SOFTWARE RESTYLING IN GRAPHICS
AND PROGRAMMING LANGUAGES

by

Eric Grosse

STAN-CS-78-663
SEPTEMBER 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Scierces
STANFORD UNIVERSITY

ALt

SOFTWARE RESTYLING IN GRAPHICS AND PROGRAMMING LANGUAGES

%
Eric Grosse

“Department of Computer Science, Stanford University, Stanford, CA 94305

This paper was presented at the 1978 Army Numerical Analysis and Computers
Conference in Huntsville, Alabama, March 1, 1978.

Research supported in part under Army Research Grant DAHCO4-75-G-0l195
and in part under National Science Foundation Grant MCS75-13497-A01.

SOFTWARE BRESTYLING IN GRAPHICS AND PPOGRAMMING LANGUAGES

Eric Grosse
Computer Science Department
Stanford University
Stanford CA 94 305

ABSTEACI, The value of large software products can be cheaply
increased by adding restyled interfaces that attract new users.

As 2xamples of this approach, a set of graphics primitives and a
lanquage precompiler for scientific computation are described.
These tvo systems include a general user-defined coordinate
system instead of numerous system settings, indention to specify
block structure, a modified indexing convention for array
parameters, a syntax for n-and-a-half-times-*round laops, and
engineering format for real constants: mest of all, they strive
to be as small as possible,

9.3 PHILJOSOPHY. Kernighan and Plauger {1976] describe
explicitly and by example three precepts cf the Softvare Tools
philosophy:

- trim out the inessentials

- build it adaptively

- let someone else do the hard part
Two more examples, driven by the same philosophy, are given
below., The tasic idea is to obtain high leverage by taking an
existing, powerful piece of software and make it useful to more
people by designing a newinterface. Webster's calls this
process facelift ing: "a restyling intended to increase comfort
or sa lability.”

1.0 JUSTIPICATICN FOR STILL ANOTHER PRCGRAMMING LANGUAGE.
Fortran will no doubt remain for many years the most important
programing language for scientific computation. When used
carefully and with discipline, it yields remarkably portable
codes; this is its greatest virtue. But, as vrogrammers have
complained fnar years, it also has many faults:

- awkward syntax for statements, strings, names

- primitive control structures

- DO loop restrictions

- no macros

Portran preprocessors, such as MOFTRAN [Cock+Shustek 1975]), have
eliminated many of. these disadvantages and therefore have become
very popular. Unfortunately, they reduce portability somewhat,
since either the preprocessor must be installed at the new site

or illegible t‘object' Fortran sent there. More importantly, such
preprocessors have only a minor effect on inherent problems of
Fortran:

- dynamic allocation is either unavailaktle or requires the use
of rather confusing tricks
no PRICEDURE VARIABLE type
no STRUCTUFREtype
(Labelled common blocks, since they do not use the
ccabinatorial possibilities of procedure parameterization,
are less flexible.)
- no O-origin indexing
array bound inforwmaticn is not automatically passed
nc vector operations
- no recursion

The PCRT library makes dynamic allocation one of its eost
advertised features: "™We have found that use of dynamic storage

allocation in PORT leads to more clearly structured programs,
cleaner calling sequences, 1improved memory utilization, and
better error detecticn." (Pox+Halle+Schryer 1977) Adding a stack
tc Portran is a messy affair, however, as shown in figure I,
which contains two alternate methods in ECET for allocating an

SUBROUTINE LBB(A,N)

COMMON /CSTAK/DSTAK (500)
SUBROUTINE LBB(A,N)
DOUBLE PRECISION DSTAK
INTEGER ISTAK (1000)
REAL A(l)

REAL RSTAK(1000)

COMMON /CSTAK/DSTAK(500)

DOUBLE PRECISION DSTAK
INTEGER ISTACK (1000)
REAL A(l)

v DSTAK (1)1
EQUIVALENCE ((D,ISTAK(1)) REAL RSTAK (1000)

EQUIVALENCE (DSTAK(1),RSTAK(1))

EQUIVALENCE (DSTAK(1),ISTAK(1))

