SU36 P30-69

A NUMERICAL LIBRARY AND ITS SUPPORT

by

Tony F. Chan, William M. Coughran, Jr.,
Eric H. Grosse and Michael T. Heath

STAN-M-78-673
NOVEMBER 1078

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Su326 P30-59

A NUMERICAL LIBRARY AND ITS SUPPORT

by

1

Tony F. Chan
William M. Coughran, Jr.

Eric H. Grosse

Michael T. Heath’

Computer Science Department
Stanford University
Stanford, CA 94305

'Applied Mathematics Department, 101-50 Caltech, Pasadena, CA 91125.

Computer Sciences Division, Oak Ridge National Laboratory,
P. 0. Box X, Oak Ridge, TN 37830.

This research was supported in part by Department of Energy contract
No. EY-76-5-03-0326 PA#30 and in part by National Science Foundation grant
No. MCS77-02082.

Abstract

Reflecting on four years of numerical consulting at the Stanford
Linear Accelerator Center, we point out solved and outstanding problems
in selecting and installing mathematical software, helping users, main-
taining the library and monitoring its use, and managing the consulting

operation.

Key words and phrases

library management and organization
mathematical software
numerical analysis

CR Categories: 4.6, 5.1

"Where no counsel is, the people fall: but in the multitude of
counsellors there is safety. "

Proverbs 11:14 (KJV)

1. Introduction

The final delivery system, a routine library with its supporting
services, 1s an area of mathematical software that has received compara-
tively little attention in the literature (although the papers by Barinka
[2] and Cody [5] do discuss some relevant points). By summarizing our
experience in setting up and running a numerical program library, we
hope to warn those embarking on such a course elsewhere of the amount of
effort required to succeed and to describe to those already working in
the area how we have tackled various problems.

Historically, people at Stanford wanting numerical help came to the
Numerical Analysis Group within the Computer Science Department. Profes-
sor George Forsythe, the original leader of the research group, encouraged
software work in general and numerical consulting in particular. Even-
tually, however, the load became heavy enough that the campus computing
service was asked to make more formal arrangements, and soon the comput-
ing centers on campus and at the associated Stanford Linear Accelerator
Center (SLAC) agreed to support Ph.D. students in a part-time consulting
capacity. For the first year or so at SLAC, most effort was devoted to
selection of good software and writing of high-level documentation. This
led to a high-quality library, but one that was not heavily used. So a
second phase began, publicizing the library and improving the user inter-
face. With the success of that effort, we entered a third, more stable,

stage in which actual contact with the users and their problems was

emphasized. Expansion and revision of selected areas continues, in order
to meet needs better and to generate the enthusiasm without which the
library would wither.

The SLAC consulting operation may be broken down into four main
activities: providing software, advising on problem formulation and

library use, maintaining and monitoring, and managing the operation.

2o Providing Software

One of the most exciting opportunities presented by the growth of
computers is the transfer of research results from one field to another
via general purpose software. Program libraries are becoming a main
channel between numerical analysis and applications.

Libraries have been in use since the earliest days of computing

-for a number of good reasons:

duplication of effort is reduced

- well-tested, well-tuned routines are used
- dangers are flagged

- state-of-the-art algorithms are available
- storage and compilation costs are reduced

- implementation details are done correctly

elapsed time to get a working program is reduced
* In the computing center environment, a well-designed library is par-
ticularly important, since few users are willing to put much initial
effort into an unfamiliar algorithm. Also, consultants can quickly
answer common, easy questions by pointing to a routine.
Unfortunately, we found that existing libraries had serious flaws.

They were slow to incorporate advances in the state of the art because of

their desire for a systematic collection, their administrative organiza-
tion, or their relative isolation either from users or researchers.

Their documentation tended to overwhelm users with a multitude of choices,
and did not provide much guidance in how to make those choices. Despite
this, the documentation was so massive that only a couple of reference
copies could be kept, which was inconvenient for users housed in the
various scattered buildings. Some of the routines were mediocre, hurting
the credibility of the entire package. Finally, and perhaps most funda-
mentally, the large size of the libraries prevented familiarity, even by
experts, with much of the library.

