
]

NEW ALGORITHMS IN BIN PACKING

by

Andrew Chi-Chih Yao

STAN-CS-78-662

SEPTEMBER 1978

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

New Algorithms in Bin Packing

Andrew Chi-Chih Yao

Computer Science Department

Stanford University

Stanford, California 94305

Abstract.

In the bin-packing -problem a list L of n numbers are to be packed

into unit-capacity bins. For any algorithm S , let r(S) be the maximum

ratio 5 (1)/1 for large 1 , where S(L) denotes the number of bins

used by S and r," denotes the minimum number needed. In this paper

we give an on-line O(n log n) -—-time algorithm RFF with r (RFF) =5/3 ,

and an off-line -polynomial-time algorithm RFFD with r (REFD) = (11/9)-¢

for some fixed € > 0 . These are strictly better respectively than two

prominent algorithms -- the First-Fit (FF) which 1s on-line with

r (FF) = 17/10 , and the First-Fit-Decreasing (FFD) with r(FFD) = 11/9 .

Furthermore, 1t 1s shown that any on-line algorithm § must have

r(S) > 3/2 . We also discuss the question "how well can an O(n) -time

algorithm perform?", showing that, 1n the generalized d-dimensional

bin-packing, any O(n) -—-time algorithm S must have r(S) > d .

Keywords: bin-packing, First-Fit, First-Fit-Decreasing, heuristic algorithm,

NP-complete, on-line.

This research was supported in -part by National Science Foundation grants

MCS-72-03752 AO% and MCS-77-05313.

1. Introduction.

Let L = (25% 0x) be a given list of real numbers in (O,1] ,

and BIN, BIN; oo an infinite sequence of bins each of unit capacity.

The bin packing problem 1s to assign each X. into a unique bin, with

the sum of numbers in each bin not exceeding 1 , such that the total

number of used bins 1s a minimum (denoted by IT). As this problem 1s

NP-complete [3], efficient algorithms that always generate packings

using 1” bins are unlikely to exist. In the literature, heuristic

algorithms with guaranteed bounds on performance have been studied

extensively[5], [6],[7]. For any (heuristic) bin packing algorithm S ,

let S(L) denote the number of bins used for the input list L , and

x *

R, (k) the maximum ratio S(L)/L for any list L with IL = k . The

performance ratio of S , denoted by r(S) , is defined as 1im R (k) .
pefooso es oes oe 8

Informally, (r(S)-1)x 100% is the percentage of excess bins used over

the optimal packing in the worst case, for large lists. Two prominent

algorithms are the First-Fit Algorithm (FF) and the First-Fit-Decreasing

Algorithm (FFD) (see Section 2 for definitions). It is known [7] that

r (FF) = 17/10 and r (FFD) = 11/9 .

A natural question 1s, how good can any polynomial algorithm be?

In this regard, two specific questions were raised by Johnson [0]:

Is there a polynomial on-line algorithm S better than First-Fit

(i.e., with r(s) < 17/10)?

Is there any polynomial algorithm S better than First-Fit-Decreasing

(i.e., with r(s) < 11/9)?

We cal an algorithm on-line 1f the numbers in list IL are available

one at a time, and the algorithm has to assign each number before the next

one becomes available [5],[6]. In this paper, we resolve both questions

in the affirmative. It will also be shown that no on-line algorithm can

have a performance ratio less than 3/2 .

Section 3 gives an O(n log n) —-time on-line algorithm S with

r(S8) = 5/3. Section bk explores the limitation to on-line algorithms,

showing that no such algorithm S (polynomial-time or not) can have

r(8)< 3/2 , In Section 5, a general approach for seeking improvements

over known heuristic algorithms 1s suggested and illustrated with an

example. Based on this idea, a heuristic polynomial-time algorithm

better than FFD 1s constructed in Section 6. We discuss 1n Section 7

the question "How well can an O(n) -time algorithm perform?". It is

shown that 1n a generalized version of bin packing, namely the d-dimensional

bin packing [2], any O(n) -time algorithm S must have zr (S) > d .

2. Terminologies.

: For standard definitions with regard to the bin packing problemn,

the reader is referred to [7]. We will mention below only a few

; terminologies for use in the present paper.

A list 1s a finite sequence of real numbers. Some numbers may have

identical values, but are regarded as distinct item;. A set of real

numbers in this paper is often in fact a multiset, in which some numbers

may appear more than once (see [9]).

If Ly i (%75% 55 00er x) and Ly i (V5 eeesy)) are two lists,

| their concatenation L Ly is the list L = (X95 Xs ee er X 3V10V 00 ene ¥ ,) .
Let X be a bin used in a packing, the content of X , cont (X) , 1s

the sum of the numbers that are assigned to X . We shall say that a

| bin packing algorithmS has running time O(p(n)) if, when implemented
on a random access machine [1], S takes at most O(p(n)) steps to

produce the packing for a list with n numbers. We describe the two

algorithms FF and FFD for easy reference:

First-Fit (FF). Given a list L = (25% 5 00 esx) , the algorithm

| assigns Xo sequentially, for Jj = 1,2,...50 , to BIN. with the
| smallest 1 whose current content does not exceed 17x,

First-Fit-Decreasing (FFD). Given a list L = (X3,X 5 000s%)) , the

algorithm first sorts the x. 8 into decreasing order, and then performs
First-Fit.

| Both FF and FFD can be implemented to have a running time

O(n log n) ; for details, see [6].

3 A New On-line Algorithm.

We will present an on-line algorithm that processes a list of n

numbers in O(n log n) time, and show that its performance ratio 1s

5/3 = 1.6660 .

Any element x in a list L will be called an A-piece, B, -plece,

B,-plece, or X-piece if x. is in the interval (1/2, 1], (2/5, 1/2],
(1/3, 2/51, or (0,1/3] , respectively.

Algorithm RFF (Refined First Fit).

Before packing, we divide the set of all bins into four infinite

classes. The algorithm then proceeds as follows. Let me {6,7,8,9)} be

a fixed integer. Suppose the first J—-1 numbers in listL have been

assigned, we process the next number X- according to the following
rules.

(a) We put % by first-fit into a bin in:

class 1, if x. 1s an A-pilece,

class 2, if x. is a B ~piece,

class 3, if x. is a B -piece, but not the (mi)-th B,-piece
seen so far for any integer 1 > 1,

class 4, if x. is an X-piece,

(b) If x, is the (mi)-th B,-plece seen so far for some integer 1 > 1,

we put x. into the first fitting bin containing an A-piece 1n

class 1 if -possible, and put 3 in a new bin of class 1 otherwise.

Analysis of RFF. This algorithm can be implemented to run in O(n log n)

Co. tine, as 1t essentially performs a first-fit within each class of bins,

which takes O(log n) time for each x. (see [6]).

p

We shall now analyze the performance ratio of RFF. In general

the resulting packing of a list L has the following structure (Figure 1).

There are three types of bins in class 1. Let Z11 be the set of

class l-bins containing a single A-pilece, Zo the set of class l-bins

containinga single B,-piece, and 215 the set of class l-bins containing
both an A-piece and a B,-piecé. In class 2, every non-empty bins

contain exactly 2 B, -pieces, except possibly for the last one.

Let Zips denote the set of all (non-empty) class 2-bins, Let Zs
be the set of class T-bins, each clearly containing 2 B,~pieces,

except possibly for the last one. The set of class U4-bins, denoted

by Zy, 5 1s simply the FF-packing of the sublist of L consisting of

the X-pieces. We shall write 214 | » 125] 7125 | > 1251 _ as

291721072137 Zs «= 3» €6C. The numbers of A-pieces, Bi -pieces, B,-pieces,

X-plieces are denoted by a , bq , ob, , and x , respectively.

. We shall first prove an upper bound on r (RFF) .