I = ISTKGT(2*N,2
(2*N.2) EQUIVALENCE (DSTAK(1),RSTAK (1))

IR = ISTKGT(N,3)

II = ISTKGT(2*N,2)

(code referring to RSTAK (IR +n) and ISTAK (IT+m) R = ISTKGT(N,3)

probably ending with code to store the stuff

from the real scratch storage into array A | CALL L1BB(A,ISTAK (1), RSTAK(IR),N)

CALL ISTKRL(2)

CALL ISTKRL(2) RETURN
END

RETURN

END

figure 1

INTEGER and REAL array.

Other proposals are even more complicated. (After a 7 page
description of DYNOSCR, Huybrechts[1977) states: "This paper

gives cnly the basic features of the DYNOSOR system. A more
sophisticated use allows the user, once he is familiarized with
the system, to improve greatly the speed of programs using it.®)

PL/I, which is now becoming fairly widely available in some fora,
nvercomes all these difficulties. However, so huge a langquage
tends to overwhelm people, and because of tricky precision rules,
silant type conversions (as in I=J=0;), and the like, learning
only part of the language is dangerous.

Other languages, while beautifully designed, have their own

fl awvs. For example, Algol W does not have a robust interface to
Fcrtran; in addition to this {[Pohilner 1977], Pascal places
painful restrictions on arrays.

1.1 T. Thus another apprcach seeas warranted, which can combine
the needed features of PL/I, the deliberate syntax of ALGOL, and
the low implementation cost of the Portram preprocessors. such
an approach has produced the language T, intended to assist in
the implementation and documentation of algorithms for scientific
computation. The principal aims have been ease of reading and
writing, low implementation cost, and reasonable efficiency.

Appandix T gives the formal language proposal, specifying the
syntax accordirg to Wirt h's proposal {1977). Since T 1s similar
to Portran, Algol 60, and PL/I, a complete specification of the
semantics nay be omitted uithout confusion, To provide the
heuristics behind the design choices and to give an overview of
the language, various aspects of the folowing example will be
discussed.

TRIP EAR
¢ example of T and G systems:
various views of the sum of three Gaussian peaks:
L] Eric Grosse Stanford University

REAL: AZIM, ELEV, ¢ VIEWING ANGLES FOR SURFACE PLOT
BELEFRR, ABSEFR,# ERROR TOLERAKNCES FOR ODE

T, TOUT, ¢ INDEPENTENT VARIABLES OF TRAJECTORY
NORMYP $# 2 NOFM OF THE GRADIENT
REAL(2): LL, UR, # CORNERS OP RECTARGULAR DOMAIN OF PUNCTION
ORIGIN, # FOCAL POINT FCR SORPACE PLOT
X0, SCALE, ¢ COORDINATE TRANSFCRMATION PAR AMETERS
Y, YP ¢ LOCATION AND GRADIENT FOR TRAJECTORY

REAL (142) : ODEWOPK
INTEGEER(S) : ODEIWOEK

DEFINE (P, 20) * density of P samples;
REAL{(-P: P,-P: I?): P TABRLE

REAL(3): LEVEL ¢ CONTOUR LEVELS
INTEGER: I, J,
IFLAG # DIAGNOSTICS FLAG POR ODE
STRUCTURE: PAPA?'! ¢ LOCATIONS, HEIGHTS. AND WIDTHS OF PEAKS

REAL (3,2): X
REAL (3): H, W
STRUCTURE: PF $ PLOT PILE
INTEGEB(500) : WORK
PROCEDURE: GOPEN, GCLOSE, GPICT, GCONT, GSURF, GLTYPE,
GJUMP, GDRAW, GTRAN1
FORTRAN PROCEDURE: CDE, DF, STASH
PROCEDURE () REAL: F

SET 0P PARAMETERS
BLANK SEPARATION (2)
REAL DIGITS {3)

GET DATA (AZINM,ELEV)
PUT DATA(AZINM,ELEV)

X(1,1 = 0

X(1,2y := 0.5

X(2,1) =:= -0.43'301 2702
X(2,2) == -0.25

X(3,1) := =-X(2,1)