With the exception of special functions, we felt that it should be
possible to cover a large fraction of user needs with a core library
consisting of a few dozen high-quality routines. To deal with less common
problems, we collect experimental routines as well, but even this library
is far from the "dumping ground" of user-supplied codes found at many
installations. (Most of the remainder of this paper is concerned with
the small core library rather than the experimental code collection.)

Routines have been collected from commercial sources (e.g., Inter-
national Mathematical and Statistical Libraries (IMSL)), from public or
government distribution sites (e.g., the Argonne Code Center and the
National Center for Atmospheric Research), by participation in software
activities (e.g., LINPACK, a linear system package developed under the
auspices of the National Activity to Test Software (NATS)), from the
open literature (e.g., SICIEI, a routine to compute trigonometric inte-
grals), directly from authors (e.g., SLEIGN, a routine to solve Sturm-
Liouville eigenvalue problems), and from local sources (e.g., VARPRO, a

routine to solve nonlinear fitting problems). Few codes have been written

directly for the library, since we view the librarian's task as one of
selection, not production. (However, to bide time until LINPACK became
available, a linear least squares routine was prepared.)

Numerical analysts often remark on the difficulty of comparing codes
and, therefore, rarely provide the user with selection guidelines. Our
aim is to provide at least a clear decision procedure for choosing a
routine based on characteristics of the problem which the user under-
stands and, if possible, to select a single routine [10]. We have based
these choices on what limited published comparisons are available, per-
sonal experience, and discussions with the many visitors to the Numerical
Analysis Group at Stanford.

The principal criteria have been: ease of use, machine efficiency,
coding practices, and availability. These standards are taken seriously;
even if it leaves noticeable gaps in the library, we keep a code in exper-
imental status until it measures up. However, we do not require nice
but inessential features like uniformity, so that in practice we find we
can install new algorithms in the library soon after they become avail-
able.

SLAC, a government laboratory devoted to high-energy physics, has a
.fairly powerful computing facility (currently 2 IBM 370/168's, a 360/91,
and numerous minicomputers, with a substantial hardware upgrade strongly
being considered) which is made available to researchers with few
accounting limits. For these reasons, the user community is relatively
sophisticated and demanding; there is a consensus that physicist time is
more important than machine time.

Consequently, ease of use is our first criterion. By this we mean

a clean user interface for the subroutine, good documentation, a reliable

algorithm implemented with safeguards so that (as far as possible) wrong
answers are not computed without warning, and generality and flexibility
so that users can develop familiarity with the routine's behavior and
even adapt it to their special problems.

Besides human efficiency, machine efficiency is also considered.
Since the numerical work is done on large and busy computer systems,
time rather than storage tends to be the main constraint. Even with the
heavily-increased use of laboratory minicomputers here, it appears that
number crunching will remain on the central machines.

Some routines have been rejected for inclusion in the core library
because we did not feel that their coding style was clear enough for
maintenance, Br because they seemed unreasonably long or overly compli-
cated to us.

Obviously, a routine must be available for us to include it. Note,
however, that only importability, not exportability, is required. Thus
we even find IBM Assembler Language coding adequate (although personally
distasteful except in special circumstances). In practice we have found
our greatest portability problems to be political rather than technical.

When we receive codes developed as single precision versions, it is
necessary to make a number of changes to generate a double precision ver-
sion. (It is widely felt that for a number of computations that the
single precision of IBM 360/370 equipment is not adequate and double
precision should be used in all but the most stable processes.) However,
it is well known that any direct modification of source leads to the
introduction of new errors and we have, therefore, made increasing use
of the AUTODBL precision increase feature of the local compiler [8].

Besides avoiding introducing errors, we are able to easily install new

releases of routines without having to remodify them.

