « u

weXxXx andx « u

otherwise

if u<x then a « u otherwise Db ¢ u

weu.

Case without derivatives:

If Fu) < F(x) then

if u>x then a «x otherwise b « Xx

Vew, We x and x «uu

otherwise

if u<gx then a + u otherwise b «u

if Flu)< Fw) then v ¢« w and w « u

otherwise V « u .

This. completes the description of one iteration of the algorithm.

12



=

5.1.1. The initial strategy.

The initial case 1s normally handled by specifying in advance

a step length ay to try first. This then gives two initial values

0 and Ug for x and w . In the case without derivatives, the

second step must also be handled specially, using only the two points

for the polynomial approximation, but we do not consider the details

here. The point a is initially set to zero, but it may be several

iterations before we determine an upper bound on the interval of un-

certainty. The strategy in this case 1s to use polynomial extrapolation,

just as in the case where b is known and situation (i) in (3.1) or

(3.2) applies, but with u being set to 4 except 1n the following

cases : h

(i) the step from x to 4 goes across u , where u is

| obtained by taking a step from x which is four times the

step taken in the previous iteration. Here u is set to a .

(11) The point 4 lies too close to or beyond a fixed upper bound

on ¢ beyond which we are not permitted to evaluate the

function. Here u is set to a permissable point instead.

) The function 1s then evaluated at the new point u and the other points

are updated as 1n the case that b is known.

3.1.2. Convergence Criteria.

We complete the basic description of the algorithms by specifying

that they terminate when the minimum 1s bracketed and

b - a < 2 tol(x) (case with derivatives)

or max (x-a,b-x) < 2 tol(x) (case without derivatives)

where tol(x) is defined by (3.3).

15
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5.1.5. Convergence Results.

Here we state the convergence results for what we may call the

theoretical procedures associated with the algorithms described above.

By this we mean the algorithms with exact arithmetic applied to the

exact function F(w) , with the tolerances ¢ and ft set to zero.

Since this might produce a zero step from x to 4 , we also specify

that if this happens u is instead set to u as defined by the function

comparison method. We assume that an upper bound b has been found

on the interval of uncertainty.

We also assume that Fly) is continuous on [0,b]. (We can obtain

convergence results even 1f Flo) 1s not differentiable, althought not

the same rate of convergence). Let us define a stationary-inflection

point as a point o , where F'{y) exists and equals zero, and which

is neither a local maximum nor a local minimum of F(a). We also define

a‘ generalized stationary-inflection point as a point ¢ where either

F! (a) = 0 or F'(y) = 0 and which is neither a local maximum nor a

local minimum of F(y) . Note that by a local minimum we mean either a

weak or a strong local minimum, i.e. a point " such that 3 &§ > 0 s.tT.

Fer) > F (5) for lo a < 6. We then have the following result:

Theorem 1.

Let {uw} be the sequence of points wu generated by the

theoretical procedures. Then in both the cases with and without derivatives

the sequence {u,} converges to a point 5 which 1s either a local
minimum or a generalized stationary-inflection point of Flo) on [0,0] .

Furthermore, suppose that F (g) 1s positive, u, # o for all k , and
F''1 (@) is Lipschitz continuous on[a,b] as defined by[2,p.63].

Then the asymptotic convergence rate 1s quadratic, in the case with

derivatives, and is superlinear with order 1.324..., in the case without

14



uN

derivatives.

We note that it 1s possible to modify the theoretical algorithm in

order to ensure convergence to a local minimum. In practice this additional

complication 1s not warranted since numerically one cannot distinguish

between a stationary point and a minimum.

In order to prove the theorem, we need several lemmas. In the

following, we use Uy , x, , w, , ay , b, , etc. to denote the

various points at iteration k .

Lemma 1.

Suppose that the sequence of points fu, } contains a subsequence

ay} with the property that uy _ wy for all k , i.e. all the points
in the subsequence are generated by the function comparison method. Then

the sequence {uw ] converges to a point . , and gis a local minimum
or generalized stationary inflection point (LM or GSIP).

Proof.

The proof that the sequence converges follows from a property of the

function comparison method that at each such step the length of the inter-

val of uncertainty is multiplied by § where 0O0< §< 1 . The rules for

) updating the end points of the interval of uncertainty ensure that it

always contains a LM or GSIP, so we have 8 2 bs u, a , and - is a IM
or GSIP.

Lemma 2.

Suppose 3 K such that Uy 1s set to the point a for all
k >K , i.e. ultimately no function comparison steps are needed. Then the

sequence fu, } converges to a limit qo Also x, a and wy -» a .

15
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Proof.

We must have that for all k > K :

lw - x | <3 | - |hoSS LES TiOB >

as otherwise the point u,_ would be rejected. Assume without loss of

generality that K is even. Then

1 k - K
pe = Xl SG) 2 Dug oxy

and

kK
1, 2

User © Fon| < GE) Ura = %al

For simplicity we write

k
1,2

lw,- x| < GF c

K

where C = 2 ° max flu, - x |, lu Sx, |).K K' 7 "TK+1 K+1

Since x, 1s the lowest point so far and uw is the new point, we always

have either x, = Ww 4s OF x, = X11 Thus either there exists J

such that Xp = xJ for k > J , i.e. no subsequent point Ww is lower than

Xy 5 OF there is a subsequence (x. } such thatx. = u. for all k .
Jie Ix Jt

In the former case Uy + X; sr SO assume the latter. Consider Wg wo

Let J be the largest element of the subsequence such that Jy < k , 1.e.

X FX To “Ty If Jr = k » 1 , l1.e.
X41 ms Uy , then

k+1

172
ugg - wl=lu, xa < @ co

16



Otherwise Xl *, and we have

| - | < | - X + | -in < : X.Yel % Ukr1 3s WU 3, |

— +- -< Toppy = Ben [lay = xl
k
2

1
< 2.<e.3) oc

k
= - 1

1, 2

Using this result, we have that for any 1 >k

IEl LF LI FIR DUP IPP LN
k
= -1

1, 2 1 1
Be FSF SEL LD< @) c brs ty

k
— 2

1, 2

Therefore for all § there exists M such that for i,k >V, a, - w | < § ,

and hence {uw} is a Cauchy sequence and converges. Clearly {x} and

w, } also converge to the same point.
The following lemma 1s presented without proof.

Lemma 3.

®

If u is not a ILM or GSIP of Fly) , then there exists 6 > 0 such

* *

that the interval (u - 6, U + §) contains no LM or GSIP and such that

cubic interpolation with at least one of the two points in the interval,

or quadratic interpolation with at least two of the three points in the

interval, 1s good enough that the minimum of the approximating polynomial

lies outside the interval.

