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Information Bounds are Weak in the Shortest Distance Problemf/

Ronald L. Graham+, Andrew C. Yao%, and F. Frances Yao%

Abstract.

In the all-pair shortest distance problem, one computes the matrix
D = (dij) where d. 17 is the minimum weighted length of any path from
vertex 1 to vertex j in a directed complete graph with a weight on
each edge. In all the known algorithms, a shortest path pib achieving
d.lj is also implicitly computed. 1In fact, log3 f(n) is an information-
theoretic lower bound where f(n) is the total number of distinct
patterns (pij) 5for n-vertex graphs. As f(n) potentially can be

as large as A , it is hopeful that a non-trivial lower bound can be

derived this way in the decision tree model. e study the characterization
2

and enumeration of realizable patterns, and show that f(n) < ¢’

2
Thus no lower bound greater than Cn can be derived from this approach.
We prove as a corollary that the Triangular polyhedron T(n) , defined in

(%)
E © a

v

by d.. > 0 and the triangle inequalities 4§, .+ 4
1y = ik’

; i3 Jx
n \ .
has at most C faces of all dimensions, thus reso]_vj_ng an open questj_on

in a similar information bound approach to the shortest distance problem.

Keywords: decision tree model, Farkas lemma, information bound, lower bound,
maximum flow, polyhedron, shortest distance, shortest path.
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1. Introduction.

Let G be a directed complete graph on n vertices Vs Var e sV

with a nonnegative distance dij associated with each edge (vi,vj). In

the all-pair shortest distance problem, one wishes to compute the nxn shortest

* * *
distance matrix D = (dij) , where le is the minimum total length of any

path from v, to V. (see for example [1]). Efficient algorithms for this

problem were devised by Dantzig [2], Dijkstra [3], and Floyd [5]. All these
methods require at least Cn3 time in the worst case. More recently,
Fredman [6] gave an algorithm with running time O(n3(log log n/log n)l/B) s
which is slightly better than O(nB) . Substantial improvements over O(n3),
however, are yet to be found. On the other hand, no lower bound better than
Cn2 is known to thexall—pair shortest paths problem for programs with

branching instructions. (Kerr [9] proved that Cn3 steps are necessary

for straightline programs with operations {min, +}.)

A natural model incorporating branching instructions is the decision tree

model which is used, for example, in the study of many sorting type problems
([10]). 1Indeed, all the existing shortest paths algorithms mentioned

above can be properly modeled by linear decision trees, where the primitives

are ternary comparisons"f(&%j}) g O " with linear functions f . An
apparently promising approach to obtaining lower bounds for linear decision
trees was suggested by Yao, Avis, and Rivest [13]. It was shown that, in

this model, an log n comparisons are necessary to compute the shortest
distance matrix if a certain polyhedron T(n) in (g) —-dimensional Euclidean
space (see Section 2.3) has at least exp(CnZ log n) "edges", i. e.,
1-dimensional faces.f/ An interesting question is thus to determine if

T(n) in fact has that many edges.

X*
—/ It was incorrectly claimed in [13] that Tn could be shown to have
exp(Cn® log n) edges, which would then imply the Q(n° log n) lower

bound. A revised version of [13] will appear as [1h].

2



While counting the number of comparisons made in a decision tree tends
to underestimate the "true" complexity of computing shortest distances
(for example, Fredman [6] showed that for any given n , there exists a

2.5>

linear decision tree with Of(n comparisons), it seems to be at present
the only hope for obtaining nontrivial lower bounds. In this paper, we
examine an approach based on information-theoretic arguments. As will
become clear, a natural information lower bound is log5 |P(n)‘-n2 , where
P(n) is defined as follows. For any n xh matrix D = (dij) with
nonnegative entries, let pattern(D) denote the nyn matrix (pij) ’
where pij is the set of all shortest paths from vertex A to v. in
the graph G associated with D . We define P(n) to be the collection
of all distinct patterns obtainable this way. As the cardinality of P (n)

n3 lgn)

is potentially large (0O(2 even 1f we require each pij to consist

of a unique path), it appears hopeful that strong lower bounds could be
established. However, we will show that in fact log|P(n)| = O(ne) ;
therefore no lower bounds better than Cn2 can be derived from this
approach. The enumeration of P(n) 1is based on a study of "connection
matrices", as described in the next paragraph.

Let D = (dij) , D' = (d:.'LJ.) be two nyxn matrices with nonnegative

entries, then the connection matrix CD D! for D and D' has as entries
)

Co v s . ..
CD,D'[l’J] =fall1<a<n, diOé+docj = m}:{.n(dik+ ko)} for 1<i,j <n
In Sections 2 -5, we will develop characterizations for R(n) , the set of
all "realizable" connection matrices. As a result, \R(n)\ is shown to be

2
of the order Cn (here again, rather short of its 2" potential). 1In

Section 6, we apply the scheme used in AHU [1, p. 204] for reducing shortest

distances computation to {min,+} matrix multiplication to establish a



recurrence relation involving |R(n)| and |P(n)| , and thereby show

e}
c

that |P(n)] < ¢

In another application of the concept of connection matrices, we show
that, somewhat unexpectedly, each face of the polyhedron T(n) mentioned
earlier corresponds naturally to a unique nxn connection matrix (see

(n) :

Section 2.3). Therefore, T has no more than Cn edges, which

resolves the question in the polyhedron approach [13] as well.



2. Connection Matrix, Information Bounds, and Triangular Polyhedron.

2.1 The {min, +} Matrix Multiplication.

A distance matrix is a matrix of nonnegative real numbers. For two

nxn distance matrices D = (dij) and D' = (d!"lg" define their sum

A = (aij) = D®D' and product B = (bij) = D®D' , respectively, by

o . - ar N
a,. = minf{d, ,dij} and b, . min{d,, dkj | L <k <n}. The multiplicative

1] J

operation @ is also called the {min, +} matrix multiplication. It is

well known ([1],[4],[11]) that the complexity of {min, +} matrix

multiplication is closely related to that of finding all-pair shortest

distances, i.e., computing the transitive closure D* = (d:j) of a
matrix D , where dT.1. = 0 and d.:.j = (D®D2®D§+ o - i3 for i # ]
(Di - ' teD by definition.) We will first focus attention on the
{min, + } matrix multiplication for its conceptual simplicity. The
discussions are then extended to the computation of shortest distances
in Section 6.

