
SOFTWARE RESTYLING IN GRAPHICS

AND PROGRAMMING LANGUAGES

by

Eric Grosse

STAN-CS-78-663

SEPTEMBER 1978

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

SOFTWARE RESTYLING IN GRAPHICS AND PROGRAMMING LANGUAGES

by

%

Eric Grosse

"Department of Computer Science, Stanford University, Stanford, CA 94305

This paper was presented at the 1978 Army Numerical Analysis and Computers

Conference in Huntsville, Alabama, March 1, 1978.

Research supported in part under Army Research Grant DAHCO04-75-G-0195
and in part under National Science Foundation Grant MCS75-13497-A01.

SOFTWARE RESTYLING IN GRAPHICS AND PPOGRAMMING LANGUAGES

Eric Grosse

Computer Science Department
Stanford University
Stanford CA 94 305

ABSTEACTI. The value of lar ge software products can be cheaplyincreased by adding restyled interfaces that attract new users.
As 2xamples of this approach, a set of graphics primitives and a
lanquage precompiler for scientific computation are described.
These tvo systems include a general user-defined coordinate
system instead of numerous system settings, indention to specify
block structure, a modified indexing convention for array
parameters, a syntax for n-and-a-half-times-*round laops, and
engineering format for real constants: mest of all, they strive
to be as small as possible,

9.3 PHILOSOPHY. Kernighan and Plauger [1976] describe
explicitly and by example three precepts cf the Softvare Tools

oo philosophy:
- trim out the inessentials

- build 1t adaptively
- let someone else do the hard part

Two more examples, driven by the same philosophy, are given
below. The tasic idea 1s to obtain high leverage by taking an
existing, powerful piece of software and make 1t useful to more
people by designing a new interface. Webster's calls this
process facelift ing: "a restyling intended to increase comfort
or salability."

1.0 JUSTIFICATICN FOR STILL ANOTHER PRCGRAMMING LANGUAGE.

Fortran will no doubt remain for many years the most important
programing language for scientific computation. When used
carefully and with discipline, it yields remarkably portable
codes; this 1s 1ts greatest virtue. But, as orogrammers have
complainedfar years, it also has many faults:

- awkward syntax for statements, strings, names
- primitive control structures
- DO loop restrictions
= NO macros

Porrtran preprocessors, such as MORTERAN [Cock+ Shustek 1975], have
eliminated many of. these disadvantages and therefore have become
very popular. Unfortunately, they reduce portability somewhat,
since either the preprocessor must be installedat the new site

or 1llegible ‘object! Fortran sent there. More importantly, such
preprocessors have only a minor effect on inherent problems of
Fortran:

- dynamic allocation is either unavailakle or requires the use
of rather confusing tricks

- no PBACEDURE VARIABLE type
- no STRUCTUPREtype

(Labelled common blocks, since they do not use the
| ccabinatorial possibilities of procedure parameter ization,
| are less flexible.)

- no O-origin indexing
| - array bound lnformaticn is not automatically passed

- nc vector operations

| - NO recursion

The PCRT library makes dynamic allocation one of its most
| advertised features: ®We have found that use of dynaeic storage

allocation in PORT leads to more clearly structured programs,
cleaner calling sequences, improved memory utilization, and

| better error detection." (Pox+Hall+Schryer 1977) Adding a stack
| tc Portran is a messy affair, however, as shown in figure I,
! which contains two alternate methods in ECET for allocating an

| SUBROUTINE LBB(A,N)

| COMMON /CSTAK/DSTAK(500)
SUBROUTINE LBB(A,N)

DOUBLE PRECISION DSTAK

| INTEGER ISTAK (1000) COMMON /CSTAK/DSTAK(500)
REAL A(l)

REAL RSTAK (1000) DOUBLE PRECISION DSTAK
INTEGER ISTACK (1000)

| EQUIVALENCE (DSTAK(1) ISTAK (1) Ni ALD 10EQUIVALENCE (DSTAK(1) .RSTAK (1)) EAL RSTAK(1000)

| x EQUIVALENCE (DSTAK(1),ISTAK(1))I = ISTKGT(2*N,2) ’
| IR = ISTKGT(N.3) EQUIVALENCE (DSTAK(1),RSTAK(1))

| II = ISTKGT(2*N,2)

| { code referring to RSTAK(IR+n) and ISTAK(II+m) IR = ISTKGT(N,3)
probably ending with code to store the stuff [1from the real scratch storage into array A ALL BB(A,ISTAK(I),RSTAK(IR),N)

| | CALL ISTKRL(2)
CALL ISTKRL(2) RETURN

| END
RETURN

END

figure 1

INTEGER and REAL array.