Any numerical library such as SLAC's tends to become known to out-
side agencies. This generates requests for library documentation and
actual code. Providing software to a large number of outside users is
an enormous task, so it has been determined that library documents and
locally-produced codes can be disseminated on a very limited basis but

most other requests must be politely refused.

3. Advising on Problem Formulation

Good documentation is crucial to the success of a library, and one
can greatly enhance its wvalue by keeping it online. First, everyone can
get a copy, eitherudirectly at his terminal or, with only slightly more
delay, from a line printer (or microfiche equivalent). Single reference

copies in the consulting office or even documentation published in book
form is simply not good enough for a scattered and diverse user community.
A second important advantage of machine-readable documentation is ease of
maintenance using text editors and formatting programs, which make con-
tinually up-to-date documents possible. (If storage of knowledge in
procedural form is one of the most exciting opportunities presented by
computers, text handling may be one of the most widely useful.)

The Numerical Analysis Program Library User's Guide [3], or NAPLUG
as—-it is aptly known, is the heart of our library. It provides the main
source of advice to users on how to formulate their mathematical problem
in a numerically meaningful way and then how to get a solution. It also
provides an educational tool for new consultants, allowing some cumula-
tion of expertise. Finally, it forms the focal point of the library,

the key document that forces explicit, careful decisions and coherent

organization [4].

Besides an introduction providing a general orientation to the
library and a description of how various parts of the system may be used,
the NAPLUG consists of a series of chapters on numerical topics, each
containing:

- observations on the state of the art

characterization of important problem classes

- pitfalls in computation

library routine recommendations

suggested reading

The latest version, to be released during the summer or autumn of
1978, includes: linear system, eigensystem, and special function chap-
ters based largely on LINPACK, EISPACK, and FUNPACK; an optimization
chapter based mainly on the National Physical Laboratory library; an
approximation and data fitting chapter dealing with a variety of approx-
imating forms and featuring the nonlinear fitting routine VARPRO; fast
Fourier transform and integration chapters; an ordinary differential
equation chapter based on fine codes from the Sandia and Lawrence Liver-
more Laboratories; and finally, a partial differential equation chapter
which, because of the primitive state of the art and relative lack of
partial differential equation problems locally, currently includes only
the fast Poisson solvers from the National Center for Atmospheric
Research.

Each routine has a short individual description in a public WRITEUPS
library. Any online user can immediately obtain a particular routine's
documentation. The descriptions include the calling sequence of each

routine (describing the type and meaning of each parameter), possible

error returns, and a short description of the method used.

Many of the more complicated routines have short EXAMPLES programs
associated with them, which often help people in understanding how to use
routines. Since examples can frequently be modified into a form which
will solve the user's problem, the effort required to write and debug a
program is reduced. Such fill-in-the-blanks programming has become
popular here.

The NAPLUG, as it discusses each problem area, refers to books and
papers that one might read for help in solving a difficult problem.

Also mentioned are user's handbooks for individual codes, which can vary
from non-existant (the routine may only be documented by self-contained
comments) to major-sections of an entire book (as in the case of Shampine
and Gordon's ODE code [11]). The packages produced by the NATS project,
EISPACK and FUNPACK, are particularly noteworthy because they supply a
machine-readable handbook describing each routine in some detail. When-
ever feasible, copies of reference materials are added to the general
SLAC library and to a special collection kept in the consulting office.

As an example of how a user might take advantage of this documenta-

tion structure, let us consider the problem of solving some ordinary dif-
“ferential equations. The user may have a first-order system with appro-
priate initial conditions. The user's guide would allow him to conclude
that he has an initial value problem, and upon further reading he might
decide his problem is not stiff. Combining this information with the
amount of accuracy he demands he would be able to select a particular
code, say Shampine and Gordon's ODE. The user could then obtain a
description of the code and its calling sequence from the public WRITEUPS

library; further information could be gotten by running an example of

ODE from the public EXAMPLES library. If at a later time the user wanted
to understand ODE in more detail he could come to the consulting office
and examine a copy of Shampine and Gordon's book [11].

