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Abstract.

In the all-pair shortest distance problem, one computes the matrix

D = (a; 5) where d- 1y 1s the minimum weighted length of any path from
vertex 1 to vertex J in a directed complete graph with a weight on

each edge. In all the known algorithms, a shortest path Pye achieving

d;; is also implicitly computed. In fact, log3 f(n) is an information-

theoretic lower bound where f(n) is the total number of distinct

patterns (p; 5) 5 n-vertex graphs. As f(n) potentially can be
as large as a , 1t 1s hopeful that a non-trivial lower bound can be

derived this way in the decision tree model. Te study the characterization

and enumeration of realizable patterns, and show that f(n) < en” |

Thus no lower bound greater than Cn” can be derived from this approach.

We prove as a corollary that the Triangular polyhedron (n) , defined in
(3)

E © by dy, 2 0 and the triangle inequalities dy tay > Ase ,

has at most on faces of all dimensions, thus resolving an open question
- in a similar information bound approach to the shortest distance problem.
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maximum flow, polyhedron, shortest distance, shortest path.

wi This research was supported in part by National Science Foundation grants
MCS-72-03752 A03 and MCS-77-05313.

+ Bell Laboratories, Murray Hill, New Jersey 07974.

4 Computer Science Department, Stanford University, Stanford, California 94305.

1



-TTr

1. Introduction.

Let G be a directed complete graph on n vertices Vio Vgs owes Vs

with a nonnegative distance sy assoclated with each edge (virvs) In
the all-pair shortest distance problem, one wishes to compute the nxn shortest

distance matrix D = (d;,) , where dy, 1s the minimum total length of any
path from A to Vv. (see for example [1]). Efficient algorithms for this
problem were devised by Dantzig [2], Dijkstra [3], and Floyd [5]. All these

methods require at least cn time 1n the worst case. More recently,

Fredman[6] gave an algorithm with running time 0(n3 (log log n/log n) 1/3) ,

which 1s slightly better than 0(n”) . Substantial improvements over 0nd),

however, are yet to be found. On the other hand, no lower bound better than

en” 1s known to the all-pair shortest paths problem for programs with
branching instructions. (Kerr [9] proved that Cn? steps are necessary

for straightline programs with operations {min,+} .)

A natural model incorporating branching instructions 1s the decision tree

model which is used, for example, in the study of many sorting type problems

([10))., Indeed, all the existing shortest paths algorithms mentioned

above can be properly modeled by linear decision trees, where the primitives

are ternary comparisons " £({d;;}) = 0 " with linear functions £ . An
apparently promising approach to obtaining lower bounds for linear decision

trees was suggested by Yao, Avis, and Rivest [13]. It was shown that, in

this model, (n© log n comparisons are necessary to compute the shortest

distance matrix if a certain polyhedron r (2) in (5) —dimensional Euclidean
space (see Section 2.3) has at least exp (Cn” log n) "edges", 1. e.,

l-dimensional faces. An interesting question 1s thus to determine 1f

(0) in fact has that many edges.

5 It was incorrectly claimed in [13] that Ty could be shown to have
exp(Cn® log n) edges, which would then imply the (n° log n) lower
bound. A revised version of [13] will appear as [1k].
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While counting the number of comparisons made 1n a decision tree tends

to underestimate the "true" complexity of computing shortest distances

(for example, Fredman [6] showed that for any given n , there exists a

linear decision tree with O(n?) comparisons), 1t seems to be at present

the only hope for obtaining nontrivial lower bounds. In this paper, we

examine an approach based on information-theoretic arguments. As will

become clear, a natural information lower bound 1is Log; P(n) |-n° , where
P(n) is defined as follows. For any n xh matrix D = (4; 5) with

nonnegative entries, let pattern(D) denote the nxn matrix (; 4) ,

where Ps 5 1s the set of all shortest paths from vertex A to ve in
the graph G associated with D . We define P(n) to be the collection

of all distinct patterns obtainable this way. As the cardinality of P(n)

ns lgn
1s potentially large (o(2 ) even if we require each Py to consist
of a unique path), 1t appears hopeful that strong lower bounds could be

established. However, we will show that in fact log|P(n)| = 0(n°) ;
therefore no lower bounds better than on can be derived from this

approach. The enumeration of P(n) 1s based on a study of "connection

matrices", as described in the next paragraph.

Let D = (dy5) , D' = (a; 5) be two nxn matrices with nonnegative

- entries, then the connection matrix Cp, pr for D and D!' has as entries

Cp, pr 115d] = fall <a <n, Gio + As = mindy + a5) for 1 < i,j <n .

In Sections 2 -5, we will develop characterizations for R(n) , the set of

all "realizable" connection matrices. As a result, |R(n) | 1s shown to be

of the order on (here again, rather short of its rs potential). In
Section 6, we apply the scheme used in AHU [1, p. 204] for reducing shortest

distances computation to {min,+} matrix multiplication to establish a



recurrence relation involving |R(n)| and |P(n)| , and thereby show
~

chat [P(0)] < C . .
In another application of the concept of connection matrices, we show

that, somewhat unexpectedly, each face of the polyhedron (0) mentioned

earlier corresponds naturally to a unique nxn connection matrix (see

Section 2.3). Therefore, ne has no more than x edges, which
resolves the question in the polyhedron approach [13] as well.
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2. Connection Matrix, Information Bounds, and Triangular Polyhedron.

2.1 The {min, +} Matrix Multiplication.

A distance matrix 1s a matrix of nonnegative real numbers. For two

nxn distance matrices D = (4; 5) and D' = CRE define their sum

A = (2; 5) = D®D' and product B = (bs 5) = D®D' , respectively, by

ayy = min{d, ,, a} +} and b. = min{d, + dy; |1 <k <n}. The multiplicative
operation ® is also called the {min, +} matrix multiplication. It is

well known ([1],[4],[11]) that the complexity of {min, +3} matrix

multiplication 1s closely related to that of finding all-pair shortest

distances, i.e., computing the transitive closure D = (a5) of a
matrix D , where d... = 0 and ds. = (Deen + 0 => 45 for i #4 J .
(p* = pt lg by definition.) We will first focus attention on the

{min, + } matrix multiplication for its conceptual simplicity. The

discussions are then extended to the computation of shortest distances

in Section 6.

