
VARIATIONS OF A PEBBLE GAME ON GRAPHS

by

John R. Gilbert ard Robert E. Tarjan

STAN-CS-78-661

SEPTEMBER 1978

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

V

*

2)
a

p

Variations of a Pebble Gameon Graphs

John R. Gilbert’

Robert Endre Tar jan™

Computer Science Department

Stanford University

Stanford, California 94305

April 1978

Abstract.

We examine two variations of a one-person pebble game played on directed graphs, which

has been studied as a model of register allocation. The black-white pebble game of Cook and

Sethi is shown to require as many pebbles in the worst case as the normal pebble game, to within a

constant factor. For another version of the pebble game, the problem of deciding whether a given

number of pebbles is sufficient for a given graph is shown to be complete in polynomial space.

Keywords: black-white pebble game, pebble game, polynomial-snace complete pi oblems, register

allocation, space bounds.

) Xx: Research partially supported by a National Science Foundation graduate fellowship.
xk: Research partially supported by National Science Foundation grant MCS-75-22870

’ and by Office of Naval Research contract N00014-76-C-0688.

1

1. Introduction.

A number of researchers have studied a one-person pebble game played on directed graphs

as a model of storage allocation problems ([C], [CS], [HPV], [PH], [PT)). In this paper we consider

two variations of the pebble game.

Suppose G is a directed graph with vertex set and edge set E. We will write G = (V, E). If

(v, w) is an edge of G, v is a predecessor of w and w is a successor of v. The number of predecessors

of v is its in-degree and the number of successors isits our-degree. We will be interested in graphs

of bounded in-degree, so we will denote by p(n, d) the class of acyclic directed graphs on =n

vertices having maximum in-degree d. A source is a vertex of in-degree zero,and a sin k is a

vertex of out-degree 0.

We will consider time to be divided into integral steps. The notation [a, b] will mean the set

of integers i witha <i <b.

The black pebble game is played ona graph G e (y(n, 2) by placing a number of tokens called

black pebbles onthe vertices of G according to the following rules.

(a) At each time step, one black pebble may be either placed on an unpebbled vertex or

removed from a pebbled vertex.

(b) A black pebble may be placed on a vertex only if all its predecessors are pebbled.

Thus a black pebble may be placed on a source at any time.

(c) A black pebble may be removed from a vertex at any time.

The object of the game is to pebble a distinguished vertex of G, using no more than a certain fixed

number of pebbles at once.

Intuitively, we can think of this game as modelling register allocation for the evaluation of an

expression. We can consider each vertex of G to be an operator whose operands are its

predecessors, so the sources of G are the atomic subexpressions. Pebbles are registers, and placing a

pebble on a vertex corresponds to computing the value of the subexpression in the register. An

operation can be performed only if all its operands are present in registers, i.e., all its predecessors

are pebbled. Removing a pebble from a vertex corresponds to freeing that register to be used to

store the result of another computation. The vertex for the top-level operation in the expression is

the distinguished vertex which we are trying to pebble, and the number of pebbles we use is the

number of registers used in computing the expression.

2

a

R Hopcroft, Paul, and Valiant [HPV] have shown that any graph in @(n, 2) can be pebbled

with at most O(n/log n) pebbles. Paul, Tarjan, and Celoni [PTC] have proved that for infinitely

A many n there is a graph in @(n, 2) which requires cnf/log n pebbles, so the bound in [HPV] is

tight to within a constant factor. An algorithm which pebbles any graph with O(n/log n) pebbles is

also presented in [PTC].

The pebbling problem is, given a graph G « ((n, 2) and an integer k, to decide whether k

pebbles suffice to pebble G. Sethi [S] has shown that the pebbling problem is NP-hard, that is,

that any problem in NP can be reduced to the pebbling problem in polynomial time. It seems likely

that this problem is not in NP. Sethi also shows that if we restrict the rules of the black pebble

game so that no vertex can ever be pebbled more than once, the pebbling problem is NP-complete,

that is, any problem in NP can be reduced to the restricted pebbling problem in polynomial time

and the restricted pebbling problem is in NP. (A discussion of NP-completeness can be found in

[AHU])

Section 2 of this paper extends the result of [PTC] to a modified pebble game using two

kinds of pebbles. Section 3 shows that the pebbling problem for another modified pebble game is

) complete in polynomial space.

2. Black-white pebble games.

The black-white pebble game is played on a graph G ¢ (p(n, 2) with two types of tokens called

black pebbles and white pebbles. Black pebbles are manipulated according to the rules of the black

pebble game, and white pebbles are manipulated according to the following rules, which are in a
sense duals of the black rules.

(d) A white pebble may be placed on a vertex at any time.

(e) A white pebble may be removed from a vertex only if all its predecessors are pebbled

(with either black or white pebbles). Thus a white pebble may be removed from a

source at any time.