X (3,2) := X(2,2)
PUT DATA ARRAY (X)
GET ARRAY (H)
PUT DATA ARRAY (H)
GET ARRAY (W)
PUT DATA ARRAY (U)
STASH(X,H, W)
FOR(=B <= I <= P)
Y(1) := FLOAT(I) / P
FOR (=P <= J <= P)
Y(2) := FLOAT(J) / P
F TABLE(I,J) := P(Y,PARAM)

SURFACE PLCT

SOPEN('VEP12FF' ,PF)

GPICT(EF)

LL == -1

grR :=1

ORIGIN := 0.5
GSURF(LL,UK, FTABLE, AZIM,ELEV,ORIGIN,0.25, PF)

CONTOUR PLOT
G PICT (PF)

SCALE := 0.3333

X0 := -0.5/SCALER (1)
GTRAN1(X0,SCALE,PF)

GET AFRAY (LEVEL)

PUT DATA ARRAY (LEVEL)
3CONT(LL,UR,FTABLE,LEVEL, PF)
GLTYPE('DOT' ,PF)

GET AFBAY (LEVEL)

PUT DATA ARRAY (LEVEL)
GCONT(LL,UR,FTABLE, LEVEL, PF)

¢ CCMPUTE AND PLOT TRAJECTORY
RELERR := 10(-6)
GLTYPE('SOLID',PF)
ABSERR := 10 (~6)
WHILE(~ END OF INPUT)

GET ARRAY (Y)

PUT DATA ARRAY(Y)

T 2= 0
GJUMP (Y, PF)
IFLAG := 1

WHILE(NORMYP > 1(-3) & 1<=IFLAG & IPLAG<C=3)
TOUT == T 4 10(-3) /NORNYP
CDE (DF,2,Y, T, TOUT,RELERR ,ABSERR,IFLAG,ODEWORK, ODEIWO RK)

CASE
2 = IFLAG
GDRAW (Y, PP)
3 = IFIAG

PUT('CDE DECIDED EBRROF TOLERANCES WERE TOO SHALL.')
PUT('NE® VALUES:'")
PUT DATA (RELERR,ABSERR)
ELSE

PUT('OPE RETURNED THE EBRRCR FLAG:')
PUT DATA(IFLAG)

FIRST

DP(T, Y, YP)

NORMYP := NORM2 (YP)

GC LOSE (PF)

F (Y, PARAM) 2
REAL(): Y
REAL: Z, NORMSQ
STRUCTURE: PARAM
REAL (3,2): X
REAL(3) : H, W

INTEGER: I

2 := 0

FOR(1 <=I<= 3)
NOEMSQ = (Y(1)-X(I,1))*%x2 ¢ (Y (2)=-X(I,2)) *=*2
Z :=2Z ¢ H (IT)*PXP (-0.5*W(I)*NORMSQ)

1.2 CONTRIL AND CTHEP SYNTAX, Perhaps the most striking feature
the Algol veteran sees in this example is the complete absence of
BEGINs and ENDs. VNot only is the text indented, but the
indention actually specifies the block structure of the program,
Such a scheme was apparently first proposed by Landin [1966].
Except for an endorsement byKnuth [1574], the idea seems to have
been largely ignored.,

Ideally, the text editor wculd reco nize tree-structured progranms
[Haasen 1971)., In practice, text e Btors tend to be line

oriented so that moving lines about in an indented program
requires cumbersome manipulation of leading blanks, Therefore
the current implementation of T uses BEGIK and END lines,
traaslating to indention on output. Tbus the input
STRUCTURE: PARAM
((
FEFAL(3,2) : X
REAL(3): H, W
))
produces the output
STFUCTURE: PARAM
REAL (3,2): X
REAL(3): H, W
Whatever the implementation, the key idea 1is to force the block
structure and the indention to be automatically the same, and to
reduce clutter from redundant keywords.