We shall consider the computation of {min, +} -product for two nxn

matrices in the decision tree model. An algorithm in this model is a ternary

tree. Each internal node contains a test " f(D,D') : 0 " for some non-constant

rational function ££ of on arguments. Fach leaf of the tree contains a

set of rational functions fa; » 1 <1,J <n} on the on variables
{ds 50d 5] . For any input (D,D') , the algorithm moves from the root down

the tree, at each node testing and then branching according to whether

f(D,D') is > 0, = 0 , or < 0 , until a leaf is reached. At that point,

the product B = D&D' is given by bs = 95 (D,D') . The cost of the
algorithm 1s defined to be the height of the tree. The complexity L(n)
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in this model 1s the minimum cost over all such algorithms. When all the

functions f , % are restricted to be linear functions, the model 1s

called the linear decision tree model, and the corresponding complexity

is denoted by L,(n) . Trivially, L(n) < Lon) :
We shall be interested 1n a natural information-theoretic bound on

L(n) and Ly(n) .

2.2 Connection Matrices and Information Bounds.

The concept of a connection matrix has been defined in Section 1.

We now give some 1llustrations and examine the relationship between

connection matrices and {min, +} -multiplication.

Consider the following 1nterpretation of the product B = (b; ,) = D®D'

(see e.g. [1]). Tet X = {XX eee | , Y = {y12V5re0esy, , and
— : : : : : : t

7 = {2520500052} be three disjoint sets of cities, with dsp and I 5
being the distances from Xs to Vie v and from Vie to z. , respectively.J

Then b,. 1s the "shortest distance" from Xs to =z. via some intermediateJ

city in Y . This suggests another way of representing the product D®D' .

Namely, we can list for each pair [i,j] the set of all connecting cities

: + t . : : : ' '

Ye for which Aspe Aes achieves the minimum Bey . Such information can

be tabulated into an nxn matrix Cy, pr , whose [i,j] -entry is the set
of integers {a | d. + d'. = min(d,_ + qr, |

gers {a | d. L in i). Clearly, Cp, is the
connection matrix for D and D' as defined earlier.

20 Q
Example 1. For the graph shown in Figure 1, we have D= ( 1g 15) and

a5 20 1 1,2
D! “ > J

) (10 10 . The connection matrix Cp, pr is (1,2 )
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Figure 1. An example of a connection matrix.

Not all matrices can be realized as connection matrices for some D and D' ,

as the following example shows.

Example 2. There do not exist 2 x2 distance matrices D andD' whose

connection matrix C is (12 )
D,D! 2 17

Proof. Otherwise, let (C = (+ ©) for some D = (d.. ) and D' = (d!.)lak al D, D! 2 1 1] 1)’ °°

We have then four inequalities

t t

G1 +4 She tod

t !

Ap + op < dyy + gps

! < !
doo * 9 dp + dy

and
t t

dog + hp < Gop FG

Adding the above four inequalities together, one obtains 0 < 0 ; a contra-

—diction. OO

Definition 1. An n-ary matrix M is a matrix where each entry M[i,J]

1s a subset of {1,2,...,n} . An n-ary matrix is said to be simple if

IM[i,j]| = 1 forall i, j.

1
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A connection matrix Ch D 1s an n-ary matrix of dimension mxp2

if D and D' have dimensionsmxn and nx p respectively. For

simplicity, we will only consider the case m =p = n , while noting that

all discussions have immediate generalizations to rectangular matrices.

Thus, when there 1s no danger of confusion, an nxn n—-ary matrix will

simply be called an n-ary matrix.

3

As 1llustrated in Example 2 above, not all of the of nxn n-ary

matrices are connection matrices.

Definition 2. An n-ary matrix M is said to be realizable (as a connection

matrix) 1f M = Co D for some distance matrices D , D'. Let R(n)2

denote the family of all nxn realizable n-ary matrices M .

A subfamily of R(n) deserves special attention.

Definition 3, Let SR(n) be the subset of R(n) consisting of all

simple n-ary matrices.

We now give lower bounds to the complexity of {min,+} -multiplication

in terms of |R(n) | and |SR(n) | . It is plausible that to compute the

shortest distance between X, and Zr one has to find out the best

connecting cities y, . Thus there must be as many leaves as IR(n)|

(or |SR(n)| ) in a decision tree. The logarithm of the number of leaves

then gives a lower bound to the height of a tree, which 1s usually

referred to as the information-theoretic bound.

Theorem 1. L(n) > log, |SR(n) | for all n > 1 .

Proof, Let A be any decision tree algorithm computing the {min, +} -product

of nxn matrices DgD' . Let JB be the set of input pairs (D,D') with

8



all their entries strictly positive and for which the test result 1s

never zero at any internal point, i.e., TT f, (D,D") £ 0 where £.
ieA

is the test functions at internal node i . Clearly Jf 1s an open set

in the Euclidean space 20° s and 1s dense 1n the positive quadrant (all

coordinates > O ). For each element Me SR(n) , choose Dy , Dy such

that Cp, Dy, } M and (Dy Dye ) €e / , which can be done since, for any
distance-matrix pair (D,D') with Cp, p* =M, all (Dp Dy) cN.

satisfy “Dp D, = M where 0 1s a sufficiently small neightborhood of
(D,D') in 720° . For any such (Dy Dye) , the computation will end
at some leaf by without taking an equality branch at any internal node.

Let M[1,3] = {ks 5] , then in some sufficiently small open set GC f around

(Dyp Dy) , the shortest distance from xX, to Zz. (1 <i,J <n) is through

Vie uniquely for each (D,D') €@® , and furthermore, every (D,D') €(d

leads to the same leaf by . Since two rational functions agreeing 1n an
open set must be identical, we know that the set of output functions 195)

at In must be 9; 5 (Ds D') = En i . It follows that no two distinct
Me SR(n) can have the same fy . Now 1f we prune all the equality branches

from the tree A , we have a binary tree with at least |SR(n) | leaves.

The height of A 1s therefore at least log, |SR(n) | , which implies

L(n) > log, [SR(n) | OO

The above argument does not apply when SR(n) 1s replaced by R(n) ,

since for Me R(n) , the set of (D,D') satisfying Cp, Dr = M 1n general
does not contain an open set. However, in the more restricted model of linear

decision trees, R(n) does provide a lower bound.