Other proposals are even more complicated. (After a 7 page
description of DYNOSCR, Huybrechts{ 1977) states: "This paper
gives cnly the basic features of the DYNOSOR system. A more
sophisticated use allows the user, once he is familiarized with
the system, to improve greatly the speed of programs using it.®)

PL/L, which 1s now becoming fairly widely available in some form,
nvercomes all these difficulties. However, so huge a language
tends to overwhelm people, and because of tricky precision rules,
silant type conversions {as in I=J=0;), and the like, learning
only part of the language 1s dangerous.

Other languages, while beautifully designed, have their own
fl avs. For example, Algol W does not have a robust interface to
Fcrtran; in addition to this [Eohilner 1977], Pascal places
painful restrictions on arrays.

1.1 T. Thus another apprcach seeas warranted, which can combine
the needed features of PL/I, the deliberate syntax of ALGOL, and
the low 1mplementation cost of the Fortran preprocessors. such
an approach has produced the language T, intended to assist 1n
the implementation and documentation of algorithms for scientific
computation. The principal aims have been ease of reading and
writing, low implementation cost, and reasonable efficiency.

Appandix T gives the foreal language proposal, specifying the
syntax according to Wirt h's proposal [1977]. Since T 1s similar
to Portran, Algol 60, and PL/I, a complete specification of the
semantics nay be omitted uithout confusion, To provide the
heuristics behind the design choices and to give an overview of
the language, various aspects of the folowing example will be
discussed.

TRIP EAR

¢ example of T and G systems:
¢ various views of the sum of three Gaussian peaks:
$ Eric Grosse Stanford University

REAL: AZIM, ELEV, $#¢ VIEWING ANGLES FOR SURFACE PLOT
BELERR, ABSEFR,# ERROR TOLERARKRCES FCR ODE

T, TOOT, # INDEPENTENT VARIABLES OF TRAJECTORY
NOR MYP $8 2 NOBM OF THE GRADIENT

REAL (2): LL, UR, # CORNERS OP RECTANGULAR DOMAIN OF PUNCTION
ORIGIN, # FOCAL POINT FCR SOFRPACE PLOT
X0, SCALE, #¢ COORDINATE TRANSFCRMATION PAR AME TERS

Y, YP #¢ LOCATION AND GRADIENT FOR TRAJECTORY
REAL (142) : ODEWOPK
INTEGEE(S): ODEIWOFRK

3

DEFINE (E,20) # density of FP samples;
REAL(-P: P,-P: I?): F TABLE

REAL (3): LEVEL #¢ CONTOUR LEVELS
INTEGER: IX, J,

IFL AG # DIAGNOSTICS FLAG POR ODE

STRUCTURE: PAPA?'! #¢ LOCATIONS, HEIGHTS. AND WIDTHS OF PEAKS

REAL (3,2): X
REAL (3): H, W

STRUCTURE: PP $ PLOT PILE

INTEGER(500) : WORK

PROCEDURE: GOPEN, GCLOSE, GPICT, GCONT, GSURF, GLTYPE,

GJUMP, GDRAW, GTRAN1

FORTRAN PROCEDURE: CDE, DF, STASH

PROCEDURE () REAL: F

$8 SET UP PARAMETERS

BLANK SEPARATION (2)

REAL DIGITS (3)
GET DATA (AZINM,ELEV)

PUT DATA(AZIM ,ELEV)

X(1,1 := 0

X(1,2) := 0.5
X(2,1) := -0.43'301 2702
X(2,2) = -0.25
X(3,1) := =X(2,1)
X (3,2) := X(2,2)
PUT DATA ARRAY (X)