We shall consider the computation of {min, +} -product for two nxn

matrices in the decision tree model. An algorithm in this model is a ternary

tree. FEach internal node contains a test " £(D,D') : 0 " for some non-constant
rational function £ of 2n2 arguments. Each leaf of the tree contains a
set of rational functions {qij » 1 <1,J<nl on the 2n2 variables
{dij’di,j} . For any input (D,D') , the algorithm moves from the root down
the tree, at each node testing and then branching according to whether

f(0,d') is > 0, =0 , or < 0 , until a leaf is reached. At that point,

the product B = D&D' is given by bij = 03 (D,D') . The cost of the

algorithm is defined to be the height of the tree. The complexity L(n)



in this model is the minimum cost over all such algorithms. When all the
functions f , qij are restricted to be linear functions, the model is

called the linear decision tree model, and the corresponding complexity

is denoted by Loﬁﬂ . Trivially, L(n) < Lo@ﬂ .

We shall be interested in a natural information-theoretic bound on

L(n) and Lo(n) .

2.2 Connection Matrices and Information Bounds.

The concept of a connection matrix has been defined in Section 1.
We now give some illustrations and examine the relationship between
connection matrices and {min, +} -multiplication.

Consider the following interpretation of the product B =(bij)= D®D!
(see e.g. [1]). Let X = {Xl’XE""’Xh} s Y = {yl’yz""’yn} , and
7 = {21’22"'.’Zn} be three disjoint sets of cities, with d,, and dﬁj
being the distances from X, to Vi v and from Yy to z. : respectively.
Then bij is the "shortest distance" from g to z.J via some intermediate
city in Y . This suggests another way of representing the product D®D' .
Namely, we can list for each pair [i,J] the set of all connecting cities
Vi for which dik+ dka achieves the minimum b.l.J . Such information can

be tabulated into an nxn matrix ¢ whose [i,j] -entry is the set

of integers {al dﬂx+ %& = min(dik+<¥j)} . Clearly, CD,D' is the

connection matrix for D and D' as defined earlier.

Example 1. For the graph shown in Figure 1, we have D = (%8 1;% and

) . The connection matrix CD,D' is (132 122) .

a5 20

D . 10 10



30 0
o;
5 10
2 V2 %2
Figure 1. An example of a connection matrix.

Not all matrices can be realized as connection matrices for some D and D'

as the following example shows.

Example 2. There do not exist 2 x2 distance matrices D and D' whose

. . . 12
connection matrix CD,D' is é 1) .

12

Proof. Otherwise, let ¢ ) for some D = (d.. ) and D' = (dat.) .
=20 21 1J 1J

D’Dl = (

We have then four inequalities

1 1
@ll + dll <:d12 + d21 )

S dyp + 4

]
dip + A5
1
dog* &gy < dyp 4+ 4y
and

] t
Aoy + Yo < Ay + dpy

Adding the above four inequalities together, one obtains 0 < 0 ; a contra-

—diction. O
Definition 1. An n-ary matrix M is a matrix where each entry M[i, j]
is a subset of {1,2,...,n} . An n-ary matrix is said to be simple if

IM[i,5]| = 1 forall i, j.



A connection matrix CD,D' is an n-ary matrix of dimension mxp
if D and D' have dimensions mxn and nxp respectively. For
simplicity, we will only consider the case m = p = n , while noting that
all discussions have immediate generalizations to rectangular matrices.
Thus, when there is no danger of confusion, an nyxn n-ary matrix will
simply be called an n-ary matrix.

3

As illustrated in Example 2 above, not all of the 2n nxn n-ary

matrices are connection matrices.

Definition 2. An n-ary matrix M is said to be realizable (as a connection

matrix) 1if M = CD D! for some distance matrices D , D' . Let R(n)
J

denote the family of all nxn realizable n-ary matrices M .
A subfamily of R(n) deserves special attention.

Definition 3. Let SR(n) be the subset of R(n) consisting of all

simple n-ary matrices.

We now give lower bounds to the complexity of {min, +} -multiplication
in terms of |R(n) | and |SR(n) | ., It is plausible that to compute the
shortest distance between Xi and Zj’ one has to find out the best
connecting cities Vi e Thus there must be as many leaves as lR(n).

(or |SR(n) | ) in a decision tree. The logarithm of the mumber of leaves
then gives a lower bound to the height of a tree, which is usually

referred to as the information-theoretic bound.

Theorem 1. L(n) > logngR(n)l for all n > 1
Proof, Let A be any decision tree algorithm computing the {min ,+} -product
of nxn matrices DgD' . Let & be the set of input pairs (D,D') with



all their entries strictly positive and for which the test result is

never zero at any internal point, i.e., TT fi(D,D') £ 0 where fi
ieA

is the test functions at internal node i . Clearly /£ is an open set
2
in the Euclidean space E2n s and 1s dense in the positive quadrant (all
coordinates > O ). For each element Me SR(n) , choose DM , DI'/I such
that C ' M and (D ,D , ) € B , which can be done since, for any
distance-matrix pair (D,D') with C_, ., =M, all (D ,D') eONS
Dy D MM
satisfy CD o = M where ¢ is a sufficiently small neightborhood of
W M
2
(D,D') in 2% | For any such (DM,DM,) , the computation will end

at some leaf 4,, without taking an equality branch at any internal node.

M
Let M[i, j] = {kij} , then in some sufficiently small open set ¢ C § around
(DM’DI\'/I) , the shortest distance from X to z.J (1 <i,j < n) is through
Ve uniquely for each (D,D') e® , and furthermore, every (D,D') €@
leigis to the same leaf by - Since two rational functions agreeing in an
open set must be identical, we know that the set of output functions {qij}
at Ay must be qu.(D,D') = di’kij +d1':ij'j . It follows that no two distinct
Me SR(n) can have the same Iy - Now if we prune all the equality branches
from the tree A , we have a binary tree with at least |SR(n)l leaves.

The height of A is therefore at least log2 |SR(n)| , which implies

L(n) > 10g2|SR(n)| . g

The above argument does not apply when SR(n) is replaced by R(n) ,
since for Me R{n), the set of (D,D') satisfying CD,D' = M in general

does not contain an open set. However, in the more restricted model of linear

decision trees, R(n) does provide a lower bound.