Blanks are insignificant outside of strings. Mathematical tables
have long used blanks inside numeric constants, as in

PI := 3. 14159 26535 89793
for readability. Blanks in identifiers alsc can improve
readability, while reducing the chance of misspelling and easing
the pain of name length restrictions imposed by the local
operating systenm.

In accordance with the recommendations of Scowen¢Wichmann [1973},
comments start with a special character, #, and run to the end of
the physical line.

The small reserved word list eliminates the need for a stro _ping
convention. The psychological advantages of this approach Rave
been elaborated by Hansen {1973).

The form of the assignment and procedure call statements follows
the clean, clear style of Algol 6C. To make macros more

understandable, their syntax and semantics match those of
procedures as closely as pessible,

In addition to normal statement sequencing and grocednre calls,
three control structures are provided., The CASE and WHILE

statements are illustrated in this typical program segment:

WHILE(NORMYP > 1(-3) & 1<=IFLAG & IFIAG<=3)
TOOUT := T + 10 (~-3)/NORMYP

ODE (DP, 2,Y,T,.TOUT ,RELERR,ABSERR,IPLAG,ODEWORK,ODEIWORK)

CASE
2 = IFLAG
GDRAW (Y,PF)
3 = IFLAG

PUT ('ODE DECIDED ERROR TOLERANCES WERE TOO SMALL.')
PUT ('NEW VALUES:')
PUT DATA (RELERR,ABSERR)
ELSE
PUT (*CDE RETURNED THE ERROR FLAG:')
PUT DATA (IFLAG)
FIRST
DF (T,Y,YP)
NORMYP := NORM2(YP)

The CASE statement is modelled after the conditional expression
of LISP: the boolean expressions are evaluated in sequence until
one evaluates to YES, or until ELSE is encountered. The use of
indention makes it easy to visually find the relevant boolean
expression and the end of the statement.

One unusual feature of theWHILE loops is the optional FIRST
marker, which specifies vhere the loop is to be entered. In the
example above, the norm of the gradient, NORMYP, is computed
before the loop test is evaluated. Thus the loop condition,
which often provides a valuable hintatout the loop invariant,
appears prominently at the top of the loop, and yet the common n-
and-a-half-times-* rourd loop can still be easily expressed.

The FOE statement adheres as closely as practical to common
mathematical practice.

FOR(1<=1IK<K= 3)
NORMSQ == (Y(V)-X(I,1))**2 + (Y (2)-X(T,2))%%x2
Z 2= 2 4 H(I)*EXP(-0,5%W(I) "NORMSQ)

Sevaral years experierce with these control constructs has
demonstrated them to be adequately efficient and much easler to

maintain than the alternatives.

Procedure nesting is not used for two reasons. First, textua 1
nesting that extends over smanypages is difficult for a human to

keep track of. 3econd, programs typically contain several high
love2 procedures calling a single primitive, so a tree
representation 1s inappropriate anyway.

By removing the nesting of procedures, hovever, ve wvorsea the
problem of entry point hiding that arises vhencombining programs
from many sources into a single library. A solution to this
problem is to have an official mame for each procedure, coded
along the lines of IMSL, and also a more mnemonic nick name
(which users can pick for themselves if they like). The macro

processor which is built into T can then be used to chapdq all
occurences Of the nick names into the corresponding official
rames.,

1.3 DECLARATIONS. The fundamental scalar types are INTEGER,
REAL, and CCMPLEX, from which arrays and structures may be bnflt
up. As the example

REAL (-P:P ,~P:P)
illustrates, general upper and lower bounds are allowed.

The upper bound expression is omitted for a formal array
parameter, so that an appropriate value car be taken from the

length of the corresponding actual array argument. The origin of
an actual array argument need not match the origin of the
corresgonding formal array parameter. For example, if the actual
argument A was declared REAL(0:7): A and the formal parameter B
was declared BEAL(): B, then B(8) will correspond te¢ A(7). Host
languages, when they allow lover bounds at all, do not perait
this flexibility, which is used in the exarple program when a
matrix with lover bourd -P is passed to a general purpose library
routine which assumes a lover bound of 0.