While we strongly believe in the written word as the primary source
of advice, we realize that direct personal contact is also important
[12]. Because of the core library philosophy, we must supplement the
NAPLUG by personally referring users to experimental codes for nonstan-—
dard problems. Questions on such problems and on the core library
provide feedback to us on what is considered inconvenient or unclear, and
in what directions expansion of the library should proceed. Summer
visitors and other transients, who are rather common at a national labo-
ratory like SLAC, tend to be particularly heavy users of personal con-
sulting. Others who come in may have read our user's guide, but want to
be reassured that their own problem really is covered by our general
routines.

This personal contact is facilitated by holding regular consulting
office hours, by being available by phone at other times (within reason),
by occasional seminars, and by visits. The seminars seemed to be most
effective at the time the library was introduced, but can be usefully
rerun only every few years. They emphasized the practical use of rou-
tines and what to watch out for, rather than the theory behind the algo-
rithms, which would have been more appropriate for a mathematical
audience. The visits to user groups include both "big game hunting," in
which system accounting information is used to identify heavy computing
projects where one hopes to have the greatest leverage, and "general
safari" trips, stimulated by interesting problems brought into the con-

sulting office or heard about on the grapevine.

Assisting in use of the library also extends to implementation
details. To save the user as much effort as possible, and at the same
time eliminate pointless recompilation, the library routines are stored
online in object form and are automatically linked into programs, just
like the SORT function is. In order to discourage divergent variants of
the library routines, source text is kept offline and in some cases

involving copyright protection made inaccessible.

4_ Maintaining the Library

In any computing environment when one makes a piece of software
(numerical or not) generally available, problems arise with any attempt
to upgrade. Some users, because of investment or personality considera-
tions, resist modifications to the behavior of any software component.

For numerical routine libraries this implies that some sort of guarantee
of static conditions must be advanced.

For the SLAC numerical library, upward compatibility is a grave dif-
ficulty since it conflicts with the design goal of maintaining a state-
of-the-art library. In general, the solution has been to upgrade rou-
tines rather quickly if the calling sequence and meaning of parameters
for a routine have not changed (the routine has changed in a manner
transparent to the user). In the case of a routine being substantially
modified so that its user interface has changed, a determination is made
as to how heavily it is used. If the routine is used infrequently then
those persons who do use it are contacted and the routine upgraded. On
the other hand if usage is heavy, a new name is usually introduced.

A routine that has become outdated, but not dangerous, also poses a

problem. The solution used at SLAC is to drop the routine from the

10

NAPLUG, later drop its short documentation from the WRITEUPS library, and
finally remove papers describing the routine from the consulting office
and expunge the source from the system libraries. The load module for
the routine (i.e., the compiled machine code for the routine) is left in
place (if it causes no name conflicts); the source for the routine can

be obtained from a backup tape volume.

Three versions of a routine can be kept on the system by having
three independent system load module libraries designated as new, produc-—
tion, and old [7]. The basic idea is to migrate routines through these
libraries. For example, suppose a routine in the production library
breaks down in a particular case. The numerical analyst in charge exam-
ines the problem and refers it to the proper specialist who (hopefully)
fixes the code. The updated routine is compiled and the resulting load
module put into the new library; the users who discovered the problem are
advised to access the new version. After some time, the erroneous pro-
duction version of the routine is moved into the old library displacing
any previous version; subsequently, the patched version in the new library
will be moved into the production library. (If a disastrous problem is
discovered in a routine, a corrected load module may be immediately
injected into the production library without any "seasoning" time.)

