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Abstract

We describe in this report the numerical analysis of a particular

class of nonlinear Dirichlet problems. We consider an equivalent

variational inequality formulation on which the problems of existence,

uniqueness and approximation are easier to discuss. We prove in particular

the convergence of an approximation by piecewise linear finite elements.

Finally, we describe and compare several iterative methods for solving the

approximate problems and particularly some new algorithms of augmented

lagrangian type, which contain as special case some well-known alternating

direction methods. Numerical results are presented.
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1. = INTRODUCTION

In this report we would like to discuss the numerical analysis of mildly

non linear elliptic partial differential "equations of the following type

Au + ¢(u) = £

up= 0,

where in (1.1) :

- A is a second order elliptic operator, possiblynotself adjoint,

-¢ : RR, ¢¢ c°(R) and is .non decreasing,

- f is a function defined on fl.

In fact some of the results and methods to be described here may be extended

to more complicated problems or to problems with other boundary conditions.

In Section 2 we give a variational formulation of (1.1) (problem (P)) and

then introduce an equivalent variational inequality (problem (7)) for which

the existence and uniqueness properties, as well as the numerical analysis,

are easier to study. We also prove an existence and uniqueness theorem and

various lemmas useful in the numerical analysis sections of this report.

In Section 3 we study a finite element approximation of (1.1) and prove

that the approximate solutions converge to the solution of the continuous

—problem for some Sobolev norms.

In Section 4 we describe various standard methods which can be used to

solve the approximate problem obtained in Sec. 3. Some of these methods

are.: Gradient and Conjugate gradient methods, Newton's method, SOR, ADI.

In Sec. 5 we introduce some new methods based on the simultaneous use of

penalty and lagrange multipliers which contain some ADI algorithms as

particular cases.

In Sec. 6 we use the above methods to solve a test problem. Comparisons

between the standard methods of Sec. 4 and the methods of Sec. 5 suggest

the superiority and much more robustness for the new algorithms.
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We may find in BARTELS-DANIEL [1], DOUGLAS-DUPONT [1](resp. EISENSTAT-

SCHULTZ-SHERMAN [1]) conjugate gradient algorithms (resp. Newton's

algorithms) for solving equations like (1.1), once a suitable approxi-

mation has been made.

For the material concerning the Sobolev spaces, (definitions, properties,

etc...) we refer to the classical treatises of ADAMS [1], NECAS [1].

We refer also to D.J. FIGUEIREDO[1] where the reader interested by the

theoretical aspects of non linear elliptic equations will find a survey

of the various techniques which can be used to study these problems,

including the most recent results of the theory of monotone operators.

2. —-— A CLASS OF MILDLY NON LINEAR ELLIPTIC EQUATIONS

2.1. Formulation of the problems
N

Let 2 be a bounded domain of R° (N22) with a smooth boundary I'. We

consider

1 2 ov 2 :

-V =H (Q) = {vivel (), EP e L°(Q) i=1,...N, v|p = 0}.
-L: V~>R, i.e. L(v) = <f,v> where feV'-= 1)

(V' is the dual space of V and <*,*> the duality pairing between V'

and V).

— a: VxV+> R bilinear, continuous and V-elliptic, i.e. doa >0 such

] that

2

(2.1) a(v,v) 2 allvilgVvev

where

2 1/2

(2.2) [vil = ( | Vv | “dx) ;§2

we don't assume that a(*,*) 1s symmetric.

-¢: R'R, beC’(R), non decreasing with ¢(0)= 0.
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We then consider the following non linear variational equation

1
Find ueV such that ¢(u)e L (2) nV' and

(P)

a(u,v) +<¢p(u),v> = <f,v> V ve V.

It follows from the Riesz Representation Theorem (see, e.g. YOSIDA [11])

that there exists Ae€Z(V,V') such that

a(u,v) = <Au,v> Vu,ve V ;

therefore (P) 1s equivalent to

[| Au + du) = f,

(2.3) UEV,
1

d(u)ye L (R) nV".

oOo

Example 2.1 : Let us consider a el (§) such that

(2.4) a_ (x) 2a > 0 a.e. on {.

Define a(*,*) by

) (2.5) a(u,v) = | a (x)VueVv dx + BeVu v dxlo)

Q §e

where B is a constant vector in R".

From the properties of a and using the fact that

| BeVv v dx = 0 YveH(RQ)0 0

we clearly have

2

a(v,v) 2 all vil so that a(+*,*) is V-elliptic.
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From (2.5) we obtain

Au = - Ve(a Vu) + BeVu ,

hence in this particular case (2.3) becomes

- Ve(a_Vu) + B*Vu + ¢(u) =f,

]
UEV, ¢(u) e L (R).

1 0 ,=

Remark 2.1 : If N=1 we have H (2) cC (2). From this inclusion there is no
difficulty in the study of one dimensional problems of type (P). If N22

]

the main difficulty 1s precisely related to the fact that H (8) is not
contained in c®(@).

Remark 2.2 : The analysis given below may be extended to problems in
I

which either V = 1 (9) or V is a convenient closed subspace of H (§2).

2.2. A variational inequality related to (P).

2.2.1. Definitions

Let

t

(2.6) o(t) = | ¢(T)dt
. 0

1

(2.7) D(3) = {veV, d(v)eL (D} .

2 a (*)
. The functional Jj : L7(§) >R is defined by

1

| ®(v)dx if ®(v) e¢ L (§),) Q
(2.8) 1(v) =

]
+o if $v) £€L (RN).

Instead of studying the problem (P) directly, it is natural to associate with
* %

(P) the following elliptic variational inequality )

(*)R =Ru{+eo}u {-} |

(**) For variational inequalities and their approximation see GLOWINSKI-LIONS-
TREMOLIERES L 1],[ 21, GLOWINSKI [1], [2].
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a(u,v-u) + j(v) = j(u) 2 L(v-u) VvelV,

(1)

u ¢ V.

If a(*,*) is symmetric, a standard method to study (P) would have been to

consider it as the formal Euler equation of the following minimization pro-

blem encountered in the Calculus of Variations :

J(u) <J(v)VYvelV,

(Q)

ueV

where

]

J(v) = 5 a(v,v) + | ®(v)dx - L(v).Q2

Therefore associating (m) to (P) is a natural generalization of this approach.®

We clearly have

Proposition 2.1 : D(@®) is a convex, non empty subset of V.

2.2.2. Properties of j(*) :
. 0

Since ¢ : R > R 1s C , non decreasing with ¢(0) = 0 we have

(2.9) beC R), & convex, ®0) = 0, (s(t) 20 Vt €R.

The properties of j(*) are given by the following lemma :

: (*) (*x%) 2
Lemma 2.1 : The functional j(*) is convex, proper and l.s.c. over LT (8).

Proof : Since j(v) 20 Yv eL (fl) it follows that 1(*) is proper. The convexity

of j(*) is obvious from the fact that ® is convex.

(*) j(*) proper means that j(v) >-® yveV, § % +>,

(xx) l.s.c. : abreviation for lower semi continuous.
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Let us prove that j(*) is l.s.c.:
2

Let (v) , v € L (2) ¥n, be such that
n’'n n

2
lim vn = v strongly in L7(R).
n> +

Then we have to prove that

(2.10) lim inf j(v_) 2 J(v).
n+ n

If lim inf j(v ) = +© the property is proved. Therefore assume that
n-—>r+© n

lim inf j(v ) = 2 < +o ; hence we can extract a subsequence (v_ )
n n,n

n—-+ © k k

such that ~

(2.11) lim j(v_) =2,
k +o Py

(2.12) wv +> v a.e. in {.
n
k

Since § eo dm, (2.12) implies

(2.13) lim &(v ) = ¢(v) a.e. .
kro Mk

Moreover &®(v) 20 a.e. and (2. Ll) implies that

(2.14) {¢(v )} is bounded in Lh.
k DOUIMEd

Pg

Hence by Fatou's lemma, it follows from (2.13) (2.14) that we have

]
d(v) eL (R),

(2.15)

lim inf d(v dx = | d(v)dx.k>+ 0 Ra Q

From (2.11) and (2.15) we obtain (2.10); this proves the lemma. a
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Corollary 2.1 : The functionalj(s) restricted to V is convex, proper

and l.s.c. .

2.2.3. Existence and uniqueness results for (mm).

Theorem 2.1 : Under the above hypothesis on V, a, L and ¢, problem (T)

has a unique solution in V nD(9).

Proof : From the above properties of V, a, L and Jj, we can apply some

standard results concerning elliptic variational inequalities (see, e.g.,

LIONS-STAMPACCHIA [1], LIONS [1], EKELAND-TEMAM [11], GLOWINSKI [11], [21])

which imply that (mw) has a unique solution u in V.

Let us now show that u€D(d):

Taking v=0 in (17) we obtain

(2.16) a(u,u) + j(u) £L(u) < El, [uly

where

|<f v> |
| FT 4 — Sup

ve V-{0} | 11. .

Since j(u)2 0 and using the ellipticity ofa(e+,+) we obtain

|I£1] *

(2.17) lull, < 7

which implies, combined with (2.16) that

2

[EI
(2. 18) ju) § — |

a

This implies u €D(9).®

Remark 2.3 : If a(e,e) is symmetric, (mm) is equivalent to the minimization

problem (Q) of Sec. 2.2.1.

