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ABSTRACT

The SCALD physical design subsystemis described. SCALD supports

the automatic construction of ECL-10k logic on wire wrap cards

from the output of a hierarchical design system Results of its

use in the design of an operational 15-MPS 5500-chip processor

are presented and discussed.
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I. Introduction

The S- 1 Structured Computer-Aided Logic Design System (SCALD) has been used to design

and implement an operational, 15-MI1PS,5500-chip, ECL-10K processor. The SCALD system
has been described in a companion paper, SCALD: Structured Computer-Aided Logic Design, and
it is recommended that that paper be read first.

SCALD supports a design process which is separated into logical and physical design; the

logical design is relatively independent of the details of packaging, but the physical design

deals explicitly with packaging considerations. The Macro Expander is used for the logical

design, and is applicable across a broad range of technologies and packaging techniques, but

the Wire Listet is used for physical design and is specialized to handle a narrow range of

component technologies and physical designs essentially only broad enough to include the object

machine described in Section 2. This specialization of the Wire Lister was

necessitated by a desire to completely implement the object machine in a timely fashion in

the context of an initial step in the development of more general tools.

The major goals in the design of the Wire Lister were:

- To allow the engineer to have control over important and difficult physical

design decisions, for example, the positions of chips, while freeing him from

- specifying details which either are not important or can be easily determined

automatically. In this regard, the packaging system was chosen to minimize the
number of physical design decisions which could not be automated.

- To provide documentation which would support debugging and maintenance of

a design specified by a structured macro language.

Section 2 describes the oh ject machine built with SCALD, emphasizing the
packaging details. Sect ion 3 explains the global structure of the Wire Lister.

Section 4 through Section 8 detail the various subprograms within
the Physical Design Subsystem. Section 9 summarizes our experience with the Wire

Lister. Section IO outlines our ideas about ways that the Wire Lister should be
improved.

2. The Ob ject Machine

SCALD has been used to design an operational processor (the S-1). The S-l is implemented on

- 12 wire-wrap boards. A wire-wrap board contains 44 50-pin connector feed-through

" patterns (with all pins uncommitted), and 500 IC patterns each containing 16 DIP pins, 8 SIP
pins, 8 ground pins, and two capacitor sockets. A resistor SIP containing 6 100-Ohm resistors
tied to a common VTT bus is plugged into each SIP location to provide resistors for termination.

The 32-pin IC patterns are packed at a density of one per 0.6 square inches. Special 24-pin
adaptors plug in at right angles to the IC patterns. Each board measures approximately 23

inches by 19 inches. Each contains three power planes, used for VCC, VTT, and VEE. Pin 16

- of each IC pattern is soldered to VCC, pin 8 to VEE. In IC patterns containing a DIP with

multiple grounds, the additional pins are grounded by soldering clips to the VCC plane on the

component side of the board.

Identical boards are mounted in pages of four boards each; two boards form one side of a single
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page, and two boards form the opposite side. Chips are mounted facing into the channel

formed by the two sides of a page. When the spine edge and outside edge of a page are closed,

the channel is closed, and fans blow air down through the channel over the chips. Each page is

independently hinged from the spine. All connections between pages are made by cables which

alternate grounds and signals. Long cables are twisted-pair, while short cables are ordinary

flat-cable.  25-pair cables terminated with connectors plug into the connector patterns on the
boards. The layout of cables is specified by the design engineer, and obeys rules which allow

access to any pin in the machine while the machine is running, without changing the air flow

or cabling.

Figure 2.- 1 shows the processor cabinet with the pages spread. Figure
2.~2 shows a page open for IC replacement.

A Il runs (electrically con nected networks) are routed without stubs (daisy-chained). The
ends of each segment are placed at the same level on the wire-wrap pins. The ECL-10K output

may be located anywhere along the length of the run, not necessarily at an end. Each run is

terminated at one or both ends with a 100-Ohm resistor. In order to minimize crosstalk, some

segments of runs on a board are wired using twisted pair, where the shield wire is either

connected to two VCC pins or is connected to the complementary signal. The shield wires in

cables at-e used in a similar manner.
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Figure 2.1.