The object of the black-white pebble game is to begin with no pebbles on the graph, make

legal manipulations which cause the distinguished vertex to be pebbled with a pebble of either

color, and finish with no pebbles on the graph. A fixed number k of pebbles is assumed to be

available, but their color is not specified. The number of black pebbles and the number of white

. pebbles in use may vary as long as there are never more than k pebbles on the graph at once. Of

course, a pebble may not change color while it is on the graph.

Intuitively, we can think of the black-white pebble game as modelling the proof of a theorem.

Each vertex is a lemma which can be deduced from its predecessors. The distinguished vertex is

3

i

|

the theorem to be proved. Placing a black pebble on a vertex corresponds to proving that lemma

from its predecessors; placing a white pebble on a vertex corresponds to assuming that lemma to be

true, intending later to justify the assumption by proving the predecessors. The number of pebbles

available is the maximum number of intermediate results it is possible to “remember” at one time.

Cook and Sethi [CS] show that for infinitely many n there are graphs in (p(n, 2) which

require a number of black and white pebbles proportional to n '/4 The main result of this section
is that there are in fact graphs requiring cn/log n pebbles. The proof in this section closely

parallels that in [PTC]. We will assume their Lemma 1 and Corollary I.

Lemma 1 [PTCJ. For any value of i there is a graph C(i) ¢ @(c2', 2) with 2' sources and 2' sinks
such that: For any j e[l, 27, if Sis any set of j sources and T is any set of j§ sinks, then there are at
least j vertex-dis joint paths in C(i) from Sto T.

Corollary 1 [PTC). For any j € [0, 2-1], if j pebbles are placed on any j vertices of C(i), and T is
any set of at least j+ | sinks, then at least 2'-j sources are connected to T' via pebble-free paths.

Lemma 2. In any graph, if a path from vertex s to vertex t is pebble-free both at times ¢; and ¢,,

and ? is pebbled at some time in the interval [¢}, ¢,], then 5 is pebbled at some time in the interval

[2,25]

Proof. By induction on the length of the path. If the path has length 0 then s = ¢ and the

statement is trivial. If the path has length at least one then there is a successor s” of s on the path.

By the induction hypothesis s" must be pebbled in [t), t;]. If 5’ is pebbled black then s must be

pebbled when the pebble is placed on s’, and if s” is pebbled white then s must be pebbled when

the pebble is removed from s". This completes the proof of Lemma 2.

This lemma will be used to show a cn/log n lower bound on the number of pebbles required

to pebble a sequence of graphs which are essentially the same as those constructed in [PTC]. In

particular we will define a graph G(i) for each i 2 10. Let G(10) = C(10) from Lemma 1. Then

G(i+ 1) = (V(i+ 1), E(i+ 1)) is built from two copies of G (i) and two copies of C(i) as follows. Let

G(i) = (V(i), E(i)) have sources S(i) = {s(i, j) : j [l, 2} and sinks T() = {t(i, j) : j €[l, 20. Let
C(i) = (VC(i), EC(i)) have sources SC(i) = {sc(i, j) : jel], 2%} and sinks TC(i) = {tc(i, j) : J el, 2.
Let G (i) and G,(i) be two copies of G(i) and let C (i) and Cy(i) be two copies of C(i). Let

SGi+1) = {s(i+1, i): j [1,2], and T(i+1) = {t(i+1, j) : j € [1, 2*']} be two new sets of vertices. Let
G(i+ 1) =(V(i+1), E(i+1)), where

“ V@i+1) = S@E+ 1) u T(@i+ 1) u V,(i) u Vi) u VC(f) u VCui), and

) E@i+1) = Ei) vu Ei) u EC(i) u ECyi)

u {(s(i+1,), (i+ 1, 9): jell, 2%]

u {(sG+1, 9), 510i, 1): je [1, 2}

u {(s(i+1, +27, sc,(i, 1): fe [1,2

u {ley g)syG6, 0): jel1,27)

u {(t1G, 9), soli, I: fell, 20)

U {(t,0, §), seoli, 3): fel, 20)

u {(teli, §), G+ 1, i): jell, 20)

un {(eeo(G, j), t+ 1, +20): jell, 27}.

Figure 1 shows G(i+ 1). The “left half” of S(i+ 1) will refer to {s(i+ 1, §): j € [1, 27}, with similar
definitions for “right half” and for T(i+ 1).

Ce Let m(i) = |SG)| = [TG = 2', and let n(i) = (i)| be the total number of vertices of Gi). It
| is easy to show that G(i) has maximum in-degree two and that there is a constant cy such that

; amxo $C.

Let ¢; = 49/1024, c, = 3/1024, c3=110/ 1024, and ¢4 = 1/ 1024. The following inequalities are

easily verified:

(1) cam(i)/4 2 2com(i+ 1) + 1

(2) (1-4cpm(i+ 1) 2 com(i+ 1)

(3) com(i) - 1 2 cqm(i+ 1)

(4) [c; m(i+ 1)/8] 2 2cm(i+ 1) + |

(5) cym()2 2 2comli) + 1

(6) (1-2¢2)m(i) 2 ¢y m(i)

(7) cam(i)/2 - 2com(i) 2 ¢;mi)

(8) cam(i)/2 2 2com(i) + 1

(9) (1-2c)m(i+ 1) 2 cam(i+ 1).