2.3. Equivalence between (P) and (iT).

In this Section we shall prove that (P) and (m) are equivalent. We prove

first that the unique solution of (m) is also a solution of (P). In order
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1

to prove this last result we need to prove that ¢(u) and ud(u)€ L (£2).

Proposition 2.2 : Let u be the unique solution of (7). Then u¢(u) and
—== — co
¢®(u) belong to L (8). .

Proof : Here we use a truncation technique. Let n be a positive integer.

Define

K = {vev, |vix)]| < n a.e.1l .

Since K, 1s a closed, convex, non empty subset of V,the following
variational 1nequality

oT — + _ > —
au _,v u_) J (v) ju) L(v u)Vve K

ii

(m)
¢ 0K
n n

has a unique solution. Now we prove that.

lim u_ = u weakly in V,
In ———————————

n—>+ce

where u 1s the solution of (Tm).

Since (Q¢€ Ko taking v=0 in (m_) we obtain, as in Theorem 2.1 of this
l Section, that

folly 52.1 < _

2
1 £]]

. cn

(2.20) ju) ~ .

It follows from (2.19) that there exist a subsequence = still denoted by
*

{u} - and u €V such that
nn

(2.21) lim u = u weakly in V.
n—>-+oc n
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1

Moreover from the compactness of the canonical injection from H() into
2 Vv

L7(§!) (see, e.g., NECAS [1]), and from (2.21), it follows that

2
(2.22) limu_ = u strongly in L7(§).

n+ n

Relation (2.22) implies that we can extract a subsequence - still denoted

by {u} - such that
n n

(2.23) lim u = u a.e. in fi.
n=>+x n

Now let vevnL (R), then for n large enough we have ver and

- . < : — —
(2.24) a(usu )+j (u) < alu ,v)+j(v)-L(v uJ.

Since

x *

lim inf a(u_,u) 2a(u ,u )
IN n’ n

and

. . *

lim inf j(u_) 2 j(u)
n—>+< n

it follows from (2.21) and (2.24) that

* * . * * . * 0

a(u ,u )+j(u) <a(u ,v)+j(v)-L(v-u ) Vvel (f) nV,

ur€ v

which can also be written as

* x  *% * 00

a(u ,v-u )+j(v)=-j3(u ) 2L(v-u ) Yve vn L (R),

(2.25)
*

u €V.
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For n>0 define T : V > K. by (see Figure 2.1)

(2.26) Tv = inf (n,sup(-n,v)).

\

n

AN / :| hn TV

\

Figure 2.1

Then from STAMPACCHIA [1] we have

]
(2.27) Tvev = H (RQ) Yn,

n 0

lim T v = v strongly in V,
n —————————————

n=>+co
(2.28)

lim tv = v a.e. in .
+00

Moreover we obviously have

(2.29) | T v(x) | < |v (x) | a.e.,

(2.30) v(x) T v(x) >0 a.e. .

It follows then from (2.28)-(2.30) that
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(2.31) 0< {T_v) <®(v) a.e.,

(2.32) lim P(T_v) = ¢o(v) a.e. .
n+ -

0

Since T Ve L (2) nV it follows from (2.25) that

* * , . x *

au ,7T_v-u )+j(T v)-j(u) 2L(T v-u) Vvev,
(2.33)

*

u €V.

If v¢éD(P) then by Fatou's Lemma

lim _j(T Vv) = +,
n—=>+o° 0

If veD(®) it follows from (2.31) and (2.32), by applying Lebesgue's

Dominated Convergence Theorem that

lim j(T_v) = J(v).
n—-+co n

From these convergence properties, and from (2.28), it follows by taking

the limit in (2.33) that

* x. ., x *
a(u ,v-u )+j(v)-j(u) =2L(v-u YWWveV,
x

. u €V,

* x)
Then u 1s solution of (TM) and from the uniqueness property we have u = U.

This proves that lim u_ = u weakly in V.
n

n+

]

Let us show that ¢(u), up(u) eL (f).

Let VER then u +t(v-u ) e RK vt €10,1]. Replacing v by u +t(v-u) in

(m) and dividing both sides of the inequality by t we obtain

¢ (u_+t (v-u_))-¢u_)
n n

a(u_,v-u_) + no 0 8 dx 2L(v-u)
n n Q t n

(2.34)

Vv ek.
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Since ®eC (R) with ® = ¢ we have

| d(u_+t(v-u ))- ou )
(2.35) lim ——————————————— = ¢(u) (v-u) a.e. .

t>0

t>0

Moreover, since ® is convex, we also have Vte J0,1]

bu) (vou «nVn n’ = t -

(2.36)

S d(v)-o(u_) a.e. in 9.

From (2.35), (2.36) and using Lebesgue's Dominated Convergence Theorem in

(2.34), we—-obtain

—_— — => —(2.37) a(u_,v u_) + | oe) (v u_)dx 2 L(v u Vv cK .
Then taking v=0 in (2.37) we have

au _,u ) + | ¢(u Ju dx < L(y) Vn2

which implies, using (2.19), that

2

lll?
. (2.38) ¢(u Ju dx < a n .

2

Since ¢(v)v 20 a.e. Vv e€V, it follows from (2.38) that

]

¢(u_) u is bounded in L (f).

Moreover for some subsequence - still denoted fu} - we have

lim ¢(u Ju = ¢(u)u a.e. in fl.
© gm n° n —

Then by Fatou's Lemma it follows that

1
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1

and this implies, obviously, that ¢(u) € L ({}) and completes the proof of

the Proposition.

Incidentally, when proving the convergence of tu 3 to u, we have proved
the following useful result : -

Lemma 2.2 : The solution u of (rr) 1s characterized by

. 0.8)
a(u,v-u)+j(v)-j(u) 2 L(v-u) Yve VnL (f),

(2.39)
]

UEV, ®(u) eL (2). m

In view of proving that (ir) implies (P) we also need the two following

lemmas :

Lemma 2.3 : The solution u of (7) is characterized by

[ co
a(u,v-u)+ ¢(u) (v-u)dx 2L(v-u)Vve v.nlL ({),

y
(2.40)

1
uevV, up(u) e L (2).

Proof : We first prove that

(1) (m) implies (2.40).

Let VE L (9) nV; then veD(®) and since D(®) is convex we have

-  utt(v-u) € D(®) vte 10,1]. Replacing v by u+t (v-u) in (rr) and dividing

by t we obtainVte 10,1]

+ —-— —

Q
(2.41)

oO

Vvevnl (8).

]
Since ® is C and 1s convex, we have

. O(utt(v- -®(u

t->0

t>0
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(2.43) 0) (u) (v=u) < olure(v=u))=eu) < d(v)-¢(u) .

By Proposition 2.2 we have ¢{(u), d(Wue LQ). Hence ¢(u) (v-u) « Li),
and @®(u), dv)€ TREC) WV ve Vn L (R). Then using the Lebesgue's Dominated
Convergence Theorem it follows from(2.42),(2.43) that

lim flute (vu) g(a) dx = |  (u) (v-u)dx.t>0 ‘0 (2

Using the above relation and (2.41) we obtain (2.40).

(11) We next prove that (2.40) implies (iT).

Let u be a solution of (2.40). Since ® is convex it follows that

= du) = ¢(0)-0(u) 2 ¢(u) (0-u) = - ¢(u)u.

]

This implies 0< ®(u)< udp(u) and ®(u)e L (2).

Let vevVnL (9); then from the inequality

¢(u) (v-u) £ Q(v)-Q@(u) a.e. in

we obtain by integration

(uv) (v=u)dx € §(v)-j(u) ¥ veVnL (Q),
Q

which when combined with (2.40) and ®(u)eL! (Q) implies (2.39). Hence
from Lemma 2.2 we obtain that (2.40) implies (m).®

Lemma 2.4 : Let u be the solution of (ir), then u is characterized by

a(u,v) + ¢(u)v dx = L(v) V ve LQ) nv,

(2.44) 2
UEV, ¢(u) e€ L (51).
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Proof : (i) We first prove that (mm) implies (2.44).

Let v e V nL (). Ifu is the solution of (mM), then u is also the unique

solution of (2.40). Let T be defined by (2.26), then Tue VL (2).
Replacing v by T_u+v in (2.40) we obtain

a(u,v)+ | ¢(u)vdx + a(u,T u-u)+ | ¢ (u)(T _u-u)Q n Q fl
(2.45)

0

( z Lv) + L(T umu)¥ve v NL (82).

It follows from (2.26), (2.28)-(2.30) that

lim a(u,T_u-u) = 0,
(2.46) nee

lim L(T u=-u) = 0,
n—>+cc n

(2.47) lim ¢(u)(T u-u) = 0 a.e.,
n—>+o° n

(2.48) 0=¢(u) (u-T_u) < 2ud(u) a.e. .

Then by Lebesgue's Dominated Convergence Theorem and (2.47),(2.48)

we obtain

(2.49) lim ¢(u)(T u-u) = 0 strongly in LQ).
- n>+0o n

Then (2.45),(2.46),(2.49)imply

a(u,v) + d(u)v dx 2 L(v) vvevnL (RQ).
0

Since the above relation also holds for -v we have

(2.50) a(u,v) + | d(u)v dx = L(v) Vve Val (9).Q

By Proposition 2.2 we have bu) e L' (RQ), combining this property with (2.50)

we obtain (2.44).
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This proves that (ir) implies (2.44).