17
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The following lemma 1s presented 1n a more general form than

needed here so that it can be used in the next section.

Lemma 4.

Assume that there 1s a subsequence (uy 3 such that each point
in the subsequence 1s generated by polynomial approximation to F(a)

with, 1n the cubic case, 3, as one of the two points where the fit
is made, or, 1n the quadratic case, Xi and Wak as two of the three

points. Then, if tu, } ) {x} and {w, all converge to i , ¢ is
a LM or GSIP of Fly) .

Proof.

Let 6 be that of Lemma 3. Since the sequences all converge to

5 , there exists K- such that Wes X and Ww, are all separated from
a by at most & , for all k >» K. Therefore the points used for the

fit ultimately lie within § of 2 . Thus the result follows, since

otherwise we can apply Lemma 5 to show that the new point Uy satisfies

oy - a] > & , which 1s a contradiction.
Proof of Theorem 1.

Either there 1s a subsequence ay J all generated from function
comparison steps, or there exists K such that uy = tN for k>K.
In the former case the first part of the result follows from Lemma 1.

In the second case we can apply Lemmas 2 and 4 to conclude that Ue + 5 ,
and. 2 is a LM or GSIP. This completes the proof of the first part of

the theorem, and we write a .

If the hypotheses of the second part of the theorem hold, we can

conclude that ultimately the points will be generated by successive

polynomial approximation alone. The superlinear convergence of order

1.324... for successive quadratic interpolation was shown by Jarratt [4]

18
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in 1967, and by Kowalik and Osborne [5, p.20] in 1968. In 1973,

Brent | 2,p.35] showed that their results for the Q-order (see Section 2)

were not true in certain pathological cases and showed how to introduce

extra assumptions to avoid these. He also showed that the R-order is

at least 1.324... in all cases. The rate of convergence for successive

cubic interpolation was shown to be quadratic (again except 1n patho-

logical cases) by Overton[6], using the symbolic manipulation system

MACSYMA [7]. This was independently rediscovered (also using MACSYMA)

and a considerably simplified proof for the R-order was presented by

Bjorstad and Nocedal [8].

Clearly the safeguards (1) to (111i) will no longer be involved

once the quadratic or superlinear convergence sets in. This completes the

proof of the theorem.

| Note that it does not make sense to talk about just any local

minimum of the function (0) which approximates F(g) by calculating

it on a finite machine, since such a function is really just a step.-function

and may have a lot of local minima very close together (see Brent [3,p.63]).

Instead, we can say that the algorithm produces an approximate local

; minimum in the following sense:

Theorem 2.

The algorithm appliedto the computed function ? (a) using the

(computed) derivatives 5 (0) , terminates with points a and b such
that a < b , and

(1) fr (a) < 0 and Pr (p) > 0 or Pr (a) < O and ?(b) > ?(a)

or frp) > 0 and ?(a) > Pb)

19
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a

and

(ii) tol (x) <b -a< 2 tol(x)

(where x = a if F(a) < Fb) and otherwise x = b) ,

Theorem 3.

The algorithm appliedto the computed function Po) without

derivatives terminates with points a, x and b such that a < x < Db

and

(i) Pa)> Px) and fk)< fo)

(11) tol (x) < max (x-a, b-x) <2 tol(x) .

As long as the tolerances ¢ andtr are chosen so that tol &) is

a reasonable minimum distance to require between two points before

comparing their function values, then the above 1s as near as we can get

to giving conditions for a "reasonable" local minimum to satisfy. The

results are easily verified by examining the algorithm.

3.2. The Nor-differentiable Case.

In this section we describe the changes that must be made to the

algorithm described in Section 3.1 to create our new algorithm for uni-

variate minimization when F(x)is given by (2.1). It is necessary to

modify only one part of the algorithm, namely the method used for

A A

selecting the point u . The safeguards which when necessary reject u

and set u to another point, and the method for updating the points

a,b,x,w and v, are all left unchanged. As mentioned earlier, the key

*

strategy of the new algorithm 1s to try to recognize whether o 1s a

discontinuity or not, and to then select 4 accordingly as either a
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direct estimate of the discontinuity, or as an estimate of the minimum

of a polynomial approximating Fla) .

Several different cases are treated. We have already noted that

we are concerned with the two possibilities Flo) = Fg (a ) and

Flo) = Fypla) as defined by (2.1) . These will both be described
together as far as possible. We also consider both the case where

the function values f£. (a) and the derivatives £1 (a) are used and
the case where function values only are used. Recall that we have

extended the definition of a derivative by defining FF (y) in (2.2) .

For simplicity we initially confine our attention to the case with

derivatives. Finally we describe two versions of the algorithm, a low

overhead version and a higher overhead version. The latter makes much

more use of all the information known but requires more operations to

choose the new point 4 . The two versions have similar asymptotic

convergence properties but the higher overhead version should be more

efficient in terms of the number of function evaluations required to

obtain some specified accuracy (especially for low accuracy requirements).

The difference between the two methods 1s likely to be more significant

the higher the number of discontinuities 1s. In most applications the

computer time 1s dominated by the time spent evaluating the function,

so the higher overhead version 1s expected to be much the more useful in

. practice. However, for simplicity we describe the low overhead version

first.

3.2.1 The Low Overhead Version.

As in Section 3.1, we assume that at each iteration we have an

interval of uncertainty [a,b] and points x and w satisfying (3.1).

The process for determining a may be divided into a number of parts:
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(1) The minimum and maximum discontinuities contained in the interval

[a,b] are estimated. In the case that F = Fo this 1s done as follows.

The function values £, (a) and £, (b) are compared, for each 1 from

l tom . If for some 1 , £, (a) and £, (b) have opposite signs then

there 1s a discontinuity between a and b given by the zero of £, (a).

This 1s estimated by the Newton step from x . If Zs lies outside

[a,b] it is replaced by the secant estimate (a f. (b) = b £. (a)) /

(£, (b) - £. (a) which is guaranteed to lie in [a,b] . After this has

been done for all 1 , Zr is set to the minimum of the Zs and Zn

1s set to the maximum (it 1s not necessary to store the 1; 5 Zp and

Zp can be updated as each Zs 1s computed). If there were no dis-

continuities located between a and b , i.e. £. (a) and £. (b) had

the same sign in every case, Zr is set to b and Zp is set to a .