Theorem 2. Ly(n) >_log, |R(n) | _ on
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Proof. Let A be an optimal linear decision tree for computing the nxn

matrix product D®D' . Consider the algorithm A' which begins with a

2 .

sequence of 2n tests {das : 0, 9s 0,1 < 1,J <n}, and then proceeds
exactly as algorithm A, ignoring the outcomes of the first on tests.

Represented as a linear decision tree, the algorithm aA' has height

2

Ly(n) + 20 , We will show that, for algorithmA' , all input pairs (D,D')

reaching the same leaf must have the same connection matrix Ch nt CeJ °

will prove Ly(n) + 2n >_log, |R(n) | , hence the theorem.

Let f be any leaf with output functions {ag} . Let

system of linear inequalities and equalities obtained along the path from

the root to f . Then for any 1 < i,j,k <n, 9; 5(D,D") < Asp Yes
must be a consequence of the system £ . Because of the Farkas Lemma (for

inhomogeneous systems) (see e.g. [12, Theorem 1.4.41), one can obtain

t + 4d : : :

4; 5(D>D ) < dsp As by taking convex linear combinations of formulas
in the system g£U{O <1} . But this process actually yields either

"< "or "=" explicitly. Thus we actually know at leaf ¢ if

9; 5(D,D") < dgt U5 or if 9; 5(D,D") = dy F Aes for all i, J, k .
This proves that the connection matrix 1s determined at each leaf,

as was to be shown. J

We regard the two preceding theorems as information bounds on L(n)
2

and ‘Lj, (n) respectively. As there are n" simple n-ary matrices, and
5
n

2 n-ary matrices, of which SR(n) and R(n) are subsets respectively,

Theorems 1 and 2 could potentially give lower bounds of the order n° log n

or higher. The characterization and enumeration of SR(n) and R(n) will

be the subject of Sections 3 -5. Before that, we define the

Triangular polyhedron T(n) and relate it to our present approach.

10
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2.3 The Triangular Polyhedron mn n) .
N - = Fy —-A set Z in Eis a polyhedron if Zz = {X|X¢E , a, (¥) <0,

i =1,2,.0.,m} , where m is an integer, x = (X95 Xp5 0 000%) , and

1.(X) = 2. c,.x.-c! for real numbers c¢,, , c¢! . To each subset
1 : 133 1 iy i

1<j<n

Jc {1,2,...,m} (possibly empty), let F (2) = {Xx | 2; (x) < 0 for each ied;

2, (%) = 0 for each 1&J] . We call F(Z) a face of dimension t of Z

if F (2) £ 0 and the smallest subspace of ou containing F(z) has
dimension tt . Let 7, (2) be the set of faces of dimension t of Z ,

for 1 <t <N. (For more information on polyhedra, faces, etc., see [T],[12].)

The Triangular polyhedron (2) 1s a polyhedron in gl for N=(E).

Let TT = {(1,3)] 1<i<j<n}, and © = {(i,J,k) | (i,J)em » L < k <n

and k #1 , k£ Jj}. Writeavectorin oa as X = (254 (1,3) em) .
Then r(®) 1s defined by

(n) = a. Co.

where we interpret Xk to be Xyg if 1 > k .

. (n) n
Theorem 3. | U F(T |< |R(n)| , where N = (5) .

t=0

) n
Corollary. 7 (2 ) ) | < |R(n) | .

Sg (pl)
Proof. It suffices to establish a one-to-one mapping ¢ from U Fi (T )

t=0

i.e., the set of all faces of 1) , into R(n) .

Write Lip (%) = Xo. "Xy-¥5 for (i,j,k) e ¥ . Let F be a face

of rn) , specified by a partition of T into my UT, , ¥ into 2 UZ, ,
such that

11
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P= {¥X]| Xij > 0 if (3)em > Ligp <0 if (1,3,k) egy

andx.. = 0 if (4,3) € mM, » Ls 5% = 0 if (1,3,k) e =, .

We now define @(F) to be the nxn n-ary matrix M , given by

M{i,J] = M[J,i] = {k (i,3,k)ez,} if 1 < J,

and M[1,i] = {k|{(i,k), (k1)} nm, # PIU {1}

The mapping ® 1s one-to-one, as Zs and mo can be reconstructed

from o(F) .

To complete the proof of the theorem, it remains to show that ¢(F)

defines a realizable matrix M , Choose RX = (x, »yL<i< 3 <n) tobe any

point on F . Define a distance matrix D = (4; 5) from X by letting

d.. = d., = X.. for 1 <i<j<n,
1] J1 1] — —

and d;y = 0 for L<i<n.

It 1s easy to check that DD =D . It follows that the connection matrix

Cp, D 1s given by

Cp,p 1231 = Cp, ptdo1] = {k | £5 p(X) =0, 1<k <n) if i<j,

and Cp, plisi] = {k Xi = 0 or Xs = 0 , 1<k < n} .

This proves that o(F) = M = Cy p + The proof of the theorem is complete. [J]
2

12
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De A Characterization of Simple Connection Matrices.

We will give a necessary and sufficient condition for a simple n-ary

matrix to be a connection matrix. We first define some useful concepts.

Definition kL. The weight distribution W(M) of an n-ary matrix M 1s

the integer matrix defined by w(M) 4 j= |M[1,3]| . The sumJ

2 M1, 3] | is called the total weight of M , denoted by w(M) .
iy]

5 1,2 2,3

Example3, Let M = 1 1 2 . The weight distribution of M

1,2,2 3 2

1 2 2

is WM) =| 1 1 1 , with total weight w(M) = 13 .

3-1 1

Definition 5, Let M be an n-—-ary matrix of dimension mxp . For

1 <i<m, the i-th row signature of M 1s the vector

(1) = (1),(1) CON where p(1) 1s the number of times
1 2 n {

integer [ appears in the i-th row. For 1< j <p , the j-th column

signature (J) = (9,88), el) of M 1s defined in a similar
way, 1l.e., ct) 1s the number of occurrences of I 1n the j-th column.
The sequence of mtp vectors (dE ),..., 7 ), 5! ),& ) yo. 2)

is then called the signature of M, denoted by s(M) ,

={1

In Example 7 above, the row signatures of M are 7 ) _ (1'2'2) ,

78) = (2,1,0) , and 20) = (1'2'2) ; the column signatures are
Nl —(2 —#3) C212), @®) 2 (21,1), ana 0) - (0,3,1) .

