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Abstract

We describe in this report the numerical analysis of a particular
class of nonlinear Dirichlet problems. We consider an equivalent
variational inequality formulation on which the problems of existence,
uniqueness and approximation are easier to discuss. We prove in particular
the convergence of an approximation by piecewise linear finite elements.
Finally, we describe and compare several iterative methods for solving the
approximate problems and particularly some new algorithms of augmented
lagrangian type, which contain as special case some well-known alternating

direction methods. Numerical results are presented.
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1. = INTRODUCTION
In this report we would like to discuss the numerical analysis of mildly

non linear elliptic partial differential “equations of the following type

Au + ¢(u) = £
(1.1)
uip = 0,

where in (1.1)
- A is a second order elliptic operator, possiblynotself adjoint,
-¢: R>R, ¢ ¢ Co(]R) and is.non decreasing,

- f is a function defined on 9.

In fact some of the results and methods to be described here may be extended
to more complicated problems or to problems with other boundary conditions.
In Section 2 we give a variational formulation of (1.1) (problem (P)) and

then introduce an equivalent variational inequality (problem (7)) for which

the existence and uniqueness properties, as well as the numerical analysis,
are easier to study. We also prove an existence and uniqueness theorem and
various lemmas useful in the numerical analysis sections of this report.
In Section 3 we study a finite element approximation of (1.1) and prove
that the approximate solutions converge to the solution of the continuous
-problem for some Sobolev norms.

In Section 4 we describe various standard methods which can be used to
solve the approximate problem obtained in Sec. 3. Some of these methods
are.: Gradient and Conjugate gradient methods, Newton's method, SOR, ADI.
In Sec. 5 we introduce some new methods based on the simultaneous use of

penalty and lagrange multipliers which contain some ADI algorithms as

particular cases.
In Sec. 6 we use the above methods to solve a test problem. Comparisons
between the standard methods of Sec. 4 and the methods of Sec. 5 suggest

the superiority and much more robustness for the new algorithms.



We may find in BARTELS-DANIEL [1], DOUGLAS-DUPONT [1](resp. EISENSTAT-
SCHULTZ-SHERMAN [1]) conjugate gradient algorithms (resp. Newton's
algorithms) for solving equations like (1.1), once a suitable approxi-
mation has been made.

For the material concerning the Sobolev spaces, (definitions, properties,

etc...) we refer to the classical treatises of ADAMS [1], NECAS [1].

We refer also to D.J. FIGUEIREDO [1] where the reader interested by the
theoretical aspects of non linear elliptic equations will find a survey
of the various techniques which can be used to study these problems,

including the most recent results of the theory of monotone operators.

2. - A CLASS OF MILDLY NON LINEAR ELLIPTIC EQUATIONS

2.1. Formulation of the problems

N
Let 2 be a bounded domain of R (N22) with a smooth boundary T. We

consider

2 ov 2 . -
-V =H® = {vlverl @, T eL7(Q) i=1,...N, v|, = 0J.

-L: V>R, i.e. L(v) = <f,v> where feV'= H_]

€]
(V' is the dual space of V and <¢,*> the duality pairing between V'

and V).

—a: VxV >R bilinear, continuous and V-elliptic, i.e. 3Ja >0 such

that
2
(2.1) a(v,v) 2 OLHVHVVVEV
where
@2 vl = Il
Q

we don't assume that a(*,*) is symmetric.

-¢6: R'R, ¢eCO( R), non decreasing with ¢(0) = 0.



We then consider the following non linear variational equation
Find ue V such that ¢(u) e LI(Q) nV' and
(P)

a(u,v) +<dp(u),v> = <f,v> ¥V ve V.

It follows from the Riesz Representation Theorem (see, e.g. YOSIDA [1])

that there exists Ae#£(V,V') such that
a(u,v) = <Au,v> Yu,ve V ;
therefore (P) 1is equivalent to

Au + ¢6(u) = £,
(2.3) UEV,
d(u) € L](R) nv'.
00
Example 2.1 : Let us consider aOEL () such that
(2.4) ao(x) 20 > 0 a.e. on .
Define a(*,*) by
(2.5) a(u,v) = J a (x)VueVv dx + J BeVu v dx
o)
Q Q
where B is a constant vector in RN.
From the properties of ao and using the fact that
j BeVv v dx = 0 YveH (D)
Q o)

we clearly have

a(v,v) 2 G.”VH\ZI so that a(+,*) is V-elliptic.



From (2.5) we obtain

Au = - V°(aoVu) + B+Vu ,
hence in this particular case (2.3) becomes

- V‘(aOVu) + B*Vu + ¢(u) =",

UEV, ¢(u) € L] ).

] —

Remark 2.1 : If N=1 we have HO(Q)<ZCO(Q). From this inclusion there is no
difficulty in the study of one dimensional problems of type (P). If N22
the main difficulty is precisely related to the fact that Hé(Q) is not

contained in Co(ﬁ).

Remark 2.2 : The analysis given below may be extended to problems in

which either V = H](Q) or V is a convenient closed subspace of HI(Q).

2.2. A variational inequality related to (P).

2.2.1. Definitions

Let
t
(2.6) o(t) = J ¢(T)dT
0
(2.7) D) = veV, s(v) el (@} .

2 — *
. The functional j : L7() >R is defined by( )

J d(v)dx if d(v) e L](Q),
(2.8) iy = %
s if o(v) £L(D).

Instead of studying the problem (P) directly, it is natural to associate with

(%)

(P) the following elliptic variational inequality

(*) R =Ru{+»} u {-} |,

(**) For variational inequalities and their approximation see GLOWINSKI-LIONS-
TREMOLIERES [ 11, [ 21, GLowINskI [1], [2].



k a(u,v-u) + j(v) = §(u) = L(v-u) VvelV,
(m) ?

ueV.

If a(*,*) is symmetric, a standard method to study (P) would have been to

consider it as the formal Euler equation of the following minimization pro-

blem encountered in the Calculus of Variations

J) <J(v)VveV,
Q)

ueV

where

J(v) = % a(v,v) + J ®(v)dx - L(v).
Q

Therefore associating (T) to (P) is a natural generalization of this approach.®

We clearly have

Proposition 2.1 : D({®) is a convex, non empty subset of V.

2.2.2. Properties of j(*) :

Since ¢ : R > R is CO, non decreasing with ¢(0) = 0 we have
(2.9) 9cC'(R), ® convex, 9(0) = 0, (s(t) 20 Yt eR.
The properties of j(*) are given by the following lemma

(*)

Lemma 2.1 : The functional j(*) is convex, proper

Proof : Since j(v) 20 Vv eLz(Q) it follows that j(*) is proper. The convexity

of j(*) is obvious from the fact that ® is convex.

(*) j(*) proper means that j(v) >-® yYyveV, j # +%o,

(xx) l.s.c. : abreviation for lower semi continuous.

and l.s.c.(**) over Lz(Q).



Let us prove that j(*) is l.s.c. :
2
Let (Vn)n » V€ L' (?) ¥n, be such that

2
lim wvn = v strongly in L7(Q).
n > +©

Then we have to prove that

(2.10) lim inf j(v_) 2 J(v).

n>+o n
If lim inf j(v_) = +® the property is proved. Therefore assume that

n-—>+© n
lim inf j(v.) = & < +® ; hence we can extract a subsequence (v_ )
n nn

n-=>+ o k k
such that -
(2.11) lim j(vn )y =2,

koo k

(2.12) v+ v a.e. in Q.
P

Since ¢ o C](R), (2.12) implies
(2.13) lim o(v ) = o(v) a.e.
k4o Mk
Moreover &(v) 20 a.e. and (2. L1) implies that

(2.14) {6(v )} is bounded in L](Q).
nk k _—

Hence by Fatou's lemma, it follows from (2.13) (2.14) that we have

s(vye L' (@,

(2.15)
lim inf J d(v Ydx = J o(v)dx.
kKo>+o 90 oy Q

From (2.11) and (2.15) we obtain (2.10) ; this proves the lemma. a



Corollary 2.1 : The functional j(+) restricted to V is convex, proper

and l.s.c. .

2.2.3. Existence and uniqueness results for (m).

Theorem 2.1 : Under the above hypothesis on V, a, L and ¢, problem (T)

has a unique solution in V nD(®).

Proof : From the above properties of V, a, L and j, we can apply some
standard results concerning elliptic variational inequalities (see, e.g.,
LIONS-STAMPACCHIA [1], LIONS [1], EKELAND-TEMAM [1], GLOWINSKI [1], [21])
which imply that (w) has a unique solution u in V.

Let us now show that u€D(®) :

Taking v=0 in (1r) we obtain
(2.16) a(u,u) + j(u) <L = [[£]| [[u]l,

where

If, I
lg, = sup 12T
vev-{0} |[I,

Since j(u) 2 0 and using the ellipticity of a(+,+) we obtain

[1£]]
(2.17) ||u||v < . *

which implies, combined with (2.16) that

2
f]
Nl

a

(2. 18) 3 (u)

This implies u €D(9). ®

Remark 2.3 : If a(e,+) is symmetric, (m) is equivalent to the minimization

problem (Q) of Sec. 2.2.1.