Processor Cabinet
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Figure 2.-2

Page Open to Change Chip



3. Wire Lister Structure

Although the assignment of physical locations to terminal path names is actually a function of the

Macro Expander, it is described here since it is logically part of the Physical Design Subsystem.

The Macro Expander inputs a hand-generated, block-structured specification of the

mapping from terminal path names to physical locations (LAYOUT), and the expansion

order is in fact determined by LAYOUT. The Macro Expander outputs a list of the connected

points on physical runs, which is input by the router (R). R routes the runs, produces the
necessary documentation and wire lists, and outputs a board-state file (NEWBRDS). The

programs HINT and ECO (Engineering Change Order) are used to make incremental changes

in the design of a constructed machine, BREF produces reference listings for checkout, and
TRL simulates the electrical characteristics of runs.

Figure 3-1shows the major listings and intermediate files produced and used by
various modules of the Wire Lister, and describes the flow of data between parts of the Wire

Lister by simply showing the writer and reader of each listing or file. Figure 3.-1

also shows the sizes of the major listings for the S-1 Processor design.



3. Wire Lister Structure

Listing Hr iter Reader Lines Contents

DEFS person R HINT 2000 Electrical characteristics of ICs.
CBLS person R 200 Positions and characteristics of cables.
165 R R 4000 Rssignments of signals to cables.

LAYOUT person MRCEXP 4000 Hand lagoutspecification.

MAP MACEXP person N/R Layout naps.
NG MACEXP R 10000 Pins of macros which are not connected.

RUNS MRCEXP R HINT 78078  Unrouted connect ion | i=zt,

SUMM R pers0n 12000 Summary and statistics from R run.

OKRUNS R person 148850 Rurzwu i thou t errors.

BRDRUNS R person N/R Runswitherrors.

NULLRUNS R person N/R Runs «ith no outputs.
SORT R person 27800 Sorted lists of buses.

NEMBRDS R ECO BREF 70800 New state of all boards.

OLDBRDS R HINT ECO 78888 Old state of all boards,

TRL IN R TRL N/R Characterizat ions of runs.

TRLOUT TRL person N/R Graphical wave forms .

PINS BREF person 78888 Signal name connecting to each pin.
BCHK BREF person 488088 Checkout listings.

Figure 3.-1
Physical Design Subsystem Files



7

4. Layout Language

Once the basic design is expressed in the macro language, the next step is to partition it onto

boards, and to assign locations on the boards to specific chips. In a conventional design system

where all of the logic is drawn out, the logic to go on a specific board is drawn on a separate

set of prints, and each component is then labeled with a physical location. In the SCALD
Design System, this technique is not possible because not all of the logic is drawn out, and for that

matter, a given drawing may generate logic which goes on a number of boards.

The layout language is used to specify the mapping between terminal path names and physical

locations. Figure 4-1 shows the mapping for the logic in Figure 4.-2,
which is put onto two boards, and consists of 85 chips.

There are two basic statements in the layout language, the WITH statement and the

assignment statement. The WITH statement is used to specify that the logic inside a given

macro call is to be laid out next. It has the general syntax:

WITH <logical-location> AT <physical-location>;

<WITH and assignment statements to place contents of macro>

END;

where the <logjcal location> is the logical location label given in the macro call, and the
<physical_ location> specifies a base location for all the logic laid out inside the WITH

statement. The <physical-location> can specify a base board, row of a board, column of a board,

and section of a chip, or can default any of these to be zero. For example, the location string

"BIR2(C3S4" specifies a. base board of I, row 2, column 3, and section 4. The board, row,

column, and section can be given in any order.