Definition 6. An n-ary simple matrix M 1s said to be s-unique 1f no

other n-ary simple matrix M' can have the same signature as M .

13



We will show that, for a simple n-ary matrix M , the property of

s-uniqueness 1s the answer to the question of whether M 1s realizable as

a connection matrix.

Theorem 4. Let M be an nxn simple n-ary matrix. Then Me SR(n)

if and only if M 1s s-unique.

Proof. Necessity.

Let M be a simple n—-ary matrix such that M = Co pr for distancebs

matrices D = (4; 5) and D' = CH . Assume that there exists another
simple n-ary matrix M'# M with s(M') = S(M) . We will show that this |

leads to a contradiction.

: - | I 1

Write M = (1m 5) and M' = (m} 5) . We have

1 t : .

dom, 9%. .,53S 4% mrt Gury FTorloiacn (1)
1] 1] 17] iy

by the definition of the connection matrix Co pro Furthermore, the inequality
J

(1) is strict if m,. # m!, . Adding up the n° inequalities in (1), we
+o LJ

obtain

2. 24, , oat
5 2 I,m, 2. 2 Mm. .s J- J J 1 1J

SO '
< & 295 nr 2 20d, 3 J (2)

i J 1] J i iJ

where the 1nequality 1s strict since ms. 4 m} 4 for some 1, J . Now, by
the definition oftherow and column signatures 7 2) , cl of M, and
ig (1) pg (J) L ' ' 'r , C of M' , respectively, (2) 1s equivalent to

14
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CT 1f } { £2]
i 7 J

1 £ 1 14 . a LJ .
J 1

But by assumption M and M' have the same signature, so the left hand

side of (3) is equal to the right hand side, a contradiction. This proves

the necessity of s-uniqueness for a simple connection matrix.

Sufficiency. We next show that if a simple n-ary matrix M 1s s-unique,

then there exist distance matrices D and D' such that M = Co oroJ

What we look for are D = (4; 5) and D' = CH that satisfy the following
system of inequalities

. D,D') =(d, +ad'.)-(d,. +4d'.) <O8, 3,0, »D') ( 1 oj! ( 1B 55) !

for a =m. . , B#a,1<1i,j<n,
(«)

') = tad.) = td!) =hy saa (®D) = (dnt dys) = (455+ dhs) = 0,

for a = My. y 1 <1,<n .

Assume that the system (o/) has no solution. We will show that this

implies M is not s-unique. First note that () contains at least

one strict 1nequality g. . <0, for n> 2 . By the theorem of
1,50,PB —

Kuhn-Fourier (see [12, Theorem 1.1.9]), (¢/) 1s not solvable only if there

exist non- t1 mb . such thatX1 negative numbers MN, 3,0,8

15
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2. A. og. + 2 h
1<i,j<n L5d500 T1,J,0,8 1<i,j<n M, 3,0, 1, JQ,
d=m. . =

1] FET;
Ba ;

p— * + 0 dd Mad) ® * ed! a Yoh eo Ld(0-d;; 0 on .+0*dnn) + (Ody + eee +0 dys+ eer 00d!) (4)

h . > 0 for the coefficient of some :
where Ai, 3,0, B 3, 3,0,8 We can scale
the coefficients in (4) so that every) is <1/n , except for x.

i, Jo, QO

Th 1 f . : ( 1, ] = m..
e values of 3; i,q, <1,J<n, =m of can be chosen freely in

(4) since h., . = 0 , and we shall choose them so that for any fixed
1, JQ

1, J a =m, .
i,J » and Ty 4 »

POND VE = 1 (5)
1<p<n 1 5),0,8

Let us rewrite (4) as

» > oN. . (a + ar.)EI OY

1<i,j<n 1<p<n Ly Js Cy BX QJ
A=m. ,

1]

A=m, .
1]

By Equation (5), the left hand side of (67 is

2; (a, + a.) ,
1<i,j<n Hr td
d=m. .

1]

or equivalently,

16
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2 2 r(3) a,, + Z Leyla, (7)
1<i<n 1<{<n 1<j<n 1<t<n J

where rH) ’ e 9) are the row and column signatures of M . By comparing
the coefficient of each variable d., , al, in (7) with that in the right
hand side of (6), we obtain

2 Moi, = To for 1<i<n, 1<2<n , (8)

=m, .
1]

2 A, = 0 for 1<j<n, l<g<n . (9)
1<i<n 2 Jr
A =n. .

ij  -

The equalitiesi n (8) and (9) are best represented in terms of a

network flow problem. Let 7N(M) be a network with source S , sink T ,
3

and in between three levels of nodes, with n- nodes on each level
ra

(Figure 2). The nodes on the first level are, Ri) (1 <i,2<n) , on
the second level V,. (1 < i,j <n), and on the third level c 17)
(1 < JgyZ <n) . Each riD) 1s connected with the source and the n
nodes Vid (1 < J <n) ; each td) 1s connected with the sink and the
n nodes Vi 5 (1 <1i<n) . We shall consider maximum flows in 7(M)
subject to the following capacity constraints on the nodes (cf. [T7]):

' fo | |

node RiE) has capacity r,” , node c(9) has capacity c , and
Vs 5 has capacity 1 .

17
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1 1

/
L@) Ans L()
1 1

R\™) A. Vin c{™)1 W 1RS | Vo,1 ox

{2 \\ {)S ry") Vo, n ci t

r (3) | {1

(a) N (a)n 1 1 n

R Vi, 1 c

Figure 2. Network N(M) .
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The value of a maximum flow in (M) is clearly at most

(1) s (J) 2
2 2 r, = 2 2 C, = n , 1f all nodes are saturated to their
i j 1

# -

capacities. We will demonstrate two flow functions y and y that

can achieve this maximum. Each function assigns the same value to both

(1) (J
arcs (R, , Vis) and (V3 , C, ). We will denote this value by
Xx -

vy (i, J, 4) and y(i,J, 4) respectively.

x

In the first maximum flow y , we let

y (1,3, 1) = J (10)
0 otherwise.

