NEW ALGORITHMS IN BIN PACKING

by
Ardrew Chi-Chih Yao

STAN-CS-78-662
SEPTEMBER 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

R0 ”_Nlo;\\-\.\
L . e 0\'\'\‘ \
AN A
,;'/4\ / Dl \4}4\\
YN -Y
; 0 'J-A‘:"\;_.'}\ w ',:‘
i AN o _;','/
O O
Gz






New Algorithms in Bin Packing

Andrew Chi-Chih Yao
Computer Science Department
Stanford University
Stanford, California 94305
Abstract.

In the bin-packing -problem a list L of n numbers are to be packed
into unit-capacity bins. For any algorithm S , let r(S) be the maximum
ratio 8 (L)/L* for large L* , where S(L) denotes the number of bins
used by S and L* denotes the minimum number needed. In this paper
we give an on-line O(n log n) -time algorithm RFF with r (RFF) =5/5 ,
and an off-line -polynomial-time algorithm RFFD with r (RFFD) = (ll/9)-€
for some fixed € > 0 . These are strictly better respectively than two
prominent algorithms -- the First-Fit (FF) which is on-line with
r(FF) = 17/10 , and the First-Fit-Decreasing (FFD) with r(FFD) = 11/9
Furthermore, it is shown that any on-line algorithm S must have
r(S) > 3/2 . We also discuss the question "how well can an O(n) -time
algorithm perform?", showing that, in the generalized d-dimensional

bin-packing, any O(n) -time algorithm S must have r(S) > d

Keywords: bin-packing, First-Fit, First-Fit-Decreasing, heuristic algorithm,

NP-complete, on-line.

This research was supported in -part by National Science Foundation grants
MCS-72-03752 AO3 and MCS-77-05313.



1. Introduction.

Let L = (Xl’XQ""’Xn) be a given list of real numbers in (0,1] ,

and BIN BINZ,..., an infinite sequence of bins each of unit capacity.

l)

The bin packing problem is to assign each X; into a unique bin, with

the sum of numbers in each bin not exceeding 1 , such that the total
number of used bins is a minimum (denoted by L* ). As this problem is
NP-complete [8], efficient algorithms that always generate packings
using L* bins are unlikely to exist. In the literature, heuristic
algorithms with guaranteed bounds on performance have been studied
extensively [5],[6],[7]. For any (heuristic) bin packing algorithm S ,
let S(L) denote the number of bins used for the input list L , and
R_(k) the maximum ratio S(L)/L* for any list L with 1" - k . The

S

performance ratio of S , denoted by r(S) , is defined as Tim R (k)
K=

Informally, (r(S)-l)x lOO% is the percentage of excess bins used over
the optimal packing in the worst case, for large lists. Two prominent

algorithms are the First-Fit Algorithm (FF) and the First-Fit-Decreasing

Algorithm (FFD) (see Section 2 for definitions). It is known [7] that
r(FF) = 17/10 and r(FFD) = 11/9

A natural question is, how good can any polynomial algorithm be?
In this regard, two specific questions were raised by Johnson [6]:

Is there a polynomial on-line algorithm S better than First-Fit
(i.e., with r(s) < 17/10 )%

Is there any polynomial algorithm S better than First-Fit-Decreasing
(i.e., with r(s) < 11/9 )%

We calan algorithm on-line if the numbers in list L are available

one at a time, and the algorithm has to assign each number before the next



one becomes available [5],[6]. In this paper, we resolve both questions
in the affirmative. It will also be shown that no on-line algorithm can
have a performance ratio less than 3/2

Section 3 gives an O(n log n) -time on-line algorithm S with
r(8) = 5/5, Section L4 explores the limitation to on-line algorithms,
showing that no such algorithm S (polynomial-time or not) can have
r(8) < 5/2 . In Section 5, a general approach for seeking improvements

over known heuristic algorithms is suggested and illustrated with an

example. Based on this idea, a heuristic polynomial-time algorithm
better than FFD is constructed in Section 6. We discuss in Section 7
the question "How well can an O(n) -time algorithm perform?". It is

shown that in a generalized version of bin packing, namely the d-dimensional

bin packing (21, any O(n) -time algorithm S must have r(S) > d



2. Terminologies.

For standard definitions with regard to the bin packing problem,
the reader is referred to [7]. We will mention below only a few
terminologies for use in the present paper.

A list is a finite sequence of real numbers. Some numbers may have

identical values, but are regarded as distinct item;. A set of real
numbers in this paper is often in fact a multiset, in which some numbers
may appear more than once (see [9]).

1f L, = (Xl’XE""’Xn> and LE = (yl,yg,...,y,) are two lists,

their concatenation LlL2 is the list L = (Xl’XE""’Xn’yl’y2’°"W@yz> .

Let X be a bin used in a packing, the content of X , cont(X) , 1is

the sum of the numbers that are assigned to X . We shall say that a
bin packing algorithm S has running time O(p(n)) if, when implemented
on a random access machine [1], S takes at most O(p(n)) steps to

produce the packing for a list with n numbers. We describe the two

algorithms FF and FFD for easy reference:

First-Fit (FF). Given a list L = (Xl’XE""’Xn) , the algorithm

assigns XU sequentially, for j =1,2,...,n , to BIN. with the
1

smallest i1 whose current content does not exceed l—xj

First-Fit-Decreasing (FFD). Given a list L =(Xl,X2,...,xn) , the

algorithm first sorts the x. 's into decreasing order, and then performs
First-Fit.
Both FF and FFD can be implemented to have a running time

O(n log n) ; for details, see [6].



3. A New On-line Algorithm.

We will present an on-line algorithm that processes a list of n

numbers in O(n log n) time, and show that its performance ratio is

5/3 = 1.666"’ .

1
-piece, or X-piece if X is in the interval (1/2,11, (2/5,1/2],

Any element Xj in a list L will be called an A-piece, B,-piece,
Bo

(1/3,2/51, or (0,1/3] , respectively.

Algorithm RFF (Refined First Fit).

Before packing, we divide the set of all bins into four infinite
classes. The algorithm then proceeds as follows. Let me {6,7,8,9} be
a fixed integer. Suppose the first Jj-1 numbers in list L have been
assigned, we process the next number x.J according to the following
rules.

(a) We put Xj by first-fit into a bin in:

class 1, if x.J is an A-piece,

class 2, if x.J is a Bl—piece,

< class 3, if x.J is a Bz—piece, but not the (mi)-th Bg—piece

seen so far for any integer 1 >1,

class k4, if x.J is an X-piece,

(b) If Xj is the (mi)-th B.-piece seen so far for some integer i >1,

2
we put x.J into the first fitting bin containing an A-piece in

class 1 if -possible, and put xb in a new bin of class 1 otherwise.

Analysis of RFF. This algorithm can be implemented to run in O(n log n)

tine, as it essentially performs a first-fit within each class of bins,

which takes 0(log n) time for each X (see [6]).



We shall now analyze the performance ratio of RFF. 1, general

the resulting packing of a list L has the following structure (Figure 1).

There are three types of bins in class 1. 1et 7 be the set of

11
class l-bins containing a single A-piece, ZlE the set of class l-bins
containing a single B,-piece, and Z15 the set of class l-bins containing

both an A-piece and a B,-pieceé. 1In class 2, every non-empty bins
contain exactly 2 B,-pieces, except possibly for the last one.

Let 22 denote the set of all (non-empty) class 2-bins, et Z5

be the set of class T-bins, each clearly containing 2 Bg-pieces,
except possibly for the last one. The set of class L4-bins, denoted
by Zh 5 1is simply the FF-packing of the sublist of L consisting of
the X-pieces. We shall write lzlll ’lzlg‘ ’lZlB‘ ,lzgl, . . as

. »etc. The numbers of A-pieces, B -pieces,BE—pieces,

P11 1075130 %o 1

X-pieces are denoted by a , bl , b2 , and x , respectively.

