STAN-CS-78-666

The SCALD Physical Design Subsystem

T.M. McWilliams and L.C. Widdoes, Jr.

Technical Report No. 153

March 1978

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305




The SCALD Physical Design Subsystem

T. M McWilliams and L. C. Wddoes, Ir.

Technical Report No. 153

Mirch 1978

Digital Systems Laboratory
Departnents of Electrical Engineering and Conmputer Science
Stanford University
Stanford, California 94305

ABSTRACT

The SCALD physical design subsystemis described. SCALD supports
the automatic construction of ECL-10k logic on wire wrap cards
from the output of a hierarchical design system Results of its
use in the design of an operational 15-MPS 5500-chip processor

are presented and discussed.
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1. Introduction

The S- 1 Structured Computer-Aided Logic Design System (SCALD) has been used to design
and implement an operational, 15-MIPS,5500-chip, ECL-10K processor. The SCALD system
has been described in a companion paper, SCALD: Structured Computer-Aided Logic Design, and
it is recommended that that paper be read first.

SCALD supports a design process which is separated into logical and physical design; the
logical design is relatively independent of the details of packaging, but the physical design
deals explicitly with packaging considerations. The Macro Expander is used for the logical
design, and is applicable across a broad range of technologies and packaging techniques, but
the Wire Listet is used for physical design and is specialized to handle a narrow range of
component technologies and physical designs essentially only broad enough to include the object
machine described in  Section 2. This specialization of the Wire Lister was
necessitated by a desire to completely implement the object machine in a timely fashion in
the context of an initial step in the development of more general tools.

The major goals in the design of the Wire Lister were:

- To allow the engineer to have control over important and difficult physical
design decisions, for example, the positions of chips, while freeing him from
specifying details which either are not important or can be easily determined
automatically. In this regard, the packaging system was chosen to minimize the
number of physical design decisions which could not be automated.

- To provide documentation which would support debugging and maintenance of
a design specified by a structured macro language.

Section 2 describes the oh ject  machine built with SCALD, emphasizing the
packaging details. Sect ion 3 explains the global structure of the Wire Lister.
Section 4 through Section 8 detail the various subprograms within
the Physical Design Subsystem. Section 9 summarizes our experience with the Wire
Lister. Section 10 outlines our ideas about ways that the Wire Lister should be
improved.

2. The Ob ject Machine

SCALD has been used to design an operational processor (the S-1). The S-l is implemented on
- 12 wire-wrap boards. A wire-wrap board contains 44 50-pin connector feed-through
" patterns (with all pins uncommitted), and 500 IC patterns each containing 16 DIP pins, 8 SIP
pins, 8 ground pins, and two capacitor sockets. A resistor SIP containing 6 100-Ohm resistors
tied to a common VTT bus is plugged into each SIP location to provide resistors for termination.
The 32-pin IC patterns are packed at a density of one per 0.6 square inches. Special 24-pin
adaptors plug in at right angles to the IC patterns. Each board measures approximately 23
inches by 19 inches. Each contains three power planes, used for VCC, VTT, and VEE. Pin 16
of each IC pattern is soldered to VCC, pin 8 to VEE. In IC patterns containing a DIP with
multiple grounds, the additional pins are grounded by soldering clips to the VCC plane on the
component side of the board.

Identical boards are mounted in pages of four boards each; two boards form one side of a single
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page, and two boards form the opposite side. Chips are mounted facing into the channel
formed by the two sides of a page. When the spine edge and outside edge of a page are closed,
the channel is closed, and fans blow air down through the channel over the chips. Each page is
independently hinged from the spine. All connections between pages are made by cables which
alternate grounds and signals. Long cables are twisted-pair, while short cables are ordinary
flat-cable.  25-pair cables terminated with connectors plug into the connector patterns on the
boards. The layout of cables is specified by the design engineer, and obeys rules which allow
access to any pin in the machine while the machine is running, without changing the air flow
or cabling.

Figure 2.- 1 shows the processor  cabinet with the pages spread. Figure
2.-2 shows a page open for IC replacement.