Lemma 3. If in the time interval [0, ¢] at least ¢,m(i) sinks of G(i) are pebbled with any colors in

: any order, and at times 0 and ¢ there are at most com(i) pebbles on the graph, then there is a time

interval [¢ , t,] c [0, t] during which at least ¢zm(i) sources of G(i) are pebbled and at least ¢sm(i)

pebbles are always on the graph.

5

-

Proof is by induction on |.

Basis. Let i = 10. Suppose G(10) = C(10) has 49 sinks pebbled in [0, ¢], and at times 0 and ¢ there

are no more than 3 pebbled vertices. Any 7 of these 49 sinks are connected, via paths which are

pebble-free both at 0 and at ¢, to at least 1018 sources, by Corollary 1. Thus at least one of the

sinks, say v, is connected to at least 146 of the sources via such paths.

Let to be a time in [0, ¢t] at which v is pebbled. Let ¢;~ I be the last time before ¢y at which v

is connected to these 146 sources via a pebble-free path, and let 75+ 1 be the first time after ty at

which » is connected to these 146 sources via a pebble-free path. During [¢), ¢,], at least one

pebble is always on the graph, and at least 146 2 110 sources of G(10) must be pebbled. This

proves the lemma for i = 10.

Inductive step. Suppose the lemma holds for some i 2 10. To prove the lemma for i+1, suppose

that at least ¢;m(i+ 1) sinks of G(i+ 1) are pebbled during [0, ¢], and that there are at most com(i+1)

pebbles on the graph at times 0 and ¢t. We will consider four cases.

Case 1. There exists an interval [t;, ¢,] ¢ [0, t] during which at least cym(i)/4 sources of G (i) are

pebbled and at least c,m(i) pebbles are always on the graph.

The subgraph of G(i+1) consisting of all vertices and edges on paths from the left half of

S(i+ 1) to the sources of G,(i) satisfies Lemma | and Corollary 1. So does the similar subgraph

from the right half of S(i+ i). Let ty be the last time' before ¢; at which there are not more than

¢,m(i+ 1) pebbles on the graph, and let t3 be the first time after ¢, at which there are not more than

¢,m(i+ 1) pebbles on the graph. Since

(1) cam(i)/4 2 2com(i+ 1) + 1,

there are at least 2 (m(i) - 2com(i+1)) =

(2) (1-4co)mli+ 1) 2 cgm(i+ 1)

sources of G (i + 1) connected to the cym(i)/4 sources pebbled from ¢; to ¢, by paths which are

pebble-free at both tg and f3. At least these sources of G(i+ 1) must be pebbled in [¢g, #3], and at
least

(3) com(i) = 1 2 cqm(i+ 1)

pebbles must be on the graph throughout [¢,, 3). Thus the lower bound holds in this case.

Case 2. There exists an interval {¢,, £5] c [0, t] during which at least czm(i)/4 sources of Gi) are

pebbled and at least ¢,m(i) pebbles are always on the graph.

6

| The lemma holds in this case by a proof like that above, considering subgraphs whose only

* intersections with G(f) are the direct connections from S (i) to T (i).

Case 3. There exists an interval (t, t5] c (0, ¢] during which at least ¢,;m(i+ 1)/4 sinks of G(i+1) are

pebbled and at least c,m(i) pebbles are always on the graph.

Either the left or right half of T(i+1) contains at least [¢;m(i+1)/8] of the sinks which are

pebbled in [z |, t,) Again we will apply Corollary 1 to two subgraphs of G(i+1). The first

subgraph contains all vertices and edges on paths from the left half of S(i+ 1) to the sinks S (i) of

G (i) (including all of C,(i)); the direct connections from (i) to T (i); the edges from T (i) to S,(i);

the direct connections from S,(i) to T (i); the edges from T (i) to SC(i); all vertices and edges on

m (i) vertex-disjoint paths from SCx(i) to TCy(i) in Cy(i); and the edges from TC,(i) to the half of

T(i+ 1) containing at least [c,m(i+1)/8] of the sinks which are pebbled in [¢;, ¢,]. This subgraph

satisfies Lemma 1 and Corollary 1, as does the similar subgraph which starts from the right half of

S(i+1). Let ty be the last time before ¢; at which there are not more than ¢,m(i+ 1) pebbles on the

graph and let t3 be the first time after {, at which there are not more than ¢,m(i+1) pebbles on the

graph. Since

4

(4) fc; m(i+ 1)/8] 2 2com(i+ 1) + 1,

there are at least 2 (m(i) - 2com(i+1)) =

(2) (1-4co)m(i+ 1) 2 cgm(i+ 1)

sources of G(i+1) connected to the c¢;m(i+ 1) sinks pebbled from ¢; to t, by paths which are

pebble-free at both ty and 13. At least these sources of G(i+ 1) must be pebbled in [¢q, £3], and at
least

(3) comli) - 1 2 cqm(i+1)

pebbles must be on the graph throughout [¢, 3). Thus the lemma holds in this case.