We shall first prove an upper bound on r(RFF)

Lemma 1. For any list L , RFF(L) < 2 L*+ 5.
— -2
Proof. Clearly,
RFF = + +

() a Zyp * 2y T2z Tz (1)
Fact 1. Every bin BIN, in Z) , with the possible exception of two
bins, has cont(BINi) >3/k,
Proof. The set of bins Zh can be regarded as the First-Fit packing
of a list of pieces in (0, 1/3] . Therefore, every bin except the last

one has at least 3 pieces. If BIN.J is the first bin with

cont(BINj) < 5/L , then all the bins following it contains only pieces



27 B 97 7 BE
AR/ HARE
2 2
class 1: A Al +v0 | A % é oo %
Zd |44 a4
) A A
Bl |5 By
C —_ )
o~ N —~
le 215 Z15
Z R mmvinv;
Bl Bl Bl //
class 2: 4
Bl )5 Bl |13
u
~
ZQ
R/
7\ 7 /
class 3: B2 B2 B2 //
B2 B2 B2 B2
L\ J
~—
%
/Y, ///, 11/ ///
class h: /’
T [ x
X
X
N
W
%,
Figure 1. The structure of a packing using RFF. The ordering of bins

and the relative positions of pieces within a bin are not

necessarily represented faithfully.



greater than 1/1# . This means all bins following BIN. , except the
J

last one have contents exceeding 3/1+ . O

Fact 1 has often been used in bin packing arguments (see [7, proof

of Theorem 2.3]). 1Its proof is given here for convenience.

- 1
Fact 2.  zy,+ 25 = ng/mJ ; By = rbl/E! L 5(1 - }')bg‘ < 2.

m
Proof. The first two equations are obvious from the algorithm. Tpe 155t
one follows from Zy = -gEbg - 29, - le)-[ . O
*
Fact 3. a<L .,
Proof. No two A-pieces can be in the same bin in any packing. O

We shall find upper bounds on 2y, and hence on RFF(L) vyia

formula (1). There are several cases to consider.

Case 1. 212 =0

The total contents of class-4 bins is at most

L*_.]g;a_%_b]lg:%-b 2' Thus, by Fact 1, we have
4 = 1 2 1
Zpy 2ty (Lo-za-350b -3b) ()

Combining (1) and (2), one obtains

L

* 1 8 L
RFF(L)SS—E+§a+(zg-i-§-bl)+(25-§b2)+2. 3]

Making use of Fact 2, Fact 3, and the fact m < 9 , we have



Formula (3) then implies

*
RFF(L) < -55- L + 5
. >
Case 2 212 0
Fact 4. In this case, cont(BINi) + cont(BINj) > 1 for each BIN; € Zy;
BINJ. € Zy, . In particular, con’c(BINi) > 3/5 for each BIN, € 291
Proof. Otherwise, the A-piece in BINi should have shared the same bin
with some BE —-piece during the packing. O
Case 2.1. le > 212.

The total sum of all A, Bi-pieces is at least

2 5 2 1
210 + 5 (21 - 290) 4 7 Zy3 4+ 5 (225 -1 + 7 (225 -1)
> 2 7 4 2
> < = — = = -
AR I CRSE I S T T
where we have used Fact 4 and the equation Zy = a-z From Fact 1,
13 .
we obtain
L * 3 2 7 4 2
Z, < 2+ = -Za-= - = - = - =
y S 3(L S8 5%, "35 %355 % 5z5+1), ()

Combining (1) and (4), and noticing that 23 > 0 and z. > 0 , we obtain

[— s —

. 7 1
RFF(L)_<_§L +§a+1—5-212+@z3+1+ ) )

We now make use of Fact 2 to derive from (5)

4 A% 2 1,371
RFF(L)55L+5a+(B+9—OIE)b2+5 . (6)



1 1 37 1 1 _*
Fact D, 5‘&‘*’(’1?4'-565)1)2 Sg‘L .

Proof. In an optimal packing of L , each bin with an A-piece can

contain at most 1 B.-piece, and any other bin at most 2 Bg-pieces.

2

* *
Thus b, < a+ 2(L -a) =2L -a . Therefore

e (o2 1,57 1\,%, (1.1 3
$-at (Ig+90m)b2§(ﬂ§+90m)21'+(§-JB"§5 )8‘

*
As the second term on the R.H.S., is non-negative and a < I, , we have

=8l

L 1,211 AT N P
e (BB i) s (BB i) <500

for m _>_57/7.D

*
L +5,

W

Formula (6) and Fact 5 lead to RFF(L) <

Case 2.2. le <z

Total sum of all A, Bi-pieces is at least

1 2
213 * 5 bpp mzgp) * %215+5'(222 “ho % (225 -1)
2 1 1 i )
> 5 a+5212 + -6215+§ Z2 + '5— 25 -1

By Fact 1,
Zu( %‘:/.—* 52 %— lE-lZ -l'-Z —‘Q'Z+l)
< 2+3 (L “za-2z 6713 "5 27373 ’
It follows that

RFF(L) = a + =z Tz, *ozz toz)

12 3
<11L* +l~a+51—z =g -, + 1, + 4
> 9 912 9713 1% 2 973

Loo* 1 5 1
SB—L +§a+§zlg+-9—z5+l+ .

10



Using Fact 2, we have

< 30 bae3n) R
L % 1 1 11
5§L+§a+(1’8+§ﬁ)b2+5 ' (7

1 1 11 1 _x
Fact 6. 98«+(E+—§—m-)b2_<_311 .

1 1 11 *
Proof. L.H.S. < 3 a + (I8+ 5 IE)(EL -a)
z
m

i
VY
Ol
+
~
=

*
+
N
e L
i
Bl
N
)

The second term is never positive (as m < 9) , thus

1 1\ * 1
L.E.S. <[|[Z+= )L <z
_(9 m) =5

*
Formula (7) and Fact 6 lead to RFF(L) < %L +5 for Case 2.2.

This completes the proof of Lemma 1. O

Lemma 1 implies that the performance ratio of RFF does not exceed 5/5 .

We shall show that it is in fact exactly 5/3 .

Theorem 1. r(RFF) = 5/3 .
*
Proof. We need only exhibit lists L with arbitrary large L such that
5 _%

RFF(L) = gL + 0(1)

- (3+

Let 6.J = 4 (J 2) for 3 >1 , and n an integer of the form Ok+1
for some k > 1 Definep—-]-:+"‘v u—-l+6 t——l-25 for
-~ LA R e I EER T

1 <J<n. Consider the list L = L.'LLE , where



t

Ll = (u_l, t2, ‘t5 5 UB’ th’ tS""’u2j—l’t23’t2j+l""’ un—E’ tn-l’ n)

and

L, = (ug,u,..O oene ,pl,pg,.M (] *""tl’un)

*x
Clearly L = n (Figure 2a). Now, using the easily verified fact that

(u2j 1t t23+t2j+l> + min{tk,ui} > 1 for every k > 2j+1 and any i ,

the packing resulting from RFF is as shown in Figure 2b. Thus
14
5 _%
RFF(L) = z L + o(l) . This -proves the lemma. ]



NN

NNSSSNNES

NN\

NNNNNNNNSRNN

V =i

L in the proof of Theorem 1.

An optimal packing of

Figure 2a.

A\

n-

&
2

O\

"1

NN

s

NN

n

AN

Cojpl

AN

71
/.t

)

)

-+
—
o

—
S N

The RFF packing of L.

Figure 2b.

13




L, A Lower Bound to r(S) for On-line Algorithms.

In this section we will show that one cannot expect to find on-line
algorithms as good as, say, FFD , even if an arbitrary amount of

computation is allowed.
Theorem 2. For any on-line bin packing algorithm S , r(S) > 5/2 .

Proof. Let 0 < ¢ < 0.01 be a fixed number, and x = o 2¢

1 1
y = 3 o, o zo= §-+ € . For any n = 12k (k a -positive integer), define

a list L = L1L213 , where I, consists of n x 's, L

1 consists of

2
n vy's, and 4 consists of n z 's.

Clearly,

* 1 * 1 *
- =" - d =
Ll =z n (L1L2> 5 n ., an (L1L2%> = n .

*

Given any on-line algorithm S , let zr, (n) = S(Ll)/Ll ’
*

rg.(n) - S(LlLe)/(L L.)

1L,) s endr(a) - s(Lng%)/(LlLQLB)*, We shall

prove that
max{rl(n),re(n),rﬁ(n)} > 3/2 (8)
This immediately implies that r(S) 2_5/2 and hence the theorem,

Consider the packing of L under algorithm S . §e shall gather
information about rj(n) (1 < j < 3) by examining the resulting packing
configurations at points when Jn items have been assigned.