AWl runs (electrically con nected networks) are routed without stubs (daisy-chained). The
ends of each segment are placed at the same level on the wire-wrap pins. The ECL-10K output
may be located anywhere along the length of the run, not necessarily at an end. Each run is
terminated at one or both ends with a 100-Ohm resistor. In order to minimize crosstalk, some
segments of runs on a board are wired using twisted pair, where the shield wire is either
connected to two VCC pins or is connected to the complementary signal. The shield wires in
cables at-e used in a similar manner.
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Figure 2.-2
Page Open to Change Chip



3. Wire Lister Structure

Although the assignment of physical locations to terminal path names is actually a function of the
Macro Expander, it is described here since it is logically part of the Physical Design Subsystem.

The Macro Expander inputs a hand-generated, block-structured specification of the
mapping from terminal path names to physical locations (LAYOUT), and the expansion
order is in fact determined by LAYOUT. The Macro Expander outputs a list of the connected
points on physical runs, which is input by the router (R). R routes the runs, produces the
necessary documentation and wire lists, and outputs a board-state file (NEWBRDS). The
programs HINT and ECO (Engineering Change Order) are used to make incremental changes
in the design of a constructed machine, BREF produces reference listings for checkout, and
TRL simulates the electrical characteristics of runs.

Figure 3-1 shows the major listings and intermediate files produced and used by
various modules of the Wire Lister, and describes the flow of data between parts of the Wire
Lister by simply showing the writer and reader of each listing or file. Figure 3.-1
also shows the sizes of the major listings for the S-I Processor design.



Wire Lister Structure

Listing Hriter Reader Lines Contents
DEFS person R HINT 2000 Electrical characteristics of ICs.
CBLS person R 200 Positions and characteristics of cables.
105 R R 4000 Rssignments of signals to cables.
LARYOUT person MRCEXP 4000 Hand lagoutspecification.
MAapP MACEXP person N/R  layott naps.
NC MACEXP R 10000 Pins of macros which are not connected.
RUNS MRCEXP R HINT 78078  Unrouted connect ion |i=st,
SUNM R pers0n 12088 Summary and statistics from R run.
OKRUNS R person 148888 Rurzw i thou t errors.
BADRUNS R person N/R  Runswitherrors.
NULLRUNS R person N/R  Runs ~ith no outputs.
SORT R person 27800 Sorted lists of buses.
NEMBRDS R ECO BREF 70000 New state of all boards.
OLDBRDS R HINT ECO 788880 OIld state of all boards,
TRL IN R TRL N/R Characterizat ions of runs.
TRLOUT TRL person N/R  Graphical wave forms .
PINS BREF person 78888  Signal name connecting to each pin.
BCHK BREF person 48888 Checkout listings.

Figure 3.-1

Physical Design Subsystem Files



4. Layout Language

Once the basic design is expressed in the macro language, the next step is to partition it onto
boards, and to assign locations on the boards to specific chips. In a conventional design system
where all of the logic is drawn out, the logic to go on a specific board is drawn on a separate
set of prints, and each component is then -Jabeled with a physical location. In the SCALD
Design System, this technique is not possible because not all of the logic is drawn out, and for that
matter, a given drawing may generate logic which goes on a number of boards.

The layout language is used to specify the mapping between terminal path names and physical
locations. Figure 4.-1 shows the mapping for the logic in Figure 4.-2,
which is put onto two boards, and consists of 85 chips.

There are two basic statements in the layout language, the WITH statement and the
assignment statement. The WITH statement is used to specify that the logic inside a given
macro call is to be laid out next. It has the general syntax:

WITH <logical-location> AT <physical-location>;
<WITH and assignment statements to place contents of macro>
END;

where the <logical_location> is the logical location label given in the macro call, and the
<physical_ location> specifies a base location for all the logic laid out inside the WITH
statement. The <physical-location> can specify a base board, row of a board, column of a board,
and section of a chip, or can default any of these to be zero. For example, the location string
"BIR2C3S4" specifies a. base board of I, row 2, column 3, and section 4. The board, row,
column, and section can be given in any order.