Case 4. None of cases (1) - (3) hold. Figure 1 may help in following this argument.

Since case (3) does not hold, there must be a time ¢ | € [0, t] such that fewer than c;m(i+ 1)/4

sinks of G(i+ 1) are pebbled during [0, ¢,] and the number of pebbles on the graph at time ¢, is at

most ¢,m(i). Similarly there must be a time to € [0, t] such that fewer than c;m(i+ 1)/4 sinks of

» G(i+ 1) are pebbled during (t,o, t] and there are at most com(i) pebbles on the graph at ¢,,.

- During [¢,, t,o] at least ¢ym(i+ 1)/2 = ¢ym(i) sinks of G(i+ 1) are pebbled, of which at least

¢ym(i)/2 must be in either the left or the right half of T(i+ 1). Since

(bh) ¢ | m(i)2 2 2comli) + 1,

the number of sinks of G,(i) connected to these sinks of G(i+1) via paths which are pebble-free at

both ¢, and ¢,q is at least m(i) - 2com(i). Thus at least these m(i) - 2cm(i) =

(6) (1-2¢co)m(i) 2 ¢ym(i)

sinks of G(i) are pebbled during [¢}, t,o], with no more than ¢,m(i) pebbles on the graph at ¢; and

tio. By the induction hypothesis there is a time interval [¢,, tg] c [¢), t,o] during which cam(i)

sources of G,(i) are pebbled and c,m(i) pebbles are always on Gi).

Since case (2) does not hold, there must be a time t3 € [t5, tg] such that fewer than cgm(i)/4

sources of G,(i) are pebbled during [¢,, f3] and there are at most c,m(i) pebbles on G(i+ 1) at t5.

Similarly there must be a time fg € [t,, tg] such that fewer than czm(i)/4 sources of G (i) are pebbled

during [rg tg] and there are at most ¢c,m(i) pebbles on G(i+1) at tg. Thus in [£3, tg] at least cam(i)/2

sources of G,(i) are pebbled. Since

there are at least ¢;m(i) sinks of G (i) connected to these czm(i) sources of G(i) by paths which are

pebble-free both at t3 and at tg. During [t3, tg] these sinks of G, (i) must be pebbled. There are at

most ¢,m(i{) pebbles on the graph at ¢3 and tg, so by the induction hypothesis there is an interval

(24, 17] c [25, tg) during which ¢gm(i) sources of G (i) are pebbled and c4m(i) pebbles are always on

G (i).

Since case 1 does not hold, there must be a time tg € [t5, £7] such that fewer than cgm(i)/4

sources of G (i) are pebbled during [¢4, t5] and there are at most com(i) pebbles on G (i+ 1) at time tg.

Similarly there must be a time tg € [f 4, t7] such that fewer than cgm(i)/4 sources of G (i) are pebbled

during (tg, f7] and there are at most c,m(i) pebbles on G(i+1) at time fg. During [t5, tg] at least

cgm(i)/2 sources of G (i) are pebbled.

Since

(8) cam(i)2 2 2com(i) t 1,

atleast2 (m(i) - 2comli)) =

(9) (1-2¢coym(i+ 1) 2 cqmli+ 1)

sources of G(i+ 1) are connected to these c3m(i)/2 sources of G (i) by paths which are pebble-free at

both tg and tg. These sources of G(i+ 1) must be pebbled during (ts, tg] c [24, £7] c {25, tg] € [O, ¢]

8

while at least cam(i) + cam(i) = cam(i+ 1) pebbles are always on the graph. This completes the proof

o of Lemma 3.

Finally we can prove the main theorem.

Theorem 1. For infinitely many n, there is a graph G ¢ (y(n, 2) such that pebbling some vertex in

G requires cgn/log n pebbles.

Proof. For n = n(i), i 2 10, let G = G(i). Since pebbling all sinks of G(i) beginning and ending with

no pebbled vertices requires cqm(i) pebbles, there must be some sink whose pebbling requires c4m(i)

pebbles, or else we could pebble all the sinks one after another, with the graph empty at some point

after each sink is pebbled. Since m (i) = 2' and G(i) has n(i) s cpi2' vertices, the number of pebbles
required is cgn(i)/log n(i) for some constant cs,

Since any black pebbling strategy is also a black-white pebbling strategy, the O(n/log n)-

pebble algorithm in [PTC] also works for the black-white pebble game. Thus the lower bound on

worst-case number of pebbles in Theorem 1 is tight to within a constant factor.