Note that comparing £. (a) and £,(b) for all 1 will identify all the

discontinuities between a and b 1f the functions £ are sufficiently

near linear, although it may not identify them all in general, since a

function may have a zero in [a,b] and still have the same sign at a

and b .

In the case that F = For the discontinuities z are no longer

given by £,(z) = 0 , but by f(z) = f(z) = F(z) for some 1 # k .

The estimate 21 of the minimum discontinuity 1s then made as follows.

Let ; (a) be as defined in (2.2), i.e. normally j(a) 1s the index of the

only function which has the largest value at a . Then for each i # J (a)

the zero of £050 (0) - £, (a) 1s estimated by the Newton step from a ,

i.e. yg.) is set to a - [£5 (5) (8) ~ £.(a)]/ [£3 (a) (a) - £!(a)] :
Note that there 1s no reason to suppose that yp) lies in [a,b]. Then
k. and Z, are defined by
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2. = min 7 y > a} = yi!
(a) N

If none of the y, = are greater than a then z; 1s set to b and kK.

1s undefined. The estimate Zn of the maximum discontinuity and the index

ko are similarly defined by looking at the Newton step from b to the zero

of tL, (pb) (a) - £. (a) for each i . Note that it 1s not necessary to store
all the yi) or yo) . Figure 2 illustrates the process.

However, 1f F = FM , and k = J(b) and kn = j(a), indicating that

there is only one discontinuity in [a,b], then in all subsequent computations

of fi part (i) is omitted and Zp and Zp are set to z as defined below.
The reason for this 1s simply to avoid estimating the zeros of all the other

fs (o) @) - f. (a) and £5 (p) lo) - £. (a) when 1t 1s unlikely that any of them
will have any relevance. Note that this is the only place in the algorithm

where any information need be retained from previous iterations other than

a,b,x,w and the function and derivative values.

(11) A point z 1s defined as follows. In the case F = Fes 7 is

defined to be the average of all the estimates Z, of the discontinuities

located in [a,b]. In the case F = FM, z is set to an estimate of the zero

of f. (2)" £ (0) which must lie in [a,b]. The same technique used in (i)

for estimating the zero of £. (a) 1s used, 1.e. first the Newton estimate

from x is tried, and if this lies outside [a,b] it is replaced by the

secant estimate using a and b . This is illustrated in Figure 3.

If there do not appear to be any discontinuities in [a,b], i.e. F = Fo

and none of the f. (o) differ in sign at a and b , or F=F, and

ja) = 9(b) , then z is undefined. If F = F, and z is defined then

we insist that z; < z < z, by setting z. = min(z_, z) and

Zp _ max (zp, z) . This may be necessary because of the different methods
for making the three estimates.
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(iii) If w is not equal to a or b , 1l.e. situation (i) or

(iv) in (3.1) applies, then we wish to estimate whether there are

any discontinuities between w and x . (If w equals a or b

this has already been done in (1) ). In the case that F = Fo , This

is done by comparing f. (w) with £, (x) for each i and seeing

whether they have opposite sign for any i . This can be done at the

same time as the z, are estimated in (1) . In the case that F = Ly

1t 1s done simply by seeing whether j(w) and j(x) are equal. No

attempt 1s made to estimate any discontinuities.

(1v) Let us introduce some new notation. For a given point y

we define

pl) =) f, (a) if F =F1 o

if, (y) > 0
(3.4)

or P(g) = f () ;

where jlo) is defined by (2.2) if F=F

Then pI) (4) 1s a continuously differentiable function coinciding

with Flo) in the interval containing y over which F(a) is

differentiable. We denote the derivative of FY) (0) by py)’ (cd .

In this part then we compute the values ra) p), pla)’ (b),

70) (0) and ACN . Again for F = Fo this can be done at the
same time as the computation of the Zs in (1) .

(v) We are now ready to make our first polynomial approximation.

The idea here 1s to fit a polynomial to a differentiable function coinciding

with F (@) in a certain interval and to take the minimum of the

polynomial as the new point u only if the step to it does not cross
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any of the estimates of the discontinuities. The ultimate quadratic

convergence rate for successive cubic approximation quoted in Section

3.1.1 holds only if the approximation 1s made at the lowest points

available, which do not necessarily bracket the minimum, Thus ultimately

we would like each point 5 to be obtained by approximating F(g) at

X and w 1n the case that 1s not a discontinuity. Therefore if

there were no discontinuities located between w and x in (iv), or

in (i) if w=a or Ww =b , the point Sq 1s computed as the minimum
of the cubic fitted to F(a) at x and w , i.e. agreeing in function

value and derivative with F(¢) and F'(g) at x and w . However,

if there was at least one discontinuity located between x and w ,

then Sq is computed as the minimum of the cubic fitted to p (x) (@)
at a and b using the values in (iv) (recall x=a or x=b). The

reason that a and b are used rather than Xx and w is that this

choice of fit cannot impede the ultimate rate of convergence in the case

that 5 1s not a discontinuity since then eventually there can be no

discontinuities located between x and w . It is our view that this

strategy ,using an interpolation fit instead of an extrapolation fit while

) still not near the solution, is slightly more reliable than if the fit

was made to FP) () at x and w regardless of whether there were

. discontinuities between the two points.

If s, lies in [a,b] and the step from x to N does not cross

any discontinuities, i.e. a < 8s; <2, if x = a or Zp <8) < b if

Xx =Db , then 4 1s set to Sy - Otherwise the step 1s rejected. This is
illustrated in Figure 4 .
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(vi) If the step is rejected in (v), a second cubic fit is tried,

this time fitting the cubic to f(g) at a and b if x=a, or to
ra) () at a and b if x=b . Thus for example in Figure 4 (i) ,

after the step to Sq 1s rejected, the point 5, 1s set to the minimum

of the cubic interpolating £, (a) at a and b . This second cubic

fit may be of crucial importance to the algorithm's performanceaswill

be described later. Then as in (v), 1if 5, lies in [a,b] and the step

from x to S, does not cross any discontinuities, a 1s set to So
Otherwise this step 1s rejected too.

(vii) If the steps in (v) and (vi) have both been rejected, this

implies that the step from a to the estimate of the minimum of the

differentiable function coinciding with F(a) ata crossesthe

estimate of a discontinuity. The same is true of the step from Db

estimating the minimum of the differentiable function coinciding with

Flo) at b . Hence the conclusion is drawn that y may be a dis-

continuity. Therefore 5 is set to z as defined in (ii).

