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Abstract.

Given an undirected graph G = (V,E) and vertices sl,t t

1% %

the problem is to determine whether or not G admits two vertex disjoint
paths Pl and P, , connecting sy with tl and S, with t2 respectively.
This problem is solved by an O(n.m) algorithm (n = |V|, m = |E|) , An
important by-product of the paper is a theorem that states that if G

is 4-connected and non-planar, then such paths Pl and Pe exist for

any choice of sl ,82 ,tl , and t2 , (as was conjectured by Watkins

in [W]).
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1. Basics,

1. A graph in this paper is undirected, without multiple edges or

self loops (which are irrelevant to the problem).

2. It is assumed that basic graph theory concepts, such as paths,

k-connectivity, planar/complete/bipartite graphs, etc., are familiar to

the reader.

3. Disjoint paths means vertex-disjoint paths (excluding their

end-points), and k-connectivity means vertex k-connectivity,

4, G has the P2 property if for any Sl’tl;SQ’t2 there exist

two disjoint paths connectiving s with tl and Sy with t2 ’

A comprehensive treatment of the combinatorial part of the problem
(i.e., what conditions imply the P2 prperty) and also more general
problems was done by M. Watkins in [W]. Algorithmic partial results were
recently obtained by A. Itai [Il] and by Y. Perl and the author [PS].

Another closely related work is that of A. 8. LaPaugh, [L],



2. Reductions of the Problem.

Rl: We may assume that G is 3-connected.

This reduction relies on a detailed analysis of the problem concerning
graphs which are not 3-connected, which was done in [Il]. Itai shows that
the problem can be solved in O(n+m+ T) time, where T is the time
required to solve the problem for a 3-connected graph G' = (V',E')
such that |V'| < n and lE" < m . A brief outline of this work is

given in the appendix.
R2: We may assume that G is not planar.

This reduction is a result of the work which was done in [PS].

This work solves the problem for 3-connected planar graphs in 0O(n+m)

time.

By Kuratowski's theorem, G contains a homeomorph to either K5
(the complete graph on 5 vertices) or to K}}3 (the complete bipartite

graph with 3 vertices on each side).

R3: We may assume that there are four disjoint paths connecting s t

17 17
So and t2 to any other set of four vertices or less,

Proof. Let S = {sl’tl’ SQ’tE} and let S' be a set of vertices such

that there are no four disjoint paths connecting the vertices of S

and S' , Then, by Menger's theorem, S can be separated from S' by
a cut-set C of three vertices. SNC and S' NC are not necessarily
empty, but G' = GC contains at least one connected component Gl = (V ,El)

such that Vlﬂ s =P and VlﬂS' # § . Let C = {vl’VE’VB} and let



G = (V-v,, E-E U {(vl,ve), (vl,v3), (v2,v5)}) . The following lemma is

very easy to prove.

Lemma 2.1. The TPP with G;Sl’tl’se’tz is equivalent to that with

é;sl,tl, S, and t.. Moreover, a solution to the first can be easily

2
obtained from a solution to the second.

Since |V-Vl| <n, Lemma 2.1 implies that we can reduce the size
of the problem by using only a polynomial time computation (required
to determine C ). If such a reduction is not possible then R3 holds,

Q‘E.D.
R4: G does not contain a homeomorph to K5

This reduction is due to Watkins' work. Watkins shows that if G
contains a homeomorph to K5 and R3 holds, then G has the P2 property.
Moreover, his proof is completely constructive and can be implemented,
step by step, 1in polynomial time. The exact complexity of his proof
will be evaluated in Section 5 where the complexity of the whole

algorithm will Dbe determined.



3. Further Reductions.

So far G is a 3-connected graph, containing a subgraph G

553

homeomorphic to Ké 3 The nine paths of G 5 which consist of the
J . )

edges of Ké 3 will be called p-edges (a short form of pseudo edges)
y PTeUyes

and the six vertices of G
353

will be called p-vertices. In the figures to come, three p-vertices will

which represent the vertices of Kf 3
2

always be drawn as circles while the other three as squares, indicating
the two "sides" of K3:5 . Other vertices of G3’5 will be drawn as
esov.= (see Figure 3.1). The circled p-vertices will be X % and x3
The squared ones —-— AR and y3

1 % X Y1

A WA
B4 v

V3
Figure 3.1.

R5: We may assume that 81 is a p-vertex,

Proof. If S is not a p-vertex, we are going to modify G5 3 and
- J

make it a p-vertex. We construct three disjoint paths Pl , P2 and P3

from s, to %, X, and X5 respectively. We are interested only

in that part of each path from 1 to the vertex in which it hits

G5 3 for the first time. These parts of the vaths will be denoted by
2



! ! ' ‘ ‘ i i for the
Pl s P2 , and P3 and the vertices in which they hit G3’5

first time —-- will be fl ’ f2 , and f3 respectively, All possible

not-symmetric cases are given in Figure 3.2. The cases differ from
. ' The new in
each other by the location of the fi § on G3,3 . G3,5

each case is heavily lined.

Case a. The fi‘s belong to three different p-edges.