The only place that Theorem | uses any information about the conditions under which a

‘ vertex can be pebbled is in the proof of Lemma 2. Therefore at least cgn/log n pebbles are

required in the worst case of any pebble game on (f(n, 2) for which Lemma 2 holds.
+

,

9

3. A polynomial-space complete pebbling problem.

In this section we show that the pebbling problem for another modified pebble game is

complete in polynomial space. That is, any problem which can be solved in polynomial space can

be reduced to this pebbling problem in logarithmic space, and the problem can itself be solved in

polynomial space. Any problem which can be solved nondeterministically in polynomial space can

also be solved deterministically in polynomial space. Again, see [AHU] for a discussion of

pelynomial-space completeness.

This modified pebble game will use only black pebbles. We will find it convenient to allow a

pebble to move from a vertex to its successor in a single time step. This “sliding rule” does not

affect our results, since we shall see that it always saves exactly one pebble.

The major change in the pebble game is the introduction of cyclic graphs and “or vertices.”

Let G be a directed graph in which every vertex has in-degree at most two. Let every vertex of G

be designated either an and vertex or an or vertex, and let ¢ be a particular vertex. We are given

some number k of black pebbles which can be manipulated according to the following rules.

(a) At each time step, one pebble may be placed on an unpebbled vertex, removed from a

pebbled vertex, or moved from a pebbled vertex to an unpebbled successor of that

vertex.

(b) If a vertex is an and vertex, a pebble may be placed on it or moved to it only if all its

predecessors are pebbled. Thus an and vertex which is a source can be pebbled at any
time.

(c) If a vertex is an or vertex, a pebble may be placed on it or moved to it only if at least

one of its predecessors is pebbled. Thus an or vertex which is a source can never be

pebbled.

(d) A pebble may be removed from any pebbled vertex at any time.

The problem is to decide whether or not it is possible to place a pebble on vertex t by legal

manipulations using at most k pebbles.

Lemma 4. For all k > 0, a graph G can be pebbled using k pebbles in the modified pebble game if

and only if it can be pebbled using k+ 1 pebbles in the modified pebble game without ever moving

a pebble from a vertex to one of its successors, that is, without ever using the “sliding rule.”

Proof. Suppose G can be pebbled using k pebbles with the sliding rule. We replace each use of

the sliding rule to move a pebble from a vertex x to a vertex y with two steps, first placing a pebble

on y and then removing the pebble from x. This uses at most k+ | pebbles.

Conversely, suppose a scheme exists for pebbling G with 2+ 1 pebbles without the sliding rule,

for some k > 0. We transform this scheme into one using k pebbles as follows. Suppose there are

k+ 1 pebbles on G at time t,. Then the move at ¢, must be to place a pebble on some vertex y. If

this is not the final move, the move at 75+1 must be to remove a pebble from some vertex x. If x is

10

a predecessor of y we replace these two moves with a single move sliding the pebble from x to y. If

Pp x is not a predecessor of jy we reverse the moves, first removing the pebble from x and then placing
it on y. If ty is the final move we slide a pebble from any predecessor of y to y (if y has no

predecessors we just pebble it, using one pebble, since k > 0). We apply this transformation

simultaneously to all instants at which there are k+ 1 pebbles on G, and get a scheme with the

sliding rule which uses only k pebbles. This completes the proof of Lemma 4.

The proof that the modified pebbling problem is polynomial-space complete will proceed by

using a pebble graph to simulate boolean registers, gates, and signal lines, essentially identical to

those used in real-world hardware. The devices can then be used to build a polynomial-space

bounded Turing machine, a PDP-10, or whatever is desired; the simulation of a PS-bounded

Turing machine will be given in some detail.

In the figures to follow, an and vertex will be represented by a circle-dot O, an or vertex by

a circle-plus ®, and a vertex whose type is not mentioned by an empty circle O.

In the first step of the construction a few simplifying assumptions will be made, to be proved

later. The first is that certain subgraphs will always contain exactly one pebble. A prologue and

A epilogue will be added to the basic construction to ensure that this is the case. Also we will

generalize the notion of and and or vertices to allow vertices with an arbitrary number of

predecessors. If the predecessors of vertex v are w,, ..., w,, and boolean variables x, ..., x, are

such that x; is true if and only if w, is pebbled, we will allow the rule for pebbling v to be any

monotone boolean function of the x;s. Using [DD to represent “and” and) > to represent “or”,
we can for example have the five-vertex “graph” in Figure 2. There v can be pebbled if w; and

either w, or both wz and w, are pebbled. Note that [DD and JD do not represent vertices, but
only building blocks for “generalized edges.”

The boolean circuits we will simulate are composed of gates and logic lines. A gate is a

device with some inputs and an output, which computes a particular boolean function of its inputs.

A logic line is simply a path connecting one gate’s output to some inputs of other gates (or of itself).

An initial value, true or false, is given for each logic line and hence for each gate input. The

boolean circuits function by repeatedly executing two steps. First every gate simultaneously

computes its output as a function of its inputs. Then every logic line simultaneously picks up the

value of the gate to whose output it is connected, and applies that value to each input to which it is
connected.