Another technical problem arises from the fact that, since several
separate subroutines may be involved in one "routine" and FORTRAN only
allows identifiers to be six characters long, names (including COMMON
block identifiers) may be duplicated somewhere in the library. Further,
since FORTRAN is not block-structured, all routine names are essentially
global unless great care is taken. In the case of a unified library,

where each piece of software is specifically designed for inclusion in

11

the package, routine names can be made unique (being derived from the
problem solved by a particular routine). However, 1in the case of our
core library, real name conflicts can exist and duplication of code does
exist. Duplication of code means that when stand-alone (research) codes
are imported for use in the library they usually include all necessary
routines and, since some tasks (like forming a LU or Cholesky decomposi-
tion of a matrix) are quite common, several different versions of a sub-
routine to do the same task may exist.

The library ignores the code duplication problem since the local
system has adequate disk capacity to handle the superfluous code. The
problems of name conflicts that can arise with stand-alone codes are
resolved with the CHANGE facility of the IBM Linkage Editor [9] which
allows one to modify the name of a routine after it has been compiled.

This has proven an effective solution since unique names can be supplied
for routines that users need not be aware of.

Library routines are monitored in a manner similar to that described
by Bailey and Jones [1l]. The collection procedure is based upon the use
of the run-time LINK/LOAD facility and the System Management Facility of
IBM's 0S [7]. This monitoring serves two major purposes: determining
the pattern of routine usage and protecting users from old or obsolete
versions of routines.

Enough statistical information is collected to study how heavily dif-
ferent parts of the library are used. For example, it appears that data
fitting routines are the most important component of the library to most
SLAC users while routines to solve differential equations are infrequently
used. (It is interesting that at other Department of Energy laboratories

this situation is reversed; this implies that libraries and their sup-

12

porting services should be adapted to the local environment.) Such infor-
mation guides allocation of effort and is valuable in justifying the
library project as a whole.

Monitoring helps users in avoiding old versions of routines. This
is important when a user obtains a personal copy of a routine because
later it may be discovered that it is in error. The monitor normally
informs the user if he is using such a routine by writing a message into
the offending job's system message log. For efficiency on subsequent
calls of the library routine within the same job, the monitor call is
overwritten with a NO-OP instruction.

Each version of each routine is assigned a unique "maintenance num-
ber," which it passes to the monitor. The monitor looks up the number in
a status table to be sure that no recent changes have made the routine
obsolete, then writes out a system accounting record of which user made
the call, and optionally what the parameters were. Note that the status
table must be dynamically loaded at run-time, so that its data is current
even 1f the user has his own (old) copy of the monitor routine.

Other monitoring schemes are also used. When a user retrieves a
source copy of a routine, his identification and the name of the routine
he requested are recorded. This enables the systems staff to determine
if someone is trying to obtain copies of routines belonging to packages
that contractually cannot be removed. Moreover, the monitoring of source
retrieval insures that it is possible to track down users with particu-

lar problems.

5. Managing the Operation

A major, often unrecognized problem with the kind of thorough con-

13

sulting operation described here is staffing. Most computer people tend
to ignore numerical analysis. Numerical analysts, with a few prominent
exceptions, have tended to avoid the tar pits of software libraries. Users
lack balance in the knowledge of systems and numerical analysis and are,
therefore, unable to do a really professional job of mathematical software
organization. We feel that our solution has worked well, although we

doubt that it can be very widely applied.

Two numerical analysis Ph.D. students are supported as research
assistants with overlapping terms, so that the new consultant can learn
the ropes from the older one. The Ph.D. students benefit by the exposure
to a variety of practical problems and gain experience in dealing with
software collections. The computing community benefits from the students'
enthusiasm and, partly through the students' 1link with the campus research

group, nhumerical acumen and state-of-the-art knowledge. We have observed
that with increasing experience comes rapidly decreasing enthusiasm; we
see good people go in, burn out in a year, and return to research. One
reason seems to be the hard, frustrating choices (about personal schedul-
ing priorities, user problems, system questions, etc.) that must be made¥
another is the clerical nature of much of the work. We conclude that no
one student should be asked to work full-time on the library for an extended
period; anyone happy to do so may not be active enough in research to keep
up effectively.