The assignment statement is used to place either a terminal component or a macro. If it is used to

place a terminal component, then it is of the form:

<logical. location> = <physical- location>;

) When it is used to layout a macro, then it is of the form:

<logical location> = <physical location-vector>;

where <physical location_ vector> specifies a vector of board, row, column, and section tuples,
which are assighed to each component generated by the macro, in the order they are generated.
~ The macro is expanded in a depth first expansion, where the macro and component calls in a

given macro are evaluated in alphabetical order according to their logical location labels. The
location vector is specified by the use of an iterative notation. A given dimension, where a’

dimension is either a board, row, column, or section, can be specified by the form "L(F,T,B)",
where L is a "B", "R","C", or "S", standing for board, row, column, and section, and F, T, and B

are in tegers, which generate a sequence of values from F to T by B. The increment may be
defaulted to 1 by using the alternate form "L{(F,T)", and a single value may be produced by
writing "IL" followed by the value. A number of dimensions can then be specified with a space
between them, where they will be evaluated from right to left, to form a vector of location tuples.

For example, the expression "B(}1,2) R3 C(h3-1)" evaluates to a vector which has 6 location
tuples, (( 1,3,h), (1,3,4),(1,3,3),(2,3,5),(2,3,4),(2,3,3)), where each tuple specifies a board, row, column, in
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that order. In addition, a sequence of these location specifiers can be given with a comma

between them, which are evaluated from left to right. For example, this last expression could

have been written as "Bl R3 C(5,3,-1),B2 R3 C(5,3,-1)".

The first thing that is laid out in Figure 4-1 is the macro “36 BIT ALU 10181",
which has a logical location label “A”, and a base location at board 1. The next macro laid out

is then the "IB REG 10176" with logical location label “RI”. The clock line of that register is
driven from the signal “REG CK BUF", which is generated from a three-output gate, and has
three physical versions. The layout file then specifies that the common clock (“CC”) pin of the

10 176 should use version 1 of "REG CK BUF”. In the layout specification of the "36B 10174”
multiplexer, the first 18-bits are laid out in the high form, and the last 18-bits are laid out in the

reverse form, using both the true and complementary outputs on the 10101 gate to drive the select
li ties.
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WHITH AR AT BI; 136 BIT ALU 10181
8 = R1 C3;

1 = R2 C3;

2 = R1 C6;

3 = RZ (C6;

4 = R1 C9;

5 = R2 C9;
6=R1 C12;

7 = R2 C12;

8 = Rl C15;
A = R3 C3;

B = R3 C7;
C = R3CILi;

0D = R3 C15;
END; '0F 36 BIT ALU 18181

R1=Bl1 R3 C2 SO

ccc = 1;

R2 =B1R 3 C(4,6)5(8,5),
B1 R3 C (8,18)5(8,5)
: CC = 2%18,3x18;

R3 = Bl RS C(1,11,2) 5¢(8,3),

Bi R5 C(13,15) 5(8,3);
Gl1=B1RS5 C8 SO;

G2 = BIRS C 6 5(8,1);
G3 = Bl R3 CI SO;

tl =BR1R 4C(1,15)5(9,1),
Bl R3 C(12,14)5(8,1)

/ H18 L18;

HITH CTL AT B2; IPROCESSOR CONTROL
R = R(1,3) C(1,8)

: AB = 1x8, 2x8, 3x8

: Rl = 1-8 2%8, 3x8
: A2 = 1x8, 228, 3x8
: A3 = 1x8, 2x8, 3x8
+ A4 = 1x8, 2x8, 3x8

: AS = 18, 2+8, 3x8

: Ab = 1x§ 2:8 3x8

: A7 = 1x8, 2x8, 3x8;

C = Cll R(},2);
Gl= R 3 C958;
G2= R3CIB SI;

G3= R(1,2) C(9,10) S(8,1);
END; '0F PROCESSOR CONTROL

ENO;

Figure 4.-1

Layout for Simple Processor
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5. Router

The major function of the Router (R) is to sequentially route the runs contained in the list RUNS

output by the Macro Expander, and to produce all necessary wire lists and associated
documentation to allow the debugging and maintenance of the object machine.

