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Abstract.

Given an undirected graph G = (V,E) and vertices 510113855, /

the problem 1s to determine whether or not G admits two vertex disjoint

paths Py and P, s connecting Sq with ty and Sp with t, respectively.

This problem is solved by an O(n.m) algorithm (n =|V|, m = |E|) , An

important by-product of the paper is a theorem that states that 1f G

is 4-connected and non-planar, then such paths Py and P, exist for

any choice of 51 » S59 Bg , and ty , (as was conjectured by Watkins

in [W]).

Keywords and Phrases: Algorithm, Connectivity, Disjoint paths, Planarity,

Two Paths Problem.
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1. Basics,

lI. A graph in this paper is undirected, without multiple edges or

self loops (which are irrelevant to the problem).

2. It 1s assumed that basic graph theory concepts, such as paths,

k-connectivity, planar/complete/bipartite graphs, etc., are familiar to

the reader.

3. Disjoint paths means vertex-disjoint paths (excluding their

| end-points), and k-connectivity means vertex k-connectivity,

4. G has the P2 property if for any 5108138,5%, there exist

| two disjoint paths connectiving s; with ty and s, with ty

A comprehensive treatment of the combinatorial part of the problem

(i.e., what conditions imply the P2 prperty) and also more general

problems was done by M. Watkins in [W]. Algorithmic partial results were

recently obtained by A. Itai [Il] and by Y. Perl and the author [PS].

Another closely related work is that of A. S, LaPaugh,[L].
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2. Reductions of the Problem.

. Rl: We may assume that G is 3%-connected.

This reduction relies on a detailed analysis of the problem concerning

graphs which are not 3-connected, which was done in [Il]. Itai shows that

the problem can be solved in O(n+m+ T) time, where T is the time

required to solve the problem for a 3-connected graph G' = (V',E')

such that |v" | < n and |E" | < m . A brief outline of this work is

given 1n the appendix.

R2: We may assume that G 1s not planar.

This reduction is a result of the work which was done in [PS].

This work solves the problem for 3-connected planar graphs in O(n+m)

) time.

By Kuratowski's theorem, G contains a homeomorph to either Ks

(the complete graph on 5 vertices) or to Ks ,3 (the complete bipartite
graph with 3 vertices on each side).

R3: We may assume that there are four disjoint paths connecting SI ty ,

Sn and ts to any other set of four vertices or less,

Proof. Let S = {51575 Spe ts} and let 8' be a set of vertices such

that there are no four disjoint paths connecting the vertices of S

and S' , Then, by Menger's theorem, S can be separated from S5' by

> a cut—-set C of three vertices. SNC and S' NC are not necessarily

empty, but G' = GC contalns at least one connected component Gy = (Vir Ep)

such that vy s =p and Vo ns! £0 . Let C = ACEAPACY and let
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G = (V-V,, E-EjU {(vysvp)s (v5v3), (vor v5) 1) . The following lemma is
very easy to prove.

Lemma 2.1. The TPP with G38 tgs S51 t5 1s equivalent to that with

G3895 95 Sy, and t, . Moreover, a solution to the first can be easily
obtained from a solution to the second.

Since |V-v, | <n, Lemma 2.1 implies that we can reduce the size

of the problem by using only a polynomial time computation (required

to determine C ). If such a reduction is not possible then R3 holds,

QeE.D.

Ri: G does not contain a homeomorph to Xs

This reduction 1s due to Watkins' work. Watkins shows that if G

contains a homeomorph to % and R3 holds, then G has the P2 property.

Moreover, his proof is completely constructive and can be implemented,

step by step, in polynomial time. The exact complexity of his proof

will be evaluated in Section 5 where the complexity of the whole

algorithm will be determined.
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3 Further Reductions.

Is So far G is a 3-connected graph, containing a subgraph Gy 32

homeomorphic to K, The nine paths of G which consist of the30. 555

edges of Ks 3 will be called p-edges (a short form of pseudo edges), pC IIES

and the six vertices of G which represent the vertices of Ks ’530 I!

will be called p-vertices. In the figures to come, three p-vertices will

always be drawn as circles while the other three as squares, indicating

the two "sides" of Ks Other vertices of G will be drawn as2D. 55

»a0s.- (see Figure 3.1). The circled p-vertices will be Xr %, and Xs

The squared ones —-— Yq Vo and Vy

*1 *5 3 *1 V1

> Zt N ave
Yq Yo 3 %3 V3

Figure 3.1.