The functioning of the circuit is controlled by a subgraph called the clock, shown in Figure 3.

This is a cycle of four vertices a, b, ¢, and d, and will always have a pebble on exactly one of its

“ vertices. This clock pebble will move around the cycle once for each iteration of the two steps

described above. While a is pebbled the gates will compute their outputs, and for b to be pebbled

all outputs will have to have been correctly computed. The transfer of values along the logic lines

will be similarly controlled by ¢ and d. One such iteration will be called a tick.

11

p-

A gate will consist of a two-vertex cycle for each input and output, and some “control” edges

between these cycles and the clock. Each two-vertex cycle will always contain exactly one pebble.

In one position this pebble will be interpreted as a true value, and in the other as a false value. An

and gate is shown in Figure 4. Clock vertex a is a predecessor of both output vertices ¢, and f,, so

the output value can change when a is pebbled and only then. All the vertices in the gate are

predecessors of vertex b in such a way that b can be pebbled only if the output of the gate is the

correct function of its inputs. The reason for the complexity of the network connecting b to the gate

vertices is that more vertices will eventually have to be added to each cycle in order to eliminate

our simplifying assumptions. The network of generalized edges will ensure that, when b is pebbled,

no cycle has its pebble anywhere else besides the f or f vertex.
A gate computing any boolean function of any number of inputs can be constructed in this

way.

The structure involving clock vertices ¢ and ¢ which implements the logic lines is very similar

to the above. An example is given in Figure 5 of an output a being applied to two inputs b and c.

It is now necessary to modify the above constructions to use only two-input and and or

vertices. Notice that at present ali the vertices are partitioned into subgraphs, each of which has

been assumed always to contain exactly one pebble: One such subgraph is the clock cycle and the

others are the input or output cycles of gates. The clock cycle is the only subgraph which has

vertices which are not two-input and vertices.

The modifications which follow will add vertices to the clock subgraph, but we will continue

to assume that each subgraph in the partition always contains exactly one pebble. We will cali

these subgraphs single pebble subgraphs, or SPSG’s. In the following figures, as in the earlier ones,

edges within a SPSG are drawn as wide lines and those between SPSG’s are drawn as narrow lines.

With this convention the following statement is true, and will be preserved by the modifications.

(x) Each or vertex in a SPSG has exactly two wide edges and no narrow edges entering.

Each and vertex has exactly one wide edge and at most one narrow edge entering.

We will work our way down to a graph with only simple and and or vertices by repeatedly

making the following two substitutions to replace complex narrow “generalized edges” by simpler

edges.

(I) For a vertex » with a narrow “and” edge entering as in Figure 6a, we substitute the

graph in Figure 6b. Here x, . . ., x; may be vertices or the symbols BD and) D>
with more narrow edges entering them.

(I) For a vertex v with a narrow “or” edge entering as in Figure 7a, we substitute the

graph in Figure 7b. Recall that ® vertices are or vertices.

12

& These substitutions give an equivalent graph in the following sense: Suppose that in a

certain configuration before one of the above modifications, a pebble could be moved from u to v.

Then this is also the case after the modification. Conversely, suppose that after the modification a

pebble can be moved from u to ». For modification (II) it is clear that the pebble could be moved

from u to » without the modification. For modification (I), notice that no gate input or output

vertex can be pebbled except when the clock pebble is on vertex a or ¢. Thus no gate vertex can

be pebbled between the time the clock pebble moves from u to v, and the time it moves from v; to

v. Thus the conditions represented by edges x, . . ., x; must all have been satisfied when the clock

pebble was on u, so without the modification the pebble could be moved from u to v.

We now have a construction for a boolean circuit which computes according to the rule of

alternately letting every gate compute its output and letting every output be propagated to the

inputs with which it is connected. The construction uses only two-input and and or vertices, but

assumes that every SPSG always contains exactly one pebble. We will now add an epilogue to

guarantee that this is the case.

It is a consequence of (x) above that if a SPSG ever has no pebbles on it, it can never again

contain a pebble. (The problem of getting a pebble on it in the first place will be discussed

presently.)

The boolean circuit we will construct will have one gate output which is the “answer” in the

¢ sense that if that output is ever true, we will accept, that is, we will be able to pebble the

distinguished sink ¢ of the graph. If we can force the presence of a pebble on each SPSG at some

time between the time the “answer” output becomes true and the time vertex ¢ is pebbled, there will

have to have been a pebble on each SPSG during the whole computation of the boolean circuit. If

in addition we choose k, the number of pebbles, equal to the number of SPSG’s, then no SPSG can

ever have contained more than one pebble. Therefore the structure shown in Figure 8 is added to

the graph. Vertices ty and fj, are the true and false vertices of the output of the “answer” gate.