A sample RUNS file is shown in Figure 5-. RUNS is organized in to buses,

which are vectors of runs, in order to allow the documentation to be organized into buses. Each

run consists of a set of connected stops. Buses are sorted in alphabetical order, and runs
within a bus are in alphabetical order. Each stop represents a physical pin in the format

<TPN>{-<SEC>}:<SKT><PART>.<PIN>{/<VER>]}

where TPN is the component's terminal pathname, SEC (optional) is the section number

within the component, SKT is the socket name, PART is the physical part name, PIN is the
pin number within the section, and VER (optional) is the version number for the run

connected to this pin. The section number is assumed to be zero if none is given.

The RUNS file does not make reference to cables or I/O pins. A separate file, 10S, which can

either be hand-generated or automatically-generated, assigns I/O pins to runs. An example of
[OSis shown in Figure 5-2. 10S assigns one connector pin of a cable to a run;

assignment of the connector pin on the opposite end of the cable is implied by the CBLS file.
If a run crosses multiple boards, then 10S assigns one I/O pin per board crossing, in the order
that the boards are to be crossed.

R can allocate I/O pins automatically, constrained only by the availability of cables connecting the

appropriate boards (specified in the CBLS file). During automatic allocation, if a run needs I/O

pins and has none assigned in IOS, R will select the best (in a measure of total run length) set of

1/O pins which connect the appropriate boards, permanently allocate those to the run, and output

the allocation to the 10S file. The search order is random over the remaining free I/O pins in
order to minimizing bunching.

1/0 pin allocation, and indeed all other functions of R are purely sequential and involve
essentially one pass over the RUNS file; no decision is ever retracted.

. The DEFS file is used to make the transformation from the pin number in RUNS to a DIP pin

number. A n example from the DEFS file is shown in Figure 5-3. For each IC

type, DEFS defines the power pins, and for each section shows the mapping from pins of

the section to DIP pin numbers. For each pin, DEFS shows the electrical characteristics

including leakage currents and rise times, the pin type (eg. ECL input, ECL output,

. differential input, VBB, not connected), and a field defining a mnemonic pin function. One

pin from several different sections may map to the same DIP pin number.

Since 24-pin DIPS plug into three 1C patterns (on an adaptor which in additions covers the
positions reserved for two SIP resistor packs), R contains a mapping function which maps 24-pin
DIP pin numbers and socket locations onto true physical pin numbers and socket locations.
Mappings for adaptors of other sizes or shapes can be easily added.

R routes each single-board section of each incoming run optimally according to a cost

function which is presently total wire length (under XY segment routing), but can be varied

considerably, even to produce the minimax arm length (where an output divides a run into

two arms) which is a good approximation of minimax delay. The computational complexity
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and memory requirement of the routing algorithm is O(N2x2N), where N is the number of
stops. For the S-1 Design, a 2-megabyte IBM/370-168 was used to optimally route runs of up to
1 | stops. The use of an algorithm which finds an optimal route according to the cost function

has proven to be extremely prudent. Since the class of valid outputs of the algorithm can be
easily understood, it is convenient to make modifications of the algorithm for special

purposes. For example, because stubbing is not allowed, if a run has two I/O pins on a board
(ie. if a run goes through a board), then the I/O pins must be on the ends of the on-board

section of the run. Such on-board sections are obtained merely by constructing a non-symmetric

distance function. Furthermore, when routing to minimize changes to a board which has already

been wrapped, the cost function simply diminishes slightly the cost of a segment which connects

two previously connected pins.

After routing, R allocates twisted pairs using a parameter-driven algorithm. All segments of a

run longer than X inches are twisted, and no segments under Y inches are twisted (where for the

S-I, X is 6, and Y is 2). Depending upon the distance of a segment from the low-impedance

output and the segment’s length, the algorithm chooses to twist segments between X and Y inches.