The assignment statement is used to place either a terminal component or a macro. If it is used to
place a terminal component, then it is of the form:

<logical. location> = <physical- location>;
When it is used to layout a macro, then it is of the form:
<logical location> = <physical_ location-vector>;

where <physical_ location_ vector> specifies a vector of board, row, column, and section tuples,
which are assigned to each component generated by the macro, in the order they are generated.
" The macro is expanded in a depth first expansion, where the macro and component calls in a
given macro are evaluated in alphabetical order according to their logical location labels. The
location vector is specified by the use of an iterative notation. A given dimension, where a’
dimension is either a board, row, column, or section, can be specified by the form "L(F,T,B)",
where L is a "B", "R","C", or "S", standing for board, row, column, and section, and F, T, and B
are in tegers, which generate a sequence of values from F to T by B. The increment may be
defaulted to 1 by using the alternate form "L{(F,T)", and a single value may be produced by
writing "L" followed by the value. A number of dimensions can then be specified with a space
between them, where they will be evaluated from right to left, to form a vector of location tuples.
For example, the expression "B(1,2) R3 C(5,3,-1)" evaluates to a vector which has 6 location

tuples, (( 1,3,5), (1,3,4),(1,3,3),(2,3,6),(2,3,4),(2,3,3)), where each tuple specifies a board, row, column, in
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that order. In addition, a sequence of these location specifiers can be given with a comma
between them, which are evaluated from left to right. For example, this last expression could
have been written as "B1 R3 C(5,3,-1), B2 R3 C(5,3,-1)".

The first thing that is laid out in Figure 4.-1 is the macro “36 BIT ALU 10181",
which has a logical location label “A”, and a- base location at board 1. The next macro laid out
is then the "IB REG 10176", with logical location label “RI”. The clock line of that register is
driven from the signal “REG CK BUF", which is generated from a three-output gate, and has
three physical versions. The layout file then specifies that the common clock (“CC”) pin of the
10 176 should use version 1 of "REG CK BUF”. In the layout specification of the "36B 10174”
multiplexer, the first 18-bits are laid out in the high form, and the last 18-bits are laid out in the
reverse form, using both the true and complementary outputs on the 10101 gate to drive the select
li ties.



Layout Language

WITH A AT BI; 136 BIT ALU 10181
R1 C3;
R2 C3;
R1 C6;
R2 C6;
R1 C9;
R2 C9;
C12;
R2 C12;

n
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R3 C15;
'OF 36 BIT ALU 18181

TOOT®DONDNBWN =D

m
=z

R1=B1 R3 C2 SO
ccc = 1

R2 =B1 R 3 C(4,6)5(8,5),
B1 R3 C (8,18)5(8,5)
: CC = 2%18,3x%18;

R3 = B1 RS C(1,11,2) 5¢(8,3),
Bl R5 C(13,15) 5(8,3);

Gl1=B1R5 C8 SO;

G2 = BIRS C 65(8,1);

G3 = B1 R3 Cl SO;

t1 =BIR 4C(1,15)5(8,1),
Bl R3 C(12,14)5(8,1)
/ H18 L18;

HITH CTL AT B2; IPROCESSOR CONTROL
R = R(1,3) C(1,8)

: AB = 1:8, 248, 3x8
© AL = 18- 2x8, 3x8
: A2 = 1x8, 28, 3x8
: A3 = 1x8, 2%8, 3x8
t A4 = 128, 2x8, 38
+ AS = 1x8, 248, 3%8

: A6 = 1x§ 2x8, 3x8
: A7 = 1x8, 2%8, 3x8;

C=Cll R(1,2);

Gi= R 3 C958;

G2= R3CI0 S1;

63= R(1,2) C(9,10) 5(8,1);
END; 10F PROCESSOR CONTROL
END;

’

Figure 4.- 1
Layout for Simple Processor
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5. Router

The major function of the Router (R) is to sequentially route the runs contained in the list RUNS
output by the Macro Expander, and to produce all necessary wire lists and associated
documentation to allow the debugging and maintenance of the object machine.