GET ARRAY (H)

PUT DATA ARRAY (H)
2ET ARRAY (W)

PUT DATA ARRAY (U)
STASH(X,H,¥)

FOR(=F <= I <= P)
Y(1) := FLOAT (I) / P
FOR(=P <= J <= P)

Y(2) := FLOAT (J) / P

FF TABLE{(I,Jd) := P(Y,PARAM

SURFACE PLCT

OPEN(' VEP12FF* ,PF)
PICT (EF)
LL z= -1

UR :=1

ORIGIN =:= 0.5

GSURF(LL,UK,FTABLE, AZIM, ELEV ,ORIGIN,O,.25, PF)

CONTOUR PLOT

G PICT (PP)
SCALE = 0.3333

X0 := -0.5/SCALR (1)
GTRAN1(X0,SCALE,PF)
GET AFERAY (LEVEL)

‘ PUT DATA ARRAY (LEVEL)

CONT (LL,UR,FTABLE,LEVEL,PP)
GLTYPE('DOT' ,PF)

GET AFREAY (LEVEL)

PUT DATA ARRAY (LEVEL)
SCONT(LL,UR,FTABLE,LEVEL, PF)

$ CCMPUTE AND PLOT TRAJECTORY

RELERR :=10(-6)

GLTYPE(*SOLID*,PF)

ABSERR == 10 (-6)

WHILE(~ END OF INPUT)
GET ARRAY{ Y)

PUT DATA ARRAY(Y)
T z= 0

GJUMP(Y, PF)
IFLAG := 1

WHILE(NORMYP > 1(-13) & 1<=IFLAG & IPLAGC=3)
TOUT :=:= T + 10(-3) /NORMYP

a CDE (D¥,2,Y,T, TOUT,RELERR ,ABSERR,IFLAG,ODEWORK, ODEIWORK)
CASE

2. = IFLAG

GDRAW (Y, PF)

3 = IFLAG

PUT('CDE DECIDED EBROR TOLERANCES WERE TOO SHALL.'")
PUT('NER VALUES: '")
PUT DATA (RELERR,ABSERR)

ELSE

PUT(*OPE RETURNED THE BRRCR FLAG:')
PUT DATA(IFLAG)

FIRST

DF(T,Y, YP)

NORMYP := NORN2 (YP)

GC LOSE (PF)

F (Y, PARAM) Z
REAL (): Y
REAL: Z, NCEMSQ
STRUCTURE: PARAM

REAL (3,2): X
REAL(3) : H, W

INTEGER: I

2 := |

FOR(1 <=1I<= 3)
NORMSQ := (Y(V)-X(I,1))*%x2 ¢ (Y (2)=-X(I,2)) *%x2
Z t= 7 ¢« H (IT)*EXP(-0.5*W(I) *NORMSQ)

5

1.2 CONTRIL AND CTHEFP SYNTAX, Perhaps the most striking feature
the Algol veteran sees im this example 1s the complete absence of
BEGINs and ENDs. Not only 1s the text 1ndented, but the
indention actually specifies the block structure of the program,
Such a scheme was apparently first proposed by Landin { 1966].
Except for an endorsement byKmuth [1674], the idea seems to have
been largely 1ignored.,

Ideally, the text editor wculd reco nize tree-structured programs
[Hansen1971). In practice, text e Btors tend to be line
oriented so that moving lines about in an indented program
requires cumbersome manipulation of leading blanks, Therefore
the current implementation of T uses BEGIKR and ERD lines,
translating to indention on output. Tbus the input

STRUCTURE: PARAM

((

FEEAL(3,2) : X

REAL (3): H, W
))

produces the output
STEUCTURE: PARAM

REAL (3,2): X

FEAL(3): H, W

Whatever the implementation, the key idea is to force the block
structure and the indention to be automatically the same, and to
reduce clutter from redundant keywords.

Blanks are insignificant outside of strings. Mathematical tables
have long used blanks inside numeric constants, as in

PI := 3. 14159 26535 89793

for readability. Blanks 1n identifiers alsc can improve
readability, while reducing the chance of misspelling and easing
the pain of name length restrictions imposed by the local
operating systen.