Lemma 1. For any list L , RFF(L) <2 Ls De

Proof. Clearly,

RFF(L) = + + +(1) a Zin TZ, Z3 +2) (1)

Fact 1. Every bin BIN. in 2y, r With the possible exception of two

bins, has cont (BIN,) >3/L,

Proof. The set of bins 7), can be regarded as the First-Fit packing

of a list of pieces in (OQ, 1/3] . Therefore, every bin except the last

one has at least 5 pieces. If BIN. is the first bin with

cont (BIN,) < 3/k , then all the bins following it contains only pieces

2.1class 1: A Al «0 | A / /y cos 7, CL
| A A A

“11 “10 13

7
7

class 2: 4

—

Zo

/ 7 7, 7//]wv
: B B B 7

-—

\

7
HH HY

class bh; BN — = /Ha
En X
1
Re —

a,

Figure 1. The structure of a packing using RFF. The ordering of bins

and the relative positions of pieces within a bin are not

necessarily represented faithfully.

{

greater than 1/L . This means all bins following BIN. , except the
J

last one have contents exceeding 3h . Od

Fact 1 has often been used in bin packing arguments (see [7, proof

of Theorem 2.3]). Its proof is given here for convenience.

Fact 2 7. +z = |b /m z = [b /27 |z - 1 129CE fr ET fam = LBM)Ep 1 rT afl 2), <2.

Proof. The first two equations are obvious from the algorithm. The 13st

one follows from Zy = Flo, - 2p = 200] . Od
a

Fact 3. a <L .

Proof. No two A-pieces can be in the same bin in any packing. =]

We shall find upper bounds on Z) and hence on RFF(L) via

formula (1). There are several cases to consider.

1. =
Case 245 0 .

The total contents of class-4 bins is at most

od - 5 Ly 2" Thus, by Fact 1, we haveL -za-zbl>3 ’ 1% /
4 * 1 2 1

Zy < + = ~ - = b. - =D |yS8*3x (-gza-50 -3hy (2)

Combining (1) and (2), one obtains

L _* 1 8 L
RFF(L) < = L + = a + (z_. -— b_) + - — Db

Making use of Fact 2, Fact 3, and the fact m < 9 , we have

3
Z. = == D> "Ts P= +

4
Z_ —- =D

3 92 <2
ES

a < IL ,

i

Formula (3) then implies

| *

RFF(L) < : L + 5 .

Case 2. Zn > 0 .

Fact 4. In this case, cont (BIN,) + cont (BIN,) > 1 for each BIN,€ Z,, ,

BIN, ¢ 215 . In particular, cont (BIN,) > 3/5 for each BIN, € 291 .

Proof. Otherwise, the A-piece in BIN. should have shared the same bin

with some B, —piece during the packing. [J

Case 2.1. Z141 > Zio

The total sum of all A, B. -pleces is at least

5 5 2 1
) Zip 4 5 (24 = Z15) 4 2 %13 + 5 (ez, -1) + 3 (22, -1)

5 2 7 4 2
> = + = z + = t= a ~

5 2 "5 T 30 ts Ts 5s mL

where we have used Fact 4 and the equation Z1 = a-z From Fact 1,13 .

we obtain

oor 3 2 7 4 22, < 2+ =(L -=3a-= - - = - =

ho= 7 5 5 “12 T%0 13 75 ? 7 231). (4)

Combining (1) and (4), and noticing that 213 > 0 and z_ > 0 , we obtain

RFF(L) < 215+ a+ LL EE
- 3 p 1 "12 § 75 (5)

We now make use of Fact 2 to derive from (5)

4. % 1 137 1RFF(L) < ='L + = a + + ===(L) = 3 5 (& 0m JP"? (6)

1 1 57 1 1 _*

Proof. In an optimal packing of L , each bin with an A-piece can

contain at most 1 B,-piece, and any other bin at most 2 B,-pieces.
* Ry

Thus b, < a+ 2(L -a) =2L -a . Therefore

1 7 1 1 57 1 x 1 1 57 1—a+ — — + —— — — — -— ——— —va (22) = (% Lr) (3 18 Lia
As the second term on the R.H.S. 1s non-negative and a <1 , We have

1 1, 37 t) 25 37 1).* _ 1 x— + + = — <l —_ + = — —

for m > 37/7. 0

5 _%

Formula (6) and Fact 5 lead to RFF(L) < 3 L +5,

Case 2.2. 211 < Zz.

Total sum of all A, B, -pieces is at least

z PN Cz) + 2g +S (oz ~1 + I (oz ~111 7% Vie T P11) TER tE\eEy 1) + 3 (ez -1)

2 1 1 L 2
> — a + = + = = -

z 3 Zio + 6213 5 Z, + 3 Zz 1

By Fact 1,

L =< 2 + 3 (L EE SLE EE .

It follows that

REF = +(L) a + 295 Tz, + Z3 Z),

L ox 1 5 y 1 1
< =IL +=a+’= = _— yz + = 4

3 52 5% 5% mat

L +» 1 5 1
< =I + Za + =z + = z_ + .- 5 9 9 12 973 "

10

i

Using Fact 2, we have

Lox 1 5(1 1/1 1)< = + a+ =D + = = - = + +RFF(L) < 5 L 5 1E 5 5\ 3 1 > es 2 L
L _% 1 1,11
— -= + + = =

< 3 hd g wren PT 7)

1 1 1 1 1 _*
0. = + +t = = *Fact 9 & 18 7 5 by = 3 L

Proof L.H.S <lav(ge2l (21, - a)LT LVVL. elle Ne = 9 18 > 1 |

1 1 * 1 1
= = + = os - .(3 : (% 5):

The second term 1s never positive (as m < 9) , thus

* *

L.H.S. < ER IPS
-\\ 9 mn ~ 3

as m>6, [O

5 _*%

Formula (7) and Fact 6 lead to RFF(L) < 3 L +5 for Case 2.2.
This completes the proof of Lemma 1.]

Lemma 1 implies that the performance ratio of RFF does not exceed 5/3 .

We shall show that it is in fact exactly 5/3 .

Theorem 1. r (RFF) = 5/3 .

>

Proof. We need only exhibit lists L with arbitrary large L such that

5 _%

RFF(L) = > L + o(1) .

_ 4-02) |
Let 6. = 4 for j >1 , andn an integer of the form Ok+l

for some k > 1 Define ©p I & uu. = = + 5 tT. = L - 2B for
~" EA EE SSBA J

1 <J<n. Consider the list L = LL, , where

11

Ly = (uy; ts ts ’ hk t) CgaeesUns 1500 stoi Yoo to qs t) ,

and

Dey = vu. 0 Oéue 1B 5000.04 0 wotu) .

x []
Clearly L =n (Figure 2a). Now, using the easily verified fact that

U-. +t. + o> j+ Ll ,(uy 5 1 tas bose) - min{t,u, } 1 for every k > 2j+1 and any i
the packing resulting from RFF 1s as shown in Figure 2b. Thus

Hh o_*

RFF(L) = 3 L + o(l) . This -proves the lemma. [J

12

| k

Pr] |e Pp

L.

-_
n

Figure 2a. An optimal packing of L in the proof of Theorem 1.

A A Zl “EE ZZ 14 zte | | 7 7 I 7,
2 4 A AE AY Ud |Z

t t t_. T u u Z / 2 i

©, 4) tos t_ 1 uy, - U,. 2
7 Pr] Pe Pn

Uz el u, 5 Uy uw, 5 U_

-eX ——— ————
n-1 n-1 n

2 + "1

Figure 2D. The RFF packing of L.

13

4, A Lower Bound to r(S) for On-line Algorithms.

In this section we will show that one cannot expect to find on-line

algorithms as good as, say, FFD , even 1f an arbitrary amount of

computation 1s allowed.

| Theorem 2. For any on-line bin packing algorithm S , rs) > 3/2 .

Proof. Let 0 <¢ < 0.01 be a fixed number, and x = . - 2¢

y= 3 to, Z= 7 T €. For any n = 12k (k a -positive integer), define

a list L = Lybols , Where Ly consists ofn x $5 Ly consists of

) n y's, and A consists of n z 's,
Clearly,

| n= (1.1) ='sn, and (LIL)1-8 "or Aye)To Mitoty) =n

Given any on-line algorithm S , let rr, (n) = 8(1y)/1y ’
(n = 3 andr,(n) = SLL

prove that

max {r; (n),r,(n),r, (n)} > 3/0. (8)

This immediately implies that «r(S) >3/2 and hence the theorem,

Consider the packing of L under algorithm S . We shall gather

j information about rs(n) (1 < J < 3) by examining the resulting packing
configurations at points when Jn items have been assigned.

| Consider the -packing of the first n items (i.e., Ly)e Let Oy
(1 < 1 < 6) be the number of bins containing 1 pieces of x (Figure 3),

then

14

S(L,) = 2, a.
Y1<i<e t

(9)

n = >. ic.