There 1s 1 unit of flow through every node Vers . Furthermore, each
* 7.

node rE ’ 9) 1s balanced and saturated by definition of the capacities
; :

pl ) 3S) |
The other flow function y makes the assignment

where a = me. . The amount of flow through Vy 3 1S

2 y(i,3,10) = 1
1<t<n

) by Equation (5). The total flow out of node Ry is

LooyLan = TA

=m. .

1]

_ L()
{

by Equation (8); similarly the total flow into node c (4) is
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1<i<n l1<i<n®™ I 7
Q=m,,

1]

(3)
= C,

by Equation (9). Therefore ¥ also defines a maximum flow in (MM) .

Note that y and y are in fact two distinct flow functions. This is

so because M308 > 0 for some i, J , a = Myy andB # a when we
formed Equation (4); 1t then follows from definitions of v and y in

(10) and (11) that, to the particular arc ®lH) Vis) with ff = 8 , we
have

* . . - - »
y (1,3,4) = 0 y(i,3, 1) > 0 . (12)

We are now ready to derive a contradiction that M could not be

.s-unique. Formulate the maximum flow problem for N(M) as a linear

program in the standard way (for example, [8, Chapter 8]):

maximize Z = Cey

subject to Ay =Db , yy >0

with suitable vectors b , c¢ , and matrix A . It is known ([8,

-Theorem 8.8]) that in the -present case, when A is unimodular and b

is an integer vector (representing the capacity constraints in 7M)),

the-bounded -polyhedron Y defined by Ay = b , y > 0 has the property

that all of its extreme points have integer components. Let us write v

as a convex linear combination of the extreme points of y (this 1s always

possible, see [12, Theorem 2.12.2]),

y = Z ad where a, >0, 2a =1 .
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Since y # y , we must have a > 0 for some extreme point yk with
>

Vie #y . Denote this yk by y' . Because of (12), we can further

assume that y' is‘chosen such that

y'(i,3,2) > 0 (13)

for the particular triple (i,j,£) in (12). By the theorem quoted above,

y' has integer components. Furthermore, since z is a concave function

of y , that 1is,

Te 2 i )8 > 0

] a = cox)
k

< max CoV ,
a, >0

the fact that z is maximized at y implies that it must be maximized at

all y, witha > 0 . In summary, we know: (i) y' is a maximum flow
*

for M(M) , distinct from y and satisfying (13), (ii) y' has integer

assignments to all arcs in N(M) ; in fact the assignments are 0-1 valued

since the total flow through any Ys is 1 .

) We now define a simple n~ary matrix M' = (mm; 5) corresponding to y'

by letting my = { , where | is the unique integer with y'(i,3,2) = 1 .

The fact that all nodes RIM) and etd) are saturated under y' implies
that M' has row and column signatures as gilven by rit) and c (9)
Note that M' # M since ml = { by (13), while mm £1 by (10) and (12),
for some triple (i,3,2) . But this contradicts the assumption that M 1s

s-unique. We therefore conclude that the system (of) can be solved to find

D,D' such that M = Cj pr The proof of Theorem 4 is thus complete. CJ
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4, Bounds on the Number of Simple Connection Matrices.

Based on the characterization derived in the previous section, we

shall find bounds on the number of nxn n-ary simple matrices that are

realizable.

2 2

Theorem 5. (c/n) 2)" < |sR(n)| < en , for some constant C > 0 .

We first show the upper bound. By Theorem 4, an nxn n-ary simple

matrix M is in SR(n) only 1f M has a unique signature among simple

matrices. Therefore, |SR(n)| cannot be greater than the total number of

such distinct signatures. In a signature

#1) #2) gn) ’ 21) 2) ey , each component

2(1) = CICS can be viewed as a partition of integer n
into n labelled parts. Thus, each (1) can take at most (Heh < Lt
different values. It follows that the total number of distinct signatures

(for simple matrices) is at most (4140 = jen” This -proves
2

SR(n)| < 45°

The rest of this section 1s devoted to the proof of

|SR(n) | > (c/n)? ry + We define a class of matrices, called row-ordered
matrices, and show that they have the -property of being s-unique. It follows

from Theorem 4 that they are all in SR(n) . A demonstration that there are

at least ( ¢/n)R/ 2 rs such rcw-ordered matrices then completes the -proof.

Definition 7. A simple n-ary matrix 1s row-ordered 1f the entries are

non-decreasing along each row. For example, the following matrix is row-

ordered.

1 1 2 3

1 3 4 4

2 2 2 3

1 2 3 3
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Theorem 6. A row-ordered matrix 1s s-unique.

(3)Proof of Theorem 6: Let M be a row-ordered matrix, and let r )

203) its row and column signatures. We shall show that M is the only
=(1) =(3)

simple n-ary matrix whose signatures are (r ~~) and (C )

; Go) =(3)Let M be any simple n-ary matrix with signatures (r\*) and (c )

Clearly M must have the same dimensions as M . We shall now prove that

the signatures determine which entries of M contain a 1 , which entries

contain a 2, . . . , etc.

Let a be the smallest integer that appears in M . Note that a is

uniquely determined by the signatures. We first show that the -positions

(i,J) in Mwherea occurs are determined by the signatures.

nts 4 oo (3)
Lemma 1. M[i,jl= (a] , if and only itr, > J.

Proof of Lemma 1. As (1), , (9) are signatures arising from the

row-ordered matrix M , we have

Cs = | {ig To = 1 ’ ( )

and 1n general,

c= quae 2 ay (15)

We can now -prove the lemma by induction on J .

j=1. The only positions (i,1) in the first column of M where

a may appear are those with 22> 1 . But by (14), we must actually
place a 's in all such positions 1n order to satisfy the requirement of

having c\%) a's in the first column.
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Induction step. Suppose the lemma 1s true for all J < Jy . We will

prove it for j = jy+1. Consider the j +1 -st column of M . By the

induction hypothesis, each row 1 has had exactly minfr!® » 3p} a's
appearing in column 1 through column Jo . Therefore, only those rows 1

with x (3) > Jot could have a's appearing in the Jord -st column. By
(15), all such rows must actually have a's in the Jotd -st column in order

to satisfy (15). This completes the induction step of the lemma.