Theorem 2.  Ly(n) >_log3\R(n)| - on®



Proof. Let A be an optimal linear decision tree for computing the nxn
matrix product D®D' . Consider the algorithm A' which begins with a
2 ..
sequence of 2n  tests {%34 :0, %5: 0,1 < 1,J <n}, and then proceeds
exactly as algorithm A, ignoring the outcomes of the first 2n2 tests.
Represented as a linear decision tree, the algorithm A' has height
2 . .

Lo&ﬂ + 2n” . We will show that, for algorithm A' , all input pairs (D,D')
reaching the same leaf must have the same connection matrix,<:D D
)

. 2
will prove Ib(n)+-2n >_;og5|R(n)[ , hence the theorem.
Let [ be any leaf with output functions {qu} . Let
£={8 <0, <0, e.., g, <0, hy =0, hy=0, . ..,h =0} be the
system of linear inequalities and equalities obtained along the path from
the root to ¢ . Then for any 1 <1i,j,k <n, qij(D,D') < diki-dkj
must be a consequence of the system § . Because of the Farkas Lemma (for
inhomogeneous systems) (see e.g. [12, Theorem 1.L.4]), one can obtain
t + : i ] ;

qij(D’D ) < dik dkj by taking convex linear combinations of formulas

in the system gy {O <1} . But this process actually yields either

"< "or " =" explicitly. Thus we actually know at leaf f if

qij(D,D') < dgpt dfq' or if qij(D,D') = djp d_l'{__.U for all i, J,k

This proves that the connection matrix is determined at each leaf,

as was to be shown. O

We regard the two preceding theorems as information bounds on L{(n)
2

and-Ib(n) respectively. As there are " simple n-ary matrices, and
2n5 n-ary matrices, of which SR(n) and R(n) are subsets respectively,
Theorems 1 and 2 could potentially give lower bounds of the order n2 log n
or higher. The characterization and enumeration of SR(n) and R(n) will

be the subject of Sections 3 -5. Before that, we define the

Triangular polyhedron T(n) and relate it to our present approach.

10



(9

2.3 The Triangular Polyhedron T

A set Z in EN is a polyhedron if 7 ={§|}?eEN, ai(}?)so,
i=1,2...,m} , where m 1is an integer, X = (Xl’XQ"”’XN) , and

2. (%) = 2, c..X.-c! for real numbers c.,. , ¢! . To each subset
i N iy i ij i
1<j<n

Jc {1,2,...,m} (possibly empty), let FJ(Z) = {% | zi(i') < 0 for each ieJ;

!i(}?) = 0 for each i&J] . We call FJ(Z) a face of dimension t of Z

if FJ(Z) # ¢ and the smallest subspace of joul containing FJ(Z) has
dimension t . Let ?t(Z) be the set of faces of dimension t of 7 ,

for 1<t <N . (For more information on polyhedra, faces, etc., see [T],[12].)

(n) N

The Triangular polyhedron T is a polyhedron in E for N=(E).

Let M= {(1,J)]21<i<j<n}, and o= ((1,5%) | (1,d)em, 1<k <n
and k #1, k£ j} . Writeavectorin B as ¥ = (Xij’ (i,3)em)

Then T(n) is defined by
T(n) = [£| X..> 0 for (i,j)eﬁ,xijsxik+xkjf0r (1,d)k)ex} .

where we interpret iy to be in if i > k

N
Theorem 3. | u ”J’t(T(n)H < |R(n)| , where N = (g) .
t=0
n
Corollary. |3«*1(T( ) ) | < |rR(@)] .
- - - N (n)
Proof. It suffices to establish a one-to-one mapping ¢ from U "Jt(T ),
t=0
i.e., the set of all faces of T( n) , into R(n)
Write ﬁijk(x) = X.. "Xy =X for (i,i,k) e £ . Let F be a face
of T(n) , specified by a partition of T into TTlUTT , ¥ into zluzg ’
such that



F={¥] Xij >0 if (i,3)e m > i <0 if (LK) ex)

ancilx.l.J =0 if (4,3) € My s Ei,jk = (0 if (1,3‘,1{)622}

We now define ¢(F) to be the nxn n-ary matrix M , given by

M1, 5] = Mlg, 1] = {k | (,8,K)ez}  if 1<,

and  M[1,i] = {k|{(L,k), (i)} nm, # AU {i}

The mapping ¢ is one-to-one, as T and T]'2 can be reconstructed

from ¢(F) .

To complete the proof of the theorem, it remains to show that ¢(F)

defines a realizable matrix M , Choose X = (x.. ,1<1i< 3 <n)tobe any

point on F . Define a distance matrix D = (d:::) from ¥ by letting
dij=dji=x.ij for 1 <i<j<n ,
and di:'L:O for 1 <i<n
It is easy to check that D®D =D . It follows that the connection matrix
CD,D is given by
Cp, i,3] = CD,D[j,i] = [k | eijk(i’) =0, 1<k<n) if  i<j,
and CD, D[i,i] = x| X = 0 or X5 =0, 1<k<n}
This proves that ¢(F) = M = CD D The proof of the theorem is complete. O



3. A Characterization of Simple Connection Matrices.

We will give a necessary and sufficient condition for a simple n-ary

matrix to be a connection matrix. We first define some useful concepts.

Definition k. The weight distribution W(M) of an n-ary matrix M is

the integer matrix defined by W(M)i 5= |M[1,3]] . The sum
)

2 |M[i,3] | is called the total weight of M , denoted by w(M)
i

3 L,22,3
Example 3., Let M = 1 1 2 . The weight distribution of M
L2, 3 2
1
is WM =1 1 1 1 , with total weight w(M) = 13
-1
Definition 5. Let M be an n-ary matrix of dimension mxp . For

1 <i<m, the i-th row signature of M is the vector

@ 002 wnere 2(H)

is the number of times
integer | appears in the i-th row. For 1< j <p , the j-th column

signature E(J) = (c§_3>éc£J),...,cr(lJ>) of M is defined in a similar
(3)

’ is the number of occurrences of I in the j-th column.

(1) (2 - (1) =(2 -
The sequence of mtp Vectors“(r),r( ),...,r(m) s c( >,c( ),...,C(P))

way, i.e., ¢

is then called the signature of M, denoted by s(M)

-(1
In Example 7 above, the row signatures of M are r( )= (1'2'2) ,
-2(2)

g(l)

(2,1,0) , and ?(5) = (1'2'2) ; the column signatures are

(2,1,2) , 32 - (2,1,1) , and @) = (0,3,1) .