(ii) Next we prove that (2.44) implies (m).

We have

0

a(u,v) + d(u)v dx = L(V) Vve Val (Q,
9)

then

(2.51) a(u,T u) + ¢(u)T_u dx = L(t ju) vn.
£2

Since Tu i strongly in V, q $(uw)T u dx} is bounded. But ¢(u)t uz0(2
a.e., hence we obtain that

¢(u)T u is bounded in Lh.

We also have

lim T_u ¢(u) = up(u) a.e.,
n—>+oo I

hence by Fatou's Lemma we have

i 1
(2.52) up(u) e L (Q).

But now we observe that

0<o(wT usd(Wu a.e. .

Hence by Lebesgue's Dominated Convergence Theorem

lim d(u)T u dx = d(u)u dx
nr+e JQ) " §2
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which along with (2.51) gives

(2.53) a(u,u) + | ¢(u)u dx = L(u).Q

Then by substracting (2.53) from (2.44) we obtain

0

a(u,v-u) + ¢(u)(v-u)dx = L(v-u) VveV nL (R),
Y)

(2.54)

uev, ub(u) cL(D)

and obviously (2.54) implies (2.40).

This completes the proof of the Lemma.

Corollary 2.2 : If u is the solution of (Tm) then u is also a solution of (P).

—1 ' (*)
Proof : We recall that V' =H (Q) cD" (Q) and that

a(u,v) = <Au,v> Vu,ve VV,

L(u) = <f,v> YvevV.

Let u be a solution of (mM). Then u is characterized by (2.44) and since
CO ae

DQ) <V (where DQ) = {ve Cc (), v has a compact support in 2}) we obtain

- (2.55) <Au,v> + d(u)v dx = <f,v> YveD).
Q

It follows then from (2.55) that

(2.56) Autd (u) = £ in D'(Q).

Since Au and f e€V' we have ¢(u)€ V' ; hence

-1
d(u) e L (2) nH ~ (5)

and from (2.56) we obtain that u is a solution of (P).m

(*) D'(R) : space of distributions on {i
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We have proved up to this point that the unique solution of (T) is also a

solution of (P). Now we prove the reciprocal property,that 1s, every

solution of (P) is a solution of (mM) and hence (P) has a unique solution.

In order to prove this we shall use the following density lemma :

0 00

Lemma 2.5: D2) is dense in VnL (R),v nL (f) being equipped with the
0

strong topology of V and the weak * topology of L (£2).

CH® |
Proof : Let ve Vn L (2). Since DD) = V, there exists a sequence

{v},veDN) such that
nn n

(2.57) ~. limv_ = v strongly in V.
n—>+oc n

Let us define wo by (see Figure 2.2)

+ . - =
(2.58) W = min (v ,vin) = min(v ,v ).

n n

Oa

vo -

~_/ CT
NS \Vn

\'
n

Figure 2.2

(The reinforced curve is the graph of Ww)
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Then

(2.59) w_ has a compact support in {,

(2.60) wl =< Vl . Vn.
L (2) L (2)

Moreover, since (cf. STAMPACCHIA [11) the mapping

+a —

v > {v , V }

l 1 1

is continuous from H (8) to H (R) XH (8) (resp. v to v XV), we have from

(2.57) that

(2.61) lim w_ = v strongly in V.
nr +x n

From (2.60),(2.61)we obtain that

. oo

limw_ = v in the weak * topology of L (§).
n—=>+ I

Thus we have proved that

oo

r = {vevnlL (R), v has a compact support in i}

00]

* is dense in V nL (2) for the topology given in the statement of the Lemma.

Let v €¥, and (p_)_ be a mollifying sequence, i.e.

oc D®), p20
[ n > "'n ?

= |]| p(dy = 1,
*

\ lim support (p_) = fo} ¢ )
n+ n

Then define v and Vv by

(*) i.e., for n large enough, support (p) is contained in any given neigh-
bourhood of 0.
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v(x) 1f x€ 8,

(2.62) v(x) =
0 if x ¢ 2 ,

(2.63) vo =p *V

i.e.

~ ~ N

(2.64) v(x) = J o_(x=y)v(y)dy VxeR .
ry

It is well known then (see, e.g., LIONS [2],NECAS {1]) that

~ N ~ ~ 1 _N
(2.65) v € DR), lim v_ =v strongly in H R"),

n ge D ———— JJ

(2.66) Vv has a compact support in § for n _large enough-

Let v= Val? then for n large enough

ve DW,

lim v_ = v strongly in V.
n+ n

since ||V|] NC vl it follows from (2.64) that
L (R) L (£2)

(2.67) yl = | ye enlimlay < lil,R L (2)

It follows then from (2.67) that for n large enough we have

(2.68) Iv Il. =< IMI
L (RQ) L (5) .

Summarizing the above results we have proved that VYve L(Q) nv,

there exists a sequence (vo VE DE) such that

(2.69) lim v_ = v strongly in V,
n=>+<x 0

(2.70) Il. <M. ve
L (©) L (82)

Hence from (2.69),(2.70) we obtain that
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(0)

Vv +> v in L (8) weak x.

This completes the proof of the Lemma.

Theorem 2.2 : Under the above hypothesis on V, a(*,*), L. and¢, problems

(Tm) and (P) are equivalent.

Proof : We have already proved that (7) implies (P). We need only to prove

that (P) implies (m).

From the definition of (P) we have

a(u,v) + <¢(u) ,v> =1L(v) VYvelV,

_——
-1

ue v, ow) eH (nL (R).

It follows from (2.71) that

(2.72) a(u,v) + | d(u)v dx = L(v) Vve DE).£2

If ve VnL (2) we know from Lemma 2.5 that there exists a sequence vs

v_€ ‘D(2) Vn, such that

(2.73) limv_ = v strongly in V,
- n+ fl TT

, oo
(2.74) lim v= v in L (8) weak =*.

n—>+o n

Since v_€ D(Q)we have, from (2.72)

(2.75) a(u,v,)+] P(u)v_ dx = Lv.) Vy n.(2

It follows from (2.73) that

lim a(u,v ) = a(u,v) , lim Lv) = L(v),
n=>+0© n=>+w

and since bu) e L (RQ), (2.74) implies that
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lim | d(u)v dx = | d(u)v dx.n

n>+x© VQ $2

Thus taking the limit in (2.75) we obtain

a(u,v) + ¢(u)v dx = L(v) Vv eVn L7(Q) .
Q

Therefore (P) implies (2.43) which in turn implies (mm) (see Lemma 2.4)).

This completes the proof of the Theorem.

2.4. Some comments on the continuous problem.
0

We have studied (P) and (m) with rather weak hypothesis, namely ¢ € C (R) and
~1

is non decreasing, and fe H (2). The proof we have given for the equivalence

between (P) and (7) can be made shorter using more sophisticated tools of

Convex Analysis and the theory of monotone operators (see LIONS [1] and the
x

bibliography therein ). However our proof 1s very elementary and some of
the lemmas we have obtained will be useful for the numerical analysis of the

problem (P).

Regularity results for problems a little more complicated than (P) and (m)
2

are given in BREZIS-CRANDALL-PAZY [1]; in particular for fe L (Q) and with

convenient smoothness hypothesis for A, the H (Q)-regularity of u is proved

there.

3. - A FINITE ELEMENT APPROXIMATION OF (7) and (P).

3.1. Definition of the approximate problem
* 2

Let be a bounded polygonal \ ) domain of R and TC be a triangulation of
satisfying

(i) TcQ VTe Cpe LT - Q,
© nh

Te) [6] —

(11) TnT' = g,¥T,T'eT,, T # T' ; Ll) r=0a,
Tet,

(iii) If T,T'eT, T#T' then Tn T' = @¢ or T andT' have either only
one common vertex or a whole common edge ; as usual h will be

the length of the largest edge of T,.

(*) See also OSBORN-SATHER Cl].

(xx) This assumption is not essential.
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We approximate V by

O J
— e P

ve lv, eC Q) , “hl, _ 0, vilt | VIie¥ }

where P, = space of polynomials in two variables of degree =1. It is then
natural to approximate (P) and (iT) respectively by

au ,v) + | ¢ (up Ivy dx = Lv) v4 vy € Vis* $2

(P)

up € \.

-— - -_— > -—

. au, ,v, u ) + Jv) ju) > L{vy u, ) Vv, € LY

u, € Vy

with jv) = | (v, )dx.02

* *

Obviously (P,) and (mr. ) are equivalent.

* *

From a computational point of view we cannot use in general (Pp) and (Tm, )
directly since they involve the computation of integrals which cannot be

* *

done exactly. For this reason we shall have to modify (mm, ) and (Py) by
using some numerical integration procedures.

In fact we have to approximate a(*,*), L and j(*), but since the approximation

of a(*,*) and L is studied in, e.g., STRANG-FIX [1], CIARLET-RAVIART [1], ODEN-

REDDY [1J, CIARLET [1], [2] we shall assume that we still work with a(e*,*)

and L, but we shall approximate j(°*).

Hence using the notation of Figure 3.1 below, we approximate J(*) by

(1) 3: meas.