Consider the -packing of the first n items (i.e., IL; )e  Let a,

(l <1ix< 6) be the number of bins containing i pieces of x (Figure 3),

then

1k



S(L,) = 2
1 1<i<6 * ’
(9)
n = z 1C,
1<i<6 *

i 77 7 B 7 B 7 B V7
"B A AN
[x x X /, g %
- X " 3 7/ g7
X X X p:d X’ ///
a6 065 OfLL C% 062 Oél
Figure 3. The packing of L. by 8

1

Next we examine the configuration after 2n items are packed (i.e.,

I, I, has been assigned), A bin is called type (i,4) if there are i x's

L
and f vy's in the bin. Let 61 3 Bg , ai s ai ’ ai” 5 aé ) ag 5 aé” )
o% s Qg > O j,  be the number of bins of type (0,1) , (0,2) , (1,0) ,
(1,1) , (L,2), (2,0) , (1), (2) , (3,0), (3,1), (4,0), (4,1),

respectively (see Figure 4). Clearly,

15



r — ' "
ocl —O‘l+C‘l+O‘£' 5

a'+a"+ me
o T Y T AT

%oy

(XLL:(X’L‘I'Q{): .

A —
I\)&
]

(10)

o
1

.

.\;{\ \\\\ ENYY \\\ (\\ \\\ AN Q "\T \\\ Q \\ N N
TEENPNENNPNNNR
5 1 T N\ NEMENEN N
= > y y \ X % y \
X X X X X X _\\_\_ \ \\
X X X X X X X X _}_C_ v v \ ¥ v
O‘g a5 O‘ﬁ ocL'L oc%' oc% ocg ! all ?o-cg ot ozi oc'l 52 B
—J —~— —_ )

- Q) % G, oy

Figure L. The packing of I;L, by S

1

It is easy to see that the only other possible types are (6)0) and (5,0)

and there are respectively &  and a. such bins. The analogue of (9) is

p)

_ Ay 1t ' 1" " [ 1" t oyt 3
S(LlLQ) = (ai+al+‘xl')+ (oc2+oc2+o:2 )+ (a5+oc5)+ (ocl+ @u)+065+046+61+82 ,

n = (oc'i+2aiv>+(oc5+go¢5v)+o%'+aﬂ+al+252 s

(11)

16



where the second equation counts the number of y 's.

A lower bound to S(LlLELB) can be obtained by observing that no

z-piece can go into a bin of type (L2 ) , (&1) , (2,2) » (3,1) ,(h,O) ’

(4,1) ,(,0) , (6,0) , or (0,2) , and that no two z-pieces can occupy

the same bin. Thus

LA ”" "y 1" \ "
S(L1L2L3) B A R e I A

We now define a new set of variables:

-

Qi
1l

1 'l

Qi

2 = gl o+ qn?
al! + a' +
1 2 Q5

a" + a" + n
p T Oz Ty

of?

Qi
i~
|

% = Q) + 0 + Qg

>

Making use of (10) and the positivity of all quantities involved, we
obtain from (9), (11) and (12) the following constraints.

(

a1+a2+o‘5+ah + O

S(Ll)
<

n <ozl+26¢2+5045 +hozh +6a6

.
~
= O X o Y o+ .+ +
S (LIy) = * G + 0+ 0 + 8+ B+ B,
n o= Q +2a, +oQ, + By + 28,
and
S(LIoks) > % et 9 Byt

17

(12)

(13)

(9

(11)

(12)"



In terms of r, (n) , the above systems can be rewritten as follows.

(%rwrl(n) = &l+ 542+ o'%+ &u+ &6
-;—n-rg(n) = &l+ 552+ &5+ &h+ 6:6+Bl+ By
4 ner;(n) > a, ooy +oa * Byt (14)
-5 > 50 - 0, -3 -G - 56,
L -n = - dl - 2642 - &u - By - 28, .

We are now ready to prove (8)., If (8) is not true, then we have

r
l:-L;n > %n-rl(n) s

< %n > %—n-rg(n) , (15)
3

. 50 > n-rB(n) .

Now adding up all the equations in (1) and (15), we obtain

o > %—5&1 + 3 oc5 » @ contradiction. This completes the proof of (8),

and hence Theorem 2, )

18



5. The Technique of e-Improvement.

Given several simple heuristic algorithms in an optimization problem,
a practical method to obtain a good solution is to run each algorithm and
then select the best solution produced. For example, in the traveling
salesman problem, one may produce tours using several heuristic algorithms
(see, e.g. [10]) and select the shortest tour. It is hoped that the
quality of solution obtained will be much better than using a single
fixed algorithm. TImplicitly, the success of this idea depends on the
hypothesis that different algorithms "favor" different regions in the
input space. An interesting research area, so far not much explored,
is to analyze the performance (worst case or average case) of such
"compound-algorithms".  Trying to obtain a better heuristic algorithm
than FFD, one possibility is to try such compound algorithms.

There are two difficulties in a direct approach, however. Firstly,
there are many algorithms sharing the same worst-case input (e.g. the
almost-any-fit algorithms in [5][6]). This eliminates some natural
compound algorithms (running FFD and BFD will not improve the worst-case
bound). Secondly, the ratio 11/9 = 1,22... 1is very close to 1 , and
the analysis has to be rather -precise to beat this bound. As the analysis
for a relatively simple FFD is already complicated, it is likely to be
hard to analyze more sophisticated algorithms. We will circumvent these
difficulties by focusing on a specific goal -- to find an algorithm with
bound %% - ¢ for any -positive ¢.

The idea is to locate the part of input space for which FFD may
realize its worst-case performance. If the characterization is simple
enough, we may be able to design a heuristic algorithm S that has a

better -performance in this bad region. The compound-algorithm of FFD

19



u_.
1

many bin-packing algorithms, one can give simple descriptions of small

and S then has a bound better than It turns out that, for
regions covering all the "bad" inputs, as a result of the weight-function
type argument used. Thus the bin-packing problem provides an ideal
opportunity to try out this idea of "e-improvement".

In this section, we shall illustrate the idea by proving a simpler
result about FFD. Consider the restricted problem of bin packing, in
which each number in list L is in the range (0, 1/2] . It is known [7]
that FFD has a -performance ratio 71/60 for this restricted -problem. We
shall show that there is a better heuristic algorithm.

We first state a useful lemma.

Lemma 2. Let N, M , 4, v be constants such that 0 < A < k'f 1,
wo> (1-%)"1 , and v >1 , Suppose there is a bin-packing algorithm S
with running time O(p(n) ) such that, for any list L consisting of
numbers in (M,A'],  S(L) < p,L*“' v . If -p(n) is a non-decreasing
function of n , then there is an algorithm S§' with running time

O(p(n) + n log n) such that 8'(L) < p,L*+ vy for any list L consisting

of numbers in (O,A']

Proof. Given an arbitrary list L , the algorithm S' works as follows.

In O(n) time, one divides the items into two lists I, and L consisting

1
of numbers in (M A'] and (0,A] , respectively, The algorithm S is

2 4

applied to I, to produce a packing using, say Ny bins. One finishes
the packing by —-performing a first-fit algorithm on list L2 + The algorithm
clearly works in time O(p(n) + n log n) . We now show that

* *
S'(L) <u.L +v . By assumption, Ny <p-Ly +v . If S'(L) < LA

20



* *
then the result follows immediately since Ll <L , If S'(L) > Nl ,

then in the final packing, all except possibly the last bin must have

content greater than 1-A . This implies that L*__> (IT-N) (s' (L)-1) ,

L

and hence S'(L) < gy

*x *
L'+1 < 4L +v . O

The above line of argument appears often in bin-packing analysis
(e.g. [7, Lemma 3-3]),
The rest of this section is devoted to proving the following result,

based on the general idea outlined earlier.

-6 .
Theorem 3. Let ¢ = 10 . There is an O(n log n) -time algorithm S

for bin-packing such that, if a list L has all numbers in (0, 1/2],

then sS(L) < (%- e) -L*+5 .

Let M=1/7, A =1/2, 4, =71/60 - ¢, and v =5 . ByLemma2,

we need only prove the theorem assuming that the lists 1, have all numbers

in (1/7 , 1/2] . For the rest of this section, we restrict ourselves to

such lists, although some statements also apply to general lists. The first

step is to locate the "bad" input lists.