Definition 6. An n-ary simple matrix M is said to be s-unique if no

other n-ary simple matrix M' can have the same signature as M .

13



We will show that, for a simple n-ary matrix M , the property of
s-uniqueness is the answer to the question of whether M is realizable as

a connection matrix.

Theorem 4. Let M be an nxn simple n-ary matrix. Then Me SR (n)

if and only if M is s-unique.

Proof. Necessity.

Let M be a simple n-ary matrix such that M = CD D! for distance
)

matrices D = (4,.

13) and D' = (d:!LJ.) . Assume that there exists another

simple n-ary matrix M' 74 M with s(M') = S(M) . We will show that this
leads to a contradiction.

. _ v (s
Write M = (mij) and M' = (mij) . We have

1 1 3 1
dl,m..+dm..,j5di,m.'.+ dm!.,J' for 1 <i,J<n (1)
iJ 1] 1] 1]
by the definition of the connection matrix CD Dt * Furthermore, the inequality
J
(1) is strict if m,, # m!., . Adding up the n® inequalities in (1), we
+oJ +J
obtain
d. , 2o d!
% ? 1,mi. ? Z m. .,J
- J J 1 1J
b '
ST 24 2 T, ()
i 7 1] J 1 1J
where the inequality is strict since m'l';J # m"ij for some i, j . Now, by

the definition oftherow and column signatures F( 1) ’ gl of M, and

F'(l) , ¢t W of M', respectively, (2) is equivalent to

14



<Zi§f.(i)d. +3 e Iy (3)

But by assumption M and M' have the same signature, so the left hand
side of (3) is equal to the right hand side, a contradiction. This proves

the necessity of s-uniqueness for a simple connection matrix.

Sufficiency. We next show that if a simple n-ary matrix M is s-unique,
then there exist distance matrices D and D' such that M = CD D!
b
What we look for are D = (dij) and D' = (dij) that satisfy the following
system of inequalities
f
.o D,D'") =(d, +d'.) - (d,, +d'.) <O
gl:J;a:B( D) = (&g o) ( ip* %3) ’
forc‘t:m.l:J , B#a,1<i,j<n,
K
') = L Hadt.) - . ') =
hi,j,a,a(D’D) (dlcc d(XJ) (dloc+d0£3) 0,
L fora:m.lb,l_<_1,;j§n

Assume that the system () has no solution. We will show that this
implies M is not s-unique. First note that () contains at least

one strict inequality g, 0, for n>2 . By the theorem of

. <
1,3,% B

Kuhn-Fourier (see [12, Theorem 1.1.9]), (/) is not solvable only if there

exist non-negative numbers Ay 3,0, B such that
2Jo)

15



e . g. . + 2. . h. .
lSi,j<n l)J:a.vﬁ 1)J)a)B l<i,j<n hl,J,O&,(X ,1, J,Oﬁ,a
O:=m, . =
i =y
B#a
= (0-d. 0 ddEpad @ ox Al eer b 0edl taee et
( 11 o ot +0*dnn) + (0 A +eeet0 di,j+ +0 dnn) (%)
where . . > 0 for the coefficient of some )
Kl) JsQ, B gi,j,a,a . We can scale
the coefficients in (4) so that every) is <1l/n , except for o
The values of )‘i, j,oz,o(cl <i,J<n, @=m..) can be chosen freely in
(4) since h. . = 0, and we shall choose them so that for any fixed
1y Js0, 0
i, o =m, .
i,J , and m:LJ »
DR VI 1. 5
1<p<n 1 50,08 (5)
Let us rewrite (L) as
Z 2 ke g g fa, oAl )
OA=m. .
1J
: = > D U d, . +d'.) . 6
lSi’JSn lSSSn 1)J}a)g lB BJ ( )
A=m, .
1J

By Equation (5), the left hand side of (67 is
2 (a, + a.) .,
1<i,j<n . %
A=m,

iJ

or equivalently,

16



z 2 fMa, v T D e ay, (1)

1<i<n 1<s<n ' P 1<i<n 1<u<n

(1) )

where :c'/Z ’

the coefficient of each variable 6;41, ’ %L.L,, in (7) with that in the right

are the row and column signatures of M . By comparing

hand side of (6), we obtain

2 )\i.al=r§l) for 1<i<n, 1<2<n , (8)
lSan 2ds &y
Q=m, .
1J
2 Ao, = e for 1<j<n,l<yg<n . (9)
1<i<n 2 drth
=m, .
ij -

The equalitiesi n (8) and (9) are best represented in terms of a
network flow problem. Let 7(M) be a network with source § , sink T,
and in between three levels of nodes, with n3L nodes on each level
(Figure 2). The nodes on the first level are, Rii) (1<1i,4<n), on
the second level Vi:] (L<1i,j <n), and on the third level CI(j)

(1 < j,2 < n) . Each Rgl) is connected with the source and the n
nodes vij (1 < J <n) ; each CEJ) is connected with the sink and the
n nodes Vi,j (1<i<n) . We shall consider maximum flows in 9(M)

subject to the following capacity constraints on the nodes (cf. [7]):

] VAR ' \
node R/(Zl) has capacity r}l , node CEJ) has capacity céJ) , and

Vij has capacity 1 .

17



(n)

Figure 2.

\' 4

Network (M) .

o)




The value of a maximum flow in 7(M) is clearly at most

2 2 rgl) =2 CEJ) = n2  1f all nodes are saturated to their
i 2 Jj o1
* -
capacities. We will demonstrate two flow functions y and y that
can achieve this maximum. Each function assigns the same value to both
arcs (R(l) > V..) and (V.. , ctd ). We will denote this value by
J) 13 iJ b4
* -
v (i, j,42) and y(i,j,4) respectively.