Now, we complete the proof of Theorem 6 by induction on a , the smallest

integer that occurs in M , for a = n,n-l,...51 . When a =n , M has

integer n 1n every entry, and this is obviously uniquely determined from

the signature. Suppose 1t 1s true that M = M whenever a > antl , we will

prove 1t for a = ay By the preceding lemma, the positions in M where

". occurs are only dependent on the signature. Therefore M and M have

ny at exactly the same positions. Now, replace the 24 's in both M and

M by atl , and call the new matrices M' and M' respectively. Clearly

this transformation still leaves M' and M' with the same signature, and

M' 1s agaln a row-ordered matrix. By the induction hypothesis, since the

smallest integer in M' 1s atl , we must have M' = M' . But this

implies that, before replacing 8, by atl , 1t must be true that
M =M. This proves Theorem 6. [J

It 1s easy to see that any matrix which can be transformed into a

row-ordered matrix through row and column permutations 1s also s-unique.
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We now count the number of row-ordered matrices. As demonstrated

earlier, the number of choices of = 2) is (=n=ly _ Len, _n-1 2'n

1 n 1/2 \n

L(+ 0(1/n)) > (c/n) /2 for some c¢c > 0 . Therefore, the
24 mn

number of possible signatures @1),7@) an), is at least
n/2 n°

(C/n) L Since every such signature can be achieved by some

row-ordered matrix, we have established that there are at least

n/2 n° | 2
(C/n) L row-ordered matrices, and hence |R(n) | ~ (c/n)? Ral
This completes the proof of Theorem 5. )
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5. Enumeration and Characterization of General Connection Matrices.

We extend the preceding results about SR(n) to R(n) , the set of

all connection matrices. In Section 5.1, we introduce the notion of

"spanning matrices" and discuss their properties. The results are used
2

in Section 5.2 to derive an upper bound of' CC on |R(n)| , which by

Theorem 3 is also an upper bound on the number of edges of the Triangular

polyhedron (0) . Finally, a characterization of R(n) similar to

Theorem 4 is given in Section 5.3.

5.1 Spanning Matrices.

Let M be any nxn n—ary matrix. Define Zi to be the following

induced system of linear equations.

of . h . . = d. + ad’ . - ad. + d! . =

for a,peM(i,j]l, a #8, 1 <i,j<n. (16)

2

As there are only 2n variables dy 3 and ai , at most on° of these
equations can be linearly independent. For any maximal independent

subset ff of Jy (clearly | £] < on” ), we define an n-ary matrix H by

M1, J] if |M[i,31) = 1 , (17)
H{i,3] =

| alh. . = 0 1s 1n for some
} | 1, J»QyB L Pb]

U h, . = 0 is in § for some a} if |M[i,jl| > 1 18(Bln, ,,,=0isinc } if uli, 31) > 1. (18)

An n-ary matrix H obtained this way is called a spanning matrix for M .

The total weight of H clearly satisfies w(H) < n + 2|g| < 50° .

A basic property of H 1s the following. For a pair of distance matrices
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D and D' , 1f it 1s known that min{d,, + I ; | 1 < k <n} is achieved
by every ae H[i,J] (for all 1 < i,j <n ), then it is also achieved by

every ae M[i,j] . Formally, we have the following lemma.

Definition 8. For two n—ary matrices M and M' , we say M'¢c M if

M'[1,3] c M[i,J] for all i, 5 .

Lemma 2. Let H be a spanning matrix of an nhxh n—ary matrix M .

If M' eR(n) is a connection matrix and H ¢ M', then Mc M' .

Proof. Let M' = C5 gro By the assumption that H ¢ M' , we have for- 2

any 1, J,

- = ZS + Jag rs
ot, dp * Gy» 1<k<n, aenli jl. (19)

This implies hy so g(DsD") =0,1< i,j <n, ,BeH[i,j] , ® # B . As

H 1s derived from a maximal independent subset of 5 in (16), we have

h, . (TD) . 0,1 <i, j<n . apeMijl,a 4p . (20)
1, J,0,8 - -

Formulas (19) and (20) imply that, if |M[4, J] | > 1 , then

dst oy < dip t dy 5 , l1< k <n, axeMi,j] ,

and therefore, M[i,J] c M'[41,]] .

If |M[1i,31| = 1 , then M[i,3] = H[i,J] c¢ M'[i,3] , O

Theorem 7. Let H and H' be spanning matrices for connection matrices

M and M' , respectively. If H and H' have the same weight distribution

and the same signature, then M = M' .
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If a connection matrix M is simple, the only spanning matrix for M

1s itself. In this case the above theorem becomes a weaker form of the

s-uniqueness condition for M in Theorem L (weaker because M' {is assumed

to be a connection matrix).

Proof. Since H and H' have the same weight distribution,

|H[1, 3] = |H' [1,3] | for all 1, J . Let us match the elements of

H[i,J] and H'[i,J] in disjoint pairs as Q 5 = {(2,8)1 , where
@eH[i, jl, peH'[1,3] , and |q + |u[i,3]]

= C = = !Let M D,D for D (4; 5) and D (df 5) , we can write down
the following set of inequalities,

Mood 5 < dip * A for (o,B) € 9 5 , 1 <i, <n,

with equality only if 8 ¢ M[i,J] .

When we add up the w(H) inequalities in % , we obtain

ss 1) 4 ry yd ag <v > rer d) a, +27 cl) 4 (21)gid pS = + : { 23’1 7 J £ 1 2 J 1

with equality holding only 1f H' © M , where (1) r etd) and (rt (1) e' (3)1 4

are-the signatures of H and H' , respectively. Since by assumption

H and H' have the same signature, the two sides in Equation (21) are equal.

Therefore, H' CM. By Lemma 2, this implies M' c M .

A similar argument shows M < M' . Hence M = M' .

n-

5.2 AC Bound for |R(n)| .
2

We will show that there are at most C° connection matrices (out of the
no

2 n xn n-ary matrices).
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2

Theorem 8. |IR(n)| < ¢® for some constant C .