Non-differential runs which are twisted require ground pins to ground the shield wires. R simply

locates the ground pin which is nearest the associated signal pin and allocates it, removing it from

future consideration in the ground-pin search. Shield wires of adjacent twisted-pair segments are

grounded on the same pin. Differential runs which are twisted do not need ground-pin

allocation. Ground pins are also allocated for the shield wires of segments which connect to I/O

pins, since alternate wires of cables must be grounded. Where shield wires are too short for

twisting according to the twisted-pair algorithm, they are left untwisted.

After routing a run, R allocates terminating resistors automatically. A resistor is always connected

to the far end of the longest arm of a run. If an output divides a run into two arms both of non-

zero length, then a resistor is placed at the end of each arm, resulting in a 50-ohm DC load for

each output. If heavy loading occurs near the output on a single-armed run, then a resistor is
connected to the output to decrease the fall time. Two l100-Ohms resistors are found and

allocated for each side of a differential run, which is forced to be single-armed. Resistor

allocation is similar to ground-pin allocation; the closest unallocated resistor is chosen and

allocated. Since resistors are always placed at the ends of runs, the segment lengths to resistors do

not affect delays to inputs. |

i In the cases of both resistors and ground pins, the basic philosophy was to provide enough
surplus resources on the boards that a simple algorithm with no backup would be capable of

generating small search distances. In practice, the simple algorithm was quite satisfactory, yielding

average orthogonal search distances under 0.5 inches for ground pins and resistors.

After routing a run, R makes an estimate of the worst case delay to any input of the run by

assuming that the run is a perfectly terminated transmission line with distributed capacitance

equal to the intrinsic distributed capacitance of the wire-wrap wire plus the lumped capacitive

loads corresponding to the inputs and outputs. Under these assumptions, the approximate delay

is given by

D = LxTOxSQRT(1+CL/(LxCD))

where TO is the unloaded delay per unit length, L is the length, CL is the total lumped

capacitance, and CD is the distributed capacitance per unit length. This approximation has

proven to be quite satisfactory for screening runs, with typical relative errors of the order of 20%

(consistently high).
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R outputs the file TRLIN describing runs selected by the screening algorithm based on estimated

delay. TRLIN is used by TRL in simulating the complete electrical behavior of the runs.

R checks for many syntactic and semantic errors, most of which are also detected at higher levels

in the design process. R does not place restrictions on the loading of runs, since the designer is

expected to make all decisions about whether. the actual reflections shown in the output of TRL
are acceptable based on his knowledge of the criticality of each signal.

R produces many output files which allow automatic construction and which facilitate the

debugging of the processor. The major outputs are the board-state file (NEWBRDS) and the

listing of error-free runs (OKRUNS). OKRUNS describes the routing and characteristics of each
run in the machine, including inter-board segments of runs (see Figure 5.-4).

NEWBRDS is used to allow incremental changes in a constructed machine, as explained below.
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$BUS=CTL :BR RDR<8:7>;

BR ADR<B>= CTL.R#1:2R1:MB7842.15,
CTL.C.B.X:2R1L: 10916.11;

BR ADR<l>= CTL.R#2:2A2:MB7042.15,

CTL.C.8.X:2R11:10016.18;

] BR RADR<2>= CTL.R#3:2A3:11R7042.15,
CTL.C.8.X:2R11:10816.9;

BR ADR<3>= CTL.R#4:2R4:MB7842.15,

CTL.C.0.X:2R11:100816.7;
BR ADR<4>= CTL.R#5:2A5:MB7842.15,

CTL.C.1.X:2B11:10016.11;
BR ADR<5>= CTL.R#6:2A6:MB7042.15,

CTL.C.1.X:2B11:10816.18;
BR ADR<B>= CTL.R47:2R7:MB7842.15,

CTL.C.1.X:2B11: 10616.9;

BR ADR<7>= CTL.R#8:2R8: MB7842. 15,

CTL.C.1.X:2B11:18016.7;