A Review of the Proof for FFD(L) < % L* + 5 .

The proof [5][7] proceeds by defining a function W(S) > 0 for any

finite set S of numbers in (0, 1/2] , such that the following properties

are satisfied.

Property Al. W is subadditive --— W(U Si) < W(Si) .
1 i

Property A2, If all elements in L are in (1/N, 1/2] , N > 4, then

W(L) > FFD(L) -N+2 .

21



Property A3. If S = {xl,xg,...,xm} with X, € (1/7 , 1/2] and

E.xi<_l,then
1

Ww(s) < 71/60 .

Let Xi be the i-th bin in an optimal packing of L . Properties

Al- A3 imply the desired result

FFD(L) - ' 1L .
(L) -5 < w() < EZW(Xi) gL (16)
A Strengthened Analysis,
We have seen from (16) that,
71 o0x
FFD(L) < 2= L+ 5. (17

Notice that we would obtain a bound better than (17), except in the case
when almost all X, have w(Xi) = 71/60 . Actually, W(X.) = 71/€0

- 1
only under very special conditions.
Definition. A number XQJ in L is called an A, B, C, D, E, or
F-piece if x. is in 1/2,1], (1/3, 1/21, (1/%,1/31, (1/5, /4],
(1/6,1/51 , or (1/7 » 1/6] . We shall use notations such as S = {cCcDE)}
to express the situation S = {Xl’XE’}%’xh} with X 5 X, )% =
being a C, C, D, and E-piece, respectively. 1p 5 packing, a bin

containing a set {CCDE} will be called a CCDE-bin. The notation

generalizes obviously to other configurations.

22



Property A5'.  [5] [7]. If s = {x,%,...ox } with x; e (1/7, 1/2],

and ZXi < 1, then
1

w(s) < 71/60 , if s = {BBEF} or {CDEEE} ,
and

w(s) < 7/6 s otherwise.

A strengthened form of (17) can now be derived as follows. Tet P*
*
be an optimal packing of L , and Xi the i-th bin in P* (1 < i <L) .

Assume that there are @ bins in P* of the form ¥BB1§F1or {CDEEE} .

*
Lemma 3. If a < (1-60e)L , then FFD(L) < %(-)]: _ G)L* -

Proof. From Properties Al, A2, and A3', we have
1 7 *
FFD(L) -5 < W(L) < .<—-—7 - .
L) -5 < ()__ZiW(Xl)_éoowg(L a)
Therefore,
- 1l
FFD(L)gg L +660‘+5
Z:I_' - *+ O
< (60 E)L > .

We shall call a list L severe, if in every optimal packing p* of T,
there are more than (l—60e)L* bins of the form {BBEF} or {CDEEE} .
Lemma 3 states that, if a list L is not severe, then the packing produced
by FFD has a bound at most % - € , strictly less than 71/60 , This
concludes the step of identifying "bad" lists, We can finish the proof

of Theorem 3, if we can design a heuristic algorithm S such that

s(L) < (% - e)L* + 5 for all severe lists L . We shall presently

25



give an algorithm M with running time O(n log n) , and prove that

S = M has the desired property.

Algorithm M.

Step 1. Sort the input list L ; let (b, <b, < ® ee), (c;<c, < O ee),

1 2 1-72

(dl§d2<_. 00) ,(elgeei...),and (f; <f5~..) be

the sublists of B-pieces, C-pieces, D-pieces, E-pieces, .4

F-pieces, respectively.
1 = ]
Step 2. For j = 1,2,... , put {cb, dj’ 653-2’ ij—l’ 6333
as long as such a set can fit into one bin and enough pieces are

into BIN.J,

available. [We shall abbreviate the latter clause below as
"as long as it is feasible".] Assume that m such bins are formed.

Step 3. For j = 1,2,... , put .} into
2d

S, d .
{Cm+J’ w37 Bmreg-1 7 S3m

BINm+j » as long as there are enough pieces available. agsume

that k such bins are formed. [Note that a set {CDEE} has

1,1, 1. 1
sum <zt opof = + = < 1, and thus can always fit into a bin.

3 5
Step 4. Suppose there are h F-pieces. For j = 1,2,..., put

into BIN

mtk+ as long as it is feasible.

{bEJ—l’ b2j’ fj’ ih—j}
Assume that g such bins are formed.

Step 5. For 4§ = 1,2,... t i
p ] ix3) r pu {b2q+2j—l7 b2q+2j s 65m+2k+j:3 into

BIN

mtk+qty as long as it is feasible. Assume that s such

bins are formed.

Step 6. Pack the remaining E-pieces and F-pieces, respectively, by themselves
into new bins using first-fit. ret p be the number of bins
formed this way.

Step 7. Pack all the remaining pieces by themselves into new bins using
first-fit. Suppose t new bins are used.

End of Algorithm M.

ol



Figure 5 shows a packing produced by Algorithm M.

[ 7] Z -, Zrs <z 7w
7 7 F 7
. ZiE Zi Z
E E F E E F
— — F
E _E_ B B f_ F
o] | Bl
C C B B B I
— S —
—l_
m k q )) P t

Figure 5. The packing produced by Algorithm M.

Analysis of Algorithm M.

It is easy to implement M so that it runs in O(n log n) time.
To complete the proof of Theorem 3, it remains to prove the following

result.

*
Lemma L. If L is severe, then M(L) < (26% - G)L +5 .,

x
Proof. Let P be an optimal packing of L . Assume that there are
*
in P B bins of the type {BBEF} and 7 bins of the type {CDEEE} .

As L is severe, we have
s - *
B + vy > (l-oOe)L . (18)
We wish to find bounds on the various terms in

ML) = m+tk+a+ s+ptt . (19)

25



In Step 2, for 1< j <|7/5],

c. +d

. . te.. e . e_. < the (5j-4)-th smallest content
7% T332+ S35-1 + T35 = (53-4)

in all CDEEE-bins in P*

Thus, at least |»/5] bins are formed in this step, i.e.,
mo > /51 . (20)

Bounds on m+k can be obtained by considering the total available

CD-pairs. This gives
*
y + 60eL x3 > mtk > y . (21)

*
In the last formula, the term 60eL x3 1is an upper bound on the number

of C-pieces not contained in CDEEE-bins. In Step 4, for 1 < j < L8/3] .

sz—l + b2j + g + fh—j < the (3j-2)-nd smallest content

in all BBEF-bins in P*

Therefore,
a > LB/3) . (22)

By considering the number of all F-pieces, we find the following upper
bound on g ,

2+ 60eL x5 > o . (23)

To derive bounds on ¢ , we first observe that each B-piece in a BBEF-bin
(in P* ) is less than 1 - 1 r_I_2> For any two such B-pieces
53786777 1k ’
one can add any E-piece to form a BBE-bin. Thus, a lower bound to ¢ is
the minimum of (#B)/2 and #E , where #B and #E are the numbers of
such B-pieces and any E-pieces, respectively, at the start of Step 5. As

#B > 2 -2q , and #E > (B+3y) -3(mtk) > B-ShOeL* using (21), we

obtain

26



*
£ > B-q-540eL . (2h)
The total number of B-pieces available gives an upper bound,
*
B - q+ 60€L Z b . (25)

We will now estimate p and t by calculating the number of various
-pieces not contained in the first mtk+g+f bins. The total number of
B-pieces in L is at most 28+ (60eL*x2) ; by (24), at least 2(B - 51¥O€L*)
of them are in the first mt+k+gt{ bins. Thus, denoting by N[Y] the

number of Y-pieces in the last p+t bins, we have
*
N[B] < 1200eL . (26)
Similarly, one can show that
*
N[C] f lSOGL ’ (27)
*
N[D] < 2Lkoen , (28)

Also one has, using (22),

1

6+ 360eL. + 2 . (29)

N[F] <
The number N[E] satisfies
*
N[E] < (B+37+300eL ) - (3m+2k+ 1) . (30)

Now, using(20),(21),(23), and (2%), one has

3m+ 2k + 4

m+ 2(mtk)+ ¢

> I_SZJ + 2y +%-720€L*

1 11 *
§B+-§— - 720l - 1 . (51)

v

From (30) and (31), we have

=

4 *
N[E] < B+ 57t 1020eL + 1 . (32)

27



We can now estimate p and t . Using (29) and (32)
1 1 by *
P < FN[EI+Z N[F] + 2 < %B+§§y+26heL 3.0 (33)
From (26) - (28),
t < N[B] + N[C] + N[D] < 1620eL" . (31)
Making use of (21), (25), (33), (34) in (19), we obtain

M(L) < %B+%y+2121+€];*+5.