*
In the first maximum flow y , we let

x 1 if { = mi.
v (i35 £) = J (10)
0 otherwise.
There is 1 uwnit of flow through every node V.l.J . Furthermore, each
-\ -\.
node Rgl’ P CEJ) is balanced and saturated by definition of the capacities
(i) (3)

r, )y c)

The other flow function 7y makes the assignment

y(i,3,1) = M50 (11)

where @ = m.fJ. The amount of flow through Vij is

z g(i)j;” =1
1<t<n

by Equation (5). The total flow out of node Rgi> is

Z 3-7(1) j:f) = Z
=

1<j<n 1

by Equation (8); similarly the total flow into node CEJ) is
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2 5_7(5-:3: f) = Z As s
1<i<n 1<i<n®™ P91
Q=m, |,
1d
(3)
= ¢,

by Equation (9). Therefore ¥ also defines a maximum flow in (M) .
Note that y* and y are in fact two distinct flow functions. This is
so because Xi, 3,08 > 0 for some i, J , o = mij , and B # @ when we
formed Equation (4); it then follows from definitions of y* and y in
(10) and (11) that, to the particular arc (Rgl) ’Vij) with £ =8, we
have

* . . - . .

y (3,47 = 0 , y(i,3,2) > 0 . (12)

We are now ready to derive a contradiction that M could not be

.s-unique. Formulate the maximum flow problem for 7(M) as a linear

program in the standard way (for example, [8, Chapter 8]):

maximize Z = Cey

subject to Acy=b, y>0
with suitable vectors b , ¢ , and matrix A . It is known ([8,
-Theorem 8.8]) that in the -present case, when A is unimodular and b
is an integer vector (representing the capacity constraints in 9(M) ),

the-bounded -polyhedron Y defined by Ay =b , y > 0 has the property

that all of its extreme points have integer components. Let us write 3—r

as a convex linear combination of the extreme points of y (this is always

possible, see [12, Theorem 2.12.2]),

§=Zakyk where ak_>_O,Zak=1
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- *x

Since ¥y # Yy , we must have &y > 0 for some extreme point yk with
*

Vi #y . Denote this yk by y' . Because of (12), we can further

assume that y' is‘chosen such that
y'(i,3,4) > 0 (13)

for the particular triple (i,J,£) in (12). By the theorem quoted above,
y' has integer components. Furthermore, since z is a concave function

of y , that is,

Cey = C 2 a
- (Eo)

2 e lery)
a.k>0

< max c-yk 3
ak>O
the fact that z is maximized at y implies that it must be maximized at
all Vi with ay > 0 . In summary, we know: (1) y' 1is a maximum flow
for N(M) , distinct from y* and satisfying (13), (ii) y' has integer
assignments to all arcs in (M) ; in fact the assignments are 0-1 valued
since the total flow through any }L_ is 1

J

We now define a simple n-ary matrix M' = (m:'L ) corresponding to y'

J
by letting rri'j =1 , where | is the unique integer with y'(i,j,?) =1
The fact that all nodes Rjgi) and Cg‘j) are saturated under y' implies
that M' has row and column signatures as given by rél) and cg‘j) .
Note that M' # M since m!ij = { by (13), while m, 5 £ ¢ by (10) and (12),
for some triple (i, j,4) . But this contradicts the assumption that M is

s-unique. We therefore conclude that the system (o) can be solved to find

D, D' such that M = CD pr - The proof of Theorem 4 is thus complete. O
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4, Bounds on the Number of Simple Connection Matrices.

Based on the characterization derived in the previous section, we
shall find bounds on the number of nxn n-ary simple matrices that are

realizable.

2 2
Theorem 5. (C/n)n/ghr1 < |sR(n)| < yen , for some constant C > 0

We first show the upper bound. By Theorem L, an nxn n-ary simple
matrix M is in SR(n) only if M has a unique signature among simple
matrices. Therefore, |SR(n)| cannot be greater than the total number of

such distinct signatures. 1In a signature

(f’(l)’F(g)’ “.,;(n) ’ g(l),g(g)’ . ..,E(n)) ,

S CD I L

PRERTE

each component

F(l> = (rill? can be viewed as a partition of integer n

2(1)

+1-
into n labelled parts. Thus, each T o l) < )"

can take at most ( 0l

different values. It follows that the total number of distinct signatures
(for simple matrices) is at most (hn)zn = 1P This -proves
|SR(n)| < 2

The rest of this section is devoted to the proof of
|SR(n) | > (C/n)n/2 hne - We define a class of matrices, called row-ordered
ma%rices, and show that they have the -property of being s-unique. It follows
from Theorem 4 that they are all in SR(n) . A demonstration that there are

n/2 hn2

at least ( C/n) such rcw-ordered matrices then completes the -proof.

Definition 7. A simple n-ary matrix is row-ordered if the entries are

non-decreasing along each row. For example, the following matrix is row-

ordered.

H N H R
n N W
W v D
w W e Ww
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Theorem 6. A row-ordered matrix is s-unique.

(1
Proof of Theorem 6: Let M be a row-ordered matrix, and let (=,

(E(J)) its row and column signatures. We shall show that M is the only

(E(J)) .

simple n-ary matrix whose signatures are (;(i)) and
Let M be any simple n-ary matrix with signatures (gQL) and (g(j)).
Clearly M must have the same dimensions as M . We shall now prove that
the signatures determine which entries of M contain a 1 , which entries
contain a 2, . . . , etc.
Let a be the smallest integer that appears in M . Note that a is

uniquely determined by the signatures. We first show that the -positions

(i,3) in M where a occurs are determined by the signatures.

Lemma 1. M{i,3] = (a] , if and only if rgl)z 3
Proof of Lemma 1. As (F(l)) , (8(3)) are signatures arising from the
row-ordered matrix M , we have
(l) — 1 (i) > 71 1)4
;7 = |{ip r;7 21} (14)
and in general,
@&~ qrgl @) - 15
e = [(ilr" > 33| . (15)

We can now -prove the lemma by induction on j

J=1. The only positions (i, 1) in the first column of M where

a may appear are those witk11£l>z_1 . But by (14), we must actually

place a 's in all such positions in order to satisfy the requirement of

(1)

a a's in the first column.

having ¢
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Induction step. Suppose the lemma is true for all j < j We will

JO .

prove it for j = jy*1. Consider the jj +1 -st column of M . By the
induction hypothesis, each row i has had exactly min{/ré\l ,jo} a's
appearing in columm 1 through column jo . Therefore, only those rows i
with ra(li) > jo+l could have a's appearing in the jo+l -st column. By
(15), all such rows must actually have a's in the jo+l -st column in order

to satisfy (15). This completes the induction step of the lemma. O

Now, we complete the proof of Theorem 6 by induction on a , the smallest

integer that occurs in M, for a = n,n-l,...51 . When a = n , M has
integer n 1in every entry, and this is obviously uniquely determined from
the signature. Suppose it 1is true that M = M whenever a > ao+l , we will
prove it for a = gy - By the preceding lemma, the positions in M where

v, ~occurs are only dependent on the signature. Therefore M and M have

at exactly the same positions. Now, replace the a.'s in both M and

"0 O

M by ao+l , and call the new matrices M' and M respectively. Clearly
this transformation still leaves ' and M' with the same signature, and
M' 1is again a row-ordered matrix. By the induction hypothesis, since the
smallest integer in M' is ao+l , we must have M' = M' . But this

imialies that, before replacing & by ao+l , 1t must be true that

M =M. This proves Theorem 6. (]

It is easy to see that any matrix which can be transformed into a

row-ordered matrix through row and column permutations is also s-unique.