2.3. Equivalence between (P) and (11).

In this Section we shall prove that (P) and (m) are equivalent. We prove

first that the unique solution of (m) is also a solution of (P). In order



1
to prove this last result we need to prove that ¢(u) and u¢(u) € L ().

Proposition 2.2 : Let u be the unique solution of (7). Then u$(u) and

¢(u) belong to L](Q).

Proof : Here we use a truncation technique. Let n be a positive integer.

Define
Kn ='h7€V,|V(x)|S n a.e.l

Since Kn is a closed, convex, non empty subset of V,the following

variational inequality

a(u ,v-u )+j(v)=j(u ) 2L(v-u JVve K,
(™)

¢ 0K

n n

has a unique solution. Now we prove that

lim u_ = u weakly in V,
n—>+c°

where u is the solution of (m).
Since Q¢ Kn' taking v=0 in UHQ we obtain, as in Theorem 2.1 of this

Section, that

i
laglly s ——
2
el

a

(2.19)

(2.20) jtu) <

It follows from (2.19) that there exist a subsequence = still denoted by

*
{u} -and u €V such that
n'n

(2.21) lim u = u" weakly in V.

n>r+o n
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. o . 1 .
Moreover from the compactness of the canonical injection from HO(Q) into

v
LZ(Q) (see, e.g., NECAS [1]), and from (2.21), it follows that

(2.22) lim u_ = u strongly in LZ(Q).

N>+

Relation (2.22) implies that we can extract a subsequence - still denoted

by {u} - such that
n n
(2.23) limu_ = u a.e. in Q.
n—>+w

Now let V'€Vf1Lw(Q), then for n large enough we have ve Kn and
- 3 < : - -

(2.24) a(u >u )+j(u) < alu ,v)+j(v)-L{v-u ).

Since

* %
lim inf a(u_,u ) Za(u ,u )
o>+ o n’ n

and

*
lim inf j(u ) 2j(u)
n->+o n

it follows from (2.21) and (2.24) that

a(u*,u*)+j(u*) < a(u*,v)+j(v)—L(v—u*) Vve Lm(Q)r1V,

u* € v
which can also be written as

au ,v-u)+j(vV)-i (W) 2Lv-u") Yve v n L@,

(2.25)
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For n> 0 define Tn : V> Kn by (see Figure 2.1)

(2.26) Tnv = inf (n,sup(-n,v)).

=t N

Figure 2.1

Then from STAMPACCHIA [1] we have

1
(2.27) Tvev = HE ¥n,
lim T v = v strongly in V,

> 400
(2.28) n

lim Tnv = v a.e. in Q.
>+

Moreover we obviously have
(2.29) |Tnv(x) | < Iv(x) ‘ a.e.,
(2.30) v(x)Tnv(x) 20 a.e.

It follows then from (2.28)-(2.30) that
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(2.31) 0< @(THV) <o(v) a.e.,
(2.32) lim CID(Tnv) = ®(v) a.e.
n—>+00

Since Tnve LOO(Q) nV it follows from (2.25) that

a(u*,Tnv-u*)+j (Tnv)-j (u*) > L(Tnv-u*) Yvev,
(2.33)

*
u €V,

If v¢D(®) then by Fatou's Lemma

lim _j(T v) = 4@,
n++oo n

If veD(d) it follows from (2.31) and (2.32), by applying Lebesgque's

Dominated Convergence Theorem that

lim j(T_v) = j(v).
n—-r+oo n

From these convergence properties, and from (2.28), it follows by taking

the limit in (2.33) that

a(u*,v—u*)+j (v)-]j (u*) = L(v-u*) VveV,

*
u €V,

* * o
Then u 1is solution of (T) and from the uniqueness property we have u = U.

This proves that 1lim u_ = u weakly in V.
n
N>+

Let us show that ¢(u), u$p(u) € L] Q).

Let veK ; then un+t(v-un) €KVt €]0,1]). Replacing v by un+t(V"un) in
(TTn) and dividing both sides of the inequality by t we obtain

) (un+t (v-un) ) —@(un)
t

- dx 2L(v-u
a(un,v un) + J X (v n)

(2.34) @

Vv eKn.
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Since ‘1>€C](R) with ¢ = ¢ we have

d(u_+t(v-u ))-o{u )
(2.35) lim n n N g(u)(v-u) a.e.
0 t n n
£>0

Moreover, since & is convex, we also have Yte J0,1]

<I>(un+t (v-un) )= a(u )
t

<

) (un) (V-un) <
(2.36)

< <I>(v)-<I>(un) a.e. in Q.

From (2.35), (2.36) and using Lebesgue's Dominated Convergence Theorem in

(2.34), we—-obtain
(2.37) a(un,v—un) + Jp(b(un) (V-un)dx 2 L(v—un) Vv e Kn.
Then taking v=0 in (2.37) we have

a(un,un) + Jg;b(un)undxs L(un) Yn

which implies, using (2.19), that
2
lel?
(2.38) d)(un)undx < a— n .
Q
Since ¢(v)v 20 a.e. Yv €V, it follows from (2.38) that
¢(un) u is bounded in LI(Q).

Moreover for some subsequence - still denoted {un}n - we have

lim ¢(u_)u_ = ¢(u)u a.e. in Q.
n -+ n -

Then by Fatou's Lemma it follows that

ud(w) € LI (@),
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1
and this implies, obviously, that ¢(u) € L (2) and completes the proof of
the Proposition.
Incidentally, when proving the convergence of {un}n to u, we have proved

the following useful result

Lemma 2.2 : The solution u of (17) is characterized by

a(u,v-u)+j(¥)-j(u) = Liv-u) Yve vaL (),
(2.39)
UEV, ®(u) eL'(Q). m

In view of proving that (1r) implies (P) we also need the two following

lemmas
Lemma 2.3 : The solution u of (7) is characterized by
( oo
a(u,v-u)+ d(u) (v-u)dx 2L(v-u)Yve vnlL (),
Q
(2.40)

ueV, udp(u) € LI(Q) .

Proof : We first prove that

(i) (m) implies (2.40).
Let ve LOO(Q) NV ; then veD(®) and since D(®) is convex we have
utt (v-u) € D(®) yte 10,1]. Replacing v by u+t (v-u) in (17) and dividing
by t we obtainVte 10,1]

a(u,v-u)+ J @(u+t(v—ttl))—®(u) dx 2 L(v-u)
Q

(2.41)
VvevVnL (Q).

. . 1 .
Since ® is C and is convex, we have

(2.42) lim Q(u+t(v'ut))'®(“) = ¢(u) (v-u) a-e.,

t>0
t>0
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d(u+t (v-u))-¢(u)
t

(2.43) ¢ (u) (v-u) < <o(v)-¢(u) .

By Proposition 2.2 we have ¢(u), d(u)ue L](Q). Hence ¢(u) (v-u) ¢ LI(Q),
and ®(u), ®(v) ¢ LI(Q) Y ve Vn ﬁpﬁb. Then using the Lebesgue's Dominated
Convergence Theorem it follows from (2.42),(2.43) that

lim J PCure(v-u))=o(u) 4, _ J o (u) (v-u)dx.
t+0 ‘Q t Q0

Using the above relation and (2.41) we obtain (2.40).

(ii) We next prove that (2.40) implies (1T).

Let u be a solution of (2.40). Since ® is convex it follows that

= ®(u) = 2(0)-0(u) 2 ¢(u)(0-u) = - ¢(u)u.

1
This implies 0< ®(u) < udp(u) and d(u) € L ().
Let ve VrWLm(Q); then from the inequality

¢(u) (v-u) € @(v)-@(u) a.e. in Q

we obtain by integration
J ¢ (u) (v=u)dx € J(v)-3(u) ¥ v evnL (R,
Q

which when combined with (2.40) and ®(u)eLl(Q) implies (2.39). Hence

from Lemma 2.2 we obtain that (2.40) implies (m).H®

Lemma 2.4 : Let u be the solution of (1r), then u is characterized by

a(u,v) + J d(u)v dx = L(v) VYV ve Lw(Q) nv,

(2.44) g

UEV, ¢(u) eL (51).
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Proof : (i) We first prove that (m) implies (2.44).

00
Let v e vnL (). Ifu is the solution of (), then u is also the unique
(o]
solution of (2.40). Let T, be defined by (2.26), then TrPGVnL ().

Replacing v by Tnu+v in (2.40) we obtain
a(u,v)+ J ¢(u)vdx + a(u,T_u-u)+ J ¢ (u) (T _u-u)
s Q n Q n
(2.45)
( 2 L(v) + L(Tnu-u)Vv€ v ﬂLOO(Q)-

It follows from (2.26), (2.28)-(2.30) that

lim a(u,Tnu—u) =0,

(2.46) e,
lim L{(T _u-u) = 0,
n—>+00 n

(2.47) lim ¢(u)(T u-u) = 0 a.e.,
n—>+oo n

(2.48) 0<¢(u) (u—Tnu) < 2udp(u) a.e.

Then by Lebesgue's Dominated Convergence Theorem and (2.47),(2.48)

we obtain

(2.49) lim ¢(u) (Tnu—u) = 0 strongly in L‘(Q).

N>+

Then (2.45),(2.46),(2.49)imply

a(u,v) + de)(u)v dx 2 L(v) YvevVnL (Q).
Since the above relation also holds for -v we have
(2.50) a(u,v) + J d(u)v dx = L(v) Vve Van(Q).