A sample RUNS file is shown in Figure 5-. RUNS is organized in to buses,
which are vectors of runs, in order to allow the documentation to be organized into buses. Each
run consists of a set of connected stops. Buses are sorted in alphabetical order, and runs
within a bus are in alphabetical order. Each stop represents a physical pin in the format

<TPN>{-<SEC>}:<SKT><PART>.<PIN>{/<VER>}

where TPN is the component’s terminal pathname, SEC (optional) is the section number
within the component, SKT is the socket name, PART is the physical part name, PIN is the
pin number within the section, and VER (optional) is the version number for therun
connected to this pin. The section number is assumed to be zero if none is given.

The RUNS file does not make reference to cables or 1/O pins. A separate file, 10S, which can
either be hand-generated or automatically-generated, assigns I/O pins to runs. An example of
I0OSis shown in Figure 5-2. 1OS assigns one connector pin of a cable to a run;
assignment of the connector pin on the opposite end of the cable is implied by the CBLS file.
If a run crosses multiple boards, then 1OS assigns one I/O pin per board crossing, in the order
that the boards are to be crossed.

R can allocate I/O pins automatically, constrained only by the availability of cables connecting the
appropriate boards (specified in the CBLS file). During automatic allocation, if a run needs I/O
pins and has none assigned in 10S, R will select the best (in a measure of total run length) set of
1/O pins which connect the appropriate boards, permanently allocate those to the run, and output
the allocation to the 10S file. The search order is random over the remaining free I/O pins in
order to minimizing bunching.

I/0 pin allocation, and indeed all other functions of R are purely sequential and involve
essentially one pass over the RUNS file; no decision is ever retracted.

The DEFS file is used to make the transformation from the pin number in RUNS to a DIP pin
number. A n example from the DEFS file is shown in Figure 5-3. For each IC
type, DEFS defines the power pins, and for each section shows the mapping from pins of
the section to DIP pin numbers. For each pin, DEFS shows the electrical characteristics
including leakage currents and rise times, the pin type (eg. ECL input, ECL output,
. differential input, VBB, not connected), and a field defining a mnemonic pin function. One
pin from several different sections may map to the same DIP pin number.

Since 24-pin DIPS plug into three 1C patterns (on an adaptor which in additions covers the
positions reserved for two SIP resistor packs), R contains a mapping function which maps 24-pin
DIP pin numbers and socket locations onto true physical pin numbers and socket locations.
Mappings for adaptors of other sizes or shapes can be easily added.

R routes each single-board section of each incoming run optimally according to a cost
function which is presently total wire length (under XY segment routing), but can be varied
considerably, even to produce the minimax arm length (where an output divides a run into
two arms) which is a good approximation of minimax delay. The computational complexity
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and memory requirement of the routing algorithm is O(NZ*QN), where N is the number of
stops. For the S-1 Design, a 2-megabyte IBM/370-168 was used to optimally route runs of up to
1 | stops. The use of an algorithm which finds an optimal route according to the cost function
has proven to be extremely prudent. Since the class of valid outputs of the algorithm can be
easily understood, it is convenient to make modifications of the algorithm for special
purposes. For example, because stubbing is not allowed, if a run has two I/O pins on a board
(ie. if a run goes through a board), then the I/O pins must be on the ends of the on-board
section of the run. Such on-board sections are obtained merely by constructing a non-symmetric
distance function. Furthermore, when routing to minimize changes to a board which has already
been wrapped, the cost function simply diminishes slightly the cost of a segment which connects
two previously connected pins.

After routing, R allocates twisted pairs using a parameter-driven algorithm. All segments of a
run longer than X inches are twisted, and no segments under Y inches are twisted (where for the
S-I, X is 6, and Y is 2). Depending upon the distance of a segment from the low-impedance
output and the segment’s length, the algorithm chooses to twist segments between X and Y inches.