2



We now count the number of row-ordered matrices. As demonstrated

(T3 =53 -

earlier, the number of choices of (3 jg
n-1

1 n 1l/2 yn
3 (1 + o(1/n)) > (c/n) / L for some ¢ > 0 . Therefore, the
nn

number of possible signatures (}'(l),ﬁ;(g)““,;(n)) is at least

2
(C/n)n/2 W Since every such signature can be achieved by some

row-ordered matrix, we have established that there are at least

2
2
(C/n)D/Z R row-ordered matrices, and hence lR(n) ‘ > (C/n)n/2 R

This completes the proof of Theorem 5. 0
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5. Enumeration and Characterization of General Connection Matrices.

We extend the preceding results about SR(n) to R(n) , the set of
all connection matrices. In Section 5.1, we introduce the notion of
"spanning matrices" and discuss their properties. The results are used
in Section 5.2 to derive an upper bound of' an on |R(n)| , which by
Theorem 3 is also an upper bound on the number of edges of the Triangular

(3

polyhedron T Finally, a characterization of R(n) similar to

Theorem L is given in Section 5.3.

5.1 Spanning Matrices.

Let M be any nxn n-ary matrix. Define JH to be the following

induced system of linear equations.

S, . h. . = (d, +d'.)-(d, . +d'.) =0
M. 7Ti,i,08 ( i OéJ) (16 5J> !
for a,peM(i,j]l, ¢ #B8, 1 <i,j<n . (16)

As there are only 2n2 variables d'ij and d!J oo at most 2n2 of these
equations can be linearly independent. For any maximal independent

subset £ of ) (clearly lg]| < on” ), we define an n-ary matrix H by

M[1, 3] if |M[1,31]= 1 , (17)
#1151 = ¢
{a|h.1’ 50,8 = 0 is in g for some B}
WAL | By 35 o,p = 0 is in g for some a} if |M[i,3]] > 1

An n-ary matrix H obtained this way is called a spanning matrix for M

The total weight of H clearly satisfies w(H) < n°+ 2|£| < 5n2

A basic property of H is the following. For a pair of distance matrices

26
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D and D', if it is known that min{d, + dl’{j | 1 < k < n} is achieved
by every ae H[i,j] (for all 1 < i,j < n ), then it is also achieved by

every aeM[i,j] . Formally, we have the following lemma.

Definition 8. For two n-ary matrices M and M' , we say M'c M if

M'[1,3] ¢ M[1,3] for all i, j

Lemma 2. Let H be a spanning matrix of an nxn n-ary matrix M

If M' eR(n) is a connection matrix and H ¢ M' , then Mc M'

Proof. Let M'=C By the assumption that H ¢ M', we have for

D,D!
any 1,3,
- ;‘—' - "" . .
ot & < dp * &y, 1<k<n, aeHlLj] . (19)
This implies hi,j’a,B(D,D') =0,1<i,j<n, u,peH[i,j] , ¢ # B . As

H is derived from a maximal independent subset of o in (16), we have

h. . (L,D') . 0,1 < i,j<n . apeMi,jl, a8 . (20)
1, J,0,8 - -

Formulas (19) and (20) imply that, if |[M[i,J]|> 1 , then

i +d . < c'1i tdps 5 1< ko<n, aeMLjl,

k
and therefore, M[i,J] ¢ M'[i,]]

If |M[i:j” = 1 , then M[i,J] = H[i,j] ¢ M (1,31 , O

Theorem 7. Let H and H' be spanning matrices for connection matrices
M and M' , respectively. If H and H' have the same weight distribution

and the same signature, then M = M' .
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If a connection matrix M is simple, the only spanning matrix for M
is itself. In this case the above theorem becomes a weaker form of the
s-uniqueness condition for M in Theorem 4 (weaker because M' is assumed

to be a connection matrix).

Proof. Since H and H' have the same weight distribution,
[H[i,j]\ = |H'[i,j]\ for all i, j . Let us match the elements of
H[i,J] and H'[i,j] in disjoint pairs as Qi,j = {(2,p)} , where
weHlL3) 5 peH'[L,3) , and [Q £ |H[45]|

Let M =C for D = (dij) and D' = (dij) , we can write down

D,D!

the following set of inequalities,

Moodg ot dozj < di8+ déj for (o,B) e Qij , 1 <i,j<n,

with equality only if g ¢ M[i,j] .

When we add up the w(H) inequalities in % , we obtain

. PN (]
@ rrr@a <ry i g rzr e a' (21)
: e ¥ A S R A : ! 23 /
i 2 J ! 1 1 J
with equality holding only if H' < M , where (rgi) ’ cgj)) and (r'(i), c'(‘j))
7 1

are-the signatures of H and H' , respectively. Since by assumption
H and H' have the same signature, the two sides in Equation (21) are equal.
Therefore, H'C M . By Lemma 2, this implies M' c M .

A similar argument shows M < M' . Hence M = M' .

~
[

5.2 4 ¢' Bound for |R(n) | .

2
We will show that there are at most Cn connection matrices (out of the

n .
2 n xn n-ary matrices).
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2

Theorem 8. |R(n)| < c? for some constant C
(=) n
Corollary. | U "J’S(T )| < ¢
n
0<s<(,)
Proof. For each Me Ro(n) , Cchoose a spanning matrix HM By Theorem 7,

all the weight distribution-signature pairs of HM , i.e., (W(HM) s S(HM) ),

are distinct. Furthermore, the total weight of HM satisfies

n° < W(HM) < 5n2 . Therefore, |R(n) | 1is bounded by the product wev ,

where u is the number of ways for distributing a total weight A ,

n2 <AL Sn2 , to the n2 entries in the nyxn matrix, and v is an

upper bound on the maximum number of distinct signatures under any fixed
weight distribution (with total weights n2 <AL 5n2 Yo We will show
that u < (64)I12 and v < cn2 for some constant ¢ , which then implies
the theorem.