Q

By Proposition 2.2 we have ¢(u) ELI(Q), combining this property with (2.50)
we obtain (2.44).
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This proves that (ir) implies (2.44).

(ii) Next we prove that (2.44) implies (m).

We have
a(u,v) + f o(u)v dx = L(v) Yvevn ﬁw(Q),
Q
then

(2.51) a(u,Tnu) + fQ¢(u)Tnu dx = L(Tnu) Yn.

Since T U 4 strongly in V, {f ¢(u)Tnu dx}n is bounded. But ¢(u)Tnu2()

a.e., hence we obtain that
¢(u)T u is bounded in L @.
We also have
lim U ¢(u) = up(u) a.e.,
n>+o
hence by Fatou's Lemma we have
(2.52)  ub(u) € L' (@).
But now we observe that
OSd)(u)TnuSd)(u)U a.e.

Hence by Lebesgue's Dominated Convergence Theorem

lim f d(u)T u dx = J ¢(u)u dx
Q n Q

n>+o
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which along with (2.51) gives
(2.53) a(u,u) + JQq)(u)u dx = L(u).
Then by substracting (2.53) from (2.44) we obtain
a(u,v-u) +f ¢ (u) (v-u)dx = L(v-u) YveVn Loo(Q),
(2.54) f

ueV, udp(u) € LI(Q)

and obviously (2.54) implies (2.40).

This completes the proof of the Lemma.

Corollary 2.2 : If u is the solution of (T) then u is also a solution of (P).

- *
Proof : We recall that V' =H ](Q) SOHM (Q)( ) and that

a(u,v) = <Au,v> Vu,ve Vv,

L(u) = <f,v> YveV.

Let u be a solution of (7). Then u is characterized by (2.44) and since

D) €V (where D(Q) = {ve Coo(g), v has a compact support in £} ) we obtain
- (2.55) <Au,v> + J d(u)v dx = <f,v> ¥YveD().
Q
It follows then from (2.55) that
(2.56) Autd (u) = £ in D' Q).
Since Au and f € V' we have ¢(u) € V' ; hence

1

d(u) €L () nH T (D)

and from (2.56) we obtain that u is a solution of (P).m

(x) D'(R) : space of distributions on £
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We have proved up to this point that the unique solution of (T) is also a
solution of (P). Now we prove the reciprocal property,that is, every
solution of (P) is a solution of (M) and hence (P) has a unique solution.

In order to prove this we shall use the following density lemma

[o0)
Lemma 2.5 : D(Q) is dense in Vn LOO(Q), V n L () being equipped with the

(o]
strong topology of V and the weak * topology of L ().

H ()

(o] - —
Proof : Let ve V.n L (Q). Since D(Q) = V, there exists a sequence
{v.} , v.e D) such that
nn’ 'n
(2.57) . lim v_ = v strongly in V.

n—>+o0

Let us define v by (see Figure 2.2)

] + . - -
(2.58) w = min (v ,vin) min (v ,vn).

Figure 2.2

(The reinforced curve is the graph of wn)
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Then
(2.59) v has a compact support in §,
(2.60) ||wn[| <Nl . Vn.

L () L (§)
Moreover, since (cf. STAMPACCHIA [11) the mapping
+ —
v > {v ,V }

1 1
is continuous from HI(Q) to H () xH (Q) (resp. v to v XV), we have from

(2.57) that

(2.61) lim w_ = v strongly in V.
n++00 n
From (2.60),(2.61) we obtain that

[oe]
lim w_ = v in the weak * topology of L ().
n-++00 n

Thus we have proved that

oo}
r = {vevnL (Q), v has a compact support in 0}

o]
is dense in V nL ({l) for the topology given in the statement of the Lemma.

Let v €%, and (pn)n be a mollifying sequence, i.e.

[ Fat DE"), o_ 20,
P dy = 1,
% [RN n
l
\

lim support (p_ ) = {0}(*).
n++ 0 n

Then define v and 5n by

(*) i.e., for n large enough, support (pn) is contained in any given neigh-

bourhood of 0.
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v(x) if xe€ Q,
(2.62) v(x) = §
0 if x ¢ @,
(2.63) \N’n = pn*\”z
i.e.
(2.64) ivzn(x) = ] pn(x-y)'\?(y)dy \/XERN.
N
R

It is well known then (see, e.g., LIONS [2],NECAS {!]) that

~ ~ ~ 1
(2.65) v_E€ f,D(‘RN), lim v_ = v strongly in H (RN),
n N o D === o-d
(2.66) ;,n has a compact support in £ for n _large enough-

Let v, = vnm, then for n large enough

Vn € ‘3)(9) ’

lim v_ = v strongly in V.
n—)--}-m

since ||¥]] it follows from (2.64) that

o = lvll o
@Y L7(Q)

(2.67) lv | < JRN P =) [¥(y) [dy < HV”L“’(Q)

It follows then from (2.67) that for n large enough we have

(2.68) Iv Il < VI
R (7 L7(Q)
Summarizing the above results we have proved that Yve Lco(Q) nv,

there exists a sequence (Vn)n’ vne D(R) such that

(2.69) lim v_ = v strongly in V,
n—>+00 n

(2.70) Yn.

1| e | ] |
L () L ()

Hence from (2.69),(2.70) we obtain that



(oo}
V> vinl () weak =*.
This completes the proof of the Lemma.

Theorem 2.2 : Under the above hypothesis on V, a(*,*), L and ¢, problems

(m) and (P) are equivalent.

Proof : We have already proved that (7) implies (P). We need only to prove
that (P) implies (m).

From the definition of (P) we have

a(u,v) + <¢(u) ,v> =1L(v) VvelV,
(2.71) :
we v, d(w) e H L a1 (@.

It follows from (2.71) that

(2.72) a(u,v) + J d(u)v dx = L(v) Yve D).
Q

[e o]
If ve VoL () we know from Lemma 2.5 that there exists a sequence (Vn)n’

Vo€ D) Vn, such that

(2.73) lim v_ = v strongly in V,

. n>+oo -

(2.74) lim v. = v in LOO(Q) weak *.
n>+o

Since v € D) we have, from (2.72)
(2.75) a(u,vn)+JQ d)(u)vn dx = L(vn) V n.

It follows from (2.73) that

lim a(u,vn) = a(u,v) , 1lim L(Vn) = L(v),
n=>+ow n>+o©

and since ¢(u) €LI(Q), (2.74) implies that
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lim J dp(u)v_dx = J d(uw)v dx.
Q n Q

n —>4-00
Thus taking the limit in (2.75) we obtain

a(u,v) + f ¢p(u)v dx = L(v) Vv eerLw(Q).
Q

Therefore (P) implies (2.43) which in turn implies (m) (see Lemma 2.4)).

This completes the proof of the Theorem.

2.4. Some comments on the continuous problem.

We have studied (P) and (m) with rather weak hypothesis, namely ¢ € Como and

1
(). The proof we have given for the equivalence

is non decreasing, and fe H
between (P) and (7)) can be made shorter using more sophisticated tools of

Convex Analysis and the theory of monotone operators (see LIONS [1] and the

).

bibliography therein However our proof is very elementary and some of

the lemmas we have obtained will be useful for the numerical analysis of the

problem (P).

Regularity results for problems a little more complicated than (P) and (w)

. . , , 2 ,
are given in BREZIS-CRANDALL-PAZY [1]; in particular for fe L™ (Q) and with

convenient smoothness hypothesis for A, the H2(Q)—regu1arity of u is proved

there.

3. - A FINITE ELEMENT APPROXIMATION OF (mw) and (P).

3.1. Definition of the approximate problem

%)

2
Let € be a bounded polygonal domain of R and CL be a triangulation of Q

satisfying

(i) TeQyvre T, 1 =@,
Te €

h
o —
(i1) TnT' = g, ¥V1,7'eT, T#7" 3 | ) T=0,
Teiﬁl
(iii) If T,T'etﬁv T#T'then TnT' = ¢ or T and T' have either only

one common vertex or a whole common edge ; as usual h will be

the length of the largest edge of t%.

(*) See also OSBORN-SATHER Cl1].
(**) This assumption is not essential.
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We approximate V by

v, ={v. ec°@ ,

P
h = Vh O.vpfpefy YTe®y)

v —
h|I,—

where P] = space of polynomials in two variables of degree <1. It is then

natural to approximate (P) and (1r) respectively by

a(uh,vh) + JQ¢(uh)vh dx = L(Vh) Vv €V,

*
(Ph)
i
) a(uh,vh—uh) + j(vh)-j(uh) > L(vh-uh) VVhGZ%N
('ﬁh) -
uh € Vh

with j(vh) = JQQ(vh)dx.

* *
Obviously (Ph) and (ﬂh) are equivalent.

* *

From a computational point of view we cannot use in general (Ph) and (ﬂh)

directly since they involve the computation of integrals which cannot be
* *

done exactly. For this reason we shall have to modify (ﬂh) and (Ph) by

using some numerical integration procedures.

In fact we have to approximate a(*,*), L and j(*), but since the approximation
of a(*,*) and L is studied in, e.g., STRANG-FIX [1], CIARLET-RAVIART [1], ODEN-
REDDY [1], CIARLET [1], [2] we shall assume that we still work with a(*,*)

and L, but we shall approximate j(*).