*
As p+y <L , we have

M(L) < (% + 2121+Q>L* + 3,

. 29 71 .
Observing that 5= + 2l2oke < z5 - € » we have finally,

M(L) < (g—%—e)L*JrS

This proves Lemma 4. (]

The proof of Theorem 3 is now complete. |

28



6. A Polynomial-time Algorithm Better Than FFD.

This section is devoted to proving the following result.

_9'

Theorem kL. Let € = 10 There is a polynomial-time heuristic

algorithm RFFD for bin-packing such that, for any list L,

RFFD (L) < (il—- e)L*+8

9
. -9 ) -5 -h
We shall use the notations ¢ = 10 , 8 = 3x10 y M=10 ,
-1
and>\.=l-(1'9l-e) . Clearly, e=%5'ﬂ and O < A< 2/11.

Although more complicated, the proof of Theorem L4 follows the same
pattern as that of Theorem 3. By Lemma 2, it suffices to show the
theorem considering only lists L with all elements in (A,1] . We will

first prove that, for all such lists, except those of a special type,

FFD produces a packing within the desired ;’—l - ¢ bound. We then construct
a heuristic algorithm EPSI that performs well (below i € ) for the

9
exceptional "critical" lists. The compound-algorithm S of FFD and EPSI
*
clearly satisfies S(L) < (% - ¢ )L + 8 for any list with elements

in (M,1] , completing the argument.

A Review of the 11/9 Bound for FFED.

We review below the proof of [5][7] for FFD(L) < -19—1 L* + 4, if L
obeys the following Assumptions 1 and 2. As Assumption 1 can be justified

by Lemma 2, and it can be shown directly [5, p. 277, Reduction 3] that

6 *
any list L violating Assumption 2 has FFD(L) < 5 L + 1 , this would
11 _* .
prove FFD(L) < 5 L + 4 for any list L
Assumption 1. Let L be a list of numbers in (2/11, 1]

29



*
Let P Dbe any optimal packing, and PF the packing produced by FFD.
We use X; to denote the i-th bin in P , l<i< . In any packing,

a bin containing an A-piece is called an A-bin, otherwise it is a non-A bin.

The number of A-bins in any packing of [ is equal to the number of
A-pieces in L , which we shall denote as IALI . Let

F = (x |X€L , X i1s in a non-A bin in PF}.

Assumption 2. % contains at least a C-piece or a D-piece.

Let the function W be defined as in Section 5. The analysis
proceeds to define two functions f and g , based on P, and P*,

f: L - ¥ and g: L - rational numbers.

For any subset T c L , we write f(T) for > f(x:l) , and g(T)
X, €T
i

for 2 g(x;) . The definitions of f and g are complicated ([5]),
X, T
i

and were shown to possess the following properties.

Property Bl. & = | f(x) ’ IALI > 2 e(x) .
xeL XeL

11 .
Property B2. W(f(Xi)) ¥ g(Xi) < T (y(Xi)ﬁ-g(Xi)) ;o 1< 1 < L
where

o , if X is an A-bin,

1

1, otherwise.

Also, the following are true from properties of W (see Properties Al and A2).

a

Property B3. W( U f(x) < 2 W(f(x))
xeL Xel

Property Bh. w(#) > FFD(L) - |AL| - L

30



Summing over Xi in the formula of Property B2, and using
. . 11 _*
Properties Bl, B3 and B4, one obtains  FFD(L) < 5L +4 , for any
list under Assumptions 1 and 2.

The above is an outline of proof for the bound 11/9 . For our

purpose, a strengthened analysis for FFD is needed.

A Strengthened FFD Analysis.

We shall work under a weaker form of Assumption 1.

Assumption 1'. Let L be a list of numbers in (A\,1]

P* , X, , ¥ and W have the same meaning as before, We

Let P 5

T
shall say a bin Xi in P*- is regular, if Xj_ is not of one of the
following configurations: an A-bin with 3 pieces, BBC , BCC , CCCD ,
or CCDD . Otherwise Xi is irregular.

For any list L satisfying Assumption 1' and Assumption 2, one can

define f and g such that the following properties are true, in addition

to Properties Bl - Bk,

Propercy . W(t () + 8l%) < (-5 )0y vely)) , if ¥ is

regular.
Property B6. If Xy is a regular A-bin, then g(§:)> 1/5 .

The proofs of Properties B1-B6 under Assumptions 1' and 2 follow
closely the original analysis [5]. A description of the necessary
modifications is given in the Appendix.

We can now give a characterization of lists L for which FFD may

have a bad performance,

31



Theorem 5. Let L be a list satisfying Assumption 1', and P* an
* .
optimal packing of L . If there are more than ML  regular bins

*
in P, then FFD(L) < (%— e)L + 4,

Proof. If Assumption 2 is not true for L , it can be shown [5, p. 277,

6 %
Reduction 3] that FFD(L) < = L + 1, and the theorem is true. We can
therefore suppose that Assumption 2 holds.

Take the formulas in Properties B2, B>, and sum over all X, |

We have

D ow(e(n )+ e < 2 D E) + e)-s D ) +aX))
all X, 1 9 an X, © reqular

X.
1

Using Properties Bl, B3, and Bk, we see that the left hand side of
(35) is at least,
L.H.S. > FFD(L) - IALI - b+ g

Now, to estimate the right hand side of (35), we note that

D (y(x)+ e(x)) = L - [a] + g(w)
all Xi

Also, because of Property B6 and the fact that there are at least T/L*

reqular bins Xi , we have

2 (y«Xi)+-g(xi»);3(# of regular non-A bins) + % ((# of regular A-bins)

reqgular
Xy
1
> g‘(# of regular Xi)
*
2z .

32

(35)

(36)

(37)

(38)



From (37) and (38), the right hand side of (35) is at most
11 % 1 *
R.H.S. ﬁ—g—(L -lA_LI.|_ g (L)) _5-3_-nL . (39)
Formulas (35), (36), and (39) lead to

11 * 2
FFD(L) < (-5--56H)L ] (IALI - g(n)) * L.

n

Vi

Noting that e 87N and that IALI -g(L) > 0 by Property Bl, the

theorem follows. O

The EPSI Algorithms.

For the rest of Section 6, all lists are assumed to satisfy Assumption 1'.
We shall describe a family of algorithms EPSI[O‘l’ag’O%’O‘M%’51’52’71’72]
with non-negative integer parameters OL_L,OLE,...,y2 . Given a list L with
n items, we perform EPSI[Oél,Oée,...,yg] on L for each possible
0 < 051,062,...,72 < n, and pick the best packing. We call this procedure

the EPSI algorithm. It will be seen that each EPSI[Otl,OCE,...,y 1 works

2
10
in O(n log n) time, thus EPSI works in time O(n log n)

We call a list L of type (Ocl,ozg,...,ye) if there is an optimal

packing of L with 0;,Q,...,7, bins of type ACD , ADD , ADE , AEE, ACE,
BBC , BCC , CCD , CCDD , respectively. Note that a list can be of several
types. A list L is critical, if it is of some type (al’az""’72)

*
with ag+a,+ @  4y2 > (1)1 . The aim of EPSI[0y,0,,...,7,] is to

. . 11 . . .
produce a packing using less than % - ¢ times the minimum bins needed,

~

for any critical list of type <al’a2""’72> . This ensures that EPSI

has a bound better than LR € for any critical list, Together with

9
Theorem 5, which ensures a % - ¢ bound for non-critical lists, it

completes the proof of Theorem 4 as stated at the beginning of this section.

33



Given a list L , and parameters Otl,ozg,...,y2 , we shall presently
describe the action of EPSI[Ocl,ag,...,yg] . If any of the described steps
cannot be accomplished, it is understood that the packing of list L may
then proceed arbitrarily.

Firstly, L is sorted in ascending order, Then we pack various
pieces into four classes of bins according to the following rules.

<
Letal_agf%g..., bl§b2§b3<._.., cl§c2§c3<...,

be the lists of A-pieces, B-pieces, C-pieces, . . . , etc.