Structures of arbitrary depth maybe declared. As the examples
STRUCTURE: PARAM

REAL(3,2): X
REAL(3): H, ¥
STRUCTURE: PF

INTEGER (500) : WORK
suggest, structures are useful passing collections of related
data, without the need for long parameter 1lists. This makes
feasible the prohibition of global variables in a drastic attempt
to narrov and make more explicit the interface betwveen
procedures. Euclid [Popek+¢others 1977)] has emphasized the
importance of visibility of names.

The graphics gtocedures which use the WCRK vector of the example
are able to divide up the space into convenlent units. This

capability, shich would bepossible in PL/I only through the use
of pointers, encourages information hiding and abstraction.

PROCEDURE VARIABLEs allow the names of procedures to be saved, an
essential feature for applications like the user-specified

coordinate transformation described in the graphics systea below.

The importance of existing Fortran software is_recognized by
providing for FORTRAN PROCEDUREs as an integral part of the

language. The current implementation of 1T performs this linkage
in a more efficient uay than the naive user of PL/I vould be
likely to discover,

A novel syntax is introduced for function returns. ' Since
procedures ray be recursive, PFortman's convention of using the
function name as variable cannot be followed. Tnstead, the
procedure header declares a return variable just like any other
parameter:
F (Y, PARAM) 2
REAL(): Y
REAL: 2

1.4 INPUT/JUTPUT. Beginners often find Fortran's input/output
the most difficult part of the language, and even seasoned
programmers are tempted to just print unlatelled numbers, often
tc more digits than justif fed by the problem, because formatting
is so tedious. PL/I's list and data directed I/0 is so much
easier to use that it was wholeheartedly adopted in T. By
providing procedures for wmcdifying the number of decimal places
and the number of separating blanks to be output, no edit-drected
I/0 is needed. Special statements are previded for array I/0 so
that, wunlike FL/I, arrays can be printed in orderly fashion
without explicit formatting.

Since almost as much time is spent in sciectfffc computation
staring at pages cf numbers as at pages of program text, much

thought was given to the best format for displaying numbers.

In accordance with the "engineering format" used on Hewlett-
Packard calculators and with standard metric practice fGM Service
Section 1977}, exponents are forced to te multiples of 3. As
figure 2, an excerpt from the exa®ple program's output, shows,
this convention has a histogramming effect that concentrates the
information in the leading digit, as opposrd to splitting it
between the leading digit and the exponent, which are often
sepnrated by 14 columns. The use of parentheses to surround the
exponent, like the legality of imtedded blanks, was suggested by
mathematical tables. This notation separates the exponent from
the mantissa more distinctly than the usual E format.

1 .5 DISCUSSION.

Following Kernighanoplau%er {1976), the initial implementation is
unsophisticated [Comer 1978]. HNevertheless, the preprocessing is
less costly than the PL/I compile, so the cverall results are
quite satisfactory. (The evaluation looks even better if one
ccepares PL/I ¢+ T against PL/I ¢ PL/I'S macro preprocessor.)

Most of the processor cost lies in basic I/0; by integrating the
macro processor with the language translator, this cost has been
ninimi zed. [(Kantorowitz 1976) Much of the two-man-months spent
in imglementation were spent in understanding nooks and crannies
of PL/I.

53.5100 (=03) 5.35106E-02

51.3109 (-03) 5.13109L-02
bo,7211 (-03) 4,672116=-02
40.6514 (=03) 4L,06514E=-02
53.7630 (=-03) 3.3763bE=-02
20,4908 (~-03) 2,649008E=-02
16.9500 (=-03) 1.8Y808E=-02
11.3401 (-03) 1.13461£-02
3.63500(-03) 3.63508E-03