Hence using the notation of Figure 3.1 below, we approximate j(*) by

3
(3.1) jh(vh) = z M z
Te 1?h i=1

o} (Vh(MiT)) Vvh € Vh'
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3T

1T MZT

Figure 3.1

Actually jh(vh) may be viewed as the exact integral of some piecewise constant
function. More precisely let us denote by Zh the set of nodes of ?% i assume
that Eh has been ordered by i=l,2,...Nh where Nh = Card (Zh).

Let Mie z we define a domain Qliby joining, as in Figure 3.2, the centroids

h ;
of the triangles having M, as a common vertex, to the midpoints of the edges
having Mi as a common extremity (if Mi is a boundary point the modification

of Figure 3.2 is trivial to do).

Figure 3.2

a space of piecewise constant functions by

Ny

(3.2) L = {uhluh =iZ=luixi, H; eR yis=l,.. N},

Let us define Lh’
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where Xi is the characteristic function of Qi , 1.e.,

[l
—

xi(x)
Xi(x)

if XeQi’
0 if x4 Q..
i

= 1
Then we define q : CO(Q)r1HO(Q) > L, by

N

(3.3) q v =.2 v(MX; -
1=1
It follows then from (3.1), (3.2), (3.3) that
(3.4) jh(vh) ;_[ b ( qhvh) dx Vv eV, .
Q
We also have
(3.5) jh(vh) =] (qhvh) LASCRAR

Then we approximate (P) and (T) by

a(uh v‘ﬂ )+ JQ¢ (qhuh) thh dX = L(Vh) VVh€ \

o
(®)
o € Yy
° and
a(uy,vy-u ) +3 (v =5 (u) = Llvp-up) - Vv e,
()
uhe Vh.

We have then the obvious

Theorem 3.1 : Problems (Ph) and (Wh) are equivalent and have a unique solu-

tion.

3.2. Convergence of the approximate solution

Theorem 3.2 : If as h = 0 the angles of CL are uniformly bounded below by

8 > 0, then
o Lthen
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lim ||u

h~>0 h-u”V - O

where u and u, are respectively the solutions of (P) and (Ph).

Proof : (i) A priori estimates for u

h

Taking vy = 0 in (TTh) we obtain Vh

1] *

(3.6) |ph'['|v s——a— s

2
el
(3.7 0= | dagu)dxs —= .

(ii) Weak convergence of u

h
It follows from (3.6) and from the compactness of the injection of V in

2
L7(Q2) that we can extract from (uh)h a subsequence, still denoted by
(uh)h’ such that

(3.8) uh - u* weakly in V,

2
(3.9) u, > u* strongly in L (),
(3.10) u, > u* a.e. in Q.

Admitting for the moment the following inequality (which we shall prove later)

| qv v, | < 22 ||y |
(3.11) PR TR T M P@xP@

VVhEV Vp with 1 <p <+ ,

h bl
it follows from (3.6) and (3.9) that
(3.12)

2
99 +> u*strongly in L7(Q).

Then, modulo another extraction of a subsequence, we have
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* .
u, > u a.e. in 9,

9%

(3.13)
‘D(qhuh) > &(u*) a.e. in Q.

Taking ve D(R) it follows from STRANG-FIX [1], CIARLET [!11,[2] that under

the assumptions on th in the statement of the Theorem we have

(3.14) I rhv—vll | <ch || vl| 9 Y ve DE),
W () T ()

(3.15) I rhv—vH - < ch? ||v]| ) o Yve D@,
L () W)

where :

- C is—-a constant independent of v and h,

Ty is the usual linear interpolation operator over Zh i.e.

1 0 ,=
rhvevh Vve HO(Q) nc ),

rhv(P) = v (P) VPeZh.
Moreover (3.11) with p = +* , (3.14),(3.15) imply that

(3.16) vv| ., > 0 Vve D).
L

()

Taking ¥, IV in (Hh) we obtain

_ a(uh,uh) + L{D (qhuh)dx < a(uh,rhv) +
3.17)

+J Qqa (qr,v) dx = L(r,v-u)Yve DE).

From (3.8), (3.12) and from Lemma 2.1 we have

* * *
a(u ,u) + J ®(u )dx < lim inf (a(u_,u,) + J‘ ®(q, u, )dx).
a nao h*Yh g h'h



- 29 =

Moreover

lim J @(thhv)dx = J d(v)dx = j(v) Yve D).
h>0 ‘Q Q

Then in the limit in (3.17) we obtain

a”,u") +  (u*) Sa(u*,V) + 3(v) = L(v-u")
(3.18)
Vv e DE).

From Fatou's Lemma applied to (3.7),(3.13) we obtain

*
(3.19) o’y eL! ().
*
It follows then from (3.18), (3.19) that u satisfies

a(u”,v=u")+j (v>-j (u) 2 Liv-u™) Vv € D),
(3.20)

u* € v, q’(u*) EL' (n) .

o«
We now take v €V nL () ; it follows from Lemma 2.5 that there exists

sequence {Vn}n such that v € D) and

(3.21) lim v_ = v strongly in V,
n-r+c
o0
(3.22) lim v = v in L () weak *.

n->+oo
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We have from (3.20) that

ae v N+ (v )= 2Ly ) Vo,
(3.23)
* 1
u* € V,0(u ) e L ().

We obviously have from (3.21) that
* * * *
lim a(u ,v_-u ) = a(u ,v-u ),
n>+®© n

* *
lim L(vn-u Y= L(v-u ).
N+

o0
Since v_ > v in the weak * topology of L (%), we have

< Const. VYn.

)

(3.24) IV Il
n L0

Moreover, for some subsequence, (3.21) implies that

(3.25) lim v = v a.e. in Q.
n->+«

From (3.25) we obtain that

(3.26) @(Vn) +~ &(v) a.e. in .

From (3.25),(3.26) one can easily see that the _Lebesgne's Dominated Convergence

Theorem can be applied to {®(Vn)}n. Hence we obtain

lim j(v_) = 1lim J d (v )dX’=J o(v)dx = j(v).

n—>-+o N>+
Therefore in the limit in (3.23) we have
* * 3 ., % * co
a(u ,v-u )+j(v)-j(u ) 2L(v-u ) yve Vn L (Q),

(3.27)
o v, e e L@
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Since from Lemma 2.2 we know that (3.27) is equivalent to (T) we have thus
*

proved that u = u where u is the solution of (m) (and (P)).

From the uniqueness of the solution of (m) it follows that the whole

sequence (uh)h converges to u.

(iii) Strong convergence of (uh)h.

It follows from (1Th) and from the V-ellipticity of a(*,*) that

OLHuh—u||‘2]+ jh(uh) Sa(uh—u,uh-u)+jh(uh) =
(3.28) a(u,u)—a(uh,u)-a(u,uh)+a(uh,uh)+jh(uh) <
S‘a(u,u)—a(uh,u)-a(u,uh)+a(uh,rhv)+jh(rhv)-L(rhv —uh) vV veDWD.
Using the various convergence results of Part (ii) we obtain from (3.28) that
j( € lim inf j, (u) <lim inf (a|[uh-u||f}+jh(uh)) <
(3.29) <lim sup (allu, -ull?+j, (u,)) <
<a(u,v-u)+j(v)-L(v-u) Vve D®K).
Using as in Part (ii) the density of D(N) in VnLoo(Q) (for the strong

[eo)
topology of V and the weak * topology of L (§)) we obtain that (3.29) also
holds for all veVnL (R).

Taking Tn like in Sec. 2.3, relation (2.26)' we have then
. .. . . 2
< . _ R
j(u) £1im inf _]h(uh) <lim inf (OLHuh u||v+ Jh(uh)) <
(3.30) < lim sup (oflu -ul|2+ § (u)) <
h \Y h*h

< a(u,Tnv—u)+j (Tnv)—L(Tnv—u) YveV,Vn.
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From the properties of Tn (see Sec. 2.3), we have at the limit in (3.30)

A

5(u) < 1im inf(anuh—uné NENCH))

. 2 .
(3.31) < lim sup(OLHuh-uHV + Jh(uh)) <
<a(u,v-u) + j(v)-L(v-u) VveV.
Taking v=u in (3.31) we obtain that
lim j, (u ) = j(u),
h0 h h
lim ||uz-ul]| , = O.
10 h v
This proves the theorem modulo the proof of (3.11).
Lemma 3.1 : We have Yyp, 1 Sp<+o
lagv,=v, | < % h[|vv, || Vv, ev,.
LP (@) LP@x  LP(@)
Proof : We use the notation of Sec. 3.1.
T
M.
i
Figure 3.3
We have (see Figure 3.3)
(3.32) \ a, vy, () —v () | = |vh(Mi)-vh(M)| YMeQ., nT.

But since VthE P1 we have



Vh(M) = Vh(Mi) + MiM'Vvh ¥YMe Qin T
from which it follows, combined with (3.32)' that

lqhvh(M)—vh(M)| < lm—iﬁl |9v, | VMeR, nT.