2

Corollary. | U 7 (20%) < Cl
0<s< (5)

Proof. For each Me R,(n) , choose a spanning matrix Hy By Theorem 7,

all the weight distribution-signature pairs of Hy i.e., (W(H,) ) 5(Hy,) ) »

are distinct. Furthermore, the total weight of Hy satisfies

n° < w (Hy) < 50° . Therefore, |IR(n) | 1s bounded by the product u.v ,
where u is the number of ways for distributing a total weight A ,

n° < AL 50° , to the ne entries in the nxn matrix, and v 1s an

upper bound on the maximum number of distinct signatures under any fixed

weight distribution (with total weights n° < AL 50° yo We will show

that u < 6)" and v < AS for some constant c¢ , which then implies
the theorem.

The number u 1s bounded by the number of ways of partitioning

integer Sn’ into no+1 labelled parts, where the last part specifies

50° . Therefore,

(7 w. 6n° neu < 5 < 2 = (64) .
n

To estimate v , let Do be the total number of distinct row signatures

(#1), #8) . 054 #0), subject to a fixed weight distribution W . It then

follows that v < naxx (b, )° , Where we have restricted W to those with total
W

welght n° < A < 5n° . For any such W , suppose the sum of weights

distributed to individual rows are LEERY coe Woo with 2 Ww, = A. Then

the 1-th row signature (1) 1s a partition of Wey into n
labelled parts 3,2, Le) . Therefore,
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n w.tn-1
br. < _ max 11 . (22)

2, =A i=1 n-1
w., >0
i

Write

n w.+tn-1 n (w.,tn-1)! no (w, +n)!

i=1 \_ n-1 jry vgs (0-1) i=l ith

Taking logarithms and using Stirling's formula

1

Inmi- m+3)lam-me 0) ,
we obtain from (22) and (23),

Inb_. < max 2 w+ n+ 2 in(ugen) - Ww. += Inw. - n+z In n+ 0(1)W — Sw.=a 4 Ll i 2 i i 2 i 2
; =

Ww. >0
i

< max = ( REDE ERED (+3 )ua( 12) ] + oe2 W, =A i toe hE 2 = (a)
Ww, > 0
1

(2k)

1 A
If we let w, = a.n , then = < «a. , and 7. A, = = < 5n ,

1 1 n 1 1cicn * n -—

Equation (24) becomes

In by < 2n sup 2 a, an + +)To, <5n\ 1<i<n “3
a; > 1/n

+ 2n sup 2 In(l+a.)}) + o(n) (25)
2a, <5n\ 1<i<n +

a; >1/n
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Since X (2 + +) <1 for x > 0 and 1n(l+x) is concave, the
first sum in (25) is <n and the second sum is maximized by taking all

a;= 5, i.e., < nln 6 . Therefore,

| 2

In by <2(1+1n 6)n” + O(n) .

on + O(n) 2 bn” + O(n)
This proves by < (6e) , and hence v < max (b,) < (6e) :

WwW

This completes the proof of the theorem. The corollary follows immediately

from Theorem 3. (J

5.3 Characterization of Connection Matrices.

We will state a necessary and sufficient condition for an n-ary matrix

to be a member of R(n) . The proof 1s a slight extension of that given for

Theorem 4, and hence will not be repeated.

Definition 9. A multiset U is analogous to a set except that an element

may appear more than once in U . We use |u| to denote the total number of

elements appearing in U . Thus |U| = 6 for U = {1,2,2,2,3,3} .

Definition 10. An n-ary multi-matrix M 1s a matrix where each entry

M[i,J] is a multiset whose elements are drawn from {1,2,...,n} , with

Mii,3] <n

The concepts of weight distribution and signature defined in Section 3

can also be generalized to an n-ary multi-matrix in the obvious way.
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Definition 11, For two n—ary multi-matrices M andM' , we say M'c M

if every element that appears in the multiset M'[i,j] also occurs at

least once in M[1,35] , for 1 < i,j <n .

We generalize the definition of s-uniqueness to n-ary matrices as

follows.

Definition12, An n-ary matrix M is said to be s-unique if for any

n-ary multi-matrix M' with the same weight distribution, s(M')= s(M)

implies that M'c M .

Theorem 9. Let M be an nxh n-ary matrix. Then MeR(n) if and only

if M 1s s—-unique. -—-
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6. Enumeration of the Patterns of Shortest Paths.

In this section, we examine an information bound based directly on

the solution space of computing shortest distances. Let G be a directed

complete graph on n vertices ACTA PRESTR SY , with a nonnegative

distance dy assigned to each edge (viv) . A path from v, to ve
is a finite sequence of vertices (1 = kp kok ceonk 15k = J)»

not necessarily all distinct, The length of such a path is 2 4 Ke
1<e<m Tp-17"y

We shall also consider the sequence of a single point (1) to be a path from

i to 1, called a null path, with length 0 . The entry di; in the
transitive closure D* is then the minimum length of any path from 1 to 7§ ,

For any 1, J , let Py be the set of all shortest paths in G from \f]

to ve : (The set Py may be infinite.) We denote by pattern(D) the

nxn matrix (P; 5) associated with the distance matrix D = (dy) . Let
P(n) be the collection of all distinct patterns induced by nxh distance

matrices. By an argument similar to that used in Theorem 2, one can show

that any linear decision tree for computing the shortest distance matrix D* ,

given D , requires at least log, |P(n)] - n° comparisons in the worst case.
This, intuitively, is probably the best information lower bound one can hope

for; the previous approach using connection matrices can be regarded as a

special case with the vertices divided into three disjoint sets Lo Xy y X, ,

such that all edges except those from xy to x4 and from xy to X2 are

effectively « .

The rest of this section 1s devoted to proving the following theorem,

which states that no nontrivial lower bound can be obtained even in the

present version of the information-theoretic approach.

2

Theorem 10. |P(n)| < ¢" for some constant C > 0 .
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We first generalize the notion of a connection matrix to that for

m+l consecutive sets of "cities" Xp Xpr.. © .. Assuming that

p (4) = (ai) defines the distances between any pairs of cities in
X, 1X X, , then C (1) (mld 1 is to be the set of best connecting

D yo ams D

paths from city eX, to city J eX . Formally, if p1),p(8) pm),
1s a sequence of m nxn matrices, then thelr m-connection matrix

1s defined b

Lm) YJ 0 [Md

D 9+0e3D

all) ral?) + =120 aD min (@\d) + al?) Cee a) ny1 1% m-19  k.,...,k Hey 1% m-1Y1 m-1

This definition reduces to the connection matrix defined previously,whenm=2.