In accordance with the recommendations of Scowen¢Wichmann [1973),
comments start with a special character, #, and run to the end of
the physical line.

The small reserved word list eliminates the need for a stro piling
convention. The psychological advantages of this approach Rave
beea elaborated by Hansen { 1973].

The form of the assignment and procedure call statements followsthe clean, clear style of Algol oC. To make macros more
understandable, their syntax and semantics match those of
procedures as closely as pcssible.,

In addition to normal statement se ugneing and procedure calls,three control structures are provided. The CASE and WHILE
statements are illustrated in this typical program segment:

0

WHILE(NORMYP > 1(~3) & 1<=IFLAG & IFIAGC=3) |
TOUT := T + 10 (-3)/NORMYP

ODE (DFP, 2,Y,T,TOUT ,RELERR,ABSERR,IPLAG,ODEWORK,ODEIWNORK)
| CASE

2 = IFLAG

GDRAW (Y,PF)
3 = IFLAG

PUT ('ODE DECIDED ERROR TOLERANCES WERE TOO SMALL.)

PUT ('NEW VALUES:')
PUT DATA (RELERR, ABSERR)

ELSE

PUT (*CDE RETURNED THE ERROR FLAG:')

PUT DATA (IFLAG)
FIRST

DF (T,Y, YP)
NORMYP = NOKM2(YP)

The CASE statement 1s modelled after the conditional expression
of LISP: the boolean expressions are evaluated in sequence until
one evaluates to YES, or until ELSE 1s encountered. The use of

indention makes it easy to visually find the relevant boolean
expression and the end of the statement.

One unusual feature of the WHILE loops 1s the optional FIRST
marker, which specifies vhere the loop is to be entered. In the

‘ example above, the norm of the gradient, NORMYP, is computed
before the loop test 1s evaluated. Thus the loop condition,
which often provides a valuable hintatout the loop invariant,
appears prominently at the top of the loop, and yet the common n-
and-a-half-times—* rourd loop can still be easily expressed.

The FCE statement adheres as closely as practical to common
mathematical practice.
FIJR(1<=I <= 3)

NORMSQ == (Y(V)=-X(I,1))*%2 + (Y(2)-X(I,2))*%x2
Z := Z + H(I)*EYP(-0,.5%W(1) NOR MSQ)

Sevaral years experience with these control constructs has
demonstrated them to be adequately efficient and much easler to
maintain than the alternatives.

Procedure nesting 1s not used for two reasons. First, textua 1
nesting that extends over sany pages is difficult for a human to
keep track of. 3econd, programs typically contain several high
love2 procedures calling a single primitive, so a tree
representation 1s 1nappropriate anyway.

By removing the nesting of procedures, hovever, ve worsen the
problem of entry point hiding that arises vhencombining programs

- from many sources into a single library. A solution to this
problem is to havean official mame for each procedure, coded
along the lines of IMSL, and also a more mnemonic nick name
(which users can pick for themselves if they like). The macro

]

processor which is built into T can then be used to change all
occurences of the nick names into the corresponding official
rames.

1.3 DECLARATIONS. The fundamental scalar types are INTEGER,
REAL, and CCMPLEX, from which arrays and structures may be bnflt
up. As the example

REAL (-P:P ,~P:P)

illustrates, general upper and lower bounds are allowed.

The upper bound expression 1s omitted for a formal array
parameter, so that an appropriate value car be taken from the
length of the corresponding actual array argument. The origin of
an actual array argument need not match the origin of the
corresponding formal array parameter. For example, if the actual
argument A was declared REAL(0: 7): A and the formal parameter B
was declared REAL(): B, then B(8) will correspond te A(7). Host
languages, when they allow lover bounds at all, do not perait
this flexibility, which 1s used 1n the exarple program when a
matrix with lover bound -P 1s passed to a general purpose library
routine which assumes a lover bound of O.