This completes the description of the choice of u when an interval

of uncertainty 1s known. We now describe the changes that must be made

to the above when minimum has not yet been bracketed. We have x=a and

w < Xx. Then a 1s defined as follows.

(1) Here the minimum discontinuity is estimated. If F = Fg the

. zero of each of the £. (a) 1s estimated by the Newton step from a , and

Zr is set to the smallest estimate greater than a . If F = For » Then

z; 1s defined as in the case where b 1s known.

(11) and (111) are omitted.

(iv) Here we compute eu and FT as defined by (3.4).
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(v) The point Sy 1s computed as the minimum of the cubic

fitted to b x. at x and w . If x < 81 < 2p 4 then a is set
to Sq i otherwise the step 1s rejected.

(vi) If the step in (v) was rejected, a second cubic fit 1s made,

this time fitting to the differentiable function which 1s thought to

coincide with F(g) beyond the discontinuity which 1s estimated by Zo
This is done by noting in (i) which function it is whose zero is estimated

by Zp For example, 1f F = Fo , and Zr estimates the zero of

£, (a) , and £, (x) > 0 , then the differentiable function thought to

coincide with F(a) beyond this zero would be Fa) - £, (a)
Consequently the value of this function and its derivative would be

computed at x and. w 1n order to make the cubic fit. An example in

the case F = Fy would be that 2 estimates the zero of £, (a) _

£ (2) and F(x) = £, (x) . Then the differentiable function 1n question

would be £5 and the value of £) and 1ts derivative at x and w

would be used for the cubic fit. Let S, be the minimum of the cubic

thus defined. If S, > Z, we set a to 5, ; otherwise the step 1is
rejected. The situation when F = FM is illustrated in Figure 5 .
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(vii) If the steps in (v) and (vi) were both rejected, this implies

that the steps to the estimates of the minima of each of the differentiable

functions coinciding with F(a)on either side of the discontinuity

estimated by Zr both go across the dicontinuity. Hence we conclude that

1s likely to be at the discontinuity and set a to Zp

3.2.2 Comments on the Algorithm.

In the algorithm described the asymptotic rate of convergence will

usually be quadratic, 1rrespective of whether or not a 1s a point of

discontinuity. This 1s because ultimately the points generated will either

be those resulting from successive cubic interpolation estimating the

minimum of a differentiable function or from Newton's method estimating

the zero of a different differentiable function, and both processes normally

have a quadratic rate of convergence. Note that since z is an estimate

of the average of the discontinuities we might expect the number of dis-

continuities between a and b to be halved at each step. Consequently

even on problems for which there 1s a large number of discontinuities in

the region of interest the number within the interval of uncertainly will

soon become small.

; To our knowledge the only other univariate minimization or line search

algorithm which has been proposed for special nondifferentiable functions

is that of Charalambous and Conn [9] for F = Fut . Their algorithm does

not include the safeguards that we have described. Also, a basic iteration

of their algorithm 1s quite different from ours 1n a number of ways.

Suppose a 1s the lowest point x . Their algorithm estimates the zeros

of fsa) ~ £. for each 1 by yo) as ours does. It then similarly
estimates the values of fy at y for each 1 andk and hence
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estimates the value of F at each ry The point y® with the
lowest estimated value of F 1s then chosen for the new point and a

function evaluation is made. Then a cubic interpolation step 1s taken

only if the new function value is higher than F(x). This approach is

quite different from ours where & 1s set to a discontinuity estimate

only 1f the step to the cubic interpolation estimate crosses a dis-

continuity estimate. Also we make cubic fits only to differentiable

functions, i.e. to p48) (4) or PP) (oy) rather than F(a) . Since

the points estimated by y® may not even be discontinuities, our
higher overhead version (to be described in the next section) presents

a better way to estimate the minimum supposing that 1s 1s at a dis-

continuity.

In some situations the algorithm of [9] may converge to a point of

discontinuity which is not a minimum. This would also happen in our

algorithm if step (vi) were omitted, i.e. if & were set to z without

making a second cubic fit when the step to the estimate of the minimum of

the first interpolating polynomial used in (v) crosses a discontinuity

estimate. This is illustrated in Figure 6 for F = F, . Here z= z.= z

as there is only one discontinuity between a andb and z < z < Sq

where z 1s the exact zero of £y- £ If no second fit 1s made in step
(vi) but © is set to z the points generated will converge to z if

the points z converge to Z from the left. This will happen in this

example if (£1 (2) - (2) ' (£1 (2) - £1 (z)) < 0 since Newton's method
to find the zero z of o(z) converges from the left if o" (3) ok (3) < 0 .

Clearly what 1s needed 1s to generate a point between z and b , and this

1s done by stepping to the minimum of the cubic fitted to £, at a and

b in step (vi).
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An alternative strategy for avoiding this difficulty 1s to estimate

whether the gradient of Fy) changes sign at the discontinuity estimated

by =z , and to set 0 to z only if this happens. However, the second

cubic fit 1s recommended since it can give a good estimate of the minimum

at the same time as rejecting the estimate of the discontinuity. In any

event 1f the gradient 1s thought not to change sign at the discontinuity

some alternative step must be computed.

Another point worth noting is that 1t might seem that an almost as

efficient algorithm could be designed saving some storage by not requiring

the £. (w) to be available as well as £. (a) and £. (0) (and perhaps

the corresponding derivatives). In fact saving £, (w) requires no

extra storage as a third vector in addition to those for the function

values ata andb 1s required anyway for the evaluation of the function

values at the new point wu , and since the new w is always either the

old a or the old b , the function values at w can be retained by

interchanging the new vector with the old vector that would otherwise be

overwritten. Of course this 1s really only of academic interest since we

do not expect storage of a vector of length m to be significant.

5.2.3 The Higher Overhead Version.

We now describe a second version of the algorithm which requires

more housekeeping operations and/or storage , but makes fuller use of

. the information available. The basic difference between the two versions

1s that in the higher overhead version we do not restrict the number of

cubic fits to one or two, but allow up to m cubic fits. Consequently

§ 1s always set to either the estimate of a minimum between two adjacent

discontinuity estimates or to a specific discontinuity estimate. The other
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difference between the two versions 1s that we now estimate the dis-

continuities by inverse cubic interpolation at two points. Thus the

estimate of the discontinuity 1s chosen as the zero of the inverse

cubic which agrees with the inverse of (a) in both function and

derivative values, where ¢(¢) 1s the function whose zero is desired.

Inverse interpolation 1s preferable to direct interpolation for this

purpose because the zero of the inverse cubic must be unique whereas

the direct interpolating cubic may have several zeros. For further

details on inverse interpolation see Traub [10].