Step 1. Class l-bins: First put (b into BIN.J '

23-1’b23}
1<3j<pgt LBE/E_[.Then, for J = 1;2,...,L81/2_j , put

the largest available fitting C-piece into BIN, ,

Step 2. Class 2-bins: Let c; < c

1 < ... Dbe the remaining C-pieces,

t
2

Put {c j} into BINJ. , 1< 3 < 7, - For

' cl. c!
33-2 7 3317 73
Jo=1,2,.... [_71/5_] , put the largest fitting D-piece into
BIN..
J
Step 3. Class 3%-bins:
(a) Let di < dé < . . . be the remaining D-pieces. Define
— . [ t
m = LO:l/2_J + Locg/z_] . For 1 < j <m, put {dz,j-l’dgj}
into BINJ. . Then, for j = 1,2,...,m , put the largest

fitting a; into BIN.J

b) Define m' = Q. +o_+Q_ +a, + -m.

(b) i m 1 042 CXB O‘u 065 m Let
a; < aé < ...<g<... be the list of A-pieces remaining.
Put a total of [‘ocl/Q'l +o¢5 C-pieces, l'cx2/2"l +oc3 D-pieces,
and al; E-pileces 1into BINm+l to BINm+m, , one piece 1in

each bin. Now, put ai into BIN ,. , for 1 < i < m'
Step 4. Class k-bins: For each Ye {A, B,C,D,E} , pack all the Y-pieces
first-fit by themselves.

3L



We need some preliminary results before analyzing EPSI.

Definition. Let Y = (yl,yg,...,ym) and zZ = (Zl’ZE""’Zp) be two

lists of real numbers. The Cartesian product of Y and Z is

YxZ = {(yi,zj) |1<i<m, 1<Jj<p}. A partial match between Y

and Z is a subset § € YxZ such that (1) vt Z,j < 1 for all
(yi,Zj) €d , and (ii) any two distinct (yi,zj) and (yi,,zj,)
in & have i # i' and j # j' . Let y(¥,2) denote the maximum

possible size of |@\ . A partial match & is a maximum partial match,

if |&| = ¢(¥,2) . For any partial match % between Y and Z , the
range Z(_§ is the multiset {zj | (yi,zj) € & for some yieY} . (Thus,

|z§| = |8] ). Let Zy = I-Z,

The following procedure clearly generates a partial match,

Algorithm PM(Y,Z):

SortYintoyl§y2< <. <ym; sort ZintozlSZES .. . < Z_,
keep the elements of Z in an array T (T[i] « Zs 4 1<i<p)s;
3 -9 5 kep;
for i := 1 until m do
begin Search T[k] , T[k-1] , . . . to find the largest j < k satisfying
y_.l+ Zj < 1 ; if j does not exist, halt;
¢ -3 {2zl
k - 3-1;
end

END of Algorithm PM.

35



Lemma 5. Algorithm PM(Y,Z) works in time O(n log n) , where

n = |Y|+|z] . Furthermore, the partial match § generated is a maximum

partial match between Y and Z

Proof. The O(n log n) -time bound is obvious. To prove the other

assertion, suppose PM(Y,Z) sorts Y and Z into y, <y. < . . . <
1=92 % o = Y

and z; <2, < ... < Ny andproduces § = {(yl,zil), (y2’2i2>’ o o5 (ys,zis)} @

i io> . . . >1i .
Clearly i, > i, E

Now assume that there exists a partial match

' = {(y 3Z )s (v, 2 )s e e (Y- y 2 )}Witht>s « We will show
S R A Iy’ By

t

that it leads to a contradiction, With no loss of generality, sg5sume

that jl < 32<< ... < jt . This implies that yl_f %3_, Vs < ng s ees

etc., and therefore 3" = ((yl’zkl)'(yé’zkg)""’(yf’zkt>}

is also a partial match, A moment's thought reveals that

3" = {(yl’zki>’(yE’Zké)""’(yt’Zk'>} must also be a partial match,
t

where k] >kl o> k% is the sorted sequence of (kl’ke" ..ﬂ%).
Based on the description of PM , 3 simple induction argument gives

. , . \ . , L .

i 2 kl v i > k2 T k's . But this implies that PM should

have found a z. with z, +y <1l (z is a candidate).
T+l lgry ST = Ker1

This is a contradiction. [J

Definition. Let X and Y be two multisets of real numbers. We say

that X is dominated by Y if the i-th smallest element in X is no
greater than the i-th smallest element in Y , for all 1 <i < |X| < |y| .

A list X' is dominated by a list Y' if the corresponding multisets X

and Y satisfy this relation.

36



Lemma 6. Let X , Y and Z be finite lists with X dominated by Y .

Then

(a) y(X,z) > min{|X|, y(¥,2)}

(b) Let & be a partial match generated by PM(X,Z) , and 3' any

partial match between Y and Z with |&' | = |&| . Then Z@

is dominated by ZQ,

Proof. Let the sorted lists of X , Y, Z be x, <x2< . . . <x ,

1 - -m

Vi < Vo S oeee < Yy v Zl <z2 < < z_, respectively.

e o

(a) Let {(yl, Z; )s (ye, z, Yy eeey (ys, Zy )} be the maximum -partial match

1 2 S
generated by PM(Y,z) (Lema 5). Let £ = min{ |X| , s}.Then

{(xl, z; ), (XE’Zi ),..(xf, z; )} 1is a -partial match between X
1 2 1
and Z, as Xj < y;f by assumption. This -proves

¢ (% 2) > min{ |X|, y(%, 2) )

.
J

(b) Let & = {(xl’ztl)’(X?ZiZ)’""<Xl’zi£)} with 1, >i, > ... >3

and &' = {(y-) Y (v. sz ):---:(Y-:z >} with j, < Jj, < .
lek.!. 3" Ky Iy Ky Loz

As in the proof of Lemma 5, it can be shown that

5" = {(xl’zki)’ (xg,zké), . ey (xf,zk,‘)} is a partial match between
X and Z , when k_"_ > ké > 0. . > k;z is the sorted sequence of
(k ’k2""’k;2) . A simple induction argument then shows that

il > kj'_ 3 12 > ké 3 see s iﬂ > k;z .  This implies that, for each

1<q<p, I{itl ig > q}| > l{k_{: | ki > q}| . Hence, we have

Fact 7. For each 1 < q < p , |{it|i&__<q}\§|{k1':|k'<_q}\ .

37



Now the multisets 7. and 2 are obtained from Z by deleting

3 3!

(2, »2. 5...52. ) and (2,,,2 ...»2_ ) , respectivel Writ

k'? Ck! ] > ’ P Y. rite

Tyt =l ¢ p-l Ky
Z.=1{z 52 .e.z_} and Z_, = {2 ,2_ ,...,2 } , where
u_’ " ! ? ’

¢ 1 % Ye ? Vi Y Ve
uy < U, < v em <uC and vy < v2 < e < vc. Then, for each 1 <s<c,

u = s+ |2, [ it <u |, and (# of v, <u)=u - |{k | kp < u b

Using Fact 7, we have for each 1 <s <c,
(# of v, <u ) < u_ - l{t llt < us}l = s, and thus v  >u_ . We have

shown that =z _ < z for each 1 < s < ¢, completing the proof that
u v - =
s— s

Z_ is dominated by 7

¢ 3! .

We now analyze the algorithm EPSI.

Lemma 1. For a list L of type (al’a2"”’72> , every step of

EPSI[Oél,Oég, ...,72] can be carried out.

*
Proof. let P Dbe an optimal packing of L with 051 . o¢2 ) 043 s ah .
By » Bo 771 5 Y2 bins of types ACD , ADD , ADE , AEE , BBC , BCC ,

CCCD , CCDD , respectively.

(1) Step 1 can be done.

As there are enough (2Bl+ Be) B-pieces in L , we need only show that
the procedure can put [ 51/21 C-pieces into class-1 bins. We define the
following multisets: X = {bgj_l+bgj |1 <3< LBl/EJ 1,

v, = {o'+b" | {b',b",c} is a BBC-bin in P*},

Y ={y |y is the (2j-1) -st smallest of ¥, for some 1< j < LBl/E_] 1,

and Z = fall C-pieces in L} . As bEJ—l +b2j is no greater than the
(2j-1) -st element in Yl » 1t follows that X is dominated by Y . also
y(Y,2) ., [_Bl/EJ . It follows from Lemma 6(a) that y(X, z) = [_61/2_] = |X\

As Step 1 is essentially the execution of PM(X,Z) , that it can be accomplished

38



is guaranteed by Lemma 5. Finally we notice an important property

following from Lemma 6 (b).