Assuming a turnover in consultants, internal documentation of the 1i-
brary becomes vitally important. At the very minimum, an annotated index
of system files, experimental programs, and monitoring logs should be
kept, and the typical life-cycle of a routine from initial installation

through final removal should be described. As much of this information as

14

possible should be embedded in programs, so that consultants can spend
their time on higher level functions and have mechanical operations per-
formed mechanically.

Other management issues also enter into the consulting activity:
requests for fiscal resources, decisions about allocation of manpower, and
justification of computer resources used. It is sometimes possible for
SLAC to procure improved hardware and commercial program products such as
sorting packages, compilers, and operating system enhancements, but it is
quite difficult to get monies set aside for obtaining numerical codes. In
fact, the entire project is run on a relatively small budget since there
are few code costs and research assistant salaries are quite low when com-
pared with the cost of a full-time member of the professional staff. How-
ever, the number of Ph.D. student hours available is limited, and some
staff time is required, so manpower allocation questions must be answered
by management.

The automatic monitoring of routine usage provides some estimate of
the immediate impact of the library on SLAC computing. Visits by con-
sultants to groups which make heavy use of CPU resources can assist in
qualitatively determining the influence of the system on the SLAC com-
munity. Contact with users seeking consulting or attending user seminars
provides further feedback on the effectiveness of the library. These
measurements and observations provide the basis upon which management must

judge the relative success and merits of the library project.

6. Conclusion
The SLAC library project seems to have reached an equilibrium.

Although new codes are being added and old ones removed, the basic organ-

15

ization of the library has stabilized. The hard choices of which avail-
able routines are best suited for inclusion in the core library are now
made more routinely since the criteria by which routines are judged have
been formalized to some extent. The design of the documentation hierar-
chy, the writing of the NAPLUG, the implementation of a system to insure
that all routines are automatically available without conflict, and the
design and implementation of a monitoring system for routine usage have
now been done. Experience with the costs of maintenance and providing
user consulting has been gleaned. Some idea of how users are affected
by our library has been formed.

The NAPLUG has been well received at SLAC and enables many users to
make proper code choices when faced with numerical problems. The simple
descriptions of problem formulations, of the characteristics of problems

relevant to routine selection, and the short discussions of inherent dif

ficulties allow users to deal confidently with a variety of situations.
The online WRITEUPS and EXAMPLES libraries assist in the transition from
selecting a particular routine to actually using it. The unified load
module libraries insure that all core subroutines are automatically call-
able, without the need for special job control information. The works ref-
erenced by the user's guide help interested persons in becoming more
sophisticated from a numerical standpoint and give them further insights
into the methods employed. The availability of numerical analysts to
function as consultants insures that the concerned user can find assis-
tance for almost any computational task.

The decision to select codes from a variety of high-quality sources
enables the library to be more responsive to new developments than commer-—

cially available packages. However, the code duplication, naming conflict,

16

and library stability issues that arise from this policy complicate main-
tenance. Quality control considerations are also of some concern since
code authors have a variety of opinions about what constitutes mathemati-
cal software and adequate testing.

Major difficulties seem to arise in staffing and management. The
students involved in the project never act as consultants for a long period
of time. Repetitive tasks, argumentative users, and detailed problems of
selecting routines and system organization eventually reduce interest.
Personnel turnovers make it difficult to insure that a seasoned consultant
will be available since, in addition to numerical knowledge, a consultant
must be familiar with a number of system details. Management has limited
measurement tools to determine how to allocate the available manpower
resources. Finally, management must consider the consequences of the
fiscal constraints which limit the procurement of commercial codes.

Developing widespread user confidence in any software product is a
relatively slow and somewhat arduous task. The means for reaching the
user community is limited to system messages, the monthly computer center
bulletin, seminars, and consulting contacts; hence, many of the physicists
are not aware of day-to-day developments in the computer center. Personal
contact, either in the consulting office or by visitations, seems to be
extremely useful in converting reticent users from their "home-brewed"
codes to the library. (In some sense, users must be "sold" on the value
of a properly organized mathematical software library.)