It follows from the definition of h that we have

2
|M[MI S 3h YMeQ nT, VT

from which it follows that
lq, v, (x)=v, (x) | € 2 h |Vv, (x) | ave. in Q, Vv, eV
h-h h 3 h T ? h h*
This implies

2
lagv-ve | < 2o, |

P @) P @ x LP (@)

This proves the lemma.

Remark 3.1 : The numerical analysis of problems like (P) but with much stronger
hypothesis on a(*,*), ¢, £ is considered in CIARLET-SCHULTZ-VARGA [1] where

error estimates are given.

4. - A SURVEY OF ITERATIVE METHODS FOR SOLVING (Ph).

4.1. Orientation

-In this section we briefly describe some iterative methods which may be useful

for computing the solution of (Ph) (and UHQ). Actually most of these methods
may be extended to other non linear problems. Many of the methods to be des-
cribed here can be found in ORTEGA-RHEINBOLDT [1].

A method based on penalty and duality techniques will be described in Sec. 5.

4.2. Formulation of the discrete problem

Here we are using the notation of the continuous problem. Taking as unknowns
the values of Uy at the interior nodes of i:h, the problem (Ph) reduces to

the finite dimensional non linear problem
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(4.1) Au + Dd(u) = £

where A is a NXN positive definite matrix, D 1s a diagonal matrix with

positive diagonal elements di's and where

u = {ul,...uN} eRN s felga

$(w) eR with (0(w); = 0(u).

Clearly from the properties of A,D,0,f we can see that (4.1) has a unique

solution.

4.3. Gradient mehtods

The basic algorithm with constant step (see CEA [1]) is given by

(4.2) W eRY given,

(4.3) TR gn— ps™! (au™+Do (W™ -£), p > 0.

In (4.3),S is a symmetric and positive definite matrix. A canonical choice

is obviously S = IN » but in most problems it will give a slow speed
. . . . . t
of convergence. If A is symmetric the natural choice is S=A and if A# A
A+AT . . . . . . .
we can take S = 5 If ¢ is locally Lipschitz continuous (i.e. Lipschitz

continuous on the bounded sets of R) then algorithm (4.2),(4.3) converges
to the unique solution u of (4.1) if p is taken sufficiently small. Obviously

the closer uo is to u, the faster is the convergence.

Remark 4.1 : If A=At then Av+D¢(v)-f is the gradient at v of the convex

functional

N

J(v) = l
2 .
1=1

t

¢(T)dt |

where (-, ® ) denotes the usual inner-product of RN and Q(t) = q
J
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Remark 4.2 : In each specific case p has to be determined ; this can be done
theoretically, experimentally, or by using an automatic procedure, which

will not be described here.

Remark 4.3 : Let us define gn by

gn = Au+D¢(un)-f.

Instead of using a constant parameter p we can use a family (p ) of positive
nn

parameters in (4.3). Therefore (4.3) can be written as
= -0 S
(4.4) U u Dn g

Suppose A=At, then if we use (4.2),(4.4) with Py defined by

1

3 -0 s7'g™ <3u"ps7'g™  voer,

(4.5)
( pneli,

the resulting algorithm is a steepest descent method. This algorithm is

convergent for ¢ ¢ COCR) (we recall that ¢ is non decreasing in this report).
We observe that at each iteration the determination of Qn requires the solu-

tion of a one-dimensional problem (a "line search") ; for the solution of

such one-dimensional problems see POLAK [1], BRENT {1].

Remark 4.4 : At each iteration of (4.2),(4.3) or (4.2),(4.4),(4.5) we have
'to solve a linear system related to S. Since § is symmetric and positive

definite this system can be solved using the Cholesky method, provided

the factorization

s = 1.t

has been done.
From a practical point of view it is obvious that the factorization of S
should be made in the beginning once for all. Then at each iteration we

just have to solve two triangular systems, which is a trivial operation.
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44. Newton's method

The Newton's algorithm is given by

(4.6) uOERN given,

(4.7) U™ = e ™) T 06" (M utpo (™) +6)

~

where ¢'(v) denotes the diagonal matrix

d)'(v])

1
¢’ (v)
d¢

1 ' = —_—
with ¢ el
Since ¢ is non decreasing we have ¢' 2> 0, this implies that A+0'(v) is nositive
definite Vv GJRN.
Remark 4.5 : At each iteration we have to solve a linear system. Since the

. n
matrix A+¢'(u’) depends on n, the Newton's method above may be not efficient
for large N. However a variant of Newton's method avoiding partly that dif-
ficulty may be found in EISENSTAT-SCHULTZ-SHERMAN [1]. The idea is to replace

the complete solving of (4.7)by a few cycles of an iterative method for

solving linear systems ; for more details see the above paper.
Remark 4.6 : The choice of u® is very important when using Newton's method
moreover the convergence requires more regularity for ¢ (let say ¢¢€ C2)

than in most of the methods to be described in the following sections.

45.Relaxation and Overrelaxation methods

We use the following notation

A= (a..) f={f],...fN}.

837 1<i,j<N ° <



Since A is positive definite we have aii3>0 Yi=1,2,...N. Here we shall

describe three algorithms
Algorithm 1 :

N
(4.8) u® R given,

n n+l .
then for u known we compute u , component by component, US1ng

—n+] -n+l n+l
(4.9) a.. o'+ d.o@y ) = £, - ) a.. u. —_z a.. u.
11 1 1 1 lj(i 1] J J>1l_] ]
4.10) ™= W? 4 0@ D
1 1 1 1

for i=1,2,...N.

Since aii>(h d.1 >0, ¢ € COGU and ¢ is a non decreasing function,

(4.9) has a unique solution.

If w=! we recover an ordinary relaxation method ; in this case it follows
from CEA-GLOWINSKI [1] that if A=A® and since ¢ is €° and non decreasing,
then the sequence {gn}n associated with (4.8)-(4.10) converges to the

solution u of (4.1).

If in (4.1), A is not symmetric or w# 1, some sufficient conditions

of convergence may be found in ORTEGA-RHEINBOLDT [1] and S. SCHECHTER
ciy, [23,03].

Algorithm 2 : This algorithm is the variant of (4.8)-(4.10) obtained by
replacing (4.9), (4.10) by
n+1 ntl

a un o+ 40y = (1-0) (ay; up o+ od; d(u)) +

(4.11)

n+l n
+ w(f. -} a. .- a. u.)
1 j <i i.] L}J ;) i lJ ]

for i=1,2,...N.
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Remark 4.7 : If W= 1or ¢ is linear the two algorithms coincide.
In the general case the convergence of (4.8)-(4.11) seems to be an

open question. However, from our numerical experiments it seems that

the algorithm 2 is more "robust" than algorithm 1; may be
because it is more implicit. Furthermore it can be used even if ¢

is only defined on a bounded or semi-bounded interval Jo,R[ of R such
that ¢(a) = ==, ¢(B) = + ; in such a case if ¢ ¢ CO(]a,B[) and ¢

is increasing, then (4.1) still has a unique solution but the use of
(4.8)-(4.10) with w>] may be dangerous.

1
Remark 4.8 : If ¢eC (R), an efficient method to compute Gg+l in (4.9)

n+1

and u.1 in (4.11) is the one dimensional Newton's method

1
Let ge C (R). In this case the Newton's algorithm for solving the

equation g(x) = 0 is
¢ .
(4.12) x eR given,
n
(4.13) o g - e(x)

g' (x")

. . —n+1 n+l .
If in the computation of u, and Uy we use only one iteration of

. n . .
Newton's method, starting from us, then the resulting algorithms are

identical and we obtain
Algorithm 3 :

N
(4.14) uoeR given,

then for n20

n+l n n
( z a..u. + Z a..u., + d.¢(u,)-£f.)
n+1 5<i ij ] 351 ij 3 i i i

(4.15) u. - , i=1,2,..

,, N
aj; + 4o (up

.N.
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Sufficient conditions for the convergence of (4.14),(4.15) are given

in S. SCHECHTER [1], (217, [31.

Remark 4.9 : We may find in GLOWINSKI-MARROCCO [11, [2], applications of

relaxation methods for solving the non linear elliptic equations modelling

the magnetic state of electrical machines.

4.6. Alternating direction methods

In this section we take p>0. Here we will give two numerical methods for

solving (4.1).

First method

(4.16)  uCeR" given,

n . n+l/2
once u  is known, we compute u by

un+l/2+Aun+1/2

~

(4.17) o = pu"-Do(u™) +£,

+
then un ] by

n+l n+l

(4.18) pu + D¢ (u un+]/2—Aun+]/2+f

) =p
For the convergence of (4.16)-(4.18) see, e.g., R.B. KELLOG [1].

Second method :

(4.19) u° EBN given,

+
knowing u” we compute h 1/2 by

un+]/2 N Aun+1/2

(4.20) p = pu"-Dg (u")+f

+
then u” . by
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(4.21) pun+]+D¢(un+l) _ pun__Aun+1/2+f

n+l/2

(pu (4.18) has been replaced by pun).

Using the results of LIEUTAUD [1] it can be proved that for all p >0,
unﬂ/2 and u" converge to u if A, D and ¢ satisfy the hypothesis given

in Sec. 4.2.