(3.1) Ih, (vy) =) — RC, (v, (M7) ) Yv, € V,.
Te T, 1=1
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M
3T

. /\1T Mr

Figure 3.1

Actually iy, (vy) may be viewed as the exact integral of some piecewise constant
function. More precisely let us denote by Ly the set of nodes of Gg ; assume
that Ly has been ordered by i=1,2,...8 where N. = Card (2) -

Let Me 2, ; we define a domain fi, by joining, as 1n Figure 3.2, the centroids

of the triangles having M, as a common vertex, to the midpoints of the edges

having M, as a common extremity (if M. 1s a boundary point the modification
of Figure 3.2 is trivial to do).

NNg i.

ZZ 4

Figure 3.2

Let us define Ls a space of piecewise constant functions by

Ny

(3.2) L = THR [T = Lu M, eR yi=1,...N } ,
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where X; is the characteristic function of 2 , l.e.,

Xs (%) = 1 if x € il, ,

X; (%) = 0 if xg..

— 1

Then we define gq : c"@ nH () > L, by
Ny

(3.3) qv =) v(MX;-
1=1

It follows then from (3.1), (3.2), (3.3) that

(3.4) Jy, (vy) - | d ( q Vy) dx VY v, € v, -€2

We also have

(3.5) iptv) = dev) vv eV.

Then we approximate (P) and (7) by

— Valu, \y ) + K (qu, ) 4p Vy dx = Lv) 4 ve€ Vi
(P,)

\Y
U5 hn

and

- : — > - V
au, ,v ud +3 (vy) iy, (up) L(vy au) Vv, € -

(rm)

u, € Vy.

We have then the obvious

Theorem 3.1 : Problems (P) and (m) are equivalent and have a unique solu-
tion.

3.2. Convergence of the approximate solution

Theorem 3.2 +: If as h = 0 the angles of T, are uniformly bounded below by
6 > 0, then
0 —
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lim Ju -ull, = 0,
h->0

where u and u, are respectively the solutions of (P) and (P,).

Proof : (1) A priori estimates for uy.

Taking vy = 0 in (mm) we obtain Yh

HK
3.6) BM <——

2

; £1},< ——

(3.7) < d(qyu, )dx < = .
£2

(11) Weak convergence of uy
It follows from (3.6) and from the compactness of the injection of V 1n
2

L (2) that we can extract from (up) a subsequence, still denoted by

(u, Dy such that

(3.8) u > u weakly in V,

2

(3.9) u > u* strongly in L (£2),

(3.10) u, > u a.e. in Q.

) Admitting for the moment the following inequality (which we shall prove later)

2h
| qv=v. || < 5 [|W ll

. (3.11) L™ (50) LY (2)x LF (Q)

Vv eV Vp with 1 <p <4»,

it follows from (3.6) and (3.9) that

2

(3.12) qu, > u*strongly in L (QQ).

Then, modulo another extraction of a subsequence, we have



—

q, u > ud a.e. in0
hh m—— ’

(3.13)

*

?(q,u,) + d(u) a.e. in 9.

Taking ve DR) it follows from STRANG-FIX [1], CIARLET [1],L2] that under

the assumptions on TC, in the statement of the Theorem we have

(3.14) |r, v=vl] | oo < Ch || vl] 5 oo ¥Y ve DE),
W 2 (2) Wo (52)

2

(3.15) | r, vv|| = <ch” lvl , ,  ¥Yve DO,
L (2) W 2 ()

where :

- C 1s——a constant independent of v and h,

ry is the usual linear interpolation operator over C i.e.

] 0 ,=

rvev vveH (8) nC (8),

r, v(P) = v (P) VPel .

Moreover (3.11) with p = +© , (3.14),(3.15) imply that

(3.16) | QTV |. =» 0 Yve DE).
L (2)

Taking TRY in (mr, ) we obtain

<| a(u, ,u) + K (qu, )dx a(u 1, v) 4
(3.17)

' 0) (gq, rv) dx — L(x vu) Vve DE.Y;

From (3.8), (3.12) and from Lemma 2.1 we have

x * *

a(u ,u) + | ®(u )dx £ 1im inf (alu; ,up) + | o(qyu, ) dx).£2 h > 0 Y
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Moreover

lim 2(qyr, v)dx = | d(v)dx = j(v) Yve DW.h~>0 “Q Q

Then in the limit in (3.17) we obtain

x * * *

a(u ,u ) + j(u*) <a(u ,v) + j(v) - L(v-u)

(3.18)

Vv e DE).

From Fatou's Lemma applied to (3.7),(3.13) we obtain

* 1
(3.19) du) eL (R).

*

It follows then from (3.18), (3.19) that u satisfies

i" x * *
a(u ,v-u )+j (v>-j (u)2L(v-u ) ¥Yv € DE),

(3.20)
*

u* € v, ®(u) EL' (n).

oo

We now take v eV nL (f)) ; it follows from Lemma 2.5 that there exists a

sequence tv} such that v_€ DE) and

(3.21) lim v_ = v strongly in V,
nN—>r+40 0

0

(3.22) lim v= v in L (Q)) weak *.
n—>r+0o0 n
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We have from (3.20) that

* * , . * *

a(u Vu ) +] (v_)-] (u ) zL(v_-u ) Vn,
(3.23)

* 1

ur € V,0(u) e L (2).

We obviously have from (3.21) that

* * * *

lim a(u ,v.-u ) = a(u ,v-u ),
n—=>+o° n

* *

lim L(v =u )= L(v-u ).
n+ n

o0

Since v. > v in the weak * topology of L (f), we have

(3.24) IV I < Const. Vn.
n oo

L (£2)

Moreover, for some subsequence, (3.21) implies that

(3.25) limv = Vv a.e. in {.
n->+« n

From (3.25) we obtain that

(3.26) o(v_) + ¢(v) a.e. in &.

From (3.25),(3.26) one can easily see that the _Lebesgue'sDominated Convergence

Theorem can be applied to lo(v 1}. Hence we obtain

lim j(v_) = lim ® (v ax =| sas = J(v).n n
n+ n>+o “{) $2

Therefore in the limit in (3.23) we have

* x ., Kx * co

a(u ,v-u )+j(v)-j(u ) >L(v-u ) yve Vn L (2),

(3.27)
* * 1

u EV, ®(u ) e L (Q).
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Since from Lemma 2.2 we know that (3.27) is equivalent to (7m) we have thus
*

proved that u = u where u is the solution of (mM) (and (P)).

From the uniqueness of the solution of (7) it follows that the whole

sequence (uy converges to u.

(111) Strong convergence of (u)y

It follows from (mm) and from the V-ellipticity of a(*,*) that

ollu ul]? + ij, (u,) au -u,u, —u)+j, (u,) =
h \Y hh h > h hh

(3.28) a(u,u)-a(y,w)-alu,u+alu,u )+j, (u) <

=a(u,u)-a(y ,u)-alu,u )+alu ,r v)+j, (r,v)-L(rv —u,) VY ve DE.

Using the various convergence results of Part (ii) we obtain from (3.28) that

j(u) s lim inf Jy, (up) < lim inf Callu -ullg +i, (up) <

(3.29) <lim sup (alu ul]? +i (u,)) <h V “hh

<a(u,v-u)+j(v)-L(v-u) Vve DW).

Using as in Part (ii) the density of DN) in VnL (9) (for the strong

topology of V and the weak * topology of L (f0)) we obtain that (3.29) also

holds for all veVnL (9).

Taking 1 like in Sec. 2.3, relation (2.26)' we have then

< < ] - 1j(u) £1im inf Jy (uy) lim inf Caflu, ul[g + Jp (ud) s

(3.30) < lim sup (ollu -ul|?+§ (0) <
h \Y hh

< a(u,T v-u)+j (Tv) -L(T_v-u) V ve V, Vn.
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From the properties of T (see Sec. 2.3), we have at the limit in (3.30)

Su)< lim inf(allu =ullZ + 3. (u)) <
/ h \Y hh

(3.31) <1im sup(allu -u||Z + j, (u)) <
} - h \Y hh

<a(u,v-u) + J(v)-L(v-u) VveV.

Taking v=u in (3.31) we obtain that

lim j. (u,.) = J(u),
HO hh

lim |Ju;-ul]_ = O.
h0 h V

This proves the theorem modulo the proof of (3.11).

Lemma 3.1 : We have Yp, 1 <p +o,

lav=v| <5 nllvwl Vv, ev.
LP (2) LP@x  LP(@)

Proof : We use the notation of Sec. 3.1.

| M,
1

Figure 3.3

We have (see Figure 3.3)

- = J) - . nT.(3.32) qv, (0) -vy (M) | |v, (1) v, (| yMe 2.

But since hit © Fi we have



- ) + MMVvy (M) vp (ML) + MM Ve VY Me 2,0 T

from which it follows, combined with (3.32)' that

~v. | <|um| |v nT.lq, v, (20) v, (MD) | |, | | v, | yMef, nT

It follows from the definition of h that we have

Iv. M < 2h VMeQ, nT, VTf 3 1 ?

from which it follows that

lq, v, (x)-v x) | < =n |v (x)| a.e. inQ, Yv_eV._.h-h h 3 h TU ? h h

This implies

2

lapv,-v |< Zn,
EN 0) NE Px Pq) .

This proves the lemma.

Remark 3.1 +: The numerical analysis of problems like (P) but with much stronger

hypothesis on a(*,*), ¢, £ is considered in CIARLET-SCHULTZ-VARGA [1] where

error estimates are given.