1<i<6 +

ii 2 0 7 7; 1 7 ZZ A

Og Or xy, hs Uns Gy

Figure 3. The packing of Ly by 5S .

Next we examine the configuration after 2n items are packed (i.e,,

I. I, has been assigned), A bin is called type (i,2) if there are i x's

and £ v's in the bin, Let Pq 3 Po ? xg 3 aq) oq” 3 oo) Oy » a" 2

a 5 oa 5 Oy, ay, be the number of bins of type (0,1) , (0,2) , (1,0) ,
(1,1) , (1,2) , (30), (21), (22) , (3,0), (3,1), (4,0), (41),

respectively (see Figure 4). Clearly,

15

* = el + <q + ay 9

XL — ot! + oak + ot
2 2 2 2’

(10)
= ot! + 1

ST TR TE

\ \ \ \ \ \\

x x N D

| ; y N IN
AEN

1" 1 ! t "mt tH t "a oe! oATE TT TN BS) 1 1 Pe Pg

7- on = Un 1

Figure L, The packing of LiLo by S .

It 1s easy to see that the only other possible types are (6,0) and (5,0)

and there are respectively Og and ag such bins. The analogue of (9) is

(LL) = (og ray +o ~Jr= T= 5 3

— tt LR | LA + tr + 1 + ot + -+ 2

n = (cu) + aay) + (af Ze) ag + ay By tT 2Bs 11)

16

where the second equation counts the number of y's.

A lower bound to S(LyLpLs) can be obtalned by observing that no
z-piece can go into a bin of type (1,2) , (2,1) , (2,2) , (3,1) , (4,0) ,

(4,1) , (5,0) , (6,0) , or (0,2) , and that no two z-pieces can occupy

the same bin. Thus

> alt +a! + allt +a! fa +a +o. + + +S(LyLyLy) > ay 5 tay oy + oy + af 5 TO +t Btn (12)

We now define a new set of variables:

© a =
“1 7 ri

2 = gl + og"?

= Qo! + a' + ! 1TET tT (13)

~ — oll + "no 1"
“, I I!

Making use of (10) and the positivity of all quantities involved, we

obtain from (9), (11) and (12) the following constraints.

= QO, + a. + a. +qQ +a
S (Ly) ay a, Cy + oy ‘ |

(9)

YX. + 20 + 30. + ha, + 6o
n <a + ea, 30, hoy, 6a,

= a. + a + a +o + a. + +
S (LL) = ap © Oy + 0p + + QF By + By

(11)

= QO o FQ + +n oy + 2%, @), By 2B,

and

+ a + QO + .S(T TL) > a, ay ‘ t+ By tn (12)

Lf

i

In terms of r, (n) » the above systems can be rewritten as follows.

1 - - - - _

zoner(n) = ay toa, a ay + oy

Lner (n) = a, + Q, + 0, + GQ + A, +p, + B5 0 1 2 ¥5 l 6" P1 2

ner, (n) > a, + Q, + oF t By, +n (14)

n 1 - - 3 = : -

-5 2 35% Gp = 5 Uy mA - 30g

We are now ready to prove (8). If (8) is not true, then we have

1 1

rn > zoe. ry (n) ,

3 1

| 2 |
sn > n . rs (n) .

Now adding up all the equations in (14) and (15), we obtain

Oo > = a, + 5G, » a contradiction. This completes the proof of (8),
and hence Theorem 2.

18

5. The Technique of e-Improvement.

Given several simple heuristic algorithms in an optimization problem,

a practical method to obtain a good solution 1s to run each algorithm and

then select the best solution produced. For example, in the traveling

salesman problem, one may produce tours using several heuristic algorithms

(see, e.g. [10]) and select the shortest tour. It is hoped that the

quality of solution obtained will be much better than using a single

fixed algorithm. Implicitly, the success of this idea depends on the

hypothesis that different algorithms "favor" different regions in the

input space. An interesting research area, so far not much explored,

1s to analyze the performance (worst case or average case) of such

"compound-algorithms". Trying to obtain a better heuristic algorithm

than FFD, one possibility 1s to try such compound algorithms.

There are two difficulties in a direct approach, however. Firstly,

there are many algorithms sharing the same worst-case input (e.g. the

almost-any-fit algorithms in [5][6]). This eliminates some natural

compound algorithms (running FFD and BFD will not improve the worst-case

bound) . Secondly, the ratio 11/9 = 1,22... 1s very close to 1 , and

the analysis has to be rather -precise to beat this bound. As the analysis

for a relatively simple FFD 1s already complicated, 1t 1s likely to be

hard to analyze more sophisticated algorithms. We will circumvent these

difficulties by focusing on a specific goal —-- to find an algorithm with

bound nu - ¢ for any -positive ¢.
The 1dea 1s to locate the part of input space for which FFD may

realize 1ts worst-case performance. If the characterization 1s simple

enough, we may be able to design a heuristic algorithm S that has a

better -performance in this bad region. The compound-algorithm of FFD

19

and S then has a bound better than 3 - € . It turns out that, for
many bin-packing algorithms, one can give simple descriptions of small

regions covering all the "bad" inputs, as a result of the weight-function

type argument used. Thus the bin-packing problem provides an ideal

opportunity to try out this idea of "e-improvement".

In this section, we shall illustrate the 1dea by proving a simpler

result about FFD. Consider the restricted problem of bin packing, in

which each number in list IL is in the range (0, 1/2]. It is known [7]

that FFD has a -performance ratio 71/60 for this restricted -problem. We

shall show that there 1s a better heuristic algorithm.

We first state a useful lemma.

Lemma 2. Let AM, NM, u, v be constants such that 0 < A <A" <1,

" Sanh , and vy > 1 , Suppose there is a bin-packing algorithm S

with running time O(p(n)) such that, for any list L consisting of

numbers in (M,N), S(L) <ul + y . If -p(n) is a non-decreasing

function of n , then there is an algorithm$' with running time

O(p(n)+ n logn) such that S'(L) < ul + vy for any list IL consisting

of numbers in (O,N']

Proof. Given an arbitrary list L , the algorithmS' works as follows.

In O(n) time, one divides the items into two lists Ly and L, , consisting

of numbersin (M,A'] and (0,N] , respectively, The algorithm S is

applied to Ly to produce a packing using, say Ny bins. One finishes

the packing by -performing a first-fit algorithm on list Ly , The algorithm

clearly works in time O(p(n)+ n log n) . We now show that

S'(L) < LL + vo. By assumption, Ny, < pelo Vo. If S'(L) < Ny

20

* *

then the result follows immediately since Ly <L , If S'(L) > Ny ,
then in the final packing, all except possibly the last bin must have

*

content greater than 1-A. This implies that IL > (1-A)(8'(L)-1) ,
1 _* *

and hence §'(L) < To L +1 < pL +v . O

The above line of argument appears often in bin-packing ang lysis

(e.g. [7, Lemma 3.3]).

The rest of this section 1s devoted to proving the following result,

based on the general idea outlined earlier.

-6
Theorem 3. Let ¢ = 10 . There 1s an O(n log n) -time algorithm S

for bin-packing such that, if a list L has all numbers in (0, 1/2],

th S(L) < [EN +5en ~ 20 € . .

Let MN=1/7,NM =1/2,4 =71/60 -¢, and v=5 . ByLemma2,

we need only prove the theorem assuming that the lists 1, have all numbers

in (1/7 , 1/2] . For the rest of this section, we restrict ourselves to

such lists, although some statements also apply to general lists. The first

step 1s to locate the "bad" input lists.

TL
A Review of the Proof for FFD(L) < zz L* + 5 .