As before we begin by assuming that the minimum 1s bracketed by

a andb . It becomes necessary to consider the two possible forms

of Fly) separately. For simplicity we assume that F(a) < F(b) .

The computation of Q 1s then done as follows:

(a) F=F

(1) All discontinuities located in [a,b] are estimated by inverse

interpolation and the estimates z. are ordered and stored. If there 1s

at least one discontinuity located between x and w (i.e. there is

at least one £. (a) with different sign at x andw ) then the inverse

interpolation 1s done at a and b since this is the most reliable

choice, but otherwise each estimate 1s first made by inverse interpolation

at the pointsx and w , and this is then replaced by the estimate

using a and b only if the first estimate lies outside [a,b]. This is

done because the good rates of convergence properties of successive inverse

interpolation apply only if the best points are used for each fit. Note

that although x and w are usually the two points with lowest values of

Flo) it is clear that if 5 lies at a discontinuity with r, (@)= 0 , then
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ultimately x and w will also be the two points with lowest value of

2, (a) |. If a and b are not equal to x and w , then ultimately
there cannot be any discontinuity between x and w even 1f the minimum

y is a discontinuity, and hence this strategy cannot impede the rate of

convergence. It 1s possible that the inverse interpolation estimate

using a and b lies outside [a,b]; if this happens, it is replaced

by the secant estimate.

(11) For convenlence we set Yq to the value a and Vo to the smallest

of the values fz.} . The points Vy and Vs represent the current

discontinuities as we examine them from left to right. We initially

define the function hy) by 2) () as defined by (3.4). The function

h(a) is the differentiable function thought to coincide with F(w) between

the discontinuities estimated by Vy and Yo:

(iii) The point s 1s set to the estimate of the minimum of h(a) using

(direct) cubic interpolation. As in the low overhead version, the cubic

interpolation is done at the points a andb 1f there 1s at least one

discontinuity located between x and w , and otherwise 1s done at the

points x and w . If vy, < s < Vp then A 1s set to s .
If s is undefined, which will be the case if h(o) 1s linear, then s

) is defined as either + ® or - © by assuming h (0) 1s linear and

comparing its values at x and w or a and b . For example, 1if

h(a)< h(b) , then s is set to - «= .

(1v) If s < Vy then A 1s set to y, as then the differentiable

functions coinciding with Flo) on either side of V1 each appear to

have their minimum on the opposite side of yy

(v) If s > Yo then Yq 1s set to Vs r Ys 1s set to the next smallest
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of the values of the {z.] , or to b 1f there are none greater than

Ys h(w) is set to the function thought to coincide with F(y) in

the new interval [yy vy] , and steps (111), (iv) and (v) are repeated.
The new function h(x) is obtained by adding to the old h(y) the

function + f, (a) ; where 2z, is the old value of Ys and the sign

1s the sign of £, (0) . However, if the old value of Y, is b , the
process 1s terminated with u set to b . This 1s 1llustrated in

Figure T .

(b) F= Fy

(1) In this case in order to recognize the discontinuities it is necessary

to estimate them in stages. We therefore begin by setting yy to a and

k, to jla) as defined by (2.2).

(11) The point s 1s set to the estimate of the minimum of fie (o) using
1

(direct) cubic interpolation. As before, the interpolation is done at a

and b 1f at least one discontinuity 1s located between x and w , i.e.

if jx) # jw), and otherwise it is done at x and w. Also if this

makes s undefined 1t 1s set to+ ® as before.

(111i) If s < Y, then { is set to Vy and the process 1s terminated.

(1v) The zeros of the functions fy (a) - £, (0) for all i # ky are
1

estimated by inverse interpolation. As in (ii> the points a and b are

used 1f 7 (x) 4 J(w) and otherwise x and w are used. Then Ys 1s

set to the minimum of those estimates which are greater than yy If

there are none greater than V1 and less than b , then Vo 1s set to b .

Also k, 1s defined such that Ys 1s the estimate of the zero of

fe, - fie to » unless Vp = b when k, is undefined. If s < Vp 1
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then A is set to s and the process 1s terminated.

(v) If s > Ys then ky 1s set to k, , yy 1s set to Yo , and

steps (11) to (v) are repeated, unless Yo = b when the process 1is

terminated with A set to b . See Figure 8 for an illustration.

However 1f during the execution of the above ky 1s initially set

to j() in part (iv) , i.e. we have k, = j(a) and k, = j(b) indicating

only one discontinuity between a and b , then in all subsequent

computations of 4 part (iv) is replaced by

(iv-2) If V1 = a then Y is set to the estimate of the zero of

fs (a) ~ Ts (b) ’ using inverse 1nterpolation either at a and b or at
X and w , depending-on whether j(x) = j(w) as before. Since we know

there is a zero of this function in [a,b] , we replace the estimate using

Xx and w ,if it lies outside [a,b] , by the estimate using a and b ,

and replace the estimate using a and b 1f necessary by the secant

estimate. If Yi # a , then Vo 1s set to b . Note that estimating only

the zero of Lila) - tL, (b) 1s a safe strategy even though there may still
be more than one discontinuity in [a,b] . An example of an unsafe strategy

would be to estimate only the zero of, say, f= ts , 1f i had been set
to.the estimate of the zero of this function several times already. Also

note that the strategy may never be invoked since 1f the estimates con-

verge to iy from one side the interval of uncertainty may always contain

more than one discontinuity. As in the low overhead version this 1s the

only place where the definition of 5 depends on retaining any information

from the previous iteration other than a,b,x,w and the function and

derivative values.

Notice that for F = Fy in part (iv) it would be *possible to exclude
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from consideration those 1 such that ky = 1 for an old value of

k, or such that the estimate of the zero of fy, - £. (a) lies
outside [a,b] for an old value of ky

It 1s worth noting that the choice of Yin the higher overhead

version requires of the order of m.m operations in the case that F = Mu

(in part (iv)), where m is the number of discontinuities in the interval

of uncertainty, but only of the order of m operations for F = Fo .

If we were not permitted to store the {z.} in the case F = Fg, there

would also be order m'm operations required for this case. However, it

does not appear possible to utilize storage in a similar way to reduce

the operation count for F = Lo since there are too many possible dis-

continuities to be stored in advance.

In both the above descriptions for F = Fg and F = Fut we have

assumed that F(a) < F(b) but clearly when this 1s not true the roles

of a and b are simply interchanged and the discontinuitles are examined

from right to left instead of left to right.