When this gate first computes a true output the clock pebble will be on vertex b, so the pebble on

(or the pebble on b) can be moved to e. Vertices ty, ...,¢, and fy, ..., f, are respectively the true

and false vertices of all the other inputs and outputs. The pebble on ¢ can be moved all the way to

t if one of (t, f;) is pebbled for all i, and conversely no pebble can reach ¢ unless for all { one of

(¢, fi) is pebbled at some time after to is pebbled. Thus every SPSG has to have contained a

pebble between the computation of ty and the pebbling of ¢.

Finally we will address the problem of getting a pebble onto each SPSG in the first place.

We would like to be able to specify an initial value for each logic line and let the computation

proceed from there. Thus we would like to be able to pebble a specified one of (¢, f;) for each i,

and also to pebble clock vertex a. Suppose that we have k SPSG’s, namely one clock subgraph and

k-1 inputs and outputs, so we have k pebbles. Notice that in each SPSG the vertex which we wish

to pebble initially is an and vertex. If in the {th SPSG this vertex is v, then the situation is as in

Figure 9a, recalling (x), except that the narrow edge from x; to ; may not be present. We replace

this with the subgraph in Figure 9b. Here p is a single vertex which is a predecessor of all the vs.

13

We have now violated (x) because an or vertex in each SPSG has an entering narrow edge, i.e., an

edge from outside the SPSG. This means that the pebble can be removed from the SPSG at any

time and later replaced at its initial vertex. To keep this from fouling everything up we add to p a

graph which requires that. all £ pebbles be used to pebble p, so removing a pebble from a SPSG

will require the whole pebbling to be started over again to replace it. The added graph is the

pyramid S; which Cook [C] has proved to require k pebbles. Figure 10 shows S,.

The only thing remaining to check is that the initialization must be complete before the

computation can begin. This is the case because the clock pebble cannot move to b until every

input and output SPSG contains a pebble; no input SPSG can change its value until the clock

pebble has moved all the way to ¢; and we don’t care whether the output SPSG’s change their
values because moving the clock pebble to b will ensure that they are correct.

This completes the main construction. Suppose we are trying to simulate a boolean circuit

with n gates, each having at most m inputs. The total number of vertices in all gates is at most

3n(m+1) since each input and output SPSG finally has three vertices. The epilogue has at most

another 3(n- 1)(m+ 1) + 1 vertices. The prologue has exactly (n+ 1}n+2)/2 vertices since the pyramid
is k = n+ 1 wide.

The clock SPSG had four vertices initially. In the modifications to remove complex edges,

each time one of the symbols BD) or) D> was eliminated the number of vertices added to the
clock SPSG was linear in the number of lines into the symbol. Each gate was originally connected

to clock vertex b by a network which may have had size exponential in the number of gate inputs.

Thus the contribution from all gates is at most (mn vertices, where c¢(m) is exponential in m but

independent of n. The size of the network connecting a logic line to clock vertex d was originally

linear in the number of inputs connected to the line. Each input is connected to only one logic line,

so the total contribution of clock vertices from all the logic lines is linear in m n . Thus the total

number of vertices in the graph is at most n2/2 + ¢/(m)n, and the total number of edges is at most
twice that.

An informal way to show that the pebbling problem is polynomial-space hard is to observe

that the gate in Figure 11 acts as a one-bit memory. With these registers and ordinary and, or, and

not gates, any modern computer with storage n can be built with at most O(n?) devices. Therefore
a Turing machine with a tape bound p (1) can be simulated with O(p(n)?) devices, or a graph of
size O(p(n)?). A more formal simulation of a p(n)-space bounded Turing machine is given below.

Suppose machine M has a space bound of p(n) and has s states and ¢ tape symbols. Suppose

an input word w of length n is given. Define an array of 2p(n)+n squares, each of which can hold

a value from 1 to (s+ 1)t. The value in a square encodes the tape symbol in that cell and either the

fact that the head does not point to that cell, or the state of the machine if the head does point to

that cell. Each square can be represented by r = [logo((s+ 1)2)] logic lines, which are initialized to

the machine’s initial configuration reading w with p(n) cells of blank tape on each side. The value

of one of these logic lines after the machine makes a single move is a boolean function of the 37

14

a

inputs which give the value of this square and the two adjacent ones, so a gate which computes

this function can be built for each logic line. If the output from each gate is applied to the

corresponding logic line, we have a simulation which will run exactly like the Turing machine,

making one transition at each clock tick.

Another gate can be built which takes the r lines for one tape cell and decides whether the

machine is in a final state at that cell. These values can be combined by 2p(n)+n-1 two-input or

gates in a binary tree, yielding a final answer which is true momentarily if (and only if) the

machine ever accepts.

The number of gates is O(p(n)) and the maximum number of inputs per gate is 3r, which is

independent of n. Thus the size of the graph to simulate M on w is O(p(n)?). The graph can be
constructed using scratch space proportional to the log of its size, or to log n.