The proof [5}{7] proceeds by defining a function W(S)> 0 for any

finite set S of numbers in (0, 1/2] , such that the following properties

are satisfied.

Property Al. W is subadditive —- i , :;) < 2 Wis) ‘1 i

Property AZ, If all elements in L are in (1/N, 1/2] , N > L , then

W(L) > FFD(L) -N+2 .

21

Property A3. If S = {x5% 5 00esx with xX; € (1/7 , 1/2] and
2; x. < 1, then

A
i

w(s) < 71/60 .

Let Xs be the 1-th bin in an optimal packing of L . Properties

Al- A3 imply the desired result

FFD(L) - 5 < | EE(L) - 5 < wW(L) S 2H) gg E (16)

A Strengthened Analysis,

We have seen from (16) that,

71.7
FFD(L) < 5 Lt 5. (17

Notice that we would obtain a bound better than (17), except in the case

when almost all X. have w(x,) = 71/60 . Actually, W(X.) = 71/60re XL

only under very special conditions.

Definition. A number x, in L is called an A, B, C, D, E, or

F-piece if x is in 1/2,11, (1/3, 1/2], (1/%,1/3], (3/5, L/h],
(1/6,1/5]1 5 or (1/7 5, 1/6] . We shall use notations such as S = {CCDE]

to express the situation S = i

p ESPRNESTEN with Xo Xy x » Xx)
being a C , C , D , and E-piece, respectively. 14 3 packing, a bin

containing a set {CCDE} will be called a CCDE-bin. The notation

generalizes obviously to other configurations.

22

Property 43'. [5] [7]. Tf S = {x,%,,...,x} with x,e (1/7, 1/2],

and 2%, < 1 , then
1

w(s) < 71/60 , if S = {BBEF} or {CDEEE} ,

and

wis) < T/6 , otherwise.

A strengthened form of (17) can now be derived as follows. Tet =
X

be an optimal packing of L , and X, the i-th bin in P* (1 <i <1) .

Assume that there are @ bins in P* of the form {BBEF lor {CDEEE} .

>

Lemma 3. If a < (1-60e)L , then FFD(L) < (& _ -)e -

Proof. From Properties Al, AZ, and A3', we have

1 7 *FFD(L) -5> < W(L)< W(X. < It - .

Therefore,

Tow oo LX _FID(L)< z L* + Zz a+ 5

71) %< — = L + .= (5 - ’

We shall call a list L severe, if in every optimal packing p" of TL,
*

there are more than (1-60¢)L bins of the form {BBEF} or {CDEEE} .

Lemma 3 states that, if a list L is not severe, then the packing produced

by FFD has a bound at most I - €¢ , strictly less than 71/60 , This
concludes the step of identifying "bad" lists, We can finish the proof

of Theorem 3, if we can design a heuristic algorithm S such that

S(L) < (5 - Jur + > for all severe lists L . We shall presently

25

give an algorithm M with running time O(n log n) , and prove that

S = M has the desired property.

Algorithm M.

Step 1. Sort the input list L ; let (by <b, < @ ee), (e) < C, < @ ee),

(4, <d, <_® 00) , (e; < ey < . ..), and (£] <E5 +.) be
the sublists of B-pieces, C-pieces, D-pieces, E-pieces, pq

F-pleces, respectively.

Step 2. For J = 1,2,... ut {c., d :

Step 2, J = 1,2, , put fe, 7 55-27 ®55.17 S553 into BIN.,
as long as such a set can fit into one bin and enough pieces are

avallable. [We shall abbreviate the latter clause below as

"as long as it 1s feasible",] Assume that m such bins are formed.

Step 3. For 7 = 1,2,... ut c .,dp J) 2; yr P { m3? Smeg? S3mepso1 2 Cameo } into
BIN y as long as there are enough pieces available. assume

that k such bins are formed. [Note that a set {CDEE} has
1 1 1 1 CLL

sum < z ¥ Lvs ts < 1 , and thus can always fit into a bin.

Step 4. Suppose there are h F-pieces. For § = 1,2,..., put

{bos_q RE Fy fh) into BIN x43 as long as it is feasible.
Assume that g such bins are formed.

Step O. For J = 1,2,... ut

BIN kta », as long as it 1s feasible. Assume that js such
bins are formed.

Step ©. Pack the remaining E-pieces and F-pieces, respectively, by themselves

into new bins using first-fit. Let p be the number of bins

formed this way.

Step 7. Pack all the remaining pieces by themselves into new bins using

first-fit. Suppose t new bins are used.

End of Algorithm M.

2h

Figure 5 shows a packing produced by Algorithm M.

Zo 77 2 7
/ 7 ge

Ell :

—
m k q { Pp t

Figure 5. The packing produced by Algorithm M.

Analysis of Algorithm M.

It 1s easy to implement M so that it runs in O(n log n) time.

To complete the proof of Theorem %, it remains to prove the following

result.

71 *
Lemma Lt. If L is severe, then M(L) < 0c- ¢ |b + 5 ,

Xx

Proof. Let P be an optimal packing of L . Assume that there are

x

in P 8 bins of the type {BBEF} and7 bins of the type {CDEEE} .

As L 1s severe, we have

- ._*

8 + vy > (1-60e)L . (18)

We wish to find bounds on the various terms in

M(L) = m+k+qg+ +p+t . (19)

20

In Step 2, for 1 < j <|7/5],

c. +d. +e,. e e_. < the (5j-4)-th smallest contentJ J 3j-2* 33-1tT 35— 53-4)
in all CDEEE-bins 1n P* .

Thus, at least | 7/5] bins are formed in this step, i.e.,

mo > \r/5] (20)

Bounds on m+k can be obtained by considering the total available

CD-pairs. This gives

>

y + 60eL x3 > mtk > y . (21)

a

In the last formula, the term 60e¢L x3 is an upper bound on the number

of C-pieces not contained in CDEEE-bins. In Step4, for 1 < J < |B/3].

boiq + b, + £ + SN <the (3j-2)-nd smallest content
in all BBEF-bins in P* .

Therefore,

a > LB/3]. (22)

By considering the number of all F-pieces, we find the following upper

bound on gq ,

Eo

= + 60eL x3 > qa (23)

To derive bounds on f , we first observe that each B-plece in a BBEF-bin

(in P*) is less than 1 - T_ Lf 1 = 2 For any two such B-pieces567 7 1k

one can add any E-piece to form a BBE-bin. Thus, a lower bound to ¢ 1s

the minimum of (#B)/2 and #E , where #B and #E are the numbers of

such B-pieces and any E-pieces, respectively, at the start of Step 5. As

2%

#B > 28 -2q , and #E > (B+3y) -3(mtk) > B-5h0cL using (21), we

obtain

20

*

{ > P-aq-5hoel” . (2h)

The total number of B-pieces available gives an upper bound,

x

B - q+ 60¢eL > 1. (25)

We will now estimate p and t by calculating the number of various

-pleces not contained in the first mtktg+f! bins. The total number of

* *

B-pieces in IL is at most 28+ (60eL x2) ; by (24), at least 2(B - 5L40eL)

of them are in the first mtktg+! bins. Thus, denoting by N[Y] the

number of Y-pieces 1n the last ptt bins, we have

x

N[B] < 1200eL . (26)

Similarly, one can show that

*

N[C] < 180eL , (27)
x

N[D] < 2h0eL , (28)

Also one has, using (22),

x

N[F] < B + 360el, + 2 . (29)

The number N[E] satisfies

x

N[E] < (B+37+300eL) - (3m+2k+ 2) . (30)

Now, using(20),(21),(23), and (24), one has

m+ 2k+ 1 = m+ 2(mtk)+

>

> [7] + ooy + 2 700eL— 5 2

1 11 *

> 5 B+ 57 - 720eL - 1 . (31)

From (30) and (31), we have

N[E] < L B+ r + 1020¢L,” + 1 (32)= 5 .