4. —- A SURVEY OF ITERATIVE METHODS FOR SOLVING (PJ.
4.1. Orientation

—In this section we briefly describe some iterative methods which may be useful

for computing the solution of (Pp) (and (mJ). Actually most of these methods
may be extended to other non linear problems. Many of the methods to be des-

cribed here can be found in ORTEGA-RHEINBOLDT L1].

A method based on penalty and duality techniques will be described in Sec. 5.

4.2. Formulation of the discrete problem

Here we are using the notation of the continuous problem. Taking as unknowns

the values of uy at the interior nodes of C. the problem (P,) reduces to
the finite dimensional non linear problem
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(4.1) Au + Do(u) = £

where A 1s a NXN positive definite matrix, D 1s a diagonal matrix with

positive diagonal elements d.'s and where

N

u = tugs eeiugd eR, Fer,

N

¢(u) eR with (¢(u))., = ¢(u,).

Clearly from the properties of A,D,¢,f we can see that (4.1) has a unique

solution.

4.3. Gradient mehtods

The basic algorithm with constant step (see CEA [11) is given by

N

(4.2) u’ eR given,

n+l n ~1 n n

(4.3) U =u - 0S (Au +D¢ (u )-£), 0>0.

In (4.3),S is a symmetric and positive definite matrix. A canonical choice

is obviously S = ie , but in most problems it will give a slow speed
of convergence. If A is symmetric the natural choice is S=A and if A# A

A+AT

we can take S = —5 If § is locally Lipschitz continuous (i.e. Lipschitz
continuous on the bounded sets of R) then algorithm (4.2),(4.3) converges

to the unique solution u of (4.1) if p is taken sufficiently small. Obviously

the closer u’ is to u, the faster is the convergence.

t

Remark 4.1 +: If A=A then Av+D¢(v)-f is the gradient at v of the convex

functional H
]

Jv) = 5 (Av,v) + } d.0(v.)-(£f,v)
2 ~~ . 1 1 20a

1=1

N -t
where (+, ® ) denotes the usual inner-product of R and Q(t) = ¢(t)dT .

I]
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Remark 4.2 : In each specific case 0 has to be determined ; this can be done

theoretically, experimentally, or by usingan automatic procedure, which

will not be described here.

Remark 4.3 : Let us define gh by

og" = Au+Dd (u™) -£.

Instead of using a constant parameter Pp we can use a family (p ) of positive
nn

parameters 1n (4.3). Therefore (4.3) can be written as

n+l n -1 n
(4.4) U =u -pP S g .

~ n =

Suppose A=A, then if we use (4.2),(4.4) with on defined by

n -1 n n -1 n

J(u -p S 'g)<J(u-pS 'g’) VpeR,
(4.5)

[o,c®n .

the resulting algorithm is a steepest descent method. This algorithm is

convergent for¢ € c® Rr) (we recall that ¢ is non decreasing in this report).

We observe that at each iteration the determination of 0, requires the solu-
tion of a one-dimensional problem (a "line search") ; for the solution of

such one-dimensional problems see POLAK [1], BRENT [1].

Remark 4.4 : At each iteration of (4.2),(4.3)or (4.2),(4.4),(4.5) we have

'to solve a linear system related to S. Since § is symmetric and positive

definite this system can be solved using the Cholesky method, provided

- the factorization

s = LL"

: has been done.

From a practical point of view 1t 1s obvious that the factorization of S

should be made in the beginning once for all. Then at each iteration we

just have to solve two triangular systems, which is a trivial operation.
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44. Newton's method

The Newton's algorithm is given by

N :
(4.6) 0’ eR given,

n+l n,.-—1 n, n
(4.7) UM = (ADOT (uh) (DO (uu De (u) +f),

where ¢'(v) denotes the diagonal matrix

¢" (v,)

( ) ) |
1

¢' (Vv)

d

with or = 2
Since ¢ is non decreasing we have ¢'2 0, this implies that A+¢'(v) is nositive

definite Vv eR.

Remark 4.5 : At each iteration we have to solve a linear system. Since the
n

matrix A+¢'(u’) depends on n, the Newton's method above may be not efficient

for large N. However a variant of Newton's method avoiding partly that dif-

ficulty may be found in EISENSTAT-SCHULTZ-SHERMAN [1]. The idea is to replace

the complete solving of (4.7)by a few cycles of an iterative method for

solving linear systems ; for more details see the above paper.

Remark 4.6 : The choice of u° is very important when using Newton's method
2

moreover the convergence requires more regularity for ¢ (let say ¢e C7)

than in most of the methods to be described in the following sections.

45. Relaxation and Overrelaxation methods

We use the following notation



Since A is positive definite we have a..>0 Vi=1,2,...N. Here we shall
describe three algorithms :

Algorithm 1 :

N

(4.8) 1° eR given,

n n+]
then for u known we compute u , component by component, US1Ng

n+l -n+ | n+l n
(4.9) a.. ud. + d.¢(u. ) = ff. - } a.. u. - ) a.. u. ,

11 1 1 1 1 jel 1] J j>1it] J

+ -n+

@.10) oo Pos Eta
1 1 1 1

for 1=1,2,...N.

Since a..>0, d. >0, ¢ € c’R) and ¢ 1s a non decreasing function,
(4.9) has a unique solution.

If wW=1l we recover an ordinary relaxation method ; in this case it follows

from CEA-GLOWINSKIC1] that if A=A" and since ¢ is c® and non decreasing,

then the sequence {uh associated with (4.8)-(4.10) converges to the
solution u of (4.1).

If in (4.1),A is not symmetric or w# 1, some sufficient conditions

of convergence may be found in ORTEGA-RHEINBOLDT [1] and S. SCHECHTER

ci!, [21,03].

Algorithm 2 : This algorithm is the variant of (4.8)-(4.10) obtained by

replacing (4.9), (4.10) by

n+1 ntl n n
. . = =) .. . . . +[aul™ + a0@h = Away; uf + 4; 6]

(4.11) | n+l n
+ WE. -) a. u. - ) a. u.)

SS IPS ty 7>i Hd

for 1=1,2,...N.
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Remark 4.7 : If W= | or ¢ is linear the two algorithms coincide.

In the general case the convergence of (4.8)-(4.11) seems to be an

open question. However, from our numerical experiments it seems that

the algorithm 2 1s more "robust" than algorithm I; may be

because 1t 1s more implicit. Furthermore it can be used even if ¢

is only defined on a bounded or semi-bounded interval Ja,B[ of R such

that ¢(a) = =, ¢(B) = +> ; in such a case if oe C° (Ja, Bl) and ¢

1s increasing, then (4.1) still has a unique solution but the use of

(4,8)-(4.10) with w>] may be dangerous.

]

Remark 4.8 : If ¢eC (R), an efficient method to compute art! in (4.9)
n+1

and u. in (4.11) is the one dimensional Newton's method :

1
Let ge C (R). In this case the Newton's algorithm for solving the

equation g(x) = 0 1is

O :

(4.12) X eRgiven,

n
+

(4.13) A
g' (x7)

~n+1 n+l

If 1n the computation of u, and u. we use only one iteration of

Newton's method, starting from ul, then the resulting algorithms are
identical and we obtain

Algorithm 3 :

EN
(4.14) u’ €R given,

then for n20

+

( ) a..u, + ) a..u, + d.o(u)-£.)
LL. 11] 2.1] 1 1 1

n+l <1 ]>1 :
(4.15) uw =— 1i=1,2,...N.

..+ d.o" (u.ai d;0 (u;)
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Sufficient conditions for the convergence of (4.14),(4.15) are given

in S. SCHECHTER (1], [2], [3].

Remark 4.9 : We may find in GLOWINSKI-MARROCCO [11, [2], applications of

relaxation methods for solving the non linear elliptic equations modelling

the magnetic state of electrical machines.

4.6. Alternating direction methods

In this section we take p>0. Here we will give two numerical methods for

solving (4.1).

First method :

(4.106) © eRrY given,

+1/2
once u is known, we compute he V/ by

+ +

4.17) pu 2a 2 ou =Dé (ul) +f,

n+1
then u by

+1 + +1/2 +1/2
(4.18) ou” + Dd (u” Ly = put / ~Au" / +f |

For the convergenceof (4.16)~(4.18) see, e.g., R.B. KELLOG [1].

Second method :

N

(4.19) uw’ eR given,

+

knowing ul we compute Th 1/2 by

+1 +
(4.20) pu™ 1/2 4 ad™V2 SPpeut

+

then u" : by



-_ 40 -—

+ +1 +1 /2

(4.21) pu” Lipo (u" ) = pu-Au" 12, ¢

+1/2 n(pu" / in (4.18) has been replaced by pu).

Using the results of LIEUTAUD [1] it can be proved that for all p> 0,
+

a’ 1/2 and u" converge to u if A, D and ¢ satisfy the hypothesis given
in Sec. 4.2.

Remark 4.10 : At each iteration we have to solve a linear system whose

matrix is independent of n if we use a constant step Pp. This 1s an

advantage from a computational point of view (see Remark 4.4).

We also have to solve a non linear system of N equations, but in fact

these equations -are independent from each other and reduce to N

non linear equations in one variable, which can be easily solved.