51

Figure 3.2-a.



Case b. Two fi’s are on the same p-edge.

Figure 3.2-Db.

Case c. All the f, 's are on the same p-edge. In this case, the path

in the middle, say P is continued to its second intersection with

14
G3,5 at fé .

Figure 3.2-c.

Q.E.D.



Two

(1)

important remarks:

In Figure 2.3 and in those to come, the fi's are drawn as vertices
of G3:5 which are not p-vertices. This is not necessarily true,

of course, and the fi's might be p-vertices as well. However, if
one or more of the fi's are p-vertices, everything is easier. Since
it would triple the amount of case analyses involved, we have omitted

this case.

In Case c, we have omitted the possibility that fé is on the same

p-edge as f2 . If that happens, we first modify G5,5 as shown in

Figure 3.4 and then compress the subpath of P2 between f2 and fé

into one vertex, say f%, (see Figure 3.4). This fg is the new

first intersection of the modified P2 with the modified G3,3 .
It is easy to see that all the properties which are relevant to our
discussion (such as disjointness of Pl ' P2 end P3) are preserved

by this transformation. Moreover, f5 1s closer to the end of P

2 2
then fé . This implies that these adjustments take place at most
O(n) times. The same modification is applied, if necessary, to Pl

and P3 as well. The same assumption (that the Pi's do not hit the

same p-edge twice without hitting another one in between) was also

.made by Watkins and we shall refer to it as the W=assumption



R6:

Figure 3.4.

One of the following two cases occurs:
(1) t, is also a p-vertex.

+ . ,
(2) G has a subgraph, GB 3 2 homeomorphic to that shown in
2

Figure 3.5.

Figure 3.5.



Proof. RS is now assumed. The three p-edges which are incident with 8

will be called black p-edges while the others will be white p-edges. The

technique of proving R6 is very similar to that of R5. We consider three
disjoint paths Q‘l ’ Q’B , and Q5 connecting tl with three distinct
p-vertices (no matter which). The first intersection of each Ql with
%,5 will be denoted by gi , 1 =123 . We now have more cases to
consider since we have black and white p-edges. The main three cases
correspond to whether the Q,l's "land" on one, two, or three different
p-edges. The subcases take the color of the p-edges into account.

Figure 3.6 covers all non-symmetric cases, subject to the remarks made

after the proof of Rb.

Case 1. The Qi's land on three different p-edges.

l1-a. Three Dblack ones.

Figure 3.611-a.
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1-d. All whites.

Figure 3.6/1-d.

Case 2, g, and g, are on the same p-edge and g5 is on another one.

Using Ql and Q2 we can transformGB’3 , such that tl lies on a p-edge

and has a connection (disjoint to G3,3 ) to another p-edge.

2-a. tl lies on a black -p-edge.

connected to a white p-edge. connected to a black one.

Figure 3.6/2-a.
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2-b. tl lies on a white p-edge,

and connected to a black one,

and connected to a white one.

Figure 3.612-b.

Case 3. All the gi‘s are on the same p-edge. Using the W-assumption,

this case is easily reducible to Case 2.
Q.E.D.
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4, Cracking the Nut.

This is the time to use R3. We construct four disjoint paths,
T n2 5 ﬂ3 , and ﬂh . Connecting sl ’ tl ’ s2 , and t2 with four

. + . .
p-vertices on G3 3 (or G3 3 ) which are different from Sy and tl'
2 ) - —

The main idea is to use G3 3 (G3 3) in order to make two disjoint
J )

connections, one between ﬂl and “2 and the other between HB and nh 5

to yield the desired two disjoint paths. The following case is the easiest,

and left to the reader.

Case 1. 81 and tl are p-vertices and they are not connected by a

p-edge.

Case 2. Sy and tl are p-vertices connected by a p-edge.

Figure 4.1 shows the unique way (ignoring symmetry) in which KB and

can block one vertex of the first pair (in this case, s However,

m, 1)

s is "saved" by ] connecting it to a p-vertex different from itself.

Using the W-assumption, ] cannot now block s or m, since it hits

G3 3 at a vertex which is not on one of the three p-edges incident with sy -
)

The two non-symmetric cases are illustrated in Figure 4.2. The connections

between Y and T and between 1% and M, are heavily lined.

14



Figure k4.1.

Figure 4.2.

Case 3. G3 3 is a subgraph of G
- J

We proceed in the same way. Four disjoint paths, T Ty 1% ,

and nh are drawn from Sy tl , 32 , and 'b2 , respectively, to four

distinct p-vertices, different from v, . (See. Figure 3.5.) Here, we

have to consider additions3 cases. However, we have a series of "inevitable

moves" which limit the cases analysis. The moves are illustrated in

15



Figure 4.3. Symmetric cases are ignored.

Figure 4.3.

g (or m, ) must land on the
(sl,tl) segment, otherwise we
The starting point. are done.

* tl ;\ V* t
3 N\
1

S S

4

(a) (b)

- The only way for T and 7 to block s, (t; is symmetric)

is shown in Figure Lk.3(c).