Remark 4.10 : At each iteration we have to solve a linear system whose

matrix is independent of n if we use a constant step P. This is an

advantage from a computational point of view (see Remark 4.4).
We also have to solve a non linear system of N equations, but in fact
these equations -are independent from each other and reduce to N

non linear equations in one variable, which can be easily solved.

Remark 4.11 : Variant of (4.16)-(4.18) and (4.19)-(4.21) are obtained
by inversion of the order in which we solve the linear and non linear

problems. Doing so we obtain from (4.16)-(4.18)
4.22)  uCeR given,

and for nz 0

un+l/2

(4.23) pun+]/2+D¢( ) = pul-Au"+f,

+ +
(4.24) pu™ o™ = o™ /2 pg 12

Y+£.
From (4.19)-(4.21) we obtain

(4.25) u0 GRN given,

and for n2 0



n+1/2 n+l1/2
ou

(426) Do (u” %) = pu-auf

n+l n+1 n+1/2

(4.27) ou™ +ad™ = pu™-Do(u )+£.
If (4.16)-(4.18) and (4.22)-(4.24) may be viewed as the same algorithm
(with different starting procedures) this is not the case for (4.19)-(4.21)
and (4.25)-(4.27) ; indeed for the class of problems under consideration

it appears that for the same 0 the convergence of (4.25)-(4.27) is faster

than the convergence of (4.19)-(4.21).

4.7. Conjugate gradient methods.

In this section wa assume that A=At. For a detailled study of conjugate
gradient methods we refer, e.g., to POLAK [1], DANIEL [1], CONCUS-GOLUB
ill. If the functional J defined in Remark 4.1 (see also (4.28) below) 1is

not quadratic (i.e. if ¢ is non linear), several conjugate gradient methods

can be used. Let us describe two of them, the convergence of which is stu-

died in POLAK [171.

Let J given by

N
1

(4.28) J(v) = 5 (Av,v) + ) d, Hv)=(£,v) ,

i=1

t

where ®(t) = $(t)dT, ¢ being, as above, a non decreasing continuous
function on R;o with ¢(0) = 0. Let S be a NxN symmetric, positive definite
matrix.
First method : (Fletcher-Reeves)
(4.29) «® eRY given,
(4.30) g® = 57 (Al (u®)-£),
(4.31) Wl - g°

09



n+l
Then, assuming that u" and w' are known, we compute u by
n+1 n n
(4.32) u = H—p W,

where %1is the solution of the one dimensional minimization problem

J(gn-ongn) <J@™-ow")  VPeR,

(4.33)
P eR.
n
n+1 n+l
Then we compute g and w by,
- + +
(4.34) 5“” = 8 }(Agn l+<1>(13n ])-E),
n+l n+l A ol
(4.35) w = W
= n~
where
n+l n+l
(s -2
(4.36) S
(Sg ,8 )

Second method : (Polak-Ribiére)

This method is like the previous method except that (4.36) is replaced by

n+l n+l_ n

(Ssg” ,g g )

(4.37) An = = 5 ~n =
(Sg ,8 )
Remark 4.12 : For the computation of Dn in (4.33)' see Remark 4.3.

Remark 4.13 : It follows from POLAK [1], that if ¢ is sufficiently smooth,

then the convergence of the above algorithms is super linear, i.e. faster

than the convergence of any geometric sequence.

Remark 4.14 : The above algorithms are fairly sensitive to round off errors ;

hence double precision may be required for some problems. Moreover it may

. . . n n . . . .
be convenient to take periodically w =g (in this direction see POWELL [1]

where more sophisticated restarting procedures are discussed).
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Remark 4.15 : We have to solve at each iteration a linear system related

to S, Remark 4.4 applied to these algorithms also.

Remark 4.16 : Since the matrix S is symmetric and positive definite, an
obvious choice is S = I\Y , but in some problems it may give a slow
convergence. Since A is symmetric and positive definite another obvious

choice is S = A.

In BARTELS-DANIEL [1] and DOUGLAS-DUPONT [1] cne may find applications of
conjugate gradient methods (very similar to those of this section) to the

numerical solution of mildly non linear second order elliptic equations

like v

-V'(ao(x)Vu)+ ¢(u) = £ on Q,

Assuming that (4.38) has been discretized (by finite differences or finite
elements) the above authors take for S a discrete analogue of -A ; in the

case of finite difference approximations, this choice allows them to use

Fast Poisson Solvers. We refer to BARTELS-DANIEL and DOUGLAS-DUPONT, loc.

cit., for more details (see also the very recent paper of CONCUS-GOLLIB-O’LEARY
L-11).

4.8. Comments

The methods of this Section 4 are fairly classical and may be applied to
more general non linear systems than (4.1). They can be applied of course

to the solution of the finite dimensional systems obtained by discretization

of elliptic problems like
—V-(ao(x)Vu)+B'Vu+¢(x,u) = f in Q,
+ suitable boundary conditions,

where, for fixed x, the function t = ¢(x,t) is continuous and non decreasing

on R.
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5. - NUMERICAL SOLUTION OF (Ph) BY PENALTY-DUALITY ALGORITHMS

5.1. Formulation of the discrete problem. Orientation.

We use the notation of Section 4. We have seen in Sec. 4.2 that (Ph)

reduces to a non linear system like
(5.1) Au + Do(u) = £

where A is a NXN positive definite matrix, D is a diagonal matrix with

positive diagonal elements di's and where
u = {u],...uN}eRl\i fe]RN,
L 4
N .
d(u) eR with (q)(g))i . ¢(Ui).

If the bilinear form a(*,*) of Sec. 2.1. is symmetric then A is also

symmetric.

Following FORTIN-GLOWINSKI [1] and GLOWINSKI [2, Ch. 5] we shall describe
in the following sections two algorithms for solving (5.1). These two al-

gorithms are based on a decomposition-coordination principle, via penalty-

duality (they are strongly related to augmented Lagrangian methods ; see

Remark 5.2 for motivation). The proof of the convergence of these algorithms

are not given here, since they follow from general results which may be found

" in the two references above.

Numerical applications of these methods to problems like (4.38) and com-

parisons with other methods are given in Sec. 6.
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5.2. Description of the algorithms. Remarks.

5.2.1. A first algorithm.

Let r be a positive parameter.

Let us denote by ALGI the following algorithm :

(5.2) A° eRN, arbitrary given,

+
then for n 20 we define un,pn,>\n ! by

~ ~

ru” + qu(un) = f + rpn - AR ,
(5.3)

(rI+A)pg = o+ A" ,
(5.4) A" oam L ow-pD.

Remark 5.1 : Looking at (5.2)-(5.4) it appears that the main difficulty when using
this algorithm is the solution of the nonlinear system (5.3). Fortunately (5.3) has

a very special structure making it very suitable for a solution by block-relaxation

(or under or over relaxation) methods. More precisely (5.3) is a particular case

of the following nonlinear system in R2N

rx + DP(x) = ry +f1 ,

(5.5)
(rI+A)y =rx + £2

A Dblock relaxation algorithm for solving (5.5) is the following

o) N .
(5.6) y €¢R given,

+ +
then for m20 we compute X" . and ym l by

m+] m

+1
" )=ry+fs

(5.7 X + Dp(x

(5.8) (rIﬂk)merl = rxm+l + £
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. . . +1
We observe that if ym is known in (5.7) then the computation of xm is easy

since it is reduced to the solution of N independent, single variable nonlinear

equations of the following type

(5.9) rt + d¢(t) = b

with d >0. Since r >0 and ¢ is C0 and non decreasing, then (5.9) has a unique
solution which can be computed by various standard methods (see, e.g. HOUSEHOLDER

[1], BRENT [1]).

+ + . .
Similarly if X" . is known in (5.8), we obtain ym . by solving a linear system

whose matrix is rI+A. Since r is fixed it is very convenient in some cases to

prefactorize rI+A (by Cholesky or Gauss methods).
If A=At , then (5.5) is equivalent to

166y < 360 V{g,g}eRZN s

~ o~

(5.10)
{f)z} €R2N ’
where
1 N r 2
(5.1)  3Em =5 (An,m) ¢ ] S(E)D-(E,E)~(£,,m+ 5 |lEn|]” .
< RS SR <

1
Since j is a C strictly convex function of {£,n} , such that

.

lim JE,M) = +

~g’~
Ll +lIn]D+e

it follows from CEA-GLOWINSKI [1] that the sequence {Xm,ym} given by (5.6)-(5.8)

converges to the unique solution {x,y} of (5.5) (and (5.10)).

When using (5.6)-(5.8) to solve (5.3) an obvious choice for yo isp>n_l.



Remark 5.2 : We suppose that A=At. Let us define

{,r :]R3N+]R

by

N

|
(5.12) £ _(v,q,1) = 5(Aq,q)+ Z

2
L4200 5 lv=g |7+ (uv-g)

1

Then ‘£r is an augmented lagrangian (see, e.g., HESTENES [1], GABAY-MERCIER [1],

FORTIN-GLOWINSKI [1] for more details) related to the minimization problem

N
(5.12) Min  {x(Aq,@) + § d, 0(v) - (£,v)
~x- ~ o~ . 1 1 ~ o~

{V)q} eW i=]

where

2N
W= {{v,q} eR"" , v—q = 0}

The minimization problem (5.12) is obviously equivalent to

N
MinN {%5AV,V) + z di @(vi)-(f,V)}
veER - i=1 T

i.e. to
Au + D¢(u) = £,
which is the nonlinear system (5.1) under consideration.