Let R,(n) denote the set of all possible nxn m-connection matrices.

m-1

Lemma 3. IR, (n) | < |R(n) | for m > 2 .

Proof. We will show that, for m > 2 , C 1s determined
Pan JO) mw)J eee)

by C (1) (1-1) and C (m) , where A = pd) gD!2) ®e gL)
D Jo mms D A,D

This will imply that IR, (n) | <|R,_; (0) ]*|R;(n) | . The lemma then

follows by induction, observing that IR, (n) |. |R(n) | .

Let A= $1) {2d cee ® p (el) Since

min @E e+ a™ Homin (0 omin (@) sw dD)
Koyuun,yk Hey m-19 k cok 1 Mie Hel1 ’ m-1 m-1 Ks > m-2

+ am) .) , an alternative description of C [1,J] is the set of
Kp-19 (1) (m)1 D Jes ® wD
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(Oe, 5% 500% 1) such that aeC (m) [153] , and
A, D

* +» @ 04 i *(CTPRRRY 1p) eC (1) (m-1) [1a ,] This proves that
D* 7y..e =D

C 1s determined by C and C 01 m 1 m-1

Proof of Theorem 10. We shall derive a recurrence relation on |P(n) |

We use the idea employed in [1] for reducing the shortest paths problem

to {min, + } multiplication. Let X be any 2n x 2n distance matrix

on vertices {1,2,...,2n} . We write it in the form of four nxn blocks

_ A B
x = (5 5) . (26)

x

The shortest distances matrix X then satisfies the following recurrence

formula [1, p. 204],

* * *
x BE E ® BD

X = § (27)* * * *

D QY®E DO@(D'®Y®RE & 5 ® D)

»

where E = (A® (B®D ®Y)) . Actually, implicit in the derivation of

(27) 1s an enumeration of all possible shortest paths between any two

of the 2n vertices, in terms of quantities involving only nxn matrices.

We now make this statement precise in a lemma.
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Definition 13. Let €&€ and &' be the nxn matrices of O's and +1's

defined below:

I" < *

&; ; = 0 if (A); = (B®D ®Y), 5
L .

-1 <

€; ; { if (D i (D"RY®E®RB®D ) 5
1 >

Define the counting vector ,(X) , for X as in (26), to be

u(X) = (pattern(D) , pattern(E) , C_* %  C_*% * C_% * *
E »B,D ’ D J Vo HE ’ D »¥ HE 4D !

H |

Cg, px,y + €2 €')

Lemmad. The matrix pattern(X) 1s determined by the counting vector u (X) .

Proof. We shall show that the (i,j) -th entry of pattern(X) is determined

by w(X) for all i, j .

First we assume 1 < i,] <n . Following the original argument

[1, p. 204] leading to (27), any path from vertex i to vertex j can

be written uniquely as

| (1 = Ky 91» ko 9 > EN ° oe TIRE Ty kK, cee) Cy? k. = J)

where each k, c {1,25...,0]} , and each s, 1s a sequence of vertices

(possibly empty) in {ntl,n+2, . . .,2n} . (m may be 0 when i = j .)

A shortest path from 1 to j 1s characterized by the following conditions:
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(a) Each k, 19, k, 1s among the shortest such paths from Ky

to k, ,denote this length by leng(k, 15k) :

(b) The k's satisfy the condition that 2" leng(k, 1k) is minimumFr -

for all possible choices of the k's.

We can restate the conditions as follows. Let Q = pattern(k) ,

DA. = U [pattern(D) J, ,, , and I the n x n matrix defined by
St (mnt) fol * [s,t] By I

’ B,D ,Y °°

(x? if &gt= -1 >

= = 1
Ust = Ast 1 Eg ’

| UB EE =09

where we use ) for the null sequence. Then condition (b) 1s equivalent

to (kyo dgs ee erk) € Q; ; , and condition (a) is equivalent to 0, ¢€ "k, 1X,
for 1 <4 <m. But this implies that the (i,J) -th entry of pattern(X) ,

i.e., the set of all shortest paths from i to J , 1s determined by Q

and T' , and hence by pattern(E), pattern(D), Ca D y and £&€ . ThisJ) J

proves the lemma for the case 1< 1,J <n .

Similarly, one can show that the set of shortest paths from 1 to j

is determined by pattern (E), Co oF Y , & and, in addition,2

Cx and  pattern(D) if l1<i<n, ntl<j<oen,
E ,B,D* - =

Cx * and pattern(D) if ntl <i<2n, 1<j<n,
D7, Y,E

x * D if ntl <3i,j <2n.
Ch% v,E ,B,D pattern(D) , and € >d

We omit the details. O
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To complete the proof of Theorem 10, we note that by Lemma 4, the

number of distinct patterns 1s bounded by the number of distinct counting

vectors. This leads to

PD 2 2 l 2 on
Pen)| <P)|" + RM)7 Re)". [R(0)| 7+ |R(n)] = 3

by Definition 13 and Lemma 3.

Writing f(n) for |P(n) | and using Theorem 8, we obtain

2 n°
f(en) < (f(n))~ C for some constant C . (28)

Taking logarithms,

In £(2n) < 2 In £(n) + n° In C .

SN */For n = 2° , this leads to (noting that f(l) = 2 )

+

In £(2n) < In C (n° + 2(n/2)" + 0% (n/2%)° + ..*% + of (n/2™)2 + o* Line)

< kn® In C .

n?
This proves f(n) < C if n is a power of 2.

lg n]
. For general n , one can easily show f(n) < f(2 ) by adding

extra points with effectively « distances between these points and the
2

other vertices. This leads to f(n) <gth immediately. The proof of

Theorem 10 1s thus complete. 8

* /

When n = 1 , pattern(D) = (Py7) , where Pp. = {YY if dq > 0

and py, {v, Ly, 15,1), (L,1,L1),..} .. dyq = 0
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