- 4,12944(=-03) ~4,12944E-03
- 11.9123 (-03) -1 4191238-02
- 27.5248 (-03) =Z2.75248L=-02
- 35.3243 (-03) -3.53243E=-02
- 43,1176 (=03) -4,311768=-02
- 50,9005 (=-03) -5.,090b08k=-02
- 50.b041 (=03) -5,6bb412-02
-bo,44831i-03) -b.04453E=-02
- 74.1973 (=03) -7.419738-02
- 51,9297 (-03) -5.19297=-02
- vY,bk4u3 (-03) -8,90443E-02
- 97,3401 (-03) -9,73401E=-02
-1U5,010 (=03) -1.05010L=-01
-112.670 (=03) -1.12070E-01
~-120,302 (=03) -1.,20302E-01
-127.910 (-03) -1.¢7910L-01
-135.493 (=-03) -1.35453k=-01
-143,050 (=03) -1.43050£-01

figure 2
T is not intended to replace any existing languages. For

distributing sathematical softuarc, Fortran resains the only
prac tical medium ; for character processing, something like PL/I
or SNOBOL should be used. still, for the bulk of scientific
computation, Tought to be the easiest to use, particularly since
it coexists comfortably with Portran and Pl/I., On the other
ha nl, cne can imagine ways that T right be improved, as well.
Features omitted for ease of implementaticn include:
- trimmed arrays, like X{2:N)
- procedure results of general type
- conditional boolean operators that dc not evaluate their
arguments when it is possible to avoid doing so
- a swap operator
Fcr other fe atures, no entirely satisfying design was apparent:
- strings
- more general procedure calls (such as indefinite nuaber and
type of arquments)
- a means of constructing arrays directly from components, as

10

a string constant constructs a string from in dividual characters
- a means of specifying the invocation graph of who calls wham

Perhaps the most fundamental thou h unavoidable flaw is that,
unlike LISP, the larquage is not 4 rivial, and therefore programs

cannot be trivially manipulated.

2.0 JUSTIFICATION FOF STILL ANOTHER SET CF GRAPHICS PRIMITIVES,
The next example of restyling is a simple hut reasonably complete
interface for noninteractive device-independent graphics. In
addition to the basic line drawing primitives, higher level
procedures are provided for displaying functions of one or two
variables. This interface has been implemented as a library of
PL/I procedures which call the SLAC Unified Graphics package
written by Robert Reach [19781,

Onified Graphics, with its emphasis on the ability to drive
displays 1like the IBM 2250, is troublesome to use directly for

function plots and the like. In contrast, Top Drawer, another
graphics system at SLAC, allows for function plots but little
elsa. The collection described in detail in Appendix G 1s meant
to strike a useful balance between these twc extremes, and
contains most of the features of DISSPIA important for scientific
computation.

2.1 ESTABLISHING THE ENVIRONMENT. The fcllowing excerpt from
the example program given in section 1.1 atove illustrates
typical preparation for plotting:

STRUCTURE: P F ¢ PLOT FILE®
INTEGER(500) : WORK
REAL(2): LL, UB, ¢ CORNERS OF RECTAKGULAR DOMAIN
ORIGIN, ¢ FOCAL POINT FOR SURFACE PLOT

X0, SCALE # COORDINATE TRANSPORMATION PARAMETERS
GOPEN('VEP12FF' ,PF)
GPICT (PP)
SCALE := 0.3333
X0 := -0.5/SCALE(1)
GTRAN1(X0,SCALE,PF)

The plot area PF is used tc rememter various options and to
buffer low level plotter instructions. This work area is
initialized by the GOPEN call, which specifies the output device.
(In the current implementation, no corresponding JCL changes are
necessary.) The ease with which devices ray be changed is very
useful in tuning a plot for publication.

Por compatibility with numerical procedures, REAL variables are
in full precision, not short. Atthe start of each nev picture,
which might te a screenful on a CRT or an 8.5 by 11" page on an
electrostatic plotter, GPICT is called.

11

All plotting is done relative to a user cecrdinate system, which
is specified by calling

GTRAN(F, PP)
where F is the name of a procedure which, when called in the fornm

F(X, W, PF)

vith

REAL(N): X N<=10

REAL (2): W
will rap the point X in user coordinates into a point % in the
unit square [0, 1)x{0,1). ©Normally W(l) is thought of as
hcrizcntal and U(2) as vertical. By extending PP, the user can
pass parameters to P. For convenience, the default
transformation maps

W := SCALE * (X - X0)

2.2 DRAWING, DIMENSIONING, AID FUNCTION GFAPHING., The basic
drawing commands are GJUMP, GDRAW, and GTEXT for drawing lines
and adding tex*, If a nonlinear coordinate system has been
specified, GLRAW produces a piecevise linear approximation to the
implied curve.