2f

We can now estimate p and t . Using (29) and (32)

p< ENE] +E N[F] + 2 < 7 5+ + 26hel, + 3| 3 5 SPE 09)

From (26) - (28),

| t <N[B] + N[C] + N[D] < 1620eL (34)

: Making use of (21), (25), (33), (34) in (19), we obtain

| 52. 29 *=p tT =

M(L) < I A TRA 212Lel, + 3.

| As pty <L , we have

M(L) < (% + P12ke 1 + 3.

Observing that 22 + 212ke < (1 € we have finally
25 60 ' ’

71 *

This proves Lemma 4.

The proof of Theorem 3 1s now complete. O

|

| 28

6. A Polynomial-time Algorithm Better Than FFD.

This section 1s devoted to proving the following result.

Theorem Lk. Let ¢ = 1077 . There 1s a polynomial-time heuristic

algorithm RFFD for bin-packing such that, for any list 1 ,

RFFD (L) < (%- Ju 8 .
We shall use the notations ¢ = 1077 ys B= 3 $10” y MN = 107" 5

and n= 1-(B-e)7TL cleanly, =z 51 and 0 < A < 2/11.
Although more complicated, the proof of Theorem 4 follows the same

pattern as that of Theorem 3. By Lemma 2, 1t suffices to show the

theorem considering only lists L with all elements in (A,1] . We will

first prove that, for all such lists, except those of a special type,

FFD produces a packing within the desired 2 - ¢ bound. We then construct
a heuristic algorithm EPSI that performs well (below 2 - ¢) for the
exceptional "critical" lists. The compound-algorithm S of FFD and EPSI

clearly satisfies S(L) < (3 -) + 8 for any list with elements
in (N,1] , completing the argument.

A Review of the 11/9 Bound for FFD.

We review below the proof of [5][7] for FFD(L) < 5 L* + 4, if L
obeys the following Assumptions 1 and 2. As Assumption 1 can be justified

by Lemma 2, and it can be shown directly [5, p. 277, Reduction 3] that

any list L violating Assumption 2 has FFD(L) < a 1 , this would
prove FFD(L) < > L' +) for any list L .

Assumption 1. Let L be a list of numbers in (2/11, 1]

29

x

Let P be any optimal packing, and Pn the packing produced by FFD.
L * *

We use Xs Lo denote the 1-th bin in P , 1 <i <L . In any packing,

| a bin containing an A-piece 1s called an A-bin, otherwise it 1s a non-A bin.

The number of A-bins in any packing of 1, is equal to the number of

A-pieces in L , which we shall denote as A; | Let

F = (x | xeL , X 1s 1n a non-A bin in Pol

Assumption 2. % contains at least a C-piece or a D-piece.

Let the function W be defined as 1n Section 5. The analysis
. ' x

proceeds to define two functions f and g , based on Pr and P ,

f: L Lot and g: L - rational numbers.

For any subset T c¢c L , we write f(T) for 2. f(x.) , and g(T)
X. €T
i

for 2. g(x.) . The definitions of f and g are complicated ([5]),
X, € T

and were shown to possess the following properties.

Property Bl. FF = UJ f(x) ’ | A | > 20 glx) .
Xe LL Xel,

11

Property B2. W(f(X;)) + g(x,) < 5 (v(X;) + a(X,)) , 1 <1 < L*
where

o , if Xo is an A-bin,

| 1 , otherwise.

Also, the following are true from properties of W (see Properties Al and A2).

Property B3. "(u f(x) , < 2. W(r(x)) |XeL XeLL

Property Bh. W(%) > FFD(L) - A; | - Lo.

Summing over Xs in the formula of Property B2, and using
: 11 _*¥

Properties Bl, B3 and Bi, one obtains FFD(L) < TF L +4 , for any
list under Assumptions 1 and 2.

The above 1s an outline of proof for the bound 11/9 . For our

purpose, a strengthened analysis for FFD 1s needed.

A Strengthened FFD Analysis.

We shall work under a weaker form of Assumption 1.

Assumption 1'. Let L be a list of numbers in (A,1] .

Let Fr , P* , Xs , ¥F and W have the same meaning as before, We
Xx

shall saya bin Xs in P 1s regular, if Xo 1s not of one of the

following configurations: an A-bin with 3 pieces, BBC , BCC , CCCD ,

or CCDD . Otherwise xX. 1s irregular.

For any list IL satisfying Assumption 1' and Assumption 2, one can

define f and g such that the following properties are true, in addition

to Properties Bl- Bh,

Property BS. W(f (X.)) + g(X.) < LC 5 J(y(X.)+g(X.)) if X. isRMA, te Rp i i’ — 9 i i ! i

regular.

Property B6. If x, is a regular A-bin, then g(X:) > 1/3 :

The proofs of Properties Bl-B6 under Assumptions 1' and 2 follow

closely the original analysis [5]. A description of the necessary

modifications 1s given 1n the Appendix.

We can now give a characterization of lists L for which FFD may

have a bad performance,

31

Theorem 5. Let L be a list satisfying Assumption 1l', and P* an

*

| optimal packing of IL . If there are more than ML regular bins

* 11 *

in P , then FFD(L) < (% - JE + 4,
Proof. If Assumption 2 is not true for L , it can be shown [5, p. 277,

6 *

Reduction 3] that FFD(L) < 5 L +1 , and the theorem is true. We can
therefore suppose that Assumption 2 holds.

Take the formulas in Properties B2, B>, and sum over all X. |

We have

11

Zour)+ em) £5 2 (v(x) + e(X))-8 2, (y(X)+e(X)) (35)
all X. 7 all X. regular

i i
X.
i

Using Properties Bl, B35, and Bl,we see that the left hand side of

(35) is at least,

L.H.S. > FED(L) - [a | - 4+ g(@) (36)

Now, to estimate the right hand side of (35), we note that

*

2 (y(X;) + g(X;)) = L - [AL] + g(L) . (37)
all X.

i

Also, because of Property B6 and the fact that there are at least T/L*

regular bins Xs , we have

2 (A(X) + 8(Xy) > (# of regular non-A bins) + : ((# of regular A-bins)
regular

x4
1

> 5 (# of regular x,)

1

> =m. (38)
a.

32

From (37) and (38), the right hand side of (35) is at most

R.H.S. < Fa + og(L)) -5 ez (39)

Formulas (35), (36), and (39) lead to

11 1 \ x 2

FFD(L) < \ 5 - 50m JL "3 (1A | - g(L)) +4 .

Noting that ¢ = 23 and that 4; | -g(L) > 0 by Property Bl, the
theorem follows. [J

The EPSI Algorithms.

For the rest of Section 6, all lists are assumed to satisfy Assumption 1'.

We shall describe a family of algorithms EPST[0n 05 0, 0 5 Oss Be 5 Bs 7157 5)

with non-negative integer parameters Qq,C%;...;7, . Given a list L with

n items, we perform EPST([0tg505, «ees? ,] on L for each possible

0 < Oy 3%ns ee es 5 <n, and pick the best packing. We call this procedure

the EPSI algorithm. It will be seen that each EPST[0 5055 e007,] works

in O(n log n) time, thus EPSI works in time 0(n'’ log n) .

We call a list L of type (C505 ees?) 1f there 1s an optimal

packing of L with Cpr Ops eves? bins of type ACD , ADD , ADE , AEE, ACE,

BBC , BCC , CCD , CCDD , respectively. Note that a list can be of several

types. A list L is critical, if it is of some type (50s eens?)

with ap +a, + ® ty2 > (1-71 . The aim of EPSI[Q,005 eens] is to

produce a packing using less than = - ¢ times the minimum bins needed,
for any critical list of type (Qs Cs eves”) This ensures that EPSI

has a bound better than LL - € for any critical list, Together with
Theorem 5, which ensures a 5 ~ € bound for non-critical lists, it
completes the proof of Theorem 4 as stated at the beginning of this section.

55

i

Given a list L , and parameters Uy sQns ees? , we shall presently

describe the action of EPSI[0 Ops 0 ees?) . If any of the described steps

cannot be accomplished, 1t 1s understood that the packing of list IL may

then proceed arbitrarily.

Firstly, L 1s sorted in ascending order, Then we pack various

pieces 1nto four classes of bins according to the following rules.