$BUS=CTL :BRANCH ALN;
BRANCH RLW= CTL.R#9:2B1:MB7842.15,

CTL.G2-1:2C10:18185A.4;

$BUS=CTL :BRANCH NEG;
BRANCH NEG= CTL.R#18:2B2:MB7842.15,

CTL.G1:2C93:101B4R.4;

Figure 5.-i
RUNS File Input to Router
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TOP :R SEL <

| = 1B2 -36>

TOP :ALU CTL <

0 = 1B2 -26;

1 = 1Bl -20;

2 = IB -28;

4 - 1Bl -56;
5 = 1B2 -22>

TOP :0UTPUT SIGN «<

= 272 -~-50>

TOP :REG RDR <

4) = IB] -40;
I =1B1 42;

2 =1B1  -44:

3 = 1Bl -46>

TOP :REG WRITE L «

= |B2 -36>

$END;

Figure 5.-2
Example of IOS File
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$DIP 190181 'FAIRCHILD!

TYPE USE TYP MA MAX MA

MAC | PUR

1} 8.8 VCC 8 8

16 16 8.8 VCC 0 0

8 8 -5.2 VEE 20. 26.

! TYPE USE HL PF LOW MA HI MA ----RISE----1

MAC 4 10101

4 4 7 13 10 El 1 5.0 8.881 0.265

12 12 12 12 12 El IC 12. 8.881 0.550

5 5 6 9 11 EO T 5.0 1.5 2.2 3.3

2 2 3 15 14 EC TL 5.0 1.5 2.2 3.3

Figure 5.-3

Example of Chip Definition in DEFS
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TOP + R<34> 7PF  4AIN  4BU 0.8NS 2ST 6X BER 4 1SLN

(B81 R1 C15) AIS- 2R 22 %R108 1.7 IN

(B1 R1 C14) P14-15 21 A2 18 10181 7.8 PF 2.7 IN R.8.X

(B1 R3 C14) Cl4- 2 T 2 18174 5.8 PF M35

TOP : A<35> JPF 4IN  4BW B8.8NS 2ST OX BER  417LN

(Bl R1 C15) A1S5- 3R 22 #R1880 1.2 IN
(B1 RI C14) Al4- 2 21 A3 21 10181 7.6 PF 2.7 IN R.8.X

(B1 R3 C14) C14-15 T 2 18174 S1 5.8 PF M36

TOP tA SEL<8> SPF 24IN 4B 3.8NS 2ST 1X OER  428LN

(B1 R5 (6) E6 - SR 21 «R108 8.6 IN

(B1 RS C6) E6 -4 E6 -136 22 1 4 10101 5.8 PF 17.5 IN TWP G2#41
(B1 J R2 ) J31-24 J31-23 «CONN 2.8 IN CBL

(B2 J T2) JS -24 J5 -23 21 CONN 3.6 IN

(B2 R3 C6) C6 -15 C6 -16 T 15 NB76842 8.8 PF CTL.R#22

TOP tA SEL <> SPF 24IN 5BH 3.8NS 2ST 1X BER 422LN

(B1 R5 C6) E6 - 7R 21 ~ #R100 8.8 IN
(Bl RS C6 ) E6 ~7 E6 -186 22 | 4 10101 SI 5.0 PF 17.8 IN TWP G242

(Rl J B2 ) J31-38 J31-29 %CONN 2.8 IN CBL

(R2 J T2) J5 -38 J5 -29 ZI *CONN 3.7 IN

(B2 R3 C7) C7 -15 C7 -16 T 15 NMB7042 8.0 PF CTL.R#23

Figure 5.-4

OKRUNS Listing Output from Router
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6. ECO Subsystem

SCALD allows incremental design changes in the hierarchical drawings to be reflected in actual

hardware updates in a constructed machine. In short, the drawings are edited, then SCALD runs,

producing a new set of documentation including an unwrap list and a wrap list which update the
machine to the design represented in the new-drawings.