R5: We may assume that 51 1s a p-vertex,

Proof. If 54 1s not a p-vertex, we are going to modify G3 2 and- hb

make it a p-vertex. We construct three disjoint paths Py / Py and Fs

from s; to Xy X and Xs respectively. We are interested only

in that part of each path from 54 to the vertex in which 1t hits

Gs 3 for the first time. These parts of the raths will be denoted byJ
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for the

2 P, , and P and the vertices in which they hit G3 3

first time —-- will be £5 , t, , and respectively, All possible

not-symmetric cases are given in Figure 3.2. The cases differ from

each other by the location of the £,'s on Gs 3 The new Gs 3 in

each case 1s heavily lined.

Case a. The £,'s belong to three different p-edges.

S41 Sq
® (J

\\ n |

£11
f i f

ol #2

°1 1
@®

] :

J \V4 ®
f Ap

* "

Figure 3.2-a.
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Case b. Two £.'s are on the same p-edge.

¢ 51 S1
®

f f f fING JING

/\_ YA
\ X /_ \\,

Py EZ

Figure 3.2-Db.

’ Case c. All the f; 's are on the same p-edge. In this case, the path

in the middle, say PB, , 1s continued to its second intersection with

t fl.
5,5 4 To

"1 °1
° Ne

® / SX/Co» /N\ SN
cl c2

Figure 3.2-c.

Q.E.D.
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Two important remarks:

(1) In Figure 2.3 and 1n those to come, the f;'s are drawn as vertices

of Gs which are not p-vertices. This is not necessarily true,

of course, and the f; 8 might be p-vertices as well. However, 1if

| one or more of the £,'s are p-vertices, everything is easier. Since
it would triple the amount of case analyses involved, we have omitted

| this case.

| (2) In Case c, we have omitted the possibility that £; 1s on the same

| p—edge as t, . If that happens, we first modify G3 3 as shown in

| Figure 3.4 and then compress the subpath of Py between LS and £5
| into one vertex, say fl), (see Figure 3.4). This £5 is the new

| first intersection of the modified Py with the modified Gs 3 :
| It 1s easy to see that all the properties which are relevant to our

discussion (such as disjointness of Py , Fy end Pz ) are preserved

| by this transformation. Moreover, £5 1s closer to the end of Py

then 1, . This implies that these adjustments take place at most

| O(n) times. The same modification 1s applied, 1f necessary, to Py

| and P, as well. The same assumption (that the P's do not hit the
| same p-edge twice without hitting another one 1n between) was also

j made by Watkins and we shall refer to it as the W-assumption.
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' )
\ P.\

P | 1 P | £1 2 £1
2 {Io Ir; 2 ¢ Is 2) \ 2

#

\

‘art

J

\ <_/ 0
Figure 3.4.

R6: One of the following two cases occurs:

(1) t; is also a p-vertex.
+ :

(2) G has a subgraph, Gy 3 homeomorphic to that shown in$4

Figure 3.5.

V, Sq

$3.
4

Figure 3.5.



-

Proof. RO is now assumed. The three p-edges which are incident with 84

will be called black p-edges while the others will be white p-edges. The

technique of proving R6 is very similar to that of Rb. We consider three

disjoint paths QQ , QQ , and % connecting t, with three distinct

p-vertices (no matter which). The first intersection of each Q with

Gs 3 will be denoted by gs , 1 = 1,253 . We now have more cases tob

consider since we have black and white p-edges. The main three cases

correspond to whether the Q's "land" on one, two, or three different

p-edges. The subcases take the color of the p-edges into account.

Figure 3.6 covers all non-symmetric cases, subject to the remarks made

after the proof of Rb.

Case 1l. The Q 's land on three different p-edges.

l-a. Three black ones.

t

lg\h\ |

Figure 3.611-a.
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1-d. All whites.

sy El Sq ty Sy be

OF OG OV[

@ _ ) L ® [J

Figure 3.6/1-d.

Case 2, 81 and &, are on the same p-edge and €z 1s on another one.

Using Q and Q, we can transform Gs = , such that ty lies on a p-edge

and has a connection (disjoint to Gs ) to another p-edge.

2-a. 2] lies on a black -p-edge.
S t

s; ty s; YH 1 1

| ay O-——

E /\_T\ / +
a - 7 533y /

/ \ :® a

connected to a white p-edge. connected to a black one.

Figure 3.6/2-a.
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2-Db. ty lies on a white p-edge,

“1 °1
) .

t N\ t

WAN Day
/ /" \° ® »

and connected to a black one,

1 1
. n

t
1 |

WEN /\\
and connected to a white one.

Figure 3.612-Db.

Case 3. All the g: 's are on the same p-edge. Using the W-assumption,

this case 1s easily reducible to Case 2.
Q.E.D.
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4, Cracking the Nut.

This is the time to use R3. We construct four disjoint paths,

Tyo , 5 Ts , and T), . Connecting 81 , ty , 8, , and t, with four
+

-vertices on or which are different from s nd° 6,5 (oF G5 5) whichar "5 and ty,
+

The main idea 1s to use in order to make two disjoint5,5 (55,3)

connections, one between Ty and , and the other between Ts and Th,
to yield the desired two disjoint paths. The following case is the easiest,

and left to the reader.