Let aq $8 S 8; cee 3 by Shy Shy «ee Cp SC Sec Cee
be the lists of A-pieces, B-pieces, C-pieces, . . . , etc.

Step 1 Class l-bins: First put bos qo 03) into BIN pr

1< 3 <p LB,/2]. Then, for J = 1,244. LB,/2] , put

the largest available fitting C-pilece into BIN, ,

Step 2. Class 2-bins: Let Cy < c < ... be the remaining C-pieces,

Put {c.!. CJ . c!.! into BIN. 1 < .(e35-2 7 ®35-17 %5) Wy rn t= 357, - For

J = 1,2, L4/3] , put the largest fitting D-piece into
BIN...

J

Step 3. Class 3-bins:

(a) Let dq < a) <. . . be the remaining D-pieces. Define
— . ! 1

m = LO, /2 + La,/2] . For 1 < j <m , put (a); 109553

into BIN, . Then, for j =1,2,...,m , put the largest

fitting a. into BIN. .

b) Define m'= QQ. +o_+Q_+Q, +X. —-m.() 1 “ys Oz I 5 m Let

ap Sas < ... <a <<... be the list of A-pieces remaining.

Put a total of fay /2] +a C-pieces, [a /2] +0 D-pieces,

and x), E-pieces into BIN .4 to BIN |. , one pilece 1n

each bin. Now, put a; into BIN .. , for 1 <i < m'.

Step Lk. Class k4-bins: For each YE {A, B,C,D,E} , pack all the Y-pieces

first-fit by themselves.

3

We need some preliminary results before analyzing EPSI.

Definition. Let Y = (V1 000s) and 72 = (20525 00es2) be two
lists of real numbers. The Cartesian product of Y and Z 1is

Yx2Z = {(v5,25) |1<i<m, 1<J<p}. A partial match between Y

and Z 1s a subset $ C€ YxZ such that (1) NI Z 5 < 1 for all

(v;525) 8 , and (ii) any two distinct (y35-25) and (y515250)
in § have i # 1' and j # j' . Let y(Y,Z) denote the maximum

possible size of 3 | . A partial match ¢ 1s a maximum partial match,

if 8 | = ¥ (Y, 7Z) » For any partial match % between Y and Z , the

range Zs is the multiset (2; | (v5225) c § for some ys eY) . (Thus,

1Z,| = of). Let Z, = 2-2, .

The following procedure clearly generates a partial match,

Algorithm PM(Y,Z):

Sort ¥Y into y, SY, < “oe. SV i sort Z into z; < zZ, < «oe. S Zo

keep the elements of Z in an array T (T[1] «~ Zs 1 <1<p);

3-05 keep;

for 1 := 1 until m do

begin Search T[k] , T[k-1] , . . . to find the largest Jj < k satisfying

Vat 2; <1; if j does not exist, halt;

8 -2y {yz}
k «3-1;

end

END of Algorithm PM.

50

a

Lemma 5. Algorithm PM(Y,Z) works in time O(n log n) , where

n = |Y|+ |2z] . Furthermore, the partial match ¢& generated is a maximum

partial match between Y and Z .

Proof. The O(n log n) -time bound 1s obvious. To prove the other

assertion, suppose PM(Y, Z) sorts Y and Z into yy < Vo < . . «. <vy—- — ~ 7m

and z1 = Zn S eee < 2h andproduces ¢ = { (yy #3.) Fpr2;)s * ox (vs Ens ah
Clearly 1, > 1, 1

Now assume that there exists a partial match

2" = {ys 52)s (Ve 5 2 Js 0 cme (Vy 52)}wWitht>s. ye will show
I REP Jp Tg

that it leads to a contradiction, With no loss of generality, assume

that J, < Jp < +» » <J, . This implies that yy < Ve rs < V5 > ees
1 2

etc., and therefore 3" = (pz) (v5 2,)seees (Vps2y)32 t

is also a partial match, A moment's thought reveals that

3" = (p20) prog dass (p21 must also be a partial match,
where ky > KL 2 eee > ky 1s the sorted sequence of (35 ky ook)
Based on the description of PM , 3 simple induction argument gives

iy > kK 1, > kK, yee ey 1.02 k's . But this implies that PM should

have found a z. with z, ty <1 (2, is a candidate).
L+1 tory STL = Kor1

This is a contradiction. [J

Definition. Let X and Y be two multisets of real numbers. We say

that X 1s dominated by Y if the i-th smallest element in X 1s no

greater than the i-th smallest element in Y , for all 1 < i< |x| < |v}.

A list X' is dominated by a list ¥' if the corresponding multisets X

and Y satisfy this relation.

36

nN

Lemma 6. Let X , Y and Z be finite lists with X dominated by Y .

Then

(a) ¢(X,2) >_min{|X{, y(¥, 2)} ,

(b) Let & be a partial match generated by PM(X,Z) , and %' any

partial match between Y and Z with |&' | = |&| «+ Then Zs

is dominated by Ze

Proof. Let the sorted lists of X , Y , Z be xq < x2 < Coe <x /

Yq < Yo < eee =, , 2 <z2<. ..< 2 1 respectively.

(a) Let {(yq5 2.) (yo 2:)s easy (y_» 2.)} be the maximum -partial match
1 1 2 1, 8 1

generated by PM(Y,Z) (Lemma 5). Let / = min{ |X| , s}.Then

{ (x5 2) (ery JseeEp2y J is a -partial match between X
and Z, as Xs Sp by assumption. This -proves

y (X52) > min{ |X}, y(¥, 2) }.

(b) Let 3 = (x52,)s (25525 Js eees (X52,)} with i, >1, > 000 > i,
1 2 {

and 3' = {{y. , Yy (Fs 52, Jseees (ys 52,)} withj; <3, < . . . <3,
3 Ya, Jy 5 Loe :

As in the proof of Lemma 5, 1t can be shown that

51 — (Geo,)s (p02,)5 Cee TE is a partial match between
X and Z , when = > kK) >... > LY 1s the sorted sequence of

CEES .. ok) . A simple induction argument then shows that
: : : : Co

lq > ky , 1, > kK, 5 see 2, > Ly . This implies that, for each

1<a<re, |{i,]i,>a}|>][{k |% > a}| . Hence, we have

Fact7. For each 1 < g < p , | fig lio <a Sf fk | ky <a} :

37

Now the multisets Z, and Zi are obtained from Z by deleting
(2. 32. 5.2.52.) and (z.,,z ...»2) , respectively. Writekt!’ “kr > v0
A] 1 fo g-1 al

7. = {z yz 24.21 and Z y= {Z._ 352 5...,2_ } , where
| ® uy u, u, d Al Vo v,

| uy <u, < cee <4, and Vy S Vg Sees SV Then, for each1 <s <c,

uo= e+ [fn [it Sul, and (F of vp <u) =u - [0g Kk <u

Using Fact 7, we have for each 1 <s < c,

(# of Vv, < u,) < a = | {34 | i, < u_}| = s , and thus v_ >u_ . We have

| shown that Z, < Z, for each 1 < s < c¢, completing the proof that
S— S

Z, is dominated by Zs 0

We now analyze the algorithm EPSI.

Lemma 1. For a list L of type (0505 00057) , every step of

EPSI[a,G,» ees?) can be carried out.

x

Proof. Let P be an optimal packing of IL with Oty | a, 5 =, 5 %
1 » Bo 771 5 Y2 bins of types ACD , ADD , ADE , AEE , BBC , BCC ,

CCCD , CCDD , respectively.

(1) Step 1 can be done.

As there are enough (2B, + Bs) B-pieces in L , we need only show that

the procedure can put | p,/2] C-pieces into class-1 bins. We define the

| following multisets: X = {bys 1 +b, 11 << LB,/2] 1,

| vy = for +b" | {b',b",cl is a BBC-bin in PY ’

Y = {y | y is the (2j-1) -st smallest of v; for some 1 < J < LB/2] 1,

| and Z = {all C-pieces in L} . As bosg th, is no greater than the
(2j-1) -st element in Yq » 1t follows that X 1s dominated by Y . also

v(Y,2) LB/2] . It follows from Lemma 6(a) that (Xz) = LB,/2] = IX].