The current machine state is always retained in the board-state file, NEWBRDS (see Figure
6.-1). NEWBRDS contains a record of each DIP, ground clip, single wire, and

twisted-pair wire on each board of the machine. NEWBRDS thus forms a permanent, readable
record of the physical machine state which is independent of the original input files, and of the

programs which processed those files; knowledge of the machine state is never compromised by

changes in SCALD.

When changes to a board are made in the laboratory without running the design system, they are

carefully entered into a log book, and later edited into the board-state file.

Because R allocates resistors and ground pins automatically, processing runs sequentially in the

order of the RUNS file, it is conceivable that a slight change in the drawings, even the change of

a signal name, would result in the reassignment of a large number of resistors and ground pins.
To avoid this problem, R inputs hints which are generated by the program HINT on the basis of

the previous board state and the current RUNS. Thus when R routes runs, it examines the set of

hints which specify the resistors, ground pins, routes, and levels used in the previous board state,

and R minimizes the number of changes required to implement the new design. All automatic

decisions made by R are either absolutely repeatable independent of signal names and input

ordering, or are strongly directed by hints based on previous decisions.

When the new board state has been completely defined, the wrap list, unwrap list, and associated

documentation are generated by an independent program which simply compares the old board

state and the new board state.



6. ECO Subsystem 19

STATE = 1;

BRD | DIP: 10101 , £6;
BRD 1 DIP: 1018S , £83

BRD 1 DIP: 10110 , C1
BRD 1 DIP: 10145A , E 1;
BRD 1 DIP: 1B8145R , E33
BRD 1 CLIP: Cl- 1

BRD 1 CLIP: C 1-15
BRD | CLIP: € 2-1

BRD | CLIP: C 3-1
BRD 1 CLIP: C 4-1 ;

BRD | CLIP: C 5-1

RRO I CLIP: C 6-1 ;
BRD 1 CLIP: C 7-1 ;

BRD | CLIP: C 8-1
BRD 1 CLIP: C 9-1

BRD | TMP: 19.5 SUG 22 , E 6- & , E 6-136, J31-24 , J31-23 , TOP :R SEL<®>
BRD 1 BARE: 2.6 SUG Z1 , E 6- GR, E 6-4 , TOP :A SEL<B>

BRD 2 BRRE: 5,4 SUG 21 , J 5-23 , C 6-16 , TOP 1A SEL<8>
BRD 2 BARRE: 5.6 SUG 2¢ , J 5-24 , C 6-15 , TOP :R SEL<8>

Figure 6.-1

Example NEWBRDS File
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7. BREF Subsystem

The BREF Subsystem inputs a board state file and produces various reference listings for quality

control and debugging. Specifically, it produces a listing which shows the signal name of the run

connected to each pin, it produces listings for clip checking, continuity checking, checking the

resistance of runs to ground, and counting the wraps on pins.

8. Transmission Line A nalysis

R outputs descriptions of selected runs to TRL, the transmission line analysis program, which

prints on the line printer the graphical waveform of a signal edge on each such run (see Figure

8-1). The selection of runs to be considered for output to TRL is parameterized

and is based on the estimated delay of the run. In the S-I development, only one run per bus

was output; because the layout was done by hand in a very regular manner, and therefore
individual runs within a bus are quite similar.

The run to be simulated is described as lumped resistive or capacitive (but not both) loads

connected in a daisy-chain by segments of known propogation delay and impedance. The TRL

analysis is an event-driven simulation. The gate output voltage waveform is described by the

exponential:

V = C*(1-e

where typically "C" is 0.8 Volts and “A” is 0.7/ns. The output waveform is propagated
algebraically to the first load, which algebraically reflects part of the energy and transmits part of
the energy. Both the reflected and transmitted wavelets are followed in the same way as the
original wave was followed, thus the procedure is recursive. Any wavelet with amplitude less

than a threshold parameter is ignored. After all wavelets are less than the threshold, the voltage
at any point P at any time T can be evaluated by summing the transmitted waveforms evaluated
at P and T. TRL prints the voltage waveform at each node along the run. Note that all wavelets

are collected and simplified symbolically until the final evaluation.