One may easily prove that if u is the solution of (5.1), then {u,u,Au} is Y r >0,

~ o~

the unique saddle-point of =£r over RV

From these properties it appears that the algorithm (5.2)-(5.4) (ALGl) may be
interpreted as an Uzawa algorithm (see GLOWINSKI-LIONS-TREMOLIERES [!, Ch. 2],
EKELAND-TEMAM [1]) for computing the above saddle-point of =£r. Moreover A= Au

appears as a Lagrange multiplier related to the linear constraints v-q = 0.

~ o~
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5.2.2. A second algorithm.

With r as in Sec. 5.2.1., let us denote by ALG2 the following algorithm
1
(5.13) (0 1e RN given,
+
then for n >1 we define un,pn,)\n 1 by

(5.14) ru” + DpGu™) = £ + rBI"

r
(5.15) (r1+a)p” = ru” + A",

(5.16) A o\ + p(up™).

Remark 5.3 : Assume that in ALGl we use the block-relaxation algorithm (5.6)-

(5.8) to solve (5.3). Then if we use ZO = pn 1 as a starting vector, and if

we only do one iteration of (5.6)-(5.8), then ALGl! reduces to ALG2.

Remark 5.4 : Supnose that p=r in ALG2 ; we have then

ru’ + D¢(un) = f + rpn_]—)\n

>

(5.17) rTn + Ap" = ru” + A

+1
A"

. = A"y r(gn—gn).

It follows from (5.17) that

(5.18) AP o apt .

Then from (5.17), (5.18) we obtain

(5.19) ru® + Do(uM)+ap™ T —f+rp PP

(5.20) rp” + Ap" + DH(uM =f+rp™ L.

Therefore, if p=r, ALG2 reduces (with different notation) to the alternating

direction method described in Sec. 4.6 by (4.25)-(4.27).
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5.3. Convergence of ALGl, ALG2. Further Remarks

5.3.1. Convergence results.

It follows from FORTIN-GLOWINSKI [1], GLOWINSKI [2, Ch. 5] that the properties
n n.n e
of A, D, ¢ imply that we have convergence of {u ,p ,A } to {u,u,Au} if in ALGI

(resp. ALG2) we take

(5.21) 0<p<2r
(resp.
(5.22) 0<p < l+2’/€ r)

5.3.2. On the choice of p and r.

If r is given our computational experiments with ALGl and ALG2 seem to indicate
that the best choice for p is p=r . The choice of r is not clear and ALG2 appears

to be more sensitive to the choice of r than ALGl. In fact ALGl seems to be more

robust on very stiff problems than ALG2. We mean that the choice of the parameter

r is less critical and that the computational time with ALGl may become much

shorter than with ALG2 for a given problem.

Remark 5.5 : (On the choice of r in ALGI).
About the choice of r in ALGl it can be proved that theoretically the largest is r,

the fastest is the convergence ; practically the situation is not so simple for

the following reasons : the largest is r, the worse is the conditioning of the

problem (5.3). Then since (5.3) is numerically (and not exactly) solved at each
iteration, an error is done in the calculation of {yn,gn}. The analysis of this
error and the effect ot it on the gloval behaviour of ALG! is a very complicated
problem since we have to take into account the conditioning of (5.3), the stop--
ping test of the algorithms solving (5.3), round-off errors, etc...

Fortunately it seems that the combining effect of all these factors is to give

an algorithm which is not very sensitive to the choice of r.
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6. — NUMERICAL EXPERIMENTS AND COMPARISONS WITH OTHER METHODS.

6.1. The test problem.

We consider the following test problem

- bfu + ¢(u) = f on Q,
(6.1)
ulye= 0

where Q = 10,1[x]0,1[,
d(t) = sgn(t) ltlk = tltlk_] , 2>0
If (with x = {x],xz}) we define u by

u(x) = sin 2mx, sin 2ﬂx2 ,

1
then for f given by
2 -
f =8mu + |u|2 lu

the exact solution of (6.1) is u.

The behaviour of ¢ is shown on fig. 6.1

Figure 6.1.
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We observe that ¢ is not smooth near t=0 if 0<& < 1 ; hence Newton-type methods

are not very suitable for this kind of ¢'s.

If we discretize Q using an uniform square grid with equal grid spacing in both

the Xl and x2 directions, our matrix A, in ALGl and ALG2, will be the usual dis-

crete laplacian matrix (since @ is a square, a finite difference approximation

of (6.1) 1is very convenient). So in both our algorithms ALGl and ALG2 we have to

solve the discrete Helmhotz's equation, namely the discrete formulation of
(6.2) - Au + ru = f.

There existfastdirectsolvers of Helmhotz's equation on a uniform mesh in a
rectangular domain. We used such a solver called TBPSDN, written by B.L. Buzbee
(cf. BUZBEE-GOLUB-NIELSON [1]) at Los Alamos Scientific Laboratory, and tested
and modified for Lawrence Berkeley Laboratory by Gary A. Sod. This solver
incorporates the truncated Buneman's algorithm, using the standard five point

difference approximation for the laplacian.

We have seen in Sec. 5 that each iteration of ALGl and ALG2 requires the solution

of one-dimensional nonlinear equations of the form

(6.3) r& + d¢ (&) = rus
with d > 0 (since we are using finite differences we have in fact d=1).
We do not want to use Newton's method to solve this equation because

. 1
(i) If ¢ ¢ C¢ we may have troubles with Newton's method,

(ii) We think that an efficient method not using ¢' may be more interesting in

view of more general problems.

There exists one-dimensional nonlinear equation solvers which do not require
derivatives. We used such a routine, called ZEROIN and due to Richard Brent.
This method is described in BRENT [!]. ZEROIN will always locate a root within

a given interval where it is known to lie, to within a given accuracy TOL.
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From the facts that ¢(0) = 0 and that ¢ is non-decreasing, we can easily deduce
that the solution § of (6.3) is in the interval [0, E%éj if RHS >0 and in the

R
interval [—%g ,0] if RHS <O0.

For the inner loop (5.7),(5.8) convergence test, in ALGl, we have used the 2]
norm (the actual norm used is not important ; we have also used the 22 norm

and obtained similar results).

In our experiments, for the purpose of comparisons, we stop our iterations when

<ACC where u

h is the exact solution of the discretized system

lp"-u, I,

Au, + ¢(Bh) = f (here D=I) ,

with a uniform spacing h (we recall that if p is well chosen, cf. Sec. 5.3.1.,

then {un,pn,ln} converges to {uh,uh,Auh}).

In practice, Uy is not known and so some other kind of stopping criteria has
to be used, e.g.

I
[ gn+ "]

ey
[2" I

in some suitable norm.

-

< ACC

Remark 6.1 : We can determine uy with a very good precision by running ALG! or

ALG2 on the test problem until (un-pn) is very, very small. Notice that if
n o} o
u =p- then Apn+ ¢(un) = f and hence u = ot = pn. Incidentally the closeness
n n ~ -
of u top can be used as another stopping criteria or as a check on the final
o!

iterate p

6.2. Study of parameters in ALGl and ALG2.

We would like to study the effect on the general performance of the algorithms

ALGl and ALG2, of the following parameters
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ael = (8%,3%°,0%r,0,e, TOL} ;

¢ 1s the tolerance parameter for the stopping test of the inner loops of ALGI.
The parameters Ao,r,p,TOL have been defined before. The vectors ﬁo,ﬁo deserve
some more explanations. It follows from Sec. 5.2.1, Remark 5.1, that the non-
linear system (5.3) may be solved by the block-relaxation algorithm (5.6)-(5.8) ;
we have used precisely that last algorithm for solving the examples of Sec. 6,
. n-1 n-1 , n _n
taking u ,p as starting vectors to compute u ,p . Therefore to compute
UO ,po from )\O, we need some starting vectors which are precisely what we have

~

~0 A0 . n n .
denoted by "u ,p above. Since u and p converge to the same limit we have

systematically taken 1P = 15“0.

- I
are2 : {a%,p°,4 ,r,p,TOL} ;

1
We recall that in ALG2, po and A are given (see Sec. 5.2.2.). Since W© is

o 1
computed, from p and A , by an-iterative method we need an initial guess

0 . ~0 o
say u . In fact we have systematically taken u = p .

In addition we want also to study, to some extent, the effects of the smoothness

of ¢ on the algorithms. This smoothness can be controlled by £, since
oty = t|e]*h a0,

6.2.1. Effects of G ,p .

Basically ALGl (resp. ALG2) will converge for any starting vector ﬁo(=f50)
' (resp. po(=ﬁo)). Obviously when an approximation of the solution a4 of
(6.4) Au + ¢u) = £

is known we should use it. But most often (i.e. for general f) we do not know
what the solution is like. So we are often forced to start with some constant

value like ﬁo =0 (resp. po=0) or a° (resp. po) with constant components.