Case 1. S4 and ty are p-vertices and they are not connected by a

p-edge.

Case 2. Sq and ty are p-vertices connected by a p-edge.

Figure 4.1 shows the unique way (ignoring symmetry) in which and

TM), can block one vertex of the first pair (in this case, s1 ). However,

Sq is "saved" by 2] connecting 1t to a p-vertex different from itself.

Using the W-assumption, ny cannot now block . or my since it hits

Gs 3 at a vertex which 1s not on one of the three p-edges incident with 81 -J

The two non-symmetric cases are illustrated 1n Figure 4.2. The connections

between Ty and and between TL and Ty, are heavily lined.

14
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So

S 14

ts 1 3 ty

<

gh

Figure 4.1.

®o So
@

°1 il 51 ty
t, P -. t,

Figure 4.2.

Case J. Gs 3 is a subgraph of G .

We proceed in the same way. Four disjoint paths, Tor Ty eo ,

and m are drawn from 84 , ty , S, , and t, , respectively, to fourI

distinct p-vertices, different from v, . (See. Figure 3.5.) Here, we

have to consider additions3 cases. However, we have a series of "inevitable

moves" which limit the cases analysis. The moves are illustrated in

15
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| Figure 4.3. Symmetric cases are ignored.

Figure 4.3.

Tg (or n, ) must land on the

(s15 t,) segment, otherwise we

The starting point. are done.

Vy ty \ Vy ty
T_N\

JEN
\

1 °1

(a) (b)

- The only way for TG and m to block s; (t, is symmetric)
is shown in Figure 4.3(c).

x t“

EN Vx ng! Vx 1AN \ a I J
\

® Rr ~

(c) (a)

The W-assumption does not allow oy to block 5 in his turn.

(See Figure 4.3(d).) However it can still block T), . (Figure 4.3 (e).)

This 1s 1ts only choice, otherwise we are done.
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\ \ ig
\ \ Ly

B Tn Vx ty RAN Ve, TT TSG
\ () N \ (J)

v s. © >

(e) (£)

mM), is still alive, since it has to reach a p-vertex different from v, .

The only way to continue the game one step further, 1s to block t, , as

shown in Figure 4.3(f). Note that we are not allowed to use the

W-assumption,here, since if applied, if would throw Tt; out, and we

would be left with a graph which is not homeomorphic to that we started

1th 1 !with, namely Gs 3

© ee ty has not yet reached a p-vertex. Thus, , can be used to

get 1t out of the trap. However, it can no longer trap or my .

The nut 1s finally cracked.

Remark. The words "otherwise we are done" mean that otherwise we can

find two disjoint connections between Ty and 1, and between 7, and

T, as was done 1n Figure 4.2.
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5. —Complexity.

1 We haven't written the solution as an explicit, long and tedious
algorithm. However, its complexity can be easily evaluated if we follow

the reductions.

| Let linear mean O(n+m) .
Rl is linear. (It involves the linear algorithm [HTl] for decomposing

| a graph into 3-connected components.)

| R2 involves (linear) planarity testing [TH2] and the linear solution for

| the planar case, [Ps].
R5 requires O(nem) time in worst case. We do not attempt to find four

disjoint paths between 81 ty r Sp t, and any other four vertices

of Gs (a hameomorph to Ks , see [W]) 1n case Ge; is a subgraph

of G, or to four p-vertices of Gs 3 in the other case. If we

find such paths -- fine. If not, the size of the graph can be reduced

; by one vertex at least. Finding these four disjoint paths 1s linear
| since at most four augmenting paths are required. (see [ET].)
| Following the (constructive) proof of Kuratowski's theorem, we can find

| a Gi; or a G; 2 in G 1n linear time, provided that G 1is
| non-planar.

R4: If a Gs has been discovered, we follow the lines of [W]. Though

| quite camplicated, Watkins' analysis can be easily implemented in

| linear time. Assume that four disjoint paths between Sq 31 Sp

| ts and four p-vertices of Gs are given. Adjustments of Gs each
| time the W-assumption 1s violated have the property of propagating

| along these paths. This property makes the overall amount of work

| which 1s involved 1n these adjustments to be linear. This 1s true for

| 5,5 00
| R5andR6 are obviously linear, and so is the work involved in cracking the nut.



6. Summary.

(a) Not long ago, many people believed that the two paths problem is

not polynomial. The two commodity O-1 flow problem for undirected graphs,

which is a close relative of it, is NP-complete,([ I2],[EIS]). We have

shown that it is not only polynomial, but "almost" linear. "Almost" means,

of course, that there 1s only one step in the whole algorithm which 1s not

linear. It might be that even this step will be made linear by some

sophisticated techniques.