Remark 4.11 : Variant of (4.16)-(4.18) and (4.19)-(4.21) are obtained

by inversion of the order in which we solve the linear and non linear

problems. Doing so we obtain from (4.16)-(4.18)

N

(4.22) ue R given,

and for nz 0

- n+l/2 n+l/2 n n
(4.23) pu +D¢ (u ) = pu -Au +f,

+ + n+l/2 n+l/2
(4.24) ou” biau® J. pu / -D¢ (u / Y+f.

From (4.19)-(4.21) we obtain

N

(4.25) u® eR given,

and for nz 0



+ +1/2

(4.26) ou’ "2 pe (u" / ) = pu-Au+f ,

+ M | +

(4.27) ou" Dau® = ou-Do (u” 12548.

If (4.16)-(4.18)and (4.22)-(4.24) may be viewed as the same algorithm

(with different starting procedures) this is not the case for (4.19)-(4.21)

and (4.25)-(4.27) ; indeed for the class of problems under consideration

it appears that for the same p the convergence of (4.25)-(4.27) is faster

than the convergence of (4.19)-(4.21).

4.7. Conjugate gradient methods.
t

In this section wa assume that A=A . For a detailled study of conjugate

gradient methods we refer, e.g., to POLAK [1], DANIEL [1], CONCUS-GOLUB

il. If the functional J defined in Remark 4.1 (see also (4.28) below) 1is

not quadratic (i.e. if ¢ is non linear), several conjugate gradient methods

can be used. Let us describe two of them, the convergence of which 1s stu-

died in POLAK [1].

Let J given by

| N
(4.28) Jv) = 5 (AV,v) + ) d, ®v.)-(f,v) ,

1=1

- t

where ®(t) = ¢ (t)dTt,¢§ being, as above, a non decreasing continuous

function on R,° with ¢(0) = 0. Let S be a NxXN symmetric, positive definite

matrix.

First method : (Fletcher—Reeves)

(4.29) © RY given,

-1

(4.30) g” = S (Au®+¢ (u°)-£),

(4.31) wl g°.



n n n+}
Then, assuming that u and w are known, we compute u by

n+l n n
(4.32) u = u-p w,

~ ~ nn ~

where Pb, 1s the solution of the one dimensional minimization problem

J(u'-pww) <J(u'-pw")  VPEeR,
(4.33)

P eR.
n

n+] n+l

Then we compute g and w by,

+ - n+l n+l

(4.34) g™""! = s™! (au +¢(u )-£),

n+! n+l py n(4.35) Ww = Aw
~ ~ ~~

where

n+l n+l
(Sg ,g )

(4.36) Rrra

Second method : (Polak-Ribiére)

This method is like the previous method except that (4.36)is replaced by

) ntl n+l n
(Sg ",8 -g)

31) Asm
| (Sg ,8 )

Remark 4.12 : For the computation of 0 in (4.33)' see Remark 4.3.

Remark 4.13 : It follows from POLAK [1], that if ¢ is sufficiently smooth,

then the convergence of the above algorithms 1s super linear, 1.e. faster

than the convergence of any geometric sequence.

Remark 4.14 : The above algorithms are fairly sensitive to round off errors ;

hence double precision may be required for some problems. Moreover 1t may
n ,.

be convenient to take periodically wo = g (in this direction see POWELL [1]

where more sophisticated restarting procedures are discussed).



-_ 473 -

Remark 4.15 : We have to solve at each iteration a linear system related

to S, Remark 4.4 applied to these algorithms also.

Remark 4.16 : Since the matrix S 1s symmetric and positive definite, an

obvious choice 1s S = Ig , but in some problems it may give a slow
convergence. Since A 1s symmetric and positive definite another obvious

choice is S = A.

In BARTELS-DANIEL [1]! and DOUGLAS-DUPONT [1] cne may find applications of

conjugate gradient methods (very similar to those of this section) to the

numerical solution of mildly non linear second order elliptic equations

like v

-Ve(a_(x)Vu) + ¢(u) = £ on {,
(4.38)

Ll —

Assuming that (4.38) has been discretized (by finite differences or finite

elements) the above authors take for S a discrete analogue of -A ; in the

case of finite difference approximations, this choice allows them to use

Fast Poisson Solvers. We refer to BARTELS-DANIEL and DOUGLAS-DUPONT, loc.

cit., for more details (see also the very recent paper of CONCUS-GOLLIB-O’LEARY

L-11).

) 4.8. Comments

The methods of this Section 4 are fairly classical and may be applied to

more general non linear systems than (4.1). They can be applied of course

to the solution of the finite dimensional systems obtained by discretization

of elliptic problems like

“Ve (a (x)Vu)+BVu+d(x,u) = f in 2,

+ suitable boundary conditions,

where, for fixed x, the function t => ¢(x,t)is continuous and non decreasing

on R.
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5. —- NUMERICAL SOLUTION OF (Ph) BY PENALTY-DUALITY ALGORITHMS

5.1. Formulation of the discrete problem. Orientation.

We use the notation of Section 4. We have seen in Sec. 4.2 that (Pp)
reduces to a non linear system like

(5.1) Au + Do(u) = f£

where A is a NXN positive definite matrix, D 1s a diagonal matrix with

positive diagonal elements d.'s and where

N

u = {u,...u} eR, feR ,

N

¢(u) eR with (¢(u)),; . ¢(u).

If the bilinear form a(*,*) of Sec. 2.1. 1s symmetric then A is also

symmetric.

Following FORTIN-GLOWINSKI [1] and GLOWINSKI [2, Ch. 5] we shall describe

in the following sections two algorithms for solving (5.1). These two al-

gorithms are based on a decomposition-coordination principle, via penalty-

duality (they are strongly related to augmented Lagrangian methods ; see

Remark 5.2 for motivation). The proof of the convergence of these algorithms

are not given here, since they follow from general results which may be found

"in the two references above.

Numerical applications of these methods to problems like (4.38) and com-

parisons with other methods are given 1n Sec. 6.
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5.2. Description of the algorithms. Remarks.

5.2.1. A first algorithm.

Let r be a positive parameter.

Let us denote by ALG! the following algorithm :

0 N :
(5.2) A eR, arbitrary given,

+

then for n 20 we define utp, An by

ru’ + Db (u) = f + rp" - AB ,

(5.3)

(rI+A) po = ru” + A" ,

+

(5.4) An bo a o(u-p™).

Remark 5.1 : Looking at (5.2)-(5.4) it appears that the main difficulty when using

this algorithm 1s the solution of the nonlinear system (5.3). Fortunately (5.3) has

a very special structure making it very suitable for a solution by block-relaxation

(or under or over relaxation) methods. More precisely (5.3) is a particular case

of the following nonlinear system in a

rx + Do(x) = ry + £ ,
(5.5)

(rI+A)y =rx+£,

A block relaxation algorithm for solving (5.5) 1s the following

0 N
(5.0) y e¢R given,

+ +

then for m=0 we compute x" 1 and a by

+ +

(5.7) rx" : + D(x h - ry + £ ,

+1 ’

(5.8) (rI+A)y" = rx" 1 + £,
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m m+l
We observe that if y 1s known 1n (5.7) then the computation of x 1s easy

since 1t 1s reduced to the solution of N independent, single variable nonlinear

equations of the following type

(5.9) rt + d¢(t) = b

with d >0. Since r >0 and ¢ is c® and non decreasing, then (5.9) has a unique

solution which can be computed by various standard methods (see, e.g. HOUSEHOLDER

[1], BRENT [1]).

Co m+l m+ 1 : :
Similarly if x is known in (5.8), we obtain vy by solving a linear system

whose matrix is rI+A. Since r 1s fixed it 1s very convenient 1n some cases to

prefactorize rI+A (by Cholesky or Gauss methods).

t

If A=A , then (5.5) is equivalent to

) . 2N
1(x,y) < JCEM) v {€,n} eR ’

(5.10)
2N

{x,y} eR ’

where

N

13 : 1 r 2
(5.14) j(g,n) = 75 (An,m) + L d, o(g)=(£,,8)-(f,,m+ 5 |[g-n][”.

l

Since j is a C strictly convex function of {£,n} , such that

lim Jj (E,n) = +o
CEN *{In{[) +e

m

it follows from CEA-GLOWINSKI [1] that the sequence {Xx YT) given by (5.6)-(5.8)

converges to the unique solution {x,y} of (5.5) (and (5.10)).

When using (5.6)-(5.8) to solve (5.3) an obvious choice for yO isp ML.



Remark 5.2 : We suppose that A=AC, Let us define

3
Z ::R N +R

r

by

1 N 2_ r

(5.12) £(v,q,1) = (Aq, 9+ L420) (£0) 5 [lv=al|" + (u,v-9) -

Then L. 1s an augmented lagrangian (see, e.g., HESTENES [1], GABAY-MERCIER [1],
FORTIN-GLOWINSKI [1] for more details) related to the minimization problem

| N
(5.12) Min  {x(Aq,q) + )} d., &(v)) - (f,v)en 27222 : 1 1 ~~

{v,q} eW l=]

where

2N

W= {{v,q} eR" , v—q = 0} .

The minimization problem (5.12) 1s obviously equivalent to

I N
Min {sfAv,v)+ J d. ¢(v)-(£,v)}
veR 1=1

i.e. to

Au + D¢(u) = f£,

which 1s the nonlinear system (5.1) under consideration.