A procedure GGRAPH is provided which automatically samples
functicn values, sets up an appropriate scaling, graphs the
function, and dimensions the grapk using rcund numbers in a style
consistent with the format used by T« Figure 3, taken from Chan
[1978], is a typical plot.

The scheme for choosing round numbers is based on the algorithm
by Dixon+Kronmal [1965]. Experience and an informal survey of
vhat people would accept as being "round numbers" led to various
refinements. As in Unified Graphics, the choice is optimized
over a reasonable number of major tick marks. The total num ber
of tic marks, major acd minor, is not allowed to be either too
dense or too sparse. For a while, the numter of minor tick marks
was chcsen so that each interval had length 10%¢k, but for input
data limits (20,70 the resulting tick marks were at
(-10,0,100,200), so this rule had to te relaxed to "either
length 10**k or midpoint of major interval? If the difference
between the data limits is small compared tc the magnitude of the
limits themselves (as occurs for example in plotting a nearly
constant fuaction), then the labels may tecome unreasonably
large. Special provision is made for this case,

Nther routines are available for scatter, surface, and contour
plots. The contour computation uses piecewise quadratic surface

fitting to ensure smooth contours and proper representation of
critical points {Marlow+Powell 1976]. Figure 4 presents output
from the example program, which computes hill-cl 4imbing

tra jectories for a three-gaussian-peak terrain.

12

(+°0)

Sptimized M

80
I

Scheme LF2DF2, E, = 0.01

fiqure 3

13

.: ~ \~ > \ QLA
= SRR RN
A NN I =
/ / . ‘“’...:’/ ” ?\\ 2 ?i.
/ 7/

14

CONCLUSION. Witha level of effort comparable to writing a
Fortran preprocessor, ve have created, by compiling into PW/I, a
language substantially better than Fortran or its derivatives.
Since PIL/I problems cannot be altogether avoided by this
approach, further work on a language like T could be useful.
Perhaps the effort would be better spent en making LISP a
practical language for scientific coapuation by building on the
research in symbolic computation.

Like PL/I, Unified Graphics is good for a wide range of
applications. But im practice, wmany people vwon't use either.

For langquages, they stick to Fortran; for graphics, they plot by
hanl or not at all. In both cases it has proven possible to
cheaply restyle the existing system, via a preprocessing phase or
driver routines, in order to create more agreeable tools.

ACKNOWLEDGEMENTS, Special thanks go to Bill Coughran for
discussions of this report and help with T's realization in a
PL/I preconpiler. Helpful comments were made by Petter B-jorstad,
Dan Boley, Tony Chan, Hector Garcia, Mike Heath, Randy Levequa,
and Bob Melwville, Support was preocvidedby a National Science
Foundation graduate fellowship and grant DRXPO-IA-13292-H from
the US Army Research Office; computing was provided at the
Stanford Linear Accelerator Center by the Department of RBnergy.

BIBLICGRAFHY.

Beach, Robert [Jun 1978)
The SLAC Unified Graphics System: programming ranual
Stanford Linear Accelerator Center CGTM 170

Chan, Tony FC {Apr 1978
Comparison of numerical methods for initial wvalue problems

Stanford triv PhD thesis

Comer, Douglas [1978])
MOUSE4: an improved implementation of the RATFOR

preprocessor
Soft Pract + Fxper 8, 35-4¢C

Cook, A James + L J Schustek [Jun 1975)
A user's guide to MORTRAN2
Stanford Linear Accelerator Center CGTM 165

Dixon, W J ¢+ F AKronmal [Apr 1965}.
The choice of origin and scale for graphs
J ACNHN 12, 259-261

F>x, P A+ A D Hall +«+ N L. Schryer [Mwy 1977)

15