As 1n the low overhead version we end the section by considering the

case where " is not yet bracketed. The choice of a 1s made in much

the same way as 1n the case that F(a) < F(b) , except that x and w

are used for both the direct and inverse interpolations, and in the case

F = Fo the zeros of £, (o) for all 1 must be estimated instead of

just those thought to lie in[a,b]. Clearly instead of terminating if

y, becomes b , the computation of 4 must terminate 1f Yq becomes
undefined and the safeguards will then choose a reasonable new u .

3.2.4 The case without derivatives.

We do not describe this in any detail but outline the changes to be
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made to the low and higher overhead version for computing a . We now

have the extra point v defined in Section 3.1. In the low overhead

version the Newton steps to the discontinuities are replaced by secant

steps. We use the points a and b when there are discontinuities

located between w and v (and 1s bracketed) and switch to using

X and w when this 1s no longer true. In the higher overhead version

the inverse cubic interpolation 1s replaced by inverse quadratic inter-

polation at the points a, x and b initially (if 5 1s bracketed)

and the points x, w and v ultimately. In both versions the (direct)

cubic interpolation estimate of a minimum is replaced by quadratic inter-

polation, again at a,x, and b, or at x,w and v .

5.2.5 Convergence Results.

We now give the convergence results for the theoretical procedures

assoclated with the algorithms described above. By theoretical procedures

we mean exactly what was explained in Section 3.1.35.We assume that

F(a) has one of the forms (2.1) and that an upper bound b on the interval

of uncertainty 1s known. \

Theorem 4. The theoretical procedures corresponding to both the low and -

) higher overhead versions described above for both F = Fa and F = Mu ,

in the cases with and without derivatives, all produce a sequence of points

fu, } converging to a point y which 1s either a local minimum or generalized

stationary inflection point of F(g) on [0,b] . Furthermore if (a)
is Lipschitz continuous on [a,b] for 1 <1<m, and Uy # y for all k ,
then we have the following. If either

(a) F" (a) exists and 1s positive, and it is not true that r. (a) = 0
for some i if F = Fy , or that £. (a) = r, (@) = F(g) for some
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ifk if F=Fy , Or

* * *

(b) F* (a) # 0, F! (a) 4 0, and £, (a) = 0 for exactly one i , with
¥ * * *

£2 (0) # 0, if F = Fo , OF £. (0) = £, (@) = Fla) for exactly one
] ] [] * * [] 1

pair 1i # k , with £! (a) # £1 (@) ,1f FF = Fy » then the asymptotic
convergence rate 1s given by the following table.

Algorithm Convergence rate
Case (a) above Case (b) above

Low overhead with derivatives 2 2

Low overhead without derivatives 1.324... 1.618...

Higher overhead with derivatives 2 2.732...

Higher overhead without derivatives 1.324... 1.83%.

In order to prove this theorem we need several more lemmas in addition

to those of Section 3.1.3. The first two are similar to Lemmas 3 and 4 ,

and, as before, we present the first without proof.

Lemma5.

+

If u is not a zero of a differentiable function ¢(o) then 6 > 0 s.t.
* *

the interval (u - 5 , u + 8) contains no zero of ola) and such that a

secant or Newton step to the zero of ¢la) using a point inside the interval

1s good enough that the estimate of the zero lies outside the interval.

Lemma 6.

Assume each point 1n the subsequence [u. } is generated by either
k

a Newton or secant step to the zero of ola) using the point x.. If

X. = Uu and u. * u , then u 1s a zero of (a) .
J J
k k

Proof.

Identical to that for Lemma 4 using Lemma 5 instead of Lemma 3.
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Lemma/.

Assume the hypotheses of Lemma 4 except that the approximating

polynomials are fitted to a continuously differentiable function (wx)

instead of F(g). Then if there is a sub-sequence of (u. } , namely
k

fu. 1, s.t. Flu, ) = &(u., ) V k, the same result holds as for Lemma 4.
i i i
k k k

Proof.

¥*

By Lemma 4 u must be a IM or GSIP of &(a). Without loss of

generality assume that a subsequence of {u, }, namely {u, }, converges
k k

* .

to u from the left. Since é(a) is continuously differentiable we

can write x
N 3(u, ) - &(u) «1

3'(u) = lim k = F' (u) = 0.
k + © *

u. “u
~ k

Bo

The fact that u must be a LM or GSIP of F(a) follows from this and

X

the fact that Flu. ) + F(u) from above.
k

Proof of Theorem 4.

We restrict our attention to the low overhead version. Either there

is a subsequence fu. } with u. = us for all k , or there exists K
k k k

s.t. w= ty for k > K . In the former case as before we obtain the
first part of the result from Lemma 1. Therefore assume the latter case.

] There must be a subsequence (uy } either (1) consisting entirely of points
k

generated by polynomial approximation fitting to a certain differentiable

function &®(@) , or else (ii) consisting entirely of points generated by

Newton or secant steps to the zero of a differentiable function ola).

Case (i).

* ®

By Lemmas 2 and L4 |, us + u with u a IM or GSIP of &(w) . (Note
k

that the quadratic approximation always uses the two best points for two

of 1ts three points and similarly the cubic approximation always uses the
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best point). Suppose there 1s a subsequence (Ww, } of {u, } such that
k k

¥

Flu, ) = 6 (u, ) for all k . Then by Lemma ( u is a LM or GSIP of
Tk k-

Fly). Otherwise ¥ K s.t.

Flu, ) # 8 (u. ) for k > K . (3.5)
Jk ¥

¥ * | * *

Since x, + u and w, *u we know either a “+ u or b, -+u.
Tx Jk ‘ko, x

Without loss of generality assume the former, 1.e. a. u . Because of
k

the way the fit 1s chosen in the low overhead version, we have for each k

either F(a, ) =3%(a.) or Fb.) =m. ). By taking subsequences (but
Jk Kk Jk Jk

not writing them explicitly), we can assume that either Fla, ) = 6 (a )
k Kk

for all k > K , or F(b. ) = 8 (b. ) for all k > K . The former con-
k k

tradicts (3.5) , as we could write (a. } as a subsequence of fu.h k k
¥

converging to u , so we assume the latter. Since $(o) and F(y) agree

at D. but not at us , There must exist a discontinuity § such that
k k

¥*-

us < ¢< bs for all k > K , and hence u << { . Now consider the
k k

estimate of { at each step, namely 2 , which results from a Newton
k

or secant step using the best point x. . We have a. < z. <b. .
] x Jk T 9x 7 Jk

On the other hand, z. must lie outside [u.. , b. |] or the step to
Jk Je Ix

us would not be accepted as 1t crosses a discontinuity estimate. Thus
k *

a, < Zz, <u. and zZ.-*u . By Lemma 5 this is not possible unless
Ux TO Jk Tk Jk

C = u . We therefore have that 3 (0) agrees with Fly) on an interval to the

right of and including u , and hence that F! (uw) =0as 3'(u) = 0 .
A *

Since ax + u , we know Fla) is non-decreasing on the left of u , so
k

5

u is a LM or GSIP of Fla) (see Figure 9).