One may easily prove that if u is the solution of (5.1), then {u,u,Au} is VY r >0,

the unique saddle-point of i over RN

From these properties it appears that the algorithm (5.2)-(5.4) (ALGl) may be

interpreted as an Uzawa algorithm (see GLOWINSKI-LIONS-TREMOLIERES [l, Ch. 2],

EKELAND-TEMAM [1]) for computing the above saddle-point of £_- Moreover A= Au
appears as a Lagrange multiplier related to the linear constraints v-q = 0.
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5.2.2. A second algorithm.

With r as in Sec. 5.2.1., let us denote by ALG2 the following algorithm

]

(5.13) {p°,A Je RN given,

+

then for n 21 we define ult,p A" L by

(5.14) ru® + Do™ = £ + Hal,

(5.15) (rI+A)p = ru + A /

(5.16) AM = af + pu -ph).

Remark 5.3 : Assume that in ALG! we use the block-relaxation algorithm (5.6) -

(5.8) to solve (5.3). Then 1f we use y" - pit as a starting vector, and if
we only do one iteration of (5.6)-(5.8),then ALG! reduces to ALG2.

Remark 5.4 : Suppose that p=r in ALG2 ; we have then

ru’ + Dd (u™) = ff + rp? oR,

(5.17) i + Ap" = ru” + AL
n+l n , nn

. CA = A + r{u -p )

It follows from (5.17) that

+1

(5.18) A" = Ap".

Then from (5.17), (5.18) we obtain

n n n-1 n-1
(5.19) ru + D¢(u )+Ap =f+rp ,

n n —

(5.20) rp + Ap + Dp(u™) =f + rp" L

Therefore, 1f p=r, ALG2 reduces (with different notation) to the alternating

direction method described in Sec. 4.6 by (4.25)-(4.27).
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5.3. Convergence of ALGl, ALG2. Further Remarks

5.3.1. Convergence results.

It follows from FORTIN-GLOWINSKI [1], GLOWINSKI [2, Ch. 5] that the properties
n nn .n

of A, D, ¢ imply that we have convergence of {u ,p ,A } to {u,u,Au} if in ALGI

(resp. ALGZ2) we take

(5.21) 0<p<2r

(resp.

1+ /5

(5.22) 0 <p <5 r).

5.3.2. On the choice of p and r.

If r is given our computational experiments with ALGland ALG2 seem to indicate

that the best choice for p is p=r . The choice of r is not clear and ALG2 appears

to be more sensitive to the choice of r than ALGl. In fact ALG] seems to be more

robust on very stiff problems than ALG2. We mean that the choice of the parameter

r is less critical and that the computational time with ALGI may become much

shorter than with ALG2 for a given problem.

Remark 5.5 : (On the choice of r in ALGI).

About the choice of r in ALGl it can be proved that theoretically the largest is r,

. the fastest is the convergence ; practically the situation 1s not so simple for

the following reasons : the largest is r, the worse 1s the conditioning of the

problem (5.3). Then since (5.3) 1s numerically (and not exactly) solved at each

iteration, an error is done in the calculation of {u sP }. The analysis of this

error and the effect ot it on the gloval behaviour of ALGI is a very complicated

problem since we have to take into account the conditioning of (5.3), the stop—-

ping test of the algorithms solving (5.3), round-off errors, etc...

Fortunately 1t seems that the combining effect of all these factors 1s to give

an algorithm which 1s not very sensitive to the choice of r.
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6. — NUMERICAL EXPERIMENTS AND COMPARISONS WITH OTHER METHODS.

6.1. The test problem.

We consider the following test problem

|

— Bu + ¢(u) = f on Q,

(6.1)

ufo 0,

where § = 10,1[x]0,I1[,

L 2-1
o(t) = sgn(t) |t]|” = t]t] , L>0 .

If (with x = x ,x, 1) we define u by

u(x) = sin 2mx | sin 27x ,

then for f given by

2 2-
f =8mu + |u| i”

the exact solution of (6.1) 1s u.

- The behaviour of ¢ is shown on fig. 6.1

t =¢(t) = 2=.5

I Sat %
i I —

|

|

|

t

Figure 6.1.



- 51 -

We observe that ¢ is not smooth near t=0 if 0<f <1 ; hence Newton-type methods

are not very suitable for this kind of ¢'s.

If we discretize { using an uniform square grid with equal grid spacing in both

the x, and X, directions, our matrix A, in ALGIl and ALG2, will be the usual dis-

crete laplacian matrix (since {I is a square, a finite difference approximation

of (6.1) 1s very convenient). So in both our algorithms ALG! and ALG2 we have to

solve the discrete Helmhotz's equation, namely the discrete formulation of

(6.2) - Au + ru = f.

There existfastdirectsolvers of Helmhotz's equation on a uniform mesh in a

rectangular domain. We used such a solver called TBPSDN, written by B.L. Buzbee

(cf. BUZBEE-GOLUB-NIELSON [1]) at Los Alamos Scientific Laboratory, and tested

and modified for Lawrence Berkeley Laboratory by Gary A. Sod. This solver

incorporates the truncated Buneman's algorithm, using the standard five point

difference approximation for the laplacian.

We have seen in Sec. 5 that each iteration of ALGl and ALG2 requires the solution

of one-dimensional nonlinear equations of the form

(6.3) r& + do (&) = rus

with d > 0 (since we are using finite differences we have in fact d=1).

We do not want to use Newton's method to solve this equation because :

: 1
(1) If ¢ d ¢ we may have troubles with Newton's method,

(ii) We think that an efficient method not using ¢' may be more interesting in

view of more general problems.

There exists one-dimensional nonlinear equation solvers which do not require

derivatives. We used such a routine, called ZEROIN and due to Richard Brent.

This method is described in BRENT [1]. ZEROIN will always locate a root within

a given interval where it 1s known to lie, to within a given accuracy TOL.
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From the facts that ¢(0) = 0 and that ¢ is non-decreasing, we can easily deduce

that the solution £ of (6.3) is in the interval [0, 221 if RHS >0 and in the
R

interval git ,0] if RHS <0.

For the inner loop (5.7),(5.8) convergence test, in ALGl, we have used the 3

norm (the actual norm used 1s not important ; we have also used the %, norm
and obtained similar results).

In our experiments, for the purpose of comparisons, we stop our iterations when

lp" -u, ||, =AcC where uy 1s the exact solution of the discretized system

+ = f (here D=I) ,

with a uniform spacing h (we recall that if p is well chosen, cf. Sec. 5.3.1.,
n n,n

then {u ,p ,A } converges to lu, su A 1).

In practice, uy 1s not known and so some other kind of stopping criteria has
to be used, e.g.

n+l n

|
__~ <

n+l < ACC
[oI

in some suitable norm.

Remark 6.1 : We can determine uy with a very good precision by running ALGI or
ALG2 on the test problem until (u =p") is very, very small. Notice that if

a ~ =~

a =p+ then Ap + o(u™) = f and hence u, = uo? = po. Incidentally the closeness
n ~ ~ ~

of u to pcan be used as another stopping criteria or as a check on the final

iterate po

6.2. Study of parameters in ALG] and ALG2.

We would like to study the effect on the general performance of the algorithms

ALG] and ALG2, of the following parameters :
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ALGI : {4&°,p ,\ ,r,p,e, TOL} ;

¢ 1s the tolerance parameter for the stopping test of the inner loops of ALGI.

The parameters A>, r,0,TOL have been defined before. The vectors a%,5° deserve

some more explanations. It follows from Sec. 5.2.1, Remark 5.1, that the non-

linear system (5.3) may be solved by the block-relaxation algorithm (5.6)-(5.8);

we have used precisely that last algorithm for solving the examples of Sec. 6,

n-1 n—1 n _n
taking u ,p as starting vectors to computeu ,p . Therefore to compute

0 0 vo
ul, from A , we need some starting vectors which are precisely what we have

~0 AO n n
denoted by "u ,p above. Since u and p converge to the same limit we have

systematically taken I = pg°.

- i
ALG2 : {48°,p°, ,T,0,TOL} 3

]

We recall that in ALG2, p° and \ are given (see Sec. 5.2.2.). Since uo is
0 1

computed, from p and A , by an-iterative method we need an initial guess
- 0

say qc. In fact we have systematically taken u = nl.

In addition we want also to study, to some extent, the effects of the smoothness

of ¢ on the algorithms. This smoothness can be controlled by &, since

2-1

dp(t) = t|t] , L>0

6.2.1. Effects of a°,p°.

Basically ALG! (resp. ALG2) will converge for any starting vector 3° (=5°)
0, AO

'(resp. p (=U )). Obviously when an approximation of the solution ny of

(6.4) Aug + ¢ (uy) = f

is known we should use it. But most often (i.e. for general f) we do not know

what the solution 1s like. So we are often forced to start with some constant

[] ~0 O ~~ []
value like u =0 (resp. p =0) or a° (resp. p%) with constant components.

*

Intuitively if ¢ has a sharp jump at t* (in our case t =0 if 2 ¢ JO,1[ since
*

¢' (0) = +=) we would expect that the points of the grid where wo is neart
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will produce the slowest convergence for the corresponding component of uy
This was observed in our experiments. For our test problem, ¢ has a sharp

~0 .

jump at t* = 0 (if 2¢10,1[) ; if we start with u, = 10 , VYi=l,... N ,

(resp. Pp, = 10 , Yi=1,...N), the convergence is generally fast except for
points where uy is close to zero. In all cases the maximum final errors
occured at such points. However if we start with 5°=0 (resp. n° = (0) no

difficulties were observed with these points. Our guess is that is we start

with 0 we are starting with a good guess of the components of uy at which ¢
has a sharp jump and which we expect slow convergence. Very often we know

where ¢ has a sharp Jump and we can take advantage of this knowledge (at least

if ¢ is not too complicated).