As Step 1 is essentially the execution of PM(X,Z), that it can be accomplished

38

1s guaranteed by Lemma 5. Finally we notice an important property

following from Lemma 6 (b).

Let &' be the partial match between Y and Z , defined by

| f(b'+b", c) | fb',b",c} has the (2j-1) -st smallest b'+b" among

: BBC-bins in P for some 1 <J< LB,/2] 1. According to Lemma 6(b),

Zs ; the set of remaining C-pieces ¢; <e¢) < . . . , is dominated by Zs |

It follows that the set of the first 574 pleces 1n cq < c, <. . . 1s

dominated by the set of 571 C-pieces in the CCCD-bins in P*

(11) Step 2 can be carried out.

By the preceding remark, we have for 1 < J <Lry/31

Cs: pt C3517 C35 is no greater than the (3j-2) -nd smallest element
of the multiset {e+ ct +c" | {cyc',c",d} is a CCCD-bin in p’ . An

argument similar to that in (1) shows that Step 2 can be accomplished

as specified, and that the first Opt 20, + 0g in the remaining D-pieces

dy < d, <. x, are dominated by the set of D-pieces in the acD , ADD

and ADE-bins in P .

(1ii) Step 3 can be carried out.

Step 3(a): The preceding statement implies that, for 1 < Jj <m,

dbs.1* dl; < the (2j-1) -st smallest in the multiset

{c+ d | {c,d,a} is an ACD-bin in PIU {d+ d' | {a,d,d'}is

an ADD-bin in Pp) . As in (i) and (ii), this fact together

with Lemmas 5 and 6 can be used to prove that Step 3(a) can

be done.

Step3 (b) : As each A-piece 1n an ACD , ADD, ADE , AEE , or ACE-bin 1s less

than 1 - = - Sg. 2, there are at least a. +a +a +04 +
6 6 3 1 72 73 Ths

A-pieces in L that are less than 2/3 . At most m of

these A-pieces are packed in Step 3(a). Therefore,

39

' ro... ro< 2 . Since each a! can fit with anay < as < al = /3 : y
C-piece (or D-piece, or E-piece) in a bin, Step 3(b) can be

done provided the specified number of C , D , E-pieces exist.

This latter fact can be easily verified.

(iv) Step Lt can always be done.

This proves Lemma 7. [J

Lemma O. Let L be a critical list satisfying Assumption 1' and of type

(QQ s . 7p) » and Np the number of bins used by EPSI[Gy500s +e vs7,]

on L . Then

6 *

Proof. To begin with, we note that

No = ay ta, to, tay tagtp, + LB,/2] ty,+ (# of class b-binst. (40)

We now bound the number of class L-bins. The total number of C-pieces

*

in L 1s at most Og ¥ Ag + By + By F374 F 2% y+ TL . As there are

[og /2 +a + LBy/2] +274 C-picces in class 1-3 bins, the number of C-pieces

packed in class l-bins is at most 9/2] + [By/270+ 2B, +2, +3TL
A similar counting gives the following upper bounds on the numbers of

A-pieces, B-pieces, . . . in class L-bins.

SE

[" < mM
#B < 2M. + 1 ,

Cac <3 a /2] + [B,/27+ (41){ OC S35 +Loy/e) B1/ 2B, +27,

#D < hw + 1 o4 fo /2T +r 71 T 2,

| #B <5 L” + 0. + +~ I SI

LO

Clearly,

f cl h-bins < Lm) + = (40) L (4D) + = 5# 0 class h-bins < #A + 3 (# +3 4 + 1 5 (#E) + . (42)

From (40), (41), and (42), we obtain

No< La vga 4 Slate)+ Lo(p rey ty)* STH LBL (13) S EH TEE TF STH TES 7 BETTY, -

*]

As L >Q, +g+e.-+y,, we obtain from (43),

6 * *
= + + 8

NS Es > ML : .

Lemma 9. The algorithm EPSI[Q 500 eees?,] can be implemented to run

in time O(n log n) for list L with n numbers and parameters

Proof. Steps 1, 2, and 3 (a) are executions of algorithm PM , which

runs 1n time O(n log n) . The other steps involve sorting and first-fit,

and all can be done in O(n log n) time. O

Theorem 6. The algorithm EPSI runs in polynomial time. For any critical

11 *

list L satisfying Assumption 1', EPSI(L) < To L +08.

Proof. From Lemma 9 and the definition of EPSI, the algorithm runs 1n

o(n?Y log n) time. The rest of the theorem follows from the definition
6 11

of EPSI, Lemma 8, and the fact e+ 57 < TC c » [J

Theorem 5 and Theorem 6 imply Theorem 4, hence the existence of a

heuristic better than FFD.

41

Ta How Well Can An O(n) -time Algorithm Perform?

We have shown that 11/9 is not the limit on the performance ratio

of polynomial-time bin packing algorithms. A most interesting open

question 1s whether there exists such a limit to r(S) . Carey and

Johnson [3] showed that, unless P = NP , no polynomial heuristic

algorithm for graph coloring can guarantee to use less than twice the

minimum number of colors needed. A similar result for bin packing would

be especially interesting, since the known achievable bound on the

performance ratio 1s already close to 1 . A more modest question along

this line was raised in [7], namely, how well can an O(n) -time algorithm

perform? A natural computation model 1s the decision tree model, counting

only branching operations [0][9]. It would be interesting to prove the

existence of an € >o such that, for any O(n) -time bin packing

algorithm S , one must have «r(S) > 1ltec . We have not succeeded 1n

proving such an assertion. However, a result of this spirit can be shown

for a closely related problem, and 1t may throw some light on the present

bin packing problem.

Consider the generalized bin packing problem discussed in [2]. Let

L = (X5% 5 ener X) bealist of d-dimensional vectors (d > 1), with

each component of the vectors in the intervals (0,1] . The problem is

to pack these vectors into a minimum number of bins, such that the sum v

of vectors in any bin has A <1l forall 1 <i<d. (When d=1,

this 1s just the bin-packing problem we have discussed,) The problem is

clearly NP-complete for any fixed d > 1 ., For any heuristic algorithm,

let r(S) denote the performance ratio as before. A simple extension S

of the O(n) -time Next-Fit Algorithm [5][6] gives r(S) = 2d . We are

interested in a universal lower bound to r(S) for any O(n) -time algorithm.

Lo

We consider the following decision tree model. Let S be an

algorithm for the generalized d-dimensional bin packing. For each

n > 0 the action of S on lists of n items L = (x), - ra.

can be represented by a ternary tree T, (8) . Each internal node of

IE) contains a test " h(X),%,, ' 44%) ~ "y where h is a rational
function. For any input L the algorithm moves down the tree, testing

and branching according to the result (h <0, h= 0, or h> 0) ,

until a leaf 1s reached. At the leaf, a packing valid for all lists

that lead to this leaf is produced. The cost of S for input of size n

C, (8) , 1s defined to be the number of tests made in the worst case, 1.e.,

the height of I (8) :

Theorem 7. Let S be an algorithm for the generalized d-dimensional bin

packing. If there exists a constant a > 0 such that C, (8) < an for

all n , then r(S) > d .

Proof. The case d = 1 1s trivial. We therefore assume that d > 1 .

Let n > 0 be any integer. Define a sequence €)2€12€0r 0c 0 2 Ey such that

2

eq = 1/a= ,

€s > (d-Le.q >» 0 <1 <n-1. (Lh)

Let Xr 3] be the vector (ejr€eneseys 1 - (d-1)e; 5 Cir ever €s) , for

J-1 d-J

each1 <1 <n, 1<Jg<d.

Consider the list IL = (%11,17 Xr p12. 2 X11 Xp,1] ce Xa)
* —

with dn vectors. Clearly L =n , as 3 Xrj 3] = (1,1,...,1) for

43

i

each- 1 <i <n. Let I be the set of permutations of the dn elements

in B= {[1,]] |1<i<n, 1<j<ad}. For each 0eTl, , denote by
— — — *

L, (0) the list (%5(1) 2a (2)? ceed X5(an) . Obviously, L, (0) = L* = n ,
We shall prove that, for any fixed 8 > 0 , if n is large enough, then

x

there exists a oe [such that s(L, (0) > (d-8)L (0) . This would

imply the theorem.