Case (11).

We have fu, } where each point is generated by a Newton or secant
k

step to the zero of a differentiable function (gy). By Lemmas 2 and 5,
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& CF

P= 3

J

y ba, o

} Jk

(a) Equation (3.5) does not hold.

x |

5 ba. o

Jk

(b) Equation (3.5) holds.

Two possibilities in case (i) of the proof of Theorem Lk .

FIGURE 9
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“5 a and a must be a zero of oor) - suppose a 1s not a IM or
GSTIP, and without loss of generality assume Pt (u) <0. Let 3a) be

the differentiable function coinciding with F(a) on the right side of H

The algorithm will not permit “3, to be set to the estimate z of the
zero of ola) if a point to the right of" z is produced by polynomial

approximation to the function thought to coincide with F(y) to the

right of z . In the low overhead version the function in question 1s

#0) (,) , and since u. is then always set to Zs ultimately we
must have 25 equal co a specific discontinuity estimate and P2)() = 3 (a).
(In the higher overhead case the function in question 1s clearly ultimately

equal to $(e).) Thus by Lemma 3 this fit is ultimately good enough that

® cannot be set to the estimate of the zero of (gy) , which is a con-
tradiction. Hence i! must be a LM or GSIP.

This completes the first part of the proof for the low overhead

version. We omit the proof for the higher overhead version since it 1s

similar. The main difference is the replacement of the Newton and secant

results by analogous ones for successive 1nverse interpolation.

The hypotheses of the second part of the theorem ensure that ultimately

the points ware generated entirely by successive estimates of a minimum

using (direct) cubic or quadratic interpolation or entirely by successive

estimates of a zero using the secant method, Newton's method, or inverse

cubic or quadratic interpolation. They also ensure that ultimately the

best points are used for the interpolation and hence that the rate of con-

vergence 1s not impeded. The convergence rates for successive cubic or

quadratic interpolation were quoted in Section 3.1.3, those for the secant

method and Newton's method are well known, and those for inverse inter-

polation may be found in Traub [10,p.66]. This completes the proof of the
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theorem.

Finally we note that as 1n the differentiable case it does not make

sense to talk about just any local minimum of the computed function Pa) .

It is easy to verify that Theorems 2 and 3 hold for the nondifferentiable

algorithms as well, where Pr (0) 1s the quantity resulting from computing

F' (y) as defined in (2.2).

4, Steplength Algorithms.

In this section we discuss how to choose 2 (see Section 1), when

minimizing an n dimensional function of the type given by (1.1). In order

to prove convergence for descent methods the steplength has to meet certain

criteria. The function must be "sufficiently decreased" with respect to

the steplength, and the steplength must not be too small (see Ortega and

Rheinboldt [2,p.490]). For differentiable functions a typical criterion to

ensure that the first condition 1s satisfied 1s

1

pl) p(k), MEI > oy o Ue) . 0.1)

where |, 1s a preassigned scalar, 0 < yu <1. (We have now omitted

the superscript from oe) , and have denoted F(x KE) and «(x KE) by
- p(k) and ok) ) As was mentioned in the introduction, such criteria do

not in general define a unique point. Many elementary algorithms have

been proposed which satisfy them. However it 1s important to realize that

for a practical algorithm mere convergence in the limit 1s only of academic

interest. We are interested in the finite sequence rx Ey, k=1,...N,
where N 1s preferably small, and where 0 1s "close" to x . The

greater the reduction in F(x) per iteration usually the lower the value

of N . It 1s necessary however to limit the effort expended on determining
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MEY since this in itself could be an infinite process.

For algorithms which are designed to minimize differentiable

functions Gill and Murray [1] proposed choosing the steplength by

proceeding to compute a local minimum of Fle E ao p) using the

algorithm described in Section 3.1 and terminating this prematurely

(possibly after a single function evaluation). When derivatives are

avallable the termination condition 1s

CON o/ D) < p(k)

and

lo (x, o 0) po] < - n CO (4.2)

where Nn is a preassigned scalar, 0 < nh <1 . A check 1s then made

as to whether this step satisfies (4.1) with jy set to a small value

such as 1074 The experience with such a procedure in the many cases

that were checked 1s that the resulting step always satisfied (4.1).

If (4.1) is not satisfied, the step is successively contracted by a factor

of one half until it satisfies (4.1). It is proved in [1] that this

strategy 1s sufficient to ensure the overall convergence.

. Clearly the smaller the parameter h 1s, the greater the reduction

obtained in F(x) but the more evaluations of F(x) required. The

optimal choice of h will vary both with the algorithm within which the

procedure 1s incorporated and the problem being solved. Fortunately for

a particular algorithm a near optimal value of nh can be predetermined

That different algorithms will require different choices of h arises

from the relative effort of computing the search direction p and per-

forming additional iterations of the univariate search (recall that the
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H

more accurate the univariate search, the fewer iterations of the multi-

dimensional algorithm required). If for example in a Newton-type method

1t was expensive to evaluate the Hessian matrix (required to compute p

only) compared to evaluating F(x) and g(x) then a small value of h

would be warranted. Similarly if n was large making the housekeeping

operations of obtaining p significant, then again a small value of h

would be warranted. For most algorithms, however, the optimal h under

most circumstances is in the range 0.5- 0.9 .