Therefore we can 1n general recommend the following :

(1) If ¢ 1s known to have a sharp jump at t , and if we don't have a good
: : : 0 *

approximation of uy to start with, use u = t* (resp. p =t) (i.e. set
0 x or ~ =

a, =t vVi=1,...N , idem for n°”).

(11) Otherwise, start with the best approximation available.

For example, Figure 6.2 shows that ALG2 (i.e. with no inner loop c-test) works

just fine with po = 0 but has problem 1f started with p* = 10. Luckily, as we

shall see later, ALG! (with inner-loop E-test) will overcome this trouble.

0

Form Figure 6.2 1t appears that the convergence is linear 1f p = 0 and

sub-linear if p’ = 10.
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Effect of starting vector p°

ALG2 : 17 x17 grid ,% = .1 , ACC = 107°

r=p=5 , X= 0 .
n

L, error of p

—_—>

10 -1

p =10

107

~~ 0.3x10-3j after 50 iterations
TTT e— ——ie

107

10 -4

0)

. 107? p =0

107°

Difficulty : ¢(t) has a sharp jump at t=0.

Figure 6.2
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)

6.2.2. Effects of A

Note that with the exact solution u, we have

A = Au, =f - ou).

So two natural choices for 2° are

(i) AG® (resp. A 5°)

CL. Ne 0)
(ii) £ - ¢(37) (resp. £ = ¢(p)) .

~~ [] [] [1 oo []

If g° (resp. p°) 1s a good approximation to Us then A will be a good approxi-
mation to A.

~ 0

For our test problem, 1if 6° = 0 (resp. p° = 0), then the two choices for A

are 0 and f. We have tried both and conclude that the convergence of ALGI

and ALG2 was quite insensitive to these choices of 2°.

6.2.3. Choice of p.

We actually found that the best choice for p is p=r for our test problem.

Similar observations have been done by GLOWINSKI-MARROCCO { 3], GABAY-MERCIER

[1], for algorithms like ALGl , ALG2, applied to the solution of other classes

of nonlinear problems.

6.2.4. Choice of TOL

TOL measures how accurately we want to solve, with ZEROIN, the one variable

nonlinear equations, obtained from ALG2 and the inner loops of ALGl. From

our experiences we recommend a value of TOL = ACC. Intuitively this makes

sense because 1f TOL >ACC we won't be able to obtain the required accuracy

in the final solution because our intermediate steps are not solved accura-

tely enough. If TOL <<ACC, we spend more work in each inner loop than it is

necessary and from our experience, this doesn't improve the convergence of

the algorithms.
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6.2.5. Choice of ¢.

This parameter is used in the inner loop of ALG! to decide when to stop

the inner iterations and update AT. Note that if € +o , ALGI> ALG2

because we will be updating A after only one iteration every time.

In general, ALG! (with a reasonably smale) is more robust than ALG2.

ALG2 will work a little better (takes less iterations) than ALGl if we

start with a "good" guess at the solution (p° = 0 1n our test problem)

but 1f we start with a "bad" guess (p =, e.g.) ALGZ wil have problem

at points where has a sharp jump, as explained earlier. In fact ALG]

solved the inner equations more accurately and thus its updating of A

willbe more accurate and this 1s often enough to bring us very close to

the solution we want. (See Figure 6.3. For the test problem, e=10"" seems
to be a good choice.) In other words, ALGl's 'cautiousness" in updating 2

pays off. ALGlmay lose a little bit in the early itarations by spending”

too much time in the inner loop but it gives a better chance of obtaining

a solution to within the required accuracy. Therefore, in general, ALGI

1s to be recommended. We think that some reasonably small value for €,

like ¢ = YACC, wil work fine. Another approach is to use variable € i.e.

a sequence le ; this requires further investigation.

6.2.6. Choice of r .

We complete the Remark 5.5 of Sec. 5.3.2.. The parameter r controls the relative

weight of the penalty term in the augmented lagrangian (see (5.10)). This

penalty term has the effect of providing some global convergence steering.

We varied the value of r in ALGl with the test problem and found that the

convergence 1s surprisingly 1nsensitive to r (see Fig. 6.4). This 1s an

advantage over SOR and ADl type methods which are very sensitive to their

parameters (as will be shown later).
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6.2.7. Effect of the smoothness of ¢.

The smoothness of ¢ can be controlled by £ in our test problem. We ran ALGI

with 2=.1 and 2=.5 and found that ALG! actually performs a little bit better

for %=.1 than for the "smoother" £=.5.We also determined the optimal r for

2=.5 and found it to be about the same as that for 2=.1.

6.3. Comparisons with other methods.

6.3.1. Description of the other methods.

For a given accuracy ACC on Ip™-u Il, we want to compare the efficiencies of
ALGl, ALG2 and other methods for solving the discretized problem

+ =

Au+ b(w) =f.

Among these methods compared are the Successive over-relaxation method (SOR)

and the alternating direction implicit (ADI) methods discussed in Sec. 4.6.

These methods are reproduced below :

1) SOR : We can look at the discretized equation

- as a system of non linear equations

Ei (usu, ug) = 0,

' (6.5) £.(usuy,.00uy) = 0,

Fo(uysuys ee ug) = 0 .

Then we can use (cf. Sec. 4.5) the two following variants of SOR :
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SOR 1 :

0 :

(6.6) u given )

n n+l

at step n, with u known, we compute u by :

For 1 from 1 to N, solve

n+l ntl n+l1/2 n _
(6.7) £, Qu sees Us Us gee) 0,

then

+ +1/2 n

(6.8) uh : =u + w (uy / -u.) .1 1 1

SOR 2 :

o

(6.9) u given,

: n n+l
at step n, with u known, compute u by :

For 1 from 1 to N, solve

n+l n+l n a n+] n+l n
(6.10) £. (u > ee aly Us pees) = (1 w)£. (u, EEL PEL sees)

2) ADI : We consider the following variants of ADI

ADI1 : We iterate on the following

Oo :
(6.11) u given,

then for n 20

n+l /2 n n
(6.12) (pI+A)u / =f + pu -¢p(u) ,

+1 n+l n n+l/2(6.13) ou” + ¢(u ) =f + pu - Au /
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ADIIM : We replace (6.13) by

+ +1 n+l/2 ntl /2
(6.14) ou” Lig” ) =f + pu / -Au /

ADI2 : It is defined by

o

(6.15) u given

then for n20

n+l/2 n+l/2 n n
(6.16) U +6 (u y =f + pu-Au”

+1 + n +1/2
(6.17) ou + Au” Lo f + pu - ou / )

ADI2M : We replace (6.17) by

+1 +1 +1 +1/2
(6.18) ods a™ of oe p22)

6.3.2. Comments. Further Remarks.

One of the main problem with SOR and ADI is the sensitivity to the parameters w

and p respectively. Hence we first study the convergence of SOR and AD] as a

) function of their respective parameter @ and p. See Fig. 6.5, 6.6, 6.7, 6.8.

Remark 6.2 : ADI! (and ADI1IM) both didn't work well and their plots are left out.

The difficulty may be due to solving the linear part first instead of the nonlinear

part first.

Remark 6.3 : From these plots we can see that both ADI2M and SOR are quite sensitive

. to their parameters whereas ALGI and ALG2 are not (specially ALGl).For linear pro-

blems one can usually find some good estimates for the optimal parameters. However,

for nonlinear problems this 1s often difficult.
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Remark 6.4 : It follows from Remark 5.3 that ALG2 and ADl12 are in fact the same

algorithm. This appears clearly in Table 6.1 which summarize some of our compu-

tational experiments. From this table we can see that ALGl performs the best if

u! 1s not close to the solution u,

6.4. CONCLUSION.

From our experiments on the test problem, we can make the following empirical

statements :

(1) The convergences of ALG! and ALG2 are not very sensitive to their parameters,

in particular the penalty parameter r.

(ii) ALGI is more robust and as efficient as ALG2 in general.

(111i) ALG! is more efficient than SOR and ADI for functions ¢ that are not smooth.
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Optimal Parameters (SOR), u’ =10
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Comnarison of the different algorithms

~-6

Required accuracy : L, error< 10
%

= 0 X , ¢ (u) HEH sgn(u) | ul @ 17 X 17 grid points

Optimal parameters are used.

0 —_

Time (using
Algorithm Iterations

optimal parameter)

ALGL(e=10"" 2.54 sec. 11
ALG2 1.56 sec. 6

SOR1~ 5.47 sec. 36

SOR2 5.9 sec. 36

AD12 1.67 sec. /

ADI2M 0.65 sec. 2

ul = 10

Algorithm Time (using Iterations
optimal parameter)

—-4
ALGl(e=10 ) 3.1 sec. 14

ALG2 11.7 sec. 50

SOR 7.0 sec. 48

SOR2 7.48 sec. 47

ADI2 11.5 sec. 69

ADI2M 7.5 sec. 45

IBM 370/168 , FORTRAN H , OPT = 2. - Double precision

Table 6.1
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