Structures of arbitrary depth maybe declared. As the examples
STRUCTURE: PARAM

REAL({(3,2): X
REAL(3): H, ¥

STRUCTURE: PF

INTEGER (500) : WORK

suggest, structures are useful passing collections of related
data, without the need for long parameter lists. This makes
feasible the prohibition of global variables 1n a drastic attempt
to narrow and make more explicit the interface between
procedures. Euclid [Popek¢others 1977] has emphasized the
importance of visibility of names.

The graphics procedures which use the WCRK vector of the exampleare able to divide up the space into convenlent units. This

capability, which would bepossible in PL/I only through the use
of pointers, encourages information hiding and abstraction.

PROCEDURE VARIABLEs allow the names of procedures to be saved, an
essential feature for applications like the user-specified
coordinate transformation described in the graphics systea below.

The importance of existing Fortran software is recognized byproviding for FORTRAN PROCEDUREs as an integral part of the
language. The current implementation of 1 performs this linkage
in a more efficient uay than the naive user of BL/I would be
lik2ly to discover,

A novel syntax is introduced for function returns. ' Since
procedures ray be recursive, Fortman's convention of using the
function name as variable cannot be followed. Tnstead, the
procedure header declares a return variable just like any other
parameter:

F(Y, PARAM) 2
REAL(): Y
REAL: Z

1.4 INPUT/JUTPUT. Beginners often find Fortran's input/output
the most difficult part of the language, and even seasoned
programmers are tempted to just print unlatelled numbers, often
tc more digits than justif fed by the problem, because formatting
is so tedious. PL/I's list and data directed I/0 is so much

easier to use that it was wholeheartedly adopted in T. By
providing procedures for mcdifying the number of decimal places
and the number of separating blanks to be output, no edit-drected
I/0 is needed. Special statements are previded for array I/0 so
that, unlike FL/I, arrays can be printed in orderly fashion
without explicit formatting.

Ce Since almost as much time 1s spent 1n sciectfffc computation
staring at pages cf numbers as at pages of program text, much
thought was given to the best format for displaying numbers.

Tn acccrdance with the "engineering format" used on Hewlett-
Packard calculators and with standard metric practice (GM Service
Section 1977], exponents are forced to te multiples of 3. As
figure 2, an excerpt from the exasple program's output, shows,
this convention has a histogramming effect that concentrates the
information in the leading diglt, as opposrd to splitting it
between the leading digit and the exponent, which are often
sepnrated by 14 columns. The use of parentheses to surround the
exponent, like the legality of imtedded blanks, was suggested by
mathematical tables. This notation separates the exponent from
the mantissa more distinctly than the usual E format.

1.5 DISCUSSION,

Following Kernighan Plau ger (1976), the initial implementation 1sunsophisticated [Comer 1978]. HNevertheless, the preprocessing is
less costly than the PL/I compile, so the cverall results are
quite satisfactory. (The evaluation looks even better 1f one

. ccepares PL/I + T against PL/I ¢ PL/I'S macro preprocessor.)
Most of the processor cost lies in basic I/0; by integrating the
macro processor with the language translator, this cost has been
minimi zed. [(Kantorowitz 1976] Much of the two-man-months spent
in implementation were spent in understanding nooks and crannies
of PL/I.

53.5106 (=03) 5.35106E=-02
51.3109 (=03) 5¢13109L-02
46,7211 (-03) 4,67211k=02
40.6514 (=-03) 4,06514E=-02

33.7630 (-03) 3.37636E-02
20.4906 (=03) 2,b04900E=-02
16.9500 (=03) 1.89808E=02
11.3401 (-03) 1.13U461E=-02

3.63500(~03) 3.063508E-03
- 4,12944(-03) ~4,12944L=-03
- 11.9123 (-03) -1 4191238=-02
- 19,7092 (-03) -1.97092E-02
- 27.5248 (=03) -2.75248L=02

- 35.3243 (=03) -3.53243E=02
- 43,1170 (-03) -4,311768=-02
- 50.9000 (=03) -5.090bok=02
- 50,0041 (=03) ~-5.,00b415-02