Intuitively if ¢ has a sharp jump at t* (in our case t*=0 if R € ]0,I1[ since
*

$'(0) = +») we would expect that the points of the grid where W, is near t

h
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will produce the slowest convergence for the corresponding component of wu, .
This was observed in our experiments. For our test problem, ¢ has a sharp

jump at t* = 0 (if 2¢]0,1[) ; if we start with ﬁ? =10 , VYi=l,... N ,

(resp. ﬁ} = 10 , Vi=l,... N), the convergence is generally fast except for
points where u is close to zero. In all cases the maximum final errors
occured at such points. However if we start with 4%=0 (resp. po = 0) no
difficulties were observed with these points. Our~gu;ss is that is we start
with 0 we are starting with a good guess of the components of u at which ¢
has a sharp jump and which we expect slow convergence. Very often we know
where ¢ has a sharp jump and we can take advantage of this knowledge (at least

if ¢ is not too complicated).

Therefore we can in general recommend the following

. v 0 * .
(1) If ¢ is known to have a sharp jump at t , and if we don't have a good
~ * .
approximation of u,_ to start with, use 8% = t* (resp. po =t ) (i.e. set
~0 x . T ¥ -
i, =t Vvi=l,...N , idem for po).

1

(ii) Otherwise, start with the best approximation available.

For example, Figure 6.2 shows that ALG2 (i.e. with no inner loop c-test) works
just fine with po = 0 but has problem if started with po = 10. Luckily, as we

shall see later, ALGl (with inner-loop E-test) will overcome this trouble.

o
Form Figure 6.2 it appears that the convergence is linear if p = 0 and

sub-linear if p0 = 10.
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iter.
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N

Difficulty : ¢(t) has a sharp jump at t=0.

Figure 6.2
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6.2.2. Effects of )\°

Note that with the exact solution uh we have

>\ = Atlh = f—d)(};lh)'
So two natural choices for AO are

(i) AG° (resp. A po)

s

(i1) £ - $(3%) (resp. £ - ¢(p°))

1f §° (resp. po) is a good approximation to U, then A\° will be a good approxi-

~

mation to A.

~ . 0
For our test problem, if =0 (resp. po = 0), then the two choices for A
are 0 and f. We have tried both and conclude that the convergence of ALGI

and ALG2 was quite insensitive to these choices of 2°.

6.2.3. Choice of p.

We actually found that the best choice for p is p=r for our test problem.
Similar observations have been done by GLOWINSKI-MARROCCO [ 3], GABAY-MERCIER
[1], for algorithms like ALG! , ALG2, applied to the solution of other classes
of nonlinear problems.

6.2.4. Choice of TOL

TOL measures how accurately we want to solve, with ZEROIN, the one variable
nonlinear equations, obtained from ALG2 and the inner loops of ALGl. From

our experiences we recommend a value of TOL = ACC. Intuitively this makes

sense because if TOL >ACC we won't be able to obtain the required accuracy
in the final solution because our intermediate steps are not solved accura-
tely enough. If TOL <<ACC, we spend more work in each inner loop than it is
necessary and from our experience, this doesn't improve the convergence of

the algorithms.
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6.2.5. Choice of ¢.

This parameter is used in the inner loop of ALGl to decide when to stop
the inner iterations and update An. Note that if g->+w , ALGl » ALG2
because we will be updating An after only one iteration every time.

In general, ALGl (with a reasonably smalle) is more robust than ALG2.
ALG2 will work a little better (takes less iterations) than ALGl if we
start with a "good" guess at the solution (po = 0 in our test problem)
but if we start with a "bad" guess (po=0, e.g.) ALG2 wil have problem
at points where has a sharp jump, ;s ;xplained earlier. In fact ALGI
solved the inner equations more accurately and thus its updating of An
wilbe more accurate and this is often enough to bring us very close to
the solution we want. (See Figure 6.3. For the test problem, €=10_4 seems
to be a good choice.) In other words, ALGl's 'cautiousness" in updating An
pays off. ALGl may lose a little bit in the early itarations by spending"
too much time in the inner loop but it gives a better chance of obtaining
a solution to within the required accuracy. Therefore, in general, ALGI
is to be recommended. We think that some reasonably small value for €,
like ¢ = VACC, wil work fine. Another approach is to use variable € i.e.

-~

a sequence {sn}n ; this requires further investigation.

6.2.6. Choice of r

We complete the Remark 5.5 of Sec. 5.3.2.. The parameter r controls the relative
weight of the penalty term in the augmented lagrangian (see (5.10)). This
penalty term has the effect of providing some global convergence steering.

We varied the value of r in ALGI with the test problem and found that the
convergence 1is surprisingly insensitive to r (see Fig. 6.4). This is an
advantage over SOR and ADl type methods which are very sensitive to their

parameters (as will be shown later).
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6.2.7. Effect of the smoothness of ¢.

The smoothness of ¢ can be controlled by £ in our test problem. We ran ALGI
with 2=.1 and 2=.5 and found that ALGl! actually performs a little bit better
for %=.1 than for the "smoother" £=.5. We also determined the optimal r for

2=.5 and found it to be about the same as that for {=.1.

6.3. Comparisons with other methods.

6.3.1. Description of the other methods.

. n . .
For a given accuracy ACC on ”p —uhll2 we want to compare the efficiencies of

ALGl, ALG2 and other methods for solving the discretized problem
A+ 0(w) = £

Among these methods compared are the Successive over-relaxation method (SOR)

and the alternating direction implicit (ADI) methods discussed in Sec. 4.6.

These methods are reproduced below

1) SOR : We can look at the discretized equation
Agy *+ O(y) = £

as a system of non linear equations
fl(ul’u2'°'uN) =0,

‘(6.5) ?i(ul,uz,...uN) =0,
éN(ul,uz,...uN) =0

Then we can use (cf. Sec. 4.5) the two following variants of SOR
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SOR 1 :
o .
(6.6) u given
n n+l
at step n, with u known, we compute u by :
For i from 1 to N, solve
n+1 ntl n+1/2 n _
(6.7) fi(ul seeets g Us ’ i+l"') 0,
then
+ . +1/2 n
(6.8) A 10 2_,2
1 1 1
SOR 2
o
(6.9) u given,
. n n+l
at step n, with u known, compute u by :
For i from 1 to N, solve
n+l n+l n T n+l
(6.10) fi(ul s e e ey ,ui+]...) = (1 w)fi(ul -

2) ADI : We consider the following variants of ADI

ADI1 : We iterate on the following

(6.11) u® given,

then for n 20

n+l/2

(6.12) (pI+A)u = £+ put-p @),

(6.13) pun+1 + ¢(un+]) -+ pun _ Aun+]/2,
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ADIIM : We replace (6.13) by

n+l

(6.14) ou™tt g (M

y = £ + pun+]/2_Aun+l/2

ADI2 : It is defined by

(6.15) u® given

then for n20

(6.16) 2062y g v pumead®

(6.17) ou™ 4 au™ - £ 4 od® - ™2
ADIZM : We replace (6.17) by

(6.18) ou™ b ™l o f e o2 gt 12

6.3.2. Comments. Further Remarks.

One of the main problem with SOR and ADI is the sensitivity to the parameters w
and p respectively. Hence we first study the convergence of SOR and ADl as a

function of their respective parameter  and p. See Fig. 6.5, 6.6, 6.7, 6.8.

Remark 6.2 : ADIl (and ADI1M) both didn't work well and their plots are left out.
The difficulty may be due to solving the linear part first instead of the nonlinear

part first.

Remark 6.3 : From these plots we can see that both ADI2M and SOR are quite sensitive
to their parameters whereas ALGl and ALG2 are not (specially ALGl). For linear pro-
blems one can usually find some good estimates for the optimal parameters. However,

for nonlinear problems this is often difficult.
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Remark 6.4 : It follows from Remark 5.3 that ALG2 and AD12 are in fact the same
algorithm. This appears clearly in Table 6.1 which summarize some of our compu-

tational experiments. From this table we can see that ALGIl performs the best if

UO is not close to the solution uh.

6.4. CONCLUSION.

From our experiments on the test problem, we can make the following empirical

statements

(1) The convergences of ALGl and ALG2 are not very sensitive to their parameters,

in particular the penalty parameter r.
(ii) ALGI is more robust and as efficient as ALG2 in general.

(iii) ALG] is more efficient than SOR and ADI for functions ¢ that are not smooth.
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Effect of r (=p)

g = .1, 17x17 grid, acc = 10° , 2°=0
/Z

with € = 10 *
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SOR

17 X17 grid points

4

iter.

1.5
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AD12,UO=OI
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Comnarison of the different algorithms

Required accuracy 5

L =0 X,

Optimal parameters are used.

: L, error< 10

¢ (u) @ sgn(u) hﬂﬁ @ 17 x 17 grid points

Algorithm optgigf ;:iiggter) Iterations
ALGL(e=10"%) 2.54 sec. 11
ALG2 1.56 sec. 6
SOR1~ 5.47 sec. 36
SOR2 5.9 sec. 36
AD12 1.67 sec. 7
ADI2M 0.65 sec. 2
v’ =10

Algorithm optfigf gzjiigter) Iterations
ALGL(e=10"") 3.1 sec. 14

ALG2 11.7 sec. 50

SOR1 7.0 sec. 48

SOR2 7.48 sec. 47
ADI2 11.5 sec. 69
ADI2M 7.5 sec. 45

IBM 370/168 , FORTIRAN H , OPT = 2.

Table 6.1

- Double precision
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