Let &' be the partial match between Y and Z , defined by

f(b'+b", c) | fo',b",c} has the (2j-1) -st smallest b'+b" among

*
BBC-bins in P for some 1 < j< [_Bl/'&‘_] 1 . According to Lemma 6(b),
Z@ , the set of remaining C-pieces ci < Cé <. . ., is dominated by Z@I
It follows that the set of the first 571 pieces in ci < cé < . . . is

dominated by the set of 571 C-pieces in the CCCD-bins in  P* .

(ii) Step 2 can be carried out.

By the preceding remark, we have for 1 < j_< L71/5J ’
05'3-2+05'j-l+c';>"j is no greater than the (33j-2) -nd smallest element
of the multiset {e+c'+c" | {c,c',c",d} is a CCCD-bin in P*} . An
argument similar to that in (i) shows that Step 2 can be accomplished
as specified, and that the first Otl+ 2062+o% in the remaining D-pieces
di < dé <o*. are dominated by the set of D-pieces in the acD , ADD
and ADE-bins in P* .

(1ii) Step 3 can be carried out.

Step 3(a): The preceding statement implies that, for 1 < j <m,
déj-1+ d'2:.| < the (2j-1) -st smallest in the multiset
*
{c+ d|{c,d,a} is an ACD-bin in P }U {d+ d'| {a,d,d'} is
*
an ADD-bin in P} . As in (i) and (ii), this fact together

with Lemmas 5 and 6 can be used to prove that Step 3(a) can

be done.
Step 3 (b) : As each A-piece in an ACD , ADD , ADE , AEE , or ACE-bin is less
than 1 —!'- -1 = 2 » there are at least o, +a_ +0o +q +
6 6 3 17T s LT Yy

A-pieces in L that are less than 2/5 . At most m of

these A-pieces are packed in Step 3(a). Therefore,

39



al <ay ... < 8l < 2/3 . Since each a; can fit with any
C-piece (or D-piece, or E-piece) in a bin, Step 3(b) can be
done provided the specified number of C , D , E-pieces exist.

This latter fact can be easily verified.

(iv)  Step 4 can always be done.

This proves Lemma 7. [

Lemma O. Let L be a critical list satisfying Assumption 1' and of type

(ocl,a 5..0Ys) s and N, the number of bins used by EPSI[Odl,ocg,...,ye]

o

on L . Then
6 *
N < (§+5n)L+8.

Proof. To begin with, we note that

N = Gy ta,ta ta) tagtp + L52/2_] Tyt (# of class L-bins'. (l40)

1 T2 73 5

We now bound the number of class L-bins. The total number of C-pieces

. , N *

in L 1s at most Otl+u65+5l+ 2{32+5yl+ 9¥2+5T‘L . As there are

Fal/2'1+cx5 + LB]./E—‘ +571 C-picces in class 1-3 bins, the number of C-pieces
packed in class L-bins is at most Locl/EJ + [‘51/2"1+ 252+272+5ﬂL*

A similar counting gives the following upper bounds on the numbers of

A-pieces, B-pieces, . . . in class lL-bins,

*

(#A =MW
H *x
‘ i #B < 2nn + 1,

*
# <3M + e /2] + [py/20 + 28, +27,, (k1)

NS

#D < l»L'T]L*+ 1. FO!Q/ET + T 5'2—7114‘272 ,

#E<5nL*+oc + o, +Q
= ) L p)

Lo



Clearly,

# of class l-bins < #A + :EL (#B) + % (#C) + i‘ (#D) + % (4E) + > - (h2)

From (40), (41); and (42), we obtain

O

NS b+t g4 g (o) + L (B 4B, by ty,) + STL L8 (43)
S EWTER AT HTY TS+ g ByTB YT, - C. 3

As L >Q@, +Q@+e-e+y,, we obtain from (43),

* *
NSz fOML + 8 a

Vi oy

Lemma 9. The algorithm EPSI[ocl,Otg,...,yg] can be implemented to run

in time O(n log n) for list L with n numbers and parameters

UpsQpsaens?p <0,

Proof. Steps 1, 2, and 3 (a) are executions of algorithm PM , which
runs in time O(n log n) . The other steps involve sorting and first-fit,

and all can be done in O(n log n) time. [

Theorem 6. The algorithm EPSI runs in polynomial time. For any critical

list L satisfying Assumption 1', EPSI(L) < 5 - (—:)L + 8

Proof. From Lemma 9 and the definition of EPSI, the algorithm runs in

10

0(n"" log n) time. The rest of the theorem follows from the definition

of EPSI, Lemma 8, and the fact §+ 5n < 1—91- -e. O

Theorem 5 and Theorem 6 imply Theorem k4, hence the existence of a

heuristic better than FFD.

41



T How Well Can An O(n) -time Algorithm Perform?

We have shown that 11/9 is not the limit on the performance ratio
of polynomial-time bin packing algorithms. A most interesting open
question is whether there exists such a limit to r(S) . Carey and
Johnson [%] showed that, unless P = NP , no polynomial heuristic
algorithm for graph coloring can guarantee to use less than twice the
minimum number of colors needed. A similar result for bin packing would
be especially interesting, since the known achievable bound on the
performance ratio is already close to 1 . A more modest question along
this line was raised in [7], namely, how well can an O(n) -time algorithm
perform? A natural computation model is the decision tree model, counting
only branching operations [6][9]. It would be interesting to prove the
existence of an ¢ >o such that, for any O0(n) -time bin packing
algorithm S , one must have «r(S) > l+e . We have not succeeded in
proving such an assertion. However, a result of this spirit can be shown
for a closely related problem, and it may throw some light on the present
bin packing problem.

Consider the generalized bin packing problem discussed in [2]. Let

— — -

L= (Xl’xg""’xn) bealist of d-dimensional vectors (d > 1) , with
each component of the vectors in the intervals (0,1] ., The problem is
to pack these vectors into a minimum number of bins, such that the sum ¥
of vectors in any bin has vy < 1l forall 1<i<d. (When d=1,
this is just the bin-packing problem we have discussed,) The problem is
clearly NP-complete for any fixed d > 1 . For any heuristic algorithm,
let r(S) denote the performance ratio as before. A simple extension S

of the O(n) -time Next-Fit Algorithm [5][6] gives r(S) = 2d . We are

interested in a universal lower bound to r(S) for any O(n) -time algorithm.

Lo



We consider the following decision tree model. Let S be an
algorithm for the generalized d-dimensional bin packing. For each
n > 0 the action of S on lists of n items L = (}—51,532,. ..,i’n)

Each internal node of

can be represented by a ternary tree Tn(S)
TH(S) contains a test " h(§l,}'c'2, ' w@?’n) 2 0" where h is a rational
function. For any input L the algorithm moves down the tree, testing
and branching according to the result (h <0, h= 0, or h>0),
until a leaf is reached. At the leaf, a packing valid for all lists

that lead to this leaf is produced. The cost of S for input of size n
Cn(S) 5 1is defined to be the number of tests made in the worst case, i.e.,

the height of Tn(s) .

Theorem 7. Let S be an algorithm for the generalized d-dimensional bin
packing. If there exists a constant a > 0 such that Cn(S)_< an for

all n , then r(S) >d .

Proof. The case d = 1 is trivial. We therefore assume that d > 1

Let n > 0 be any integer. Define a sequence €2€12€pr e s 0 7€y such that

2
o = 1/a° ,
e > (d-l)ej,; »0<1i<n-1. (L4)
Let }?[i,j] be the vector (ei,ei,...,ei, 1- (d-l)ei, ei,...,gi) , for
j-1 d-J

each 1 <i<n, 1<j<d.