Non-differential runs which are twisted require ground pins to ground the shield wires. R simply
locates the ground pin which is nearest the associated signal pin and allocates it, removing it from
future consideration in the ground-pin search. Shield wires of adjacent twisted-pair segments are
grounded on the same pin. Differential runs which are twisted do not need ground-pin
allocation. Ground pins are also allocated for the shield wires of segments which connect to 1/0
pins, since alternate wires of cables must be grounded. Where shield wires are too short for
twisting according to the twisted-pair algorithm, they are left untwisted.

After routing a run, R allocates terminating resistors automatically. A resistor is always connected
to the far end of the longest arm of a run. If an output divides a run into two arms both of non-
zero length, then a resistor is placed at the end of each arm, resulting in a 50-ohm DC load for
each output. If heavy loading occurs near the output on a single-armed run, then a resistor is
connected to the output to decrease the fall time. Two 100-Ohms resistors are found and
allocated for each side of a differential run, which is forced to be single-armed. Resistor
allocation is similar to ground-pin allocation; the closest unallocated resistor is chosen and
allocated. Since resistors are always placed at the ends of runs, the segment lengths to resistors do
not affect delays to inputs.

In the cases of both resistors and ground pins, the basic philosophy was to provide enough
surplus resources on the boards that a simple algorithm with no backup would be capable of
generating small search distances. In practice, the simple algorithm was quite satisfactory, yielding
average orthogonal search distances under 0.5 inches for ground pins and resistors.

After routing a run, R makes an estimate of the worst case delay to any input of the run by
assuming that the run is a perfectly terminated transmission line with distributed capacitance
equal to the intrinsic distributed capacitance of the wire-wrap wire plus the lumped capacitive
loads corresponding to the inputs and outputs. Under these assumptions, the approximate delay
is given by

D = LxTOxSQRT(1+CL/(LxCD))

where TO is the unloaded delay per unit length, L is the length, CL is the total lumped
capacitance, and CD is the distributed capacitance per unit length. This approximation has
proven to be quite satisfactory for screening runs, with typical relative errors of the order of 20%
(consistently high).
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R outputs the file TRLIN describing runs selected by the screening algorithm based on estimated
delay. TRLIN is used by TRL in simulating the complete electrical behavior of the runs.

R checks for many syntactic and semantic errors, most of which are also detected at higher levels
in the design process. R does not place restrictions on the loading of runs, since the designer is
expected to make all decisions about whether. the actual reflections shown in the output of TRL
are acceptable based on his knowledge of the criticality of each signal.

R produces many output files which allow automatic construction and which facilitate the
debugging of the processor. The major outputs are the board-state file (NEWBRDS) and the
listing of error-free runs (OKRUNS). OKRUNS describes the routing and characteristics of each
run in the machine, including inter-board segments of runs (see Figure 5.-4).
NEWBRDS is used to allow incremental changes in a constructed machine, as explained below.



Router

$BUS=CTL :BR RADR<B:7>;
BR ADR<«B>=

BR RDR<l>=
BR ADR<2>=
BR ADR<3>=
BR ADR<4>=
BR RADR<5>=
BR RDR<B>=
BR ADR<7>=

$BUS=CTL :BRANCH RALW;
BRANCH RALU=

$BUS=CTL :BRANCH NEG;
BRANCH NEG=

Figure 5.-i

CTL.R#1:2R1:MB7842.15,
CTL.C.B8.X:2R11: 10916.11;
CTL.R#2:2A2:MB7042.15,
CTL.C.8.X:2R11:18016.18;
CTL.R#3:2R3:1MB76842.15,
CTL.C.8.X:2R11:10816.9;
CTL.R#4:2R4:MB7842.15,
CTL.C.08.X:2R11:108816.7;
CTL.R#5:2A5:MB7842.15,
CTL.C.1.X:2B11:10016.11;
CTL.R#6:2R6:1NB7042. 15,
CTL.C.1.X:2B11:10816.18;
CTL.R#7:2R7:MB7842. 15,
CTL.C.1.X:2B11: 10616.9;
CTL.R#8:2R8:MB7842.15,
CTL.C.1.X:2B11:18016.7;