-bo,44831-03) -0,04483L=-02
- 74.1973 (=03) ~-7.41973E-02
- 01,9297 (=03) ~8.19297-02
- bY,bb4u3 (=03) -83.90443E-02
- 97.3401 (=03) -9.73401E=02
-105,010 (=03) ~-1.,05010k=01
-112.670 (=03) -1.12070L=-01

~-120,350¢ (=03) -1.203028-01
-127.910 (-03) -1.¢79108-01

-135.493 (=-03) -1.35493L=-01
-143,050 (-03) -1.43050L=-01

figure 2

T 1s not intended to replace any existing langua ges. Fordistributing sathematical softuarc, Fortran resains the only
prac tical medium ; for character processing, something like PL/I
or SNOBOL shouldbe used. still, for the bulk of scientific

computation, Tought to be the easiest to use, particularly since
it coexists comfortably with Portran and PL/I. On the other
ha ni, cne can imagine ways that T right be improved, as well.
Features omittedfor ease of implementaticn include:

- trimmed arrays, like X{2:N)
- procedure results of general type
- conditional boolean operators that dc not evaluate their

arguments when it 1s possible to avoid doing so
- a swap operator

Fcr other fe atures, no entirely satisfying design was apparent:
- strings
- more general procedure calls (such as indefinite number and

type of arquments)

- a means of constructing arrays directly from components, as

10

a string constant constructs a string from in dividual characters
- a means of specifying the invocation graph of who calls wham

Perhaps the most fundamental thou h unavoidable flaw is that,
unlike LISP, the larquage is not 4 rivial, and therefore programs
cannot be trivially manipulated.

2.0 JUSTIFICATION FOF STILL ANOTHER SET CF GRAPHICS PRIMITIVES,

The next example of restyling 1s a simple hut reasonably complete
interface for noninteractive device-independent graphics. In
addition to the basic line drawing primitives, higher level
procedures are provided for displaying functions of one or two
variables. This interface has been implemented as a library of
PL/I procedures which call the SLAC Unified Graphics package
written by Robert Reach [19781].

Onified Graphics, with its emphasis on the ability to drive
displays like the IBM 2250, is troublesome to use directly for
function plots and the like. In contrast, Top Drawer, another
graphics systes at SLAC, allows for function plots but little
elsa. The collection described in detail in Appendix G 1s meant
to strike a useful balance between these twc extremes, and

contains most of the features of DISSPIA important for scientific
+ computation.

2.1 ESTABLISHING THE ENVIRONMENT. The fcllowing excerpt from
the example program given 1n section 1.1 atove illustrates
typical preparation for plotting:

STRUCTURE: P F # PLOT PILE

INTEGER(500) : WORK
REAL (2): LL, UB, # CORNERS OF RECTANGULAR DOMAIN

ORIGIN, $ FOCAL POINT BOR SURFACE PLOT
X0, SCALE # COORDINATE TRANSPORMATION PARAMETERS

GOFEN('VEPI2FF' ,PF)
GP ICT (PF)
SCALE := 0.3333

X0 := -0.5/SCALE(Y)
STRAN1(X0,SCALE,PPF)

The plot area PF is used tc rememter various options and to
buffer low level plotter instructions. This work area is
initialized by the GOPEN call, which specifies the output device.
(In the current implementation, no corresponding JCL changes are
necessary.) The ease with which devices ray be changed 1s very

“ useful in tuning a plot for publication.

Por compatibility with numerical procedures, REAL variables are
o- in full precision, not short. Atthe start of each nev picture,

which might te a screenful on a CRT or an 8.5 by 11" page on an
electrostatic plotter, GPICT is called.

11

All plotting is done relative toa user ccecrdinate system, which
1s specified by calling

GTRAN(F, PP)

where F 1s the name of a procedure which, when called in the form
F{ X, W, PF)

vith

REAL(N): X N<=10
REAL (2): WN

will rap the point X 1n user coordinates into a point ® in the
unit square [0, 11x{0,1)e Normally W(l) is thought of as
hcrizental and U(2) as vertical. By extending PP, the user can
pass parameters to P. For convenience, the default
transformation maps

W := SCALE * (X - X00)

2.2 DRAWING, DIMENSIONING, AID FUNCTION GFAPHING, The basic
drawing commands are GJUMP, GDRAW, and GTEXT for drawing lines
and adding tex*, If a nonlinear coordinate system has been
specified, GEIRAW produces a piecevise linear approximation to the
implied curve.