(b) It should be pointed out that this work relies heavily on previous

results of Itai, Perl, Shiloach and Watkins.

(c) Generalization of this solution to the case of k (> 2) disjoint

paths connecting Si5.e458, with t,,...5%, respectively, seems to be

impossible.

The directed two paths problem also seems to be much more difficult.

However, significant results were recently obtained by S. Even, M. Garey,

and rR. E. Tarjan, [EGT].

(d) The following combinatorially interesting theorem follows from

Watkins' work and the results of this paper.

Theorem. If G 1s an undirected b-connected non-planar graph, then it

has the PZ property.

Corollary. Every 6-connected graph has the PZ property.

Proof. A 6-connected graph cannot be planar.

There are 5-comnnected (planar) graphs that do not have the P2 property,

see [W] and [EGT].
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Appendix.

We present here a general scheme of the proof of the following theorem.

Theorem A. Let G be an undirected graph with n vertices and m edges.

If the TPP (Two Paths Problem) can be solved for any 3%-connected graph G'

'having n'< n vertices and m'< m edges, in time of T , then it can

be solved for G in O(n+m+T) time.

Proof (a general scheme). We present a sequence of polynomial reductions,

reducing the TPP from general into 3-connected graphs. Thus, we prove that

Theorem A is true if O(n+m+T) is replaced by O(p(n,m)+ T) where p(n,m)

is a polynomial in n and m. The proof that p{n,m) is actually n+m

is not given in full. Most of the reductions have an obvious linear

behavior. When linearity is not clear, we support 1t by more detailed

arguments.

The Reductions.

Each of the following reductions assumes that all its predecessors

hold. Most of them cannot be proved without this assumption. We may

assume that:

Al: G 1s 'é&connected.

If not, the problem 1s reduced (in the worst case) to one of G's

2-connected components. Decomposition ofa graph into 2-connected components

is linear. Let ST = {575 t1985:%,} be the set of the four vertices of the

problem.

20



a2: If {u,v} is a separating set of G , then STN{wv}=0 .

Otherwise the problem can be reduced to a proper subgraph of G .

Some case analysis is involved corresponding to what STN {u,v}

really is. It 1s relatively simple (and makes use of Al) and left

for the reader. The linearity of this step 1s not trivial.

Definition. Let S = {u,v} be a separating set of G . G' = (V',E")

is a weak component mod S 1f it 1s a connected component of G-S .

al = (V' US, E' UE") is a strong component mod S . Here E" 1s the

set of edges connecting u or v with vertices of V'.

A: If ¢' = (V',E') is a weak component mod {u,v} then V' Nn ST 7 0 .

Otherwise we could chop G' off and add the edge (u,v) and obtain

an equivalent problem.

Corollary. If {u,v} is a separating set of G then G has at most

four weak (strong) components mod {u,v} .

A4: There is no separating set {u,v} which separates s; and ty from

Sy and Eo otherwise (assuming Al) we have two disjoint paths

connecting = with tq and Sn with ty .

AS: Noset {wv} separates s; and s, from t;, and t, . Assume to

the contrary that such u and v exist. Let GS and Grp be the

strong components mod {u,v} containing S71 155 and 12] yy

respectively. We first construct two disjoint paths Py , Fy

connecting Sq and Sh with ty and ts » (using an O(m+n)

flow algorithm such as [ET]). If Py connects S4 with ty and

Py connects S, with 122 , we are done. So let us assume that

21



Py connects Sq with t, and Py connects S, with t. "

Since {u,v} separates 51 and s, from ty and t, , We may

also assume that Py goes through u and Fy goes through v .

It 1s now easy to see that the original TPP has an affirmative

solution 1ff at least one of the following has.

. | rt I | ro
TPP(S): G' = Gg» 8] = 8p 58, =8,,% =v, th=u

. no_ n 1 1" — .TPP(T): G Coy si =u, sf=v, t] = t,t] t,

Note that Py and FP, induce two pairs of disjoint paths, one in

Ge and'one in Gr between the sources and sinks 1n both reduced problems.

Thus they are constructed only once and can be used in further reductions

of the same type. Theorem A follows now by induction.

If Al throughAS hold and G is not 3-connected, we may assume that

Sq is separated from S, ty , and t, by a separating set {u,v} .

If the strong component mod {u,v} which contains Sy ty , and t,

is 3-connected, then we are done. The original problem 1s reduced into

two smaller problems, restricted to this 3-connected component, by

substituting sg =u and 5, =7V, one at a time. If this component is

not 3-connected, a further decomposition of this component takes place

and the worst case is illustrated in Figure A-1. It involves 16 subproblems

restricted to the central 3-connected component.

3 -connected

component B -

Figure A-1l.
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