If the above assertion 1s false, then there exists a § > 0 such

that S(T, (0) < (d-s)n for all sufficiently large n . We will derive

a contradiction.

Fact O. In any packing, Kes a and Xi 51] cannot be in the same
bin if 1 # i' .

Proof. It follows immediately from the definition of Xs qo M- Lyd

Fact 9. Let I be any leaf of T,(S) , and %(4) be the set of lists

L, (a) that will lead to 2 . Then |£(4)| < (dn)! .(cn) for

some fixed constant c .

Proof. In the packing produced at / , there must be at least p = &n/d

bins containing two items or more, because S(L (y)) < (d-8)n , In other
Nn —_—

words, any in-put list (F15Tps eres Tgp) reaching f must satisfy a set of
inequalities of the following form.

Fo tT GLe.,l)
1 2

Vie + Ji < (1,1,...,1) ’
3 L

(45)

2p-1 "2p
I

LY

i

where " < " means componentwise inequalities, and all k. gre distinct.
]

An upper bound to 12(2) | 1s given by the number of L, (9)
satisfying (45). Taking Fact 8 into consideration, we have

(2) | < (nd(a-1))"x (dn-2p):

2

< n"a"Fy (an-2p)! (16)

W how that nPd“Ly (An-2p)! — (dn): 21 =P€ now show that n X Pp)! = (dn)! x O((n/(ke”)) *) . There are two

cases. If 2p < dn/2 , then

> > an)! PgeP

nfa“Fx (dn-2p)! < na Py—d)i < (dn)! ~r = (an)! x (n/W)™% .
(dn-2pt+1) (dn/2)

If 2p > dn/2 , then

D 2D "TY Pap
n-d x (dn-2p)! < (dn)! x —— “ony S (dn)! x Lo

Zp)) = (2p)2p

2p
eNnd | -

= (dn)! co (22)) = (an)! x0o((n/(ke")) By .
We have used Stirling's approximation [9] in the last derivation. This

proves Fact 9. (J

an

As there are at most 5 leaves, the total number of lists IL(0)

reaching any leaf of T(5S) 1s at most am - (cn) 80/2 zon < (dn)!
for all sufficiently large n . This contradicts the fact that there are

(dn)! possible lists L, (0) . This proves Theorem 7. [J

L5

OS. Concluding Remarks.

We list some problems for further research.

(1) The e—-improvement technique may be useful in other NP-complete problems,

for example, in the scheduling of tasks on a multiprocessor system [L4],

This technique seems to be particularly suitable for scheduling-type

problems, when the set of possible worst-case input can be identified.

For instance, 1t can be used to show that r(S) < 2 for the Next-2

fit bin-packing [5] [6]. It may be of interest to mention that, although

the algorithm RFF was constructed and analyzed in a more conventional

way as presented, it was first obtained in a fashion very similar to

the process in Sections 5 and 6. Thus, the e-improvement viewpoint

can provide a starting point for substantially improved algorithms.

(2) Let r (on-line) be inf{r(s)} over all on-line algorithms S , We

have shown that 1.5 <r(on-line)< 1.66ees , It is of interest to

determine it more precisely.

(3) Find and analyze off-line algorithms S withr (8S) "substantially"

better than 11/9 .

(4) Is there an ¢ > 0 such that finding a packing of IL using less

than (L+e)L bins 1s NP-complete? Is there an ¢ > O such that

every O(n) -time algorithm S (say, in the decision tree model

described in Section 7) has r(S)> lte?

L6

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 197k,

[2] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yao, "Multiprocessor

scheduling as generalized bin-packing," Journal of Combinatorial Theory

21 (1976), 257-298,

[3] M. R. Garey and D. S. Johnson, "The complexity of near-optimal graph

coloring," Journal acm 23 (1976), L3-L9,

[4] R. L. Graham, "Bounds on the performance of scheduling algorithms,"

in Computer and Job/Shop Scheduling Theory, edited by E. G. Coffman, Jr.,

Wiley, New York, 1976.

[5] D. S. Johnson, "Near optimal bin packing algorithm," Ph.D. Dissertation,

Massachusetts Institute of Technology, Cambridge, Mass., June 1973,

[6] D. S. Johnson, "Fast algorithms for bin packing," J. Comput, System Sci,

‘ 8 (1974), 272-31k,

[71 D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,

"Worst-case performance bounds for simple one-dimensional packing

algorithms," SIAM J. on Computing 3 (1974), 299-325,

[8] R. M. Karp, "Reducibility among combinatorial problems," in Complexity

of Computer Computations, edited by R. E. Miller and J. W. Thatcher,

Plenum Press, New York, 1972.

[9] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973.

[10] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, "An analysis of

several heuristics for the traveling salesman problem," SIAM J. on

Computing 6 (1977), 563-581.

|.

L7

Appendix. The Strengthened FFD Analysis in Section 6.

| At the beginning of Section 5, we listed some facts (Properties Bl - B6)

| which lead to the proof of Theorem 5. In this appendix, we will give more

| details on how these facts can be obtained from the original analysis of

| FFD in [5][7].

In [5], Properties Bl-BY are proved under the following assumptions on

the list L . Let Po be an FFD packing and P' an optimal packing of L ,

Write the items in L as Xp 2X, 2 eel > X LetZz ~ _ nh.

Fi = {x | x, is not in an A-bin in P_} .

Assumption 1, All x, are in (2/11, 1].

Assumption 2. % contains at least a C-plece or a D-piece.

Assumption 3. The smallest piece X, goes into a non-A bin in P_,i

1.64, Xx €F.

We make the foll owing observations. [ot o = 10~9 CoN =1 - n== BE - J

Eo

_ => -L
R =3x107, and 7=10 , as in Section 6.

Observation 1, One can replace Assumption 1 by a weaker constraint,

Assumption 1'. that x, e (M1.

Observation 2. One can replace F' by any packing of L .

| Observation 3. Property B2 comes from the following facts.

W(X,)) < 3 g(X.) , if X. is an A-bin in P' ,—~ 1 1

2 11 L

AEE) "3 g(X;) < g 1f X, is a non-A bin in P' .

: 48

One can make stronger statements for regular bins £

W(f(X.)) < 4 g(X.), if X. is a regular A-bin in P',177 — 1 1 1

w(f(x.)) - 2 g(X.,) < 2 , 1f X, is a regular non-A bin in P' .1 9 i’ = 60 1

Observation 4. g(X;) < 50 , for any bin X. in P' .

Observation 9. g(X,) > 1/3, if Xs is a regular A-bin in P' .

Observations 3 and 4 lead to Property BS, and Observation 5 is

Property BO. Therefore, if L satisfies Assumptions 1', 2 and 3, and

P' 1s any packing of L , then one can define f and g such that

Properties Bl -BO6 are true.

It remains to show that Assumption 3 can be dropped. Let

L=(x >x>...>x) bea list satisfying Assumptions 1' and 2,

PF the FFD--packing of L , P* an optimal packing of L , and

F = (x, | x, is in a non-A bin in P.} . Suppose x is the smallest

non-A -piece in % . We consider the list 1' = (15%, 0 —_— x) , and

let P' be the packing of L', obtained from pr by deleting pieces

STEER SPINE Then L' satisfies Assumptions 1l', 2 and 3.

Applying the -previous results, we can define functions f', g' satisfying

Bl -B6 for the list L' . Now, we define functions f and g for the

list L by

IT! (%;) if x, el)
fx) =

0 otherwise,

and

g' (x) if x, el

g(x.) = (0 otherwise.

L9

Clearly, FFD(L) = FFD(L') , Ar | = [Ar 1 | » and the set #% is the
same for both L and L', Also notice that a regular bin in p must

also be regular in P', and a bin in p” is an A-bin if and only if it is

an A-bin in P' . With these facts, it is straightforward to verify that

Properties Bl- BO are satisfied for L with this choice of f and g .

50