CTL.R#9:2B1:MB7842.15,
CTL.G2-1:2C18:10165R.4;

CTL.R#18:2B2:MB70842. 15,
CTL.G1:2C9:18184RA.4;

RUNS File Input to Router

14



Top

ToP

Top

ToP

TOP

$END;

Router
:R SEL <
1] = 1B2
| = 182
tALU CTL <
2} = 1R2
1 = 1Bl
2 = 1Bl
3 = I1BI
4 = 1Bl
5 = 1B2
:0UTPUT SIGN <
272
tREG RDR <
9 = 1Bl
| = 1B1
2 = 1B1
3 = 1Bl

:REG WRITE L <«

Figure 5.-2

Example of IOS File

-24;
-36>

-26;
-20;
-28;
-38;

22>
~508>

-40;
-42;
-44;
-46>

-36>

15
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$DIP 10181 !'FAIRCHILD!

MAC | PHR
1 1

16 186

8 8

MAC 4 10101

4 4 7 13 18
12 12 12 12 12
55 6 9 11
22 3 15 14

TYPE

oD
N @

TYPE

Router
USE TYP MA
vee 8
vCe 0
VEE 20.
USE HL PF
1 5.0
IC 12.
T 5.0
TL 5.0
Figure 5.-3

LOW MR

8.0061
6.001

HI MR —---RISE-—=-!

0.265
0.550

—_——
W
w W
w W

Example of Chip Definition in DEFS

16



5. Router
TopP t R<3b>

(Bl R1 C15) AIS- 2R 22 *R168

(B1 Rl Cl4) Al4-1S 21 R2 18 10181 7.8

(B1 R3 C14) Cl4- 2 T 2 18174 5.8
TOP : A<35>

(BL R1 CI5) AI5- 3R 22 *R180

(Bl RY Cl4) R14- 2 21 A3 21 10181 7.8

(B1 R3 Cl4) Cl4-15 T 2 18174 S1 5.8
ToP +A SEL<8>

(B R5 C6 ) E6 - 5R 21 *R188

(B1 RS C6 ) E6 -4 E6 -136 22 1| 4 10101 5.8

(Bl J B2 ) J31-24 J31-23 #CONN

|2 J T2 ) J5 =24 J5 -23 21 #CONN

(B2 R3 C6 ) C6 -15 C6 -16 T 15 MB7842 8.8
ToP tA SEL<i>

(B1 R5 C6 ) E6 - 7R 21 . *R168

(Bl RS C6 ) E6 ~7 E6 -18G 22 | 4 10101 51 5.0

Br J B2 ) J31-38 J31-29 *CONN

(B2 J T2 ) J5 -38 J5 -29 21 *CONN

(B2 R3 C7 ) €7 -15 C7 -16 T 15 MB7042 8.0

Figure 5.-4

7PF  4AIN  4BM

7
PF 2.7
PF

JPF 4IN  4BU

1.2 N
PF 2.7 IN
PF

SPF 24IN  4BH

8.6 IN
7.5 IN TWP
2.8 IN CBL
3.6 IN

PF 17.

PF

SPF 24IN  5BM

8.8 IN

PF 17.8 IN TWP
2.9 IN CBL
3.7 IN

PF

OKRUNS Listing Output from Router

8.8NS  2ST
R.8.X

M#35

8.8NS 25T
A.8.X

M#36

3.8NS 25T
G2#1
CTL.R#22

3.8NS 257
G242
CTL.R#23

ax

1X

BER

BER

BER

8ER

17

41SLN

417LN

420LN

422LN
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6. ECO Subsystem

SCALD allows incremental design changes in the hierarchical drawings to be reflected in actual
hardware updates in a constructed machine. In short, the drawings are edited, then SCALD runs,
producing a new set of documentation including an unwrap list and a wrap list which update the
machine to the design represented in the new-drawings.

The current machine state is always retained in the board-state file, NEWBRDS (see Figure
6.-1). NEWBRDS contains a record of each DIP, ground clip, single wire, and
twisted-pair wire on each board of the machine. NEWBRDS thus forms a permanent, readable
record of the physical machine state which is independent of the original input files, and of the
programs which processed those files; knowledge of the machine state is never compromised by
changes in SCALD.