The termination criterion (4.2) is clearly inappropriate for
*

nondifferentiable functions since if ¢ 1s a discontinuity there may

be no value of ¢ which satisfies it. To achieve a similar objective

for nondifferentiable functions we propose the following. Let o be

the first point in the sequence generated by one of the minimization

algorithms with derivativesdescribed in Section 3.2 such that

- KkNALA 5p) < ot )

and either

:

kK), - \T k)ee p) pl < -n AL (4. 3a)

or

kK), -

os 5p) <n lg (4.30)

The test (4.3b) is done only if the generation of the next point

after ¢ in the univariate search entails setting the new point u to

an estimate of a specific discontinuity, namely the zero of the function

p(x" + o p). The scalar Py is the value of (gy) at the first point
*

at which we assume « to be the zero of ola) . The required steplength

n ) is set to ¢ provided this satisfies any criteria such as (4.1)
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required for guaranteed convergence of the algorithm. In the unlikely

event ¢ 1s not satisfactory oF is set to the first satisfactory

member of the sequence [G)* al i =1,2....}.
— (kK), -

In the case without derivatives, g (x + p) Pp 1n (4.33) is

replaced by

k) k) -F(x + 0 p) - P(x ), ap)
0 - «

where go 1s the last point 1n the sequence obtained in the univariate

search which is less than ¢ . We assume that an estimate of g 1s

available as a result of determining p .

H. Extensions to a Wider Class of Functions.

Although we have confined our attention so far to functions of the

type (1.1), the algorithms presented here can be extended to handle a

wider class of functions. Two common types of nondifferentiable functions

are those arising from the fy and lL approximation problems, namely
m

F. (x) -) | f (x) | and F (x) = max Ir. (x)]1 i oo . 1
. 1 <1<m
i=1 = 3

A third 1s the class of nondifferentiable penalty functions arising from

general minimization problems subject to inequality or equality constraints

(see Conn and Pietrzykowski [11] and Han [12]):
m

F(x) = f(x) + or 37 max(0,2, (0) top, ) £. (x)
i=1 i=m. +1

1

The functions F. (x) and F(x) could be transformed to the type (1.1) ,

as could Py, (x) 1f a suitable positive term were added to f(x) . However,
to do so is both artificial and unnecessary, and although the performance

of the steplength algorithms would be satisfactory, the transformation would
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be likely to introduce degeneracy into the n dimensional algorithm.

It 1s therefore much more satisfactory to consider the following two

types of functions:
m

Fg (x) = ) 0 CO £. (x)
i=1

where 0 (6, £, (x) is one of 2, Ga, max (0,f, (x)), £. (x), (5.1)
min (0,£, (x)), - lr. (1, according to the value of 0. , and |

Fox) = max (max £, (x) 1, max £. (x).
1 <i<my mot l<1<m

Note that there are functions of the type Fog (x) which cannot be
transformed to the type (1.1). These two types of functions clearly have

their discontinuities defined in a similar way to that described for the

functions Fo and VE and 1t 1s easy to modify the algorithms to cope

with these more general cases. Since the modifications introduce little

additional overhead, our implementations of the algorithms cope with these

wider classes of functions.

As indicated in Section 1, the ideas of these algorithms could be

extended to handle virtually any continuous function whose directional

derivatives exist everywhere and whose discontinuities are given by the

) roots of known differentiable functions. We believe however that most

such functions arising in practice are either of the type (5.1) or else

could easily be transformed to this type.

Finally we note that it would be possible to extend the algorithms

described above for use 1n minimizing certain differentiable functions

with discontinuities in the second derivative. If the minimum 1s at a

point of discontinuity in the second derivative, the convergence rate

will normally be only linear for the differentiable case algorithm
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described in [1], but if the minimum is also a root of a differentiable

function, the good rates of convergence for the nondifferentiable

algorithms could be achieved 1f the algorithms were extended properly.

An example of such a function would be F(x) = x° on [0,) and

F(x) = : = on (— «,0].

6. Implementation and Numerical Results.

The algorithms described in this paper have been implemented in

Fortran. They make use of the computer programs for the algorithms

described in [1], which are documented in [13] and form part of the

Numerical Optimization Software Library at the National Physical Laboratory.

Hence the safeguards are attended to by the existing programs and the new

programs essentially compute © at each iteration and include the extra

steplength termination criterion.

We present the results of some test runs of the higher overhead step-

length algorithm for F = Fo using derivatives, and compare them with

running the algorithm of [1], intended for differentiable functions, on

the same function. Although we have not yet had extensive numerical ex-

perience with the new algorithms, the results 1llustrate their potential

advantages. The univariate function 1s

F(x) = £ (x) + max (f, (x),0) + max (£5 (x),0)
where

f(x) = - COS X

£, (x) = 4(x-1) and either

(a) £5 (x) = - 10 sin(0.5(x-0.1)) or

(b) f(x) = - 10 sin(0.5(x+0.1)) .
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The initial point 1is Xy = - 1.2 , the direction of search 1s p = 1 ,

and the initial step 1s Ay = 1 . In case (a) the points of derivative

discontinuity are x = 0.1 and x = 1.0 , and the minimum 1s at the

first of these. In case (b) the points of discontinuity are x = - 0.1

and x = 1.0 and the minimum is at x = 0.0 , where the function is

differentiable. Results are given for several values of h : nh = 107°

for an "exact" line search, and h = 0.1 and 0.5 for "slack" searches.

The tolerances € and 7 are set to 10° . The results were obtained

on an IBM 370/168 using double precision, i.e. approximately 1k decimal

digits of accuracy. They appear in Table 1. The number of function

evaluations includes the evaluation Fx, ta p).
The results 1llustrate that as well as being far more efficient than

the algorithm of [1] for an exact line search where the minimum is at a

discontinuity, the new algorithm can also be significantly more efficient

for slack line searches where the minimum may or may not be at a discontin-

uity. In all cases for large Nh the new algorithm required less function

evaluations and in all but one also produced a lower point. In case (a),

for h = 0.5, the algorithm terminated with x = Xo Foy , Since 1t

determined that the best step to take next was to the zero of £5 (x)

but that the step from Xs to Xs + Oy had already achieved a reduction

in [£5 (x) sufficiently large enough to allow 1t to stop. Note that in
. case (a) if the left and right derivatives at the solution had been

sufficiently higher, the algorithm of [1] would have been unable to terminate

until the length of the interval of uncertainty was reduced to 2 tol (x)

even for large h , since it would be unable to reduce the gradient to

neF* (x) .
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f. Concluding Remarks.

A fundamental part of algorithms and software for minimizing

differentiable functions of several variables 1s an efficient steplength

algorithm. The basic algorithms described by Gill and Murray[1] have

been incorporated in the implementation of more than 50 different routines

for unconstrained and constrained optimization. We believe that the same

potential exists for developing software for nondifferentiable functions.

Although there 1s not as yet the same variety of routines for this class

of problems, the existence of a powerful steplength algorithm will 1in

itself provide a stimulus. The routines should also prove useful when

nondifferentiable functions are used as merit functions for solving con-

strained optimization problems.
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