Consider the list I = (X[l,l] Py X072 2 X[, a1 X[p,1]7 00 X[n,d])

-

*
with dn vectors. Clearly Ln =n, as >

oL =(1,1,...,1) £
1<T<a X[l,J] (: ) :) or

13



each- 1 <i<n . Let Ty be the set of permutations of the dn elements
in E = {[1,J]|1<i<n, 1<j<a}. For each Ger, , denote by
Ln(c)'the list (ig(l))ik(g)’.. s ik(dn)) . Obviously, Ih(c)* =L*=n,
We shall prove that, for any fixed 8 > 0 , if n is large enough, then
there exists a 0e¢ [, ~ such that S(Ln(ﬁ))>>(d—6)Ln(0)* . This would
imply the theorem.

If the above assertion is false, then there exists a & > 0 such

that S(Ih(c)) < (d-8)n  for all sufficiently large n . We will derive

a contradiction.

8, i X a i
Fact In any packing, X[i,j] an X[i', 5] cannot be in the same
bin if 1 # i'
Proof. It follows immediately from the definition of E[, g 0
bt 1,J

Fact 9. Let 2 be any leaf of T, (S) , and 2(2) be the set of lists
: o~ -8n/d
L, (a) that will lead to ¢ . Then |2(4)| < (dn)! .(cn) for

some fixed constant c

Proof. In the packing produced at [, there must be at least p = 5n/d

bins containing two items or more, because S(L (y)) < (d-8)n , TIn other
n f—

words, any in-put list (§l,§é,...,§an) reaching f must satisfy a set of

inequalities of the following form.

yk + ;k S (l,l,ono)l) )
2

3_;]{ + k S (l:l:---;l))
(45)

e o

L



where " < " means componentwise inequalities, and all k:] are distinct.
An upper bound to |g£(2)| is given by the number of Ln(o)

satisfying (45). Taking Fact 8 into consideration, we have

|£(2) | < (ma(a-1))Fx (dan-2p):

< nPa®Py (an-2p): (16)

2 -
We now show that n¥d“® (dn-2p)! = (dn)! xo((n/(heg)) p) . There are two

cases. If 2p < dn/2 , then

D , ) 1 P 2

nfa"F x (an-2p)! < nPa™Py (dn) 5 < (an): 24 55 = (dn)!

(dn-2p+1) (an/2)“F
If 2p > dn/2 , then

D 213 D_PD 1 pdep

n*d™ x (dn-2p)! < (dn)! x = < (dn)! x 7=
\2p) (2 ) = (2p)!

P

2p
= (dn)! xo((e“/—d ) = (an): x0((n/(ke®))®)

We have used Stirling's approximation [9] in the last derivation. Thig

proves Fact 9. (O

an
As there are at most 3 leaves, the total number of lists Ln(c)

-sn/d jan

reaching any leaf of Tn( §) is at most ... .(cn) %3 < (dn)!

for all sufficiently large n . This contradicts the fact that there are

(dn) ! possible lists Ln(o) . This proves Theorem 7. O

L5



8.

Concluding Remarks.

We list some problems for further research.

(1) The e-improvement technique may be useful in other NP-complete problems,

(2)

for example, in the scheduling of tasks on a multiprocessor system [4],
This technique seems to be particularly suitable for scheduling-type
problems, when the set of possible worst-case input can be identified.
For instance, it can be used to show that r(S) < 2 for the Next-2

fit bin-packing [5] [6]. It may be of interest to mention that, although
the algorithm RFF was constructed and analyzed in a more conventional
way as presented, it was first obtained in a fashion very similar to
the process in Sections 5 and 6. Thus, the e-improvement viewpoint

can provide a starting point for substantially improved algorithms.
Let r(on-line) be inf{r(S)} over all on-line algorithms S , We
have shown that 1.5 i_r(on—line) < 1.66ees , It is of interest to

determine it more precisely.

(3) Find and analyze off-line algorithms S with r(S) "substantially"

better than 11/9 .

(1) Is there an ¢ > 0 such that finding a packing of L using less

*
than (1+e)L Dbins is NP-complete? Is there an ¢ > O such that
every O(n) -time algorithm S (say, in the decision tree model

described in Section 7) has r(S) > lte ?

Lo



References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 197k,

[2] M. R. Garey, R. L. Graham, D. 8. Johnson, and A. C. Yao, "Multiprocessor
scheduling as generalized bin-packing," Journal of Combinatorial Theory
21 (1976), 257-298.

[3] M. R. Garey and D. S. Johnson, "The complexity of near-optimal graph
coloring," Journal acm 23 (1976), 43-49,

[4] R. L. Graham, "Bounds on the performance of scheduling algorithms,"
in Computer and Job/Shop Scheduling Theory, edited by E. G. Coffman, Jr.,
Wiley, New York, 1976.

[5] D. S. Johnson, "Near optimal bin packing algorithm," Ph.D. Dissertation,
Massachusetts Institute of Technology, Cambridge, Mass., June 1973,

[6] D. S. Johnson, "Fast algorithms for bin packing," J. Comput, System Sci,
8 (197k4), 272-31k,

(7] D. 5. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,

"Worst-case performance bounds for simple one-dimensional packing
algorithms," SIAM J. on Computing 3 (197k4), 299-325,

[8] R. M. Karp, "Reducibility among combinatorial problems," in Complexity

of Computer Computations, edited by R. E. Miller and J. W. Thatcher,

Plenum Press, New York, 1972.
[9] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973.
[10] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, "An analysis of

several heuristics for the traveling salesman problem," SIAM J, on

Computing 6 (1977), 563-581.

L7



Appendix. The Strengthened FFD Analysis in Section 6.

At the beginning of Section 5, we listed some facts (Properties Bl - B6)
which lead to the proof of Theorem 5. 1n this appendix, we will give more
details on how these facts can be obtained from the original analysis of
FFD in[5][7].

In [5], Properties Bl-BlL are proved under the following assumptions on
the list L . Let PF be an FFD packing and P' an optimal packing of L ,
Write the items in L as X} 2 X5 > ees > X Let

- n.

F = {x | x, is not in an A-bin in P } .

Assumption 1, All x, are in (2/11, 17.

Assumption 2. % contains at least a C-piece or a D-piece.

Assumption 3. The smallest piece X, goes into a non-A bin in P_ |
F

i.e., xne? .

We make the foll owing observations. pet ¢ = 1077, A =1 - .

=3 ><lO_5 , and 7 =10 - , as in Section 6.

Observation 1. One can replace Assumption 1 by a weaker constraint,

Assumption 1'. that X, ¢ (M, 1]

Observation 2. One can replace I' by any packing of L
Observation 3. Property B2 comes from the following facts.
W(E(x,)) < g-g(Xi) , if X. is an A-bin in P' ,

*(f(X1> ) - % (Xl) < %J—' » if X, is a non-A bin in P'

L8



One can make stronger statements for regular bins X,
1.

W(f(Xi)) < IBH g(Xi) » if X, is a regular A-bin in P',
wir(x.)) - 2 g(X.,) < 2 if X, 1is a regular non-A bin in P’
i g o\ = 60’ i .

Observation 4. g(Xi) < 50 , for any bin X. in P'

Observation 5. g(Xi)

v

1/3 , if X; is a regular A-bin in P!

Observations 3 and 4 lead to Property B5, and Observation 5 is
Property B6. Therefore, if L satisfies Assumptions 1', 2 and 3, and
P' is any packing of L , then one can define f and g such that
Properties BlL-B6 are true.

It remains to show that Assumption % can be dropped. Let
L = (xl 2Xy T e 2 xn) be a list satisfying Assumptions 1' and 2,
PF the FFD--packing of L , P* an optimal packing of L , and
F = {xi | X, is in a non-A bin in PF} . Suppose X is the smallest
non-A -piece in % . We consider the list L' = (Xl,xe,. ZE8 xm) , and
let P' be the packing of L', obtained from p* by deleting pieces

»X ., Then L' satisfies Assumptions 1', 2 and 3.

X X
m+1l’ b2’ ?

Applying the -previous results, we can define functions f', g' satisfying

Bl -B6 for the list L' . Now, we define functions f and g for the
list L by
T (Xi) if x el
f(xi) =
[ otherwise,
and
1 3 T
g (Xi) if x el
( =
g\xi) -
0 otherwise.

49



Clearly, ~FFD(L) = F¥D(L') ,  |a | = |a, |, and the set F is the

same for both L and L', Also notice that a regular bin in P* must
also be regular in P', and a bin in P* is an A-bin if and only if it is
an A-bin in P' . With these facts, it is straightforward to verify that

Properties Bl- B6 are satisfied for L with this choice of f and g

50