When changes to a board are made in the laboratory without running the design system, they are
carefully entered into a log book, and later edited into the board-state file.

Because R allocates resistors and ground pins automatically, processing runs sequentially in the
order of the RUNS file, it is conceivable that a slight change in the drawings, even the change of
a signal name, would result in the reassignment of a large number of resistors and ground pins.
To avoid this problem, R inputs hints which are generated by the program HINT on the basis of
the previous board state and the current RUNS. Thus when R routes runs, it examines the set of
hints which specify the resistors, ground pins, routes, and levels used in the previous board state,
and R minimizes the number of changes required to implement the new design. All automatic
decisions made by R are either absolutely repeatable independent of signal names and input
ordering, or are strongly directed by hints based on previous decisions.

When the new board state has been completely defined, the wrap list, unwrap list, and associated
documentation are generated by an independent program which simply compares the old board
state and the new board state.
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BRD
BRD
BRD

BRD -

BRD
BRD
BRD
BRD
BRD
BRD
RRD
BRRD
BRD
BRD
BRD
BRD
BRD
BRD
BRD

— e bt e — 1)

NN e — et — — b e —

= 1;
DIP:
DIP:
DIP:
DIP:
DIP:

CLIP:

CLIP:

CLIP:
CLIP:
CLIP:
CLIP:
CLIP:
CLIP:
CLIP:
CLIP:
THP »
BARE:
BRRE:
BARE:

10101
18105
10110
10145A
18145R
Cl- 1
c 1-15
2- 1
3-1
4- 1
5-1
6- 1
7- 1
8- 1
9- 1
19.5 SUG
2.6 SUG
5.4 SUG
5.6 SUG

g NeNeleNelelNeNel

ECO Subsystem

, E 63
, E 83
, c1;
, E 1
, E 33
22, E 6- 6, E 6-13G, J31-24 , J31-23 , TOP
21 , E 6- SR, E6-4, TOP
21, J5-23, € 6-16 , TOP
21, J 5-24 C 6-15 , TOP
Figure 6.- 1

Example NEWBRDS File

+A SEL<8>
1A SEL<B>
1R SEL<B>
1A SEL<B>
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7. BREF Subsystem

The BREF Subsystem inputs a board state file and produces various reference listings for quality
control and debugging. Specifically, it produces a listing which shows the signal name of the run
connected to each pin, it produces listings for clip checking, continuity checking, checking the
resistance of runs to ground, and counting the wraps on pins.

8. Transmission Line A nalysis

R outputs descriptions of selected runs to TRL, the transmission line analysis program, which
prints on the line printer the graphical waveform of a signal edge on each such run (see Figure
8.-1). The selection of runs to be considered for output to TRL is parameterized
and is based on the estimated delay of the run. In the S-I development, only one run per bus
was output; because the layout was done by hand in a very regular manner, and therefore
individual runs within a bus are quite similar.

The run to be simulated is described as lumped resistive or capacitive (but not both) loads
connected in a daisy-chain by segments of known propogation delay and impedance. The TRL
analysis is an event-driven simulation. The gate output voltage waveform is described by the
exponential:

V = C*(1-eM)

where typically "C"is 0.8 Volts and “A” is 0.7/ns. The output waveform is propagated
algebraically to the first load, which algebraically reflects part of the energy and transmits part of
the energy. Both the reflected and transmitted wavelets are followed in the same way as the
original wave was followed, thus the procedure is recursive. Any wavelet with amplitude less
than a threshold parameter is ignored. After all wavelets are less than the threshold, the voltage
at any point P at any time T can be evaluated by summing the transmitted waveforms evaluated
at P and T. TRL prints the voltage waveform at each node along the run. Note that all wavelets
are collected and simplified symbolically until the final evaluation.