For reasons of numerical stability, it was found that an effective way to determine which

. reflections and transmissions should be followed was to assume a sinusoidal output waveform in

an initial pass (thus all resistive and capacitive loads simply attenuate when reflecting and when

transmitting) and to follow the same reflections and transmissions in the exponential analysis

which yields the final waveform amplitudes.

. Qur experience in debugging the object machine has shown that the accuracy of these simulation

results are within the tolerances of the input parameters such as segment impedance and load

capacitance.
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TOP tA SEL<B> SPF 24IN 4BH 3.8NS 2ST 1X GER 420LN

S

PR) USES JJESUSVU JUS SUSYJS

R5C 5 40R

-8.6|

|
0.71

8.8]

|521212121212121212121211
-8.9] 2

| 5 2
-1.8] 1

5 21

2

1.11 5 _

21

5 21

“1.21 21

5 21

5 21

-1.31 5 21

21

S 22

“1.41 5 11

55 221

| 5 221
“1.51 55 2211

55 22121

555 22121211

-1.6] 555 222121212121212111
555555 22212121212121241118111811818102018148111

555555555555 555555555555555555555555555555555555252525252525252525252525215

-1.71 555555555

_ -1.81
|

|
1.91

22.8)

2] 4 | 6 8} 18] 12] 14]

NODE 2 3 4 5%

ABS XING 3.82 3.74 1.28 091 0.42

Figure 8.- 1
Example TRL Output
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9. Experience

The experience in using SCALD ta design the S-I has indicated that SCALD is very effective in
reducing the time required to implement a large-scale processor. The entire processor design was

completed in 24 man-months, while the partitioning and layout required an additional 3 man-

months. Debugging the hardware with the SCALD-generated listings has proceeded very well,

and the lack of a conventional print set with all of the logic drawn out proved not to be a

problem. The ability to design correct logic conferred by the intrinsic clarity of the drawings was

verified when the first major portion of the machine (1600 chips) worked at the designed speed

(‘70 ns per cycle) after the elimination of only 6 minor logic bugs, all involving no more than a

single chip.

10. Extensions and Improvements

We have identified the following areas as being candidates for improvements in the Design
System:

- A more general language is needed for describing the details of technology and
physical packaging. Knowledge of these details is currently largely built into the

structure of a 15000-line PASCAL program, and that program would need to be
extensively modified to accomodate multiwire ECL- 10K, for example.

~- The Physical Design Subsystem could be made to drive any of a number of

available CAD systems which handle the physical design in various technologies
and packaging systems.

- Automatic layout of sub-modules is desirable, but this capability needs to be

carefully considered for its effects on the generation of ECOs.

—~ A version allocator needs to be designed which would eliminate the need to assign

physical versions to pins by hand, but this capability also needs to be carefully

considered for its effects on the generation of ECOs.

- Feedback from the Physical Design Subsystem to the source language level (the

hierarchical drawings) would be highly desirable. In particular, the average and

range of the delays of a vector of signals could be automatically entered onto the

source drawings to aid in design verification.
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11. Conclusions

The SCALD Physical Design Subsystem facilitates the implementation and maintenance of a

structured design expressed in terms of a Macro Language. The Physical Design Subsystem
handled all details of the physical design for the S-I Mark | Processor except layout of

components, assignment of versions, and positioning of cables. incremental changes can be made

in the structured drawings and are reflected in minimal wrap/unwrap lists. The Physical Design
Subsystem is presently specialized to the particular packaging and technology of the S-I Mark 1

Processor, but can be generalized to allow the rapid creation of additional particular physical’
design subsystems.
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Al. Syntax of Layout Language

The following syntax diagrams give a detailed definition of the syntax for the text form of the
SCALD layout language.
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