The number u is bounded by the number of ways of partitioning
integer 5n2 into n2+l labelled parts, where the last part specifies
5n2—A . Therefore,

5n2+ n2 6n2 n2
u < < 2 = (64) .

= o) =
n

To estimate v , let b,, be the total number of distinct row signatures

(;(l),f(e) "'(n))

@00@01‘

W
subject to a fixed weight distribution W . It then

follows that v < ma.x(bw)2 , Wwhere we have restricted W to those with total

W
weight n2 <A <_5n2 . For any such W , suppose the sum of weights
distributed to individual rows are W) Wo) cen Wy with 2. W, = A . Then
the i-th row signature ?(i) is a partition of Wy into n
labelled parts (I(;E'),réi),...,rr(li)) . Therefore,
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n w.+tn-1
b < max TI' . (22)
Z‘ Wi = i=1 n-1
w, >0
Write
n w.+n-1 n (w.tn-1)! N (w,+n)!
i it ’ I
W = TT i - 1 S TT — [ . 23
i=1 n-1 i=1 Wyeln 1) i=1 .wi'n' (23)

Taking logarithms and using Stirling's formula

lnml—(m+-,]§>lnm-m+0(l) ,

we obtain from (22) and (23),

1 1 1
In b, < ZiiiA g[(Wi+n+§)h(wi+n)'(wi+§)ln wi-(n+§)ln n+0(l):,

w, >0
i
1 n 1 W.
< ma W, += = = £
i, ELGaru(er) (e8]
i
w, >0
i
(2k)
If we let w, = Q.n then];<oz and > o —-‘A—‘<L§n
i it ! n i”? X i " n ="
lSISn
Equation (24) becomes
In b, < 2n sup 2 a, ln(l + i)
' Ta, < 5n\ 1<i<n %
a; >1/n
+ 2n sup 2 In(l+a.)) + 0(n) (25)
2a, <5n\ 1<i<n =
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Since x ln(l + -:}'c;) <1 for x > 0 and In(l+x) is concave, the

first sum in (25) is < n and the second sum is maximized by taking all

Qo = 5 ,1i.e., < nilné6 . Therefore,

In b, <2(1+1n 6)n2 + 0O(n)

W

2 2
+
This proves by < (6e)En 0n) » and hence v < mza‘x(b‘l\r)2 < (6e)1ur1 + 0(n)
W

This completes the proof of the theorem. The corollary follows immediately

from Theorem 3. O

5.3 Characterization of Connection Matrices.

We will state a necessary and sufficient condition for an n-ary matrix
to be a member of R(n) . The proof is a slight extension of that given for

Theorem b4, and hence will not be repeated.

Definition 9. A multiset U is analogous to a set except that an element

may appear more than once in U . We use ‘U\ to denote the total number of

elements appearing in U . Thus |1ﬂ = 6 for U = {1,2,2,2,3,3} .

Definition 10. An n-ary multi-matrix M is a matrix where each entry

M[i,J] is a multiset whose elements are drawn from {1,2,...,n} , with

M35 < n

The concepts of weight distribution and signature defined in Section 3

can also be generalized to an n-ary multi-matrix in the obvious way.
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Definition 11, For two n-ary multi-matrices M and M' , we say M'c M

if every element that appears in the multiset M'[i,j] also occurs at

least once in M[i,j] , for 1 <i,j<n

We generalize the definition of s-uniqueness to n-ary matrices as

follows.

Definition 12, An n-ary matrix M is said to be s-unique if for any

n-ary multi-matrix M' with the same weight distribution, s(M') = s (M)

implies that M'c M .

Theorem 9. Let M be an nxn n-ary matrix. Then MeR(n) if and only

if M is s-unique. —-—
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6. Enumeration of the Patterns of Shortest Paths.

In this section, we examine an information bound based directly on
the solution space of computing shortest distances. Let G be a directed
complete graph on n vertices {vl,vz,...,vn} , with a nonnegative

distance dij assigned to each edge (vi,v.) . A path from vi to v.J

dJ
is a finite sequence of vertices (1= ko kg5 ks vk ko= 3) »
not necessarily all distinct, The length of such a path is 2z dk .

1<t<m -1 5y
We shall also consider the sequence of a single point (i) to be a path from
i to i, called a null path, with length 0 . The entry d’{j in the
transitive closure D* is then the minimum length of any path from i to 7 ,
For any 1, j , let p.l:] be the set of all shortest paths in G from v
to V.J . (The set p.l:J may be infinite.) We denote by pattern(D) the
nxn matrix (pij) associated with the distance matrix D = (dij) . Let
P(n) be the collection of all distinct patterns induced by nxn distance
matrices. By an argument similar to that used in Theorem 2, one can show
that any linear decision tree for computing the shortest distance matrix D* ,
given D , requires at least log5 |P(n)| - n° comparisons in the worst case.
This, intuitively, is probably the best information lower bound one can hope
for; the previous approach using connection matrices can be regarded as a
special case with the vertices divided into three disjoint sets XO' Xl , x2 s

such that all edges except those from X. to X

0 and from Xl to X2 are

1
effectively « .
The rest of this section is devoted to proving the following theorem,

which states that no nontrivial lower bound can be obtained even in the

present version of the information-theoretic approach.

2
Theorem 10. |P(n)| < c®  for some constant C > 0
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We first generalize the notion of a connection matrix to that for

m+l consecutive sets of "cities" XO’Xl"‘. ... Assuming that
D(Z) = (d%f)) defines the distances between any pairs of cities in

Xz 1 X XJZ , then C (l) 0 1,31 is to be the set of best connecting
D ’.’-&U@D

) o Cahe D

paths from city ieXO to city J eXm .  Formally, 1

is a sequence of m nxn matrices, then their m-connection matrix

C is defined b
(1) !