For reasons of numerical stability, it was found that an effective way to determine which
reflections and transmissions should be followed was to assume a sinusoidal output waveform in
an initial pass (thus all resistive and capacitive loads simply attenuate when reflecting and when
transmitting) and to follow the same reflections and transmissions in the exponential analysis
which yields the final waveform amplitudes.

Qur experience in debugging the object machine has shown that the accuracy of these simulation
results are within the tolerances of the input parameters such as segment impedance and load
capacitance.
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Top tA SEL<8> SPF 24IN  4BN 3.8NS  2ST 11X BOER 420LN

+

+1+ 17
RSC ‘ 40

T+ W

-8.6|
x

|
-0.71

-9.8|

I

1521212121212121212121211
-8.9] 2

| |

| 5 2
-1.8] 1

5 21

| 2
-1.11 5 - 1

| 21

| 5 21
-1.21 21

| 5 21
-1.31 5 21

| 5 22
-1.41 5 11
55 221
| 5 221
-1.51 55 2211
I 55 22121
| 555 22121211
-1.6] 555 222121212121212111
| 555555 222121212121212111111111030000801813118)
| 555555555555 555555555555555555555555555555555555252525252525252525252525215
-1.71 555555555

| 2] 4] 6 8 18] 12] 14]

NODE | 2 3 4 5%
ABS XING 3.82 3.74 1.28 091 0.42

Figure 8.- 1
Example TRL Output
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9. _Experience

The experience in using SCALD to design the S-l has indicated that SCALD is very effective in
reducing the time required to implement a large-scale processor. The entire processor design was
completed in 24 man-months, while the partitioning and layout required an additional 3 man-
months. Debugging the hardware with the SCALD-generated listings has proceeded very well,
and the lack of a conventional print set with all of the logic drawn out proved not to be a
problem. The ability to design correct logic conferred by the intrinsic clarity of the drawings was
verified when the first major portion of the machine (1600 chips) worked at the designed speed
(‘70 ns per cycle) after the elimination of only 6 minor logic bugs, all involving no more than a
single chip.

10. Extensions and Improvements

We have identified the following areas as being candidates for improvements in the Design
System:

- A more general language is needed for describing the details of technology and
physical packaging. Knowledge of these details is currently largely built into the
structure of a 15000-line PASCAL program, and that program would need to be
extensively modified to accomodate multiwire ECL- 10K, for example.

The Physical Design Subsystem could be made to drive any of a number of
available CAD systems which handle the physical design in various technologies
and packaging systems.

- Automatic layout of sub-modules is desirable, but this capability needs to be
carefully considered for its effects on the generation of ECOs.

- A version allocator needs to be designed which would eliminate the need to assign
physical versions to pins by hand, but this capability also needs to be carefully
considered for its effects on the generation of ECOs.

- Feedback from the Physical Design Subsystem to the source language level (the
hierarchical drawings) would be highly desirable. In particular, the average and
range of the delays of a vector of signals could be automatically entered onto the
source drawings to aid in design verification.
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11. Conclusions

The SCALD Physical Design Subsystem facilitates the implementation and maintenance of a
structured design expressed in terms of a Macro Language. The Physical Design Subsystem
handled all details of the physical design for the S-I Mark | Processor except layout of
components, assignment of versions, and positioning of cables. incremental changes can be made
in the structured drawings and are reflected in minimal wrap/unwrap lists. The Physical Design
Subsystem is presently specialized to the particular packaging and technology of the S-I Mark I
Processor, but can be generalized to allow the rapid creation of additional particular physical’
design subsystems.
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Al. Syntax of Layout Language

The following syntax diagrams give a detailed definition of the syntax for the text form of the
SCALD layout language.



Chip binding

Logical location

Physical location

——
Y
P Chip binding
] Logical location

End

Physical location

( ) vector

High low vector

Version vector
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Physical location
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__.>® I n teger
S
c
Physical location vector
9@ »@L I n teger
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..-...)@___
L»@—) BY —i—>@ >
.__>.
A ( )
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High low vector

A—’@

Integer

Version vector

— Pin name

b Version

Unsigned
integer

g
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Logical location

From, to, by

Name
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Pin name

I n teger

Name