The library project has required a substantial investment of intel-
lectual effort and machine resources over the past four years. User
response has been favorable; the overall library organization has proven

its worth. As a resource for the researchers at SLAC, our library forms

17

an important foundation of high-quality, state-of-the-art mathematical
software which assists them in spending more of their time studying physics
and not numerical analysis. Moreover, the symbiosis between the Numerical
Analysis Group and SLAC has aided in the practical training of numerical

specialists.

Acknowledgments

Some of the ideas contained in this paper are abstracted from a paper
by Coughran [6] which was an attempt to explain the library organization
to the interested SLAC user. The present paper attempts to reach a wider
audience and is less technically specific.

A major project like the one described here inevitably involves many
individuals. John Ehrman and Richard Lagerstrom must be singled out for
their numerous suggestions, guidance, technical support, and for their
belief in the project's efficacy. We wish to thank Robert Beebe, John
Bolstad, June Genis, Gene Golub, John Lewis, Franklin Luk, Joseph Oliger,
Michael Overton, Lennox Sweeney, and Margaret Wright for their contribu-

tions, and Marsha Berger, Daniel Boley, Stephen Nash, and Lloyd Trefethen

for their consulting efforts. Numerous code authors have been generous
in making their routines available for use in the library. Countless SLAC
users have made suggestions that have improved the library. SLAC, SLAC

Computing Services of the Stanford Center for Information Processing (SCS-

SCIP), and the Department of Energy also deserve thanks for their support.

18

References

1.

10.

Bailey, C. B. and Jones, R. E. Usage and Argument Monitoring of

Mathematical Library Routines. ACM Trans. Math. Software 1, 3

(September 1975), 196-2009.
Barinka, L. L. Some Experience with Constructing, Testing, and
Certifying a Standard Mathematical Subroutine Library. ACM Trans.

Math. Software 1, 2 (June 1975), 165-177.

Bolstad, J. H., Chan, T. F., Coughran, W. M., Jr., Grosse, E. H.,
Heath, M. T., and Luk, F. T. Numerical Analysis Program Library

User's Guide. SCS—-SCIP User Note 82 (August 1977).

Brooks, F. P., Jr. The Mythical Man-Month. Addison-Wesley, Read-
ing, Massa;chusetts, 1975.

Cody, W. J. The Construction of Numerical Subroutine Libraries.
SIAM Rey. 16, 1 (January 1974), 36-46.

Coughran, W. M., Jr. The Construction of a Numerical Analysis
Program Library. SCS-SCIP Technical Memorandum 107 (September 1977).
Ehrman, J. R. Program Library Maintenance and Monitoring. SCS-SCIP
Technical Memorandum 103 (January 1977).

International Business Machines, Corp. IBM OS FORTRAN IV (H

Extended) Compiler Programmer's Guide, SC28-6852-2, November 1974.

International Business Machines, Corp. IBM OS Linkage Editor and

Loader, GC28-6538-9, January 1972.
Newbery, A. C. R. The Boeing Library and Handbook of Mathematical

Routines. In Mathematical Software, Rice, John, Ed., Academic

Press, New York, 1971, 153-169.

19

11.

12.

Shampine, L. F. and Gordon, M. K. Computer Solution of Ordinary

Differential Equations: The Initial Value Problem, Freeman, San

Francisco, 1975.

Smith, L. B. Elements of Success for User Services. Proc. ACM

SIGUCC User Services Conf. IV, November 1976, Tucson, Arizona.

Requests for more detailed information on the current content and

structure of the SLAC numerical library or for copies of SCS-SCIP
documents should be directed to:

Numerical Analysis Consultant

SLAC Computing Services, Bin 97
Stanford Linear Accelerator Center
2575 Sand Hill Road

Menlo Park, CA 94025

20