A procedure GGRAPH 1s provided which automatically samples
functicn values, sets up an appropriate scaling, graphs the
function, and dimensions the grapk using recund numbers in a style
consistent with the format used by T. Figure 3, taken from Chan
[1978], is a typical plot.

The scheme for choosing round numbers 1s based on the algorithm
by Dixon+Kronrmal 1965]. Experience and an informal survey of
vhat people would accept as being "round numbers" led to various

refinements. As 1n Unified Graphics, the choice 1s optimized
over a reasonable number of major tick marks. The total num ber

of tic marks, major acd minor, is not allowed to be either too
dense or too sparse. For a while, the numter of minor tick marks
was chcsen so that each interval had length 10%#%k, but for input
data limits (20,70) the resulting tick marks were at
-10,0,100, 200), so this rule hadto te relaxed to "either

length 10**k or midpoint of major interval? If the difference
between the data limits is small compared tc the magnitude of the
limits themselves (as occurs for example 1n plotting a nearly
constant fuaction), then the labels may tecome unreasonably
large. Special provision 1s made for this case.

NDther routines are available for scatter, surface, and contour
plots. The contour corputation uses piecewise quadratic surface
fittingto ensure smooth contours and proper representation of
critical points {Marlow+Powell 1976). Figure 4 presents output
from the example program, which computes hill-cl imbing
tra jectories for a three—-gaussian-peak terrain.

12

a

Scheme LEFZDFZ, Ep = 0.01
S
0

+ 0
— QQ |—

a |

©

=S

je
&

5
28
0

ES
—2 0 2 4 6

Log {oT (+00)

figure 3

13

CZ \eoLi AD N== llyWNdDOS7 7 N (A,| =INGhoJRE
Sa

GEE /] AR1777, 1HHREE
7 [7] ZF ay SE 14
ssEEA

figure

CONCLUSION, Witha level of effort comparable to writing a
Fortran preprocessor, ve have created, by compiling into PL/I, a
language substantially better than Fortran or its derivatives.
Since PL/I problems cannot be altogether avoided by this
approach, further work on a language like T could be useful.
Perhaps the effort would be better spent en making LISP a
practical language for scientific coapuation by building on the
research in symbolic computation.

Like PL/I, Unified Graphics 1s good for a wide range of
applications. But im practice, many people won't use either.
For lanquages, they stick to Portran; for graphics, they plot by
hanl or not at all. In both cases 1t has proven possible to
cheaply restyle the existing system, via a preprocessing phase or
driver routines, in order to create more agreeable tools.

ACKNOWLEDGEMENTS, Special thanks go to Bill Coughran for
discussions of this report and help with T's realization in a
PL/I preconpiler. Helpful comments were made by Petter B-jorstad,
Dan Boley, Tony Chan, Hector Garcia, Mike Heath, Randy Levequa,
and Bob Melville. Support was previdedby a National Science
Foundation graduate fellowship and grant DRXPO-IA-13292-H from

-~ the US Army Research Office; computing was provided at the
Stanford Linear Accelerator Center by the Department of Energy.

BIBSLICGRAFHY.

Beach, Robert [Jun 1978)
The SLAC Unified Graphics System: programming ranual
Stanford Linear Accelerator Center CGTM 170

Chan, Tony FC [Apr 1978]
Comparison of numerical methods for initial value problems
Stanford uUriv PhD thesis

Comer, Douglas [1978]
MOUSEU4: an improved implementation of the RATFOR

preprocessor

Soft Pract + Fxper 8, 35 4¢

Cook, A James + L J Schustek [Jun 1975)
A user's guide tO MORTRAN2
Stanford Linear Accelerator Center CGTM 165

|

Dixon, W J + F AKronmal [Apr 1965]The choice of origin and scale for graphs
J ACM 12, 259-261

F>x, P A+ A D Hall + N IL. Schryer [My 1977)

15