To see that the pebbling problem can be solved in polynomial space, simply note that a

supposed pebbling can be checked in space equal to the size of the graph, so the problem takes

linear space non-deterministically. Therefore it can be done deterministically in quadratic space.

4. Conclusion.

Theorem 1 gives an n/log n lower bound on the number of pebbles required in the

black-white pebble game in the worst case. Therefore in the worst case black-white pebbling is

only a constant factor more efficient than black pebbling. It is not known whether there exist

classes of graphs for which black-white pebbling saves more than a constant factor. For example,

the pyramid graph S, (with (k%+k)/2 vertices) requires k+ 1 pebbles in the black pebble game. Cook
and Sethi [CS] prove that S, requires Q(k!/2) pebbles in the black-white pebble game, but the most
efficient black-white pebbling strategy known for S, uses | 2/2] + 2 pebbles.

Section 3 shows that a considerably modified version of the black pebbling problem is

complete in polynomial space. It seems quite likely that the black pebbling problem is

polynomial-space complete even without the introduction of or vertices and cyclic graphs, but we

have so far been unable to prove this.

15

References.

[AHU] A.V.A ho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[C] S. Cook, “An observation on time-storage trade off,” Proc. Fifth Annual ACM

Symp. on Theory of Computing (1973),29-33.

[CS] S. Cook and R. Sethi, “Storage requirements for deterministic polynomial time

recognizable languages,” Journal Comp. and Sys. Sci. 13 (1976),111-123,

[HPV] J. E. Hopcroft, W. Paul, and L. Valiant, “On time versus space,” Journal A CM 24

(1977), 332-337.

[PH] M.S. Paterson and C. E. Hewitt, “Comparative Schematology,” Record of Project

MAC Conference on Concurrent Systems and Parallel Computation (1970),119-128.

[PT] W. Paul and R. E. Tarjan, “Time-space trade-offs in a pebble game,” Stanford

Computer Science Department report STAN-CS-77-6 19 (1977).

[PTC] W. Paul, R. E. Tarjan, and J. R. Celoni, “Space bounds for a game on graphs,”
Math. Systems Theory 10(1976/77), 239-251.

[S] R. Sethi, “Complete register allocation problems,” SIAM J. Comput. 4 (1975),
226-248.

16

G (i+1)

' REET J ; Le
J RE - 1 we ©
t PEE i al
) =" Tea ¢ PE a
[] a=" Tha wom"

oF (]) - itl i naan 7 apd or =m+ rl
-

N

.

\

\

\

N
\

\

\

AT!

}

\

1 \

' \
'] \
:

.

\

]

]

}

a [2 !

Gili) i
}

)

}

'

|
[| : l

t

:
+ ' i

’ L] t
!

!

}

/

. J

’

}
f)

/

’

! J
1 f 4
]

1 . ;
: ' ’

,

/
p]

/

p

NL for /

py

FJ

”

Ve

1] ~~
: Rl PN FALE
i “- PE ~-
| Treo 7 ’ Teel

|] _— S~ “.o Fl

TOI+1) emmamzenlloo ha

total pebnles: # 4 0m 4m 2 mf « ml feomi)

7

- , e—e——

zo, ,m{i) pedbles on Gy {1)

17

i

i! (

(OC (+)

(OO

“(OO

Figure 2,

d c

Fix inputs (+) (+) ~hange 1lnputs

change outputs [| fix outputs
a b

Figure 3. The clock.

18

[

: O—0O
from all

other gates

30 a
b

mm mmm mm = mmmmm mm memo

outout
|

|

t fo |IEYo@ oI

ff —
I

es
NL| |

!
|

|

1

| £ + X |

' i

| inputs
bh co eo oe ee em ee em er Ew a ee ME tm mk ee mm mn = wn tm ee = me ea = eb

Figure ‘4. gate.

19

be

| . a

from all other

logic lines

Cc a

EE

{

|

or oe /" Ox »I

et RE LEE TE I i A | .

|

input (
i

ee

mm mre mmma—————————
|

NO

output? (3
i

SU

Figure 5. Logic line.

20

=

Xj

X :

x3
X1

X1

X2

X13 . oo oo 0
X .

\'4 A" A Vv,: 1 2 3 1

9} \'4 u Vv

Figure 6 "and" edge repiacement.

Xqy =— 0

OrenO- v?!

x1 . .

¢

0 = O—N
X3 Vi

u \Y% [9 \'4

Figure 7. "or" edge replacement,

3

170) fo tq 1 Tm Tm |

b e 1

(in clock)

Figure 8. Epilogue.

Xi Xi P

us Vy 4 MA Vi

9a. 96.
Figure 9. Prologusz.

22

. (+) (+) (+) (+) Sources of entire graph
(for k = 4)

O%
tc v:S

, :

: o

¢ Figure 10. 5,

Data

: Ou LPpUT
1nputs
+NDp Control

Memory

Output is (CAD) V CAM)

Rad

Figure 11. A cone-oit memory.

23