D ) o mms D

CD(l) ‘ ,D(m)[l’J] = {<al,a2"“’am—l> | 1 < O.’Z < n for all ¢ , and

(1), 4@ 4+ o E20 )& . - (1) , 4(2) (m)
d. + d + = i a, B oe e = 1.
% 9% 19 kg, ,r,n.?km_l( " Sk, Y13

This definition reduces to the connection matrix defined previously,whenm=2,

Let %n(n) denote the set of all possible nxn m-connection matrices.

Lemma 3. |Rm(n)| < |R(n) |m-l for m > 2
Proof. We will show that, form > 2 , C is determined
S S )
) o e e )y
by C (l) (m—l) and C (m) , wWhere A = D(l) ®D(2) ®- ° ®D(m-l)
D s o mEs D A,D
This will imply that |R (n)| <|R _;(n)|*|R,(n) | . The lemma then

follows by induction, observing that |R2(n) | . |R(n) |

ret a= BYg b3 ... @ DEL) | ginee
nin (di(l) ook, o+ d](im) ) = min (  min @ s (m’ll)i )
Kook L n-19 kL ky.e.ok T 2 w1

+ d(m) .) » an alternative description of C (1) (m)[i,j] is the set of

Kn-19 b\, . .D

3)



(al, ... ,am_g,am_l) such that am"l €C (m)[i,j] ’ and
A, D
(ocl, . "am-Q) eC (1) (m-1) [1,0tm_l] . This proves that
D Jeo® @D
C is determined by C and C -
1 m 1 -
D ;.QD( ) D( ),ooo)D (m l) A’D(m)
Proof of Theorem 10. We shall derive a recurrence relation on |P(n)| .

We use the idea employed in [1] for reducing the shortest paths problem

to {min, + } multiplication. Let X be any 2n x 2n distance matrix

on vertices {1,2,...,2n} . We write it in the form of four nyn blocks
_ ,A B
x = ( v o) - (26)

*
The shortest distances matrix X  then satisfies the following recurrence

formula [1, p. 20k4],

* * *
N E E ®BgD
X = . (27)
* ¥ *
D’Y®E D ®(D @Y®E R s® D)
*
where E = (A® (B®D ®Y)) . Actually, implicit in the derivation of

(27) 1s an enumeration of all possible shortest paths between any two

of the 2n vertices, in terms of quantities involving only nxn matrices.

We now make this statement precise in a lemma.
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Definition 13. Let €& and &' be the nxn matrices of O0's and +1's

defined below:

™
1l

|
o =
'_l
.
i N

\ *
i3 (A).lj (B®D ®Y)ij
L .
-1 <
', = 0 1 L = D
813 if (D )lJ (D"®Y®E®B®D )ij
1 >

Define the counting vector ,(X) , for X as in (26), to be

X) = attern(D attern(E * * * * * *
w®) = @)z ()’CE,B,D’CD,V;E’CD,Y,E,E.;D*'
1
Cp,pe,y » €2 €D -
Lemmad. The matrix pattern(X) is determined by the counting vector p,(X) .

Proof. We shall show that the (i,j) -th entry of pattern(X) is determined

by w(X) for all i, j
First we assume 1 < i,j<n . Following the original argument

[1, p. 204] leading to (27), any path from vertex i to vertex J can

be written uniquely as
(i= k.o, Gl,kl, Gg,kz, .-.’kl—l’ Uz,kﬂ’ ...,gm,kmz j)

where each k!Z € {1,2,...,n} , and each 0 is a sequence of vertices

Vi
(possibly empty) in {n+tl,nt2, . . .,2n} . (m may be 0 when i = j .)

A shortest path from i to j 1is characterized by the following conditions:
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(a) Each kﬂ 101 kJZ is among the shortest such paths from kz-l

to k, jdenote this length by leng(kz_l,kl) .
(b) The k's satisfy the condition that Z:leng(kl l’kl) is minimum
7 -

for all possible choices of the k's.

We can restate the conditions as follows. Let Q = pattern(E) ,

Ly = U [pattern(D) ]

hoh' and T the n x n matrix defined by
' € X% 1 4
(h)h ) CB,D ,Y[s)tJ
8 .
{}\} if ast - -1 )
Tey = {AS’G if e =+
A} ubgy if eg4=0
\
where we use ) for the null sequence. Then condition (b) is equivalent

to (ko,kl,...,km) € Q‘ij , and condition (a) 1is equivalent to 01 € Fkl-lkz
for 1 < ¢ <m . But this implies that the (i,Jj) -th entry of pattern (X)

4

i.e., the set of all shortest paths from i to J , is determined by Q

and T , and hence by pattern(E), pattern(D), CB D* y ! and € . This
) )

proves the lemma for the case 1< 1i,j < n .
Similarly, one can show that the set of shortest paths from i to j

is determined by pattern(E), CB D* Yy , & and, in addition,
J

rC ol and pattern(D) if 1 <i<n,nl<j<2n,
E ,B,D* >+ =
Cnx * and pattern(D) if 1 <i<2n, 1<j<n,
D™, Y,E
* * ' ] n+l < i j 1’1 .
| CD*,Y,E;B,D pattern(D) , and € if sdg <2

We omit the details. O



To complete the proof of Theorem 10, we note that by Lemma k4, the
number of distinct patterns is bounded by the number of distinct counting

vectors. This leads to
|P(2n)| < |P(@)|° - |R@) P - |R(n) 12 : |R(n)|h“|R(n)‘2'52n2

by Definition 13 and Lemma 3.
Writing f(n) for |P(n) | and using Theorem 8, we obtain

2
n

f(2n) < (f(n))2 C for some constant C . (28)

Taking logarithms,

In £(2n) < 2 In £(n) + n° In C

K tns - %/
For n = 2 , this leads to (noting that f(1) = 2 )

+
In £(2n) < In € (n° + 2(n/2)% + 2°(n/2%)2 + .. + 25m/2%)%+ 25 L1 £(1))
< I® 1n C
rl2
This proves f(n) < C if n is a power of 2.

For general n , one can easily show f(n) < f(EH'g n'l) by adding

extra points with effectively o distances between these points and the

2
other vertices. This leads to f(n) §C4n immediately. The proof of

Theorem 10 is thus complete. O

*
Y When n = 1 , pattern(D) = (pll) , where Pip = (1)} if d]_l > 0

and pyy . {(1), (1,1), (1,1,1), (L,LLL), . .} . dyg = o -
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