(c) (a)

The W-assumption does not allow Y to block H5 in his turn.
(See Figure 4.3(d).) However it can still block T, (Figure 4.3 (e).)

This is its only choice, otherwise we are done.

16



), is still alive, since it has to reach a p-vertex different from v, .

The only way to continue the game one step further, is to block % as

l 4
shown in Figure 4.3(f). Note that we are not allowed to use the
W-assumption,here, since if applied, if would throw %; out, and we
would be left with a graph which is not homeomorphic to that we started
ith 1 ¥
with, namely G3,5 .
e e tl has not yet reached a p-vertex. Thus, HE can be used to

get it out of the trap. However, it can no longer trap n3 or m,

The nut is finally cracked.

Remark. The words "otherwise we are done" mean that otherwise we can

find two disjoint connections between nl and He and between K3 and

m, as was done in Figure 4.2.

17



5. —Complexity.

We haven't written the solution as an explicit, long and tedious
algorithm. However, its complexity can be easily evaluated if we follow
the reductions.

Let linear mean O (n+m)

Rl is linear. (It involves the linear algorithm [HT1] for decomposing
a graph into 3-connected components.)

R2 involves (linear) planarity testing [TH2] and the linear solution for
the planar case, [PS].

R3 requires o(n.m) time in worst case. We do not attempt to find four
disjoint paths between 81 tl Sy te and any other four vertices
of GS (a hameomorph to KS , see [W]) in case G5 is a subgraph
of G, or to four p-vertices of G3’3 in the other case. If we
find such paths -- fine. If not, the size of the graph can be reduced
by one vertex at least. Finding these four disjoint paths is linear
since at most four augmenting paths are required. (see [ET].)

Following the (constructive) proof of Kuratowski's theorem, we can find
a G5 or a G3’3 in G in linear time, provided that G is
non-planar.

R4: If a G5 has been discovered, we follow the lines of [W]. Though
quite camplicated, Watkins' analysis can be easily implemented in
linear time. Assume that four disjoint paths between 81 4 tl 1 Sy

t2 and four p-vertices of G5 are given. Adjustments of G5 each

time the W-assumption is violated have the property of propagating

along these paths. This property makes the overall amount of work

which is involved in these adjustments to be linear. This is true for

G3,5 too.

R5and R6 are obviously linear, and so is the work involved in cracking the nut.

18




6. Summary.

(a) Not long ago, many people believed that the two paths problem is
not polynomial. The two commodity O-1 flow problem for undirected graphs,
which is a close relative of it, is NP-complete, ([ I12],[EIS]). We have
shown that it is not only polynomial, but "almost" linear. "Almost" means,
of course, that there is only one step in the whole algorithm which is not
linear. It might be that even this step will be made linear by some

sophisticated techniques.

(b) It should be pointed out that this work relies heavily on previous

results of Itai, Perl, Shiloach and Watkins.

(c) Generalization of this solution to the case of k (> 2) disjoint
paths connecting S;;.e.;8, with tiss005t, respectively, seems to be
impossible.

The directed two paths problem also seems to be much more difficult.
However, significant results were recently obtained by S. Even, M. Garey,

and r. ®. Tarjan,[EGT].

(d) The following combinatorially interesting theorem follows from

Watkins' work and the results of this paper.

Theorem. If G is an undirected b-connected non-planar graph, then it

has the P2 property.

Corollary. Every 6-connected graph has the P2 property.

Proof. A 6-connected graph cannot be planar.

There are 5-comnected (planar) graphs that do not have the P2 property,

see [W] and [EGT].
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Appendix.

We present here a general scheme of the proof of the following theorem.

Theorem A. Let G be an undirected graph with n vertices and m edges.
If the TPP (Two Paths Problem) can be solved for any 3-connected graph G'
'having n' < n vertices and m' < m edges, in time of T , then it can

be solved for G in O(ntm+T) time.

Proof (a general scheme). We present a sequence of polynomial reductions,
reducing the TPP from general into 3-comnected graphs. Thus, we prove that
Theorem A is true if O(n+m+T) is replaced by O(p(n,m)+ T) where p(n,m)
is a polynomial in n and m. The proof that p(n,m) is actually n+m
is not given in full. Most of the reductions have an obvious linear
behavior. When linearity is not clear, we support it by more detailed

arguments.

The Reductions.

Each of the following reductions assumes that all its predecessors
hold. Most of them cannot be proved without this assumption. We may

assume that:
Al: G is '&connected.

If not, the problem is reduced (in the worst case) to one of G's

2-connected components. Decomposition of a graph into 2-connected components

is linear. Let ST = {sl, tl’SQ’tE} be the set of the four vertices of the

problem.

20



A2: If {u,v} is a separating set of G , then STN{wv} =0 .
Otherwise the problem can be reduced to a proper subgraph of G .
Some case analysis is involved corresponding to what STN {u,v}
really is. It is relatively simple (and makes use of Al) and left

for the reader. The linearity of this step is not trivial.

Definition. Let S = {u,v} be a separating set of G . G'= (V',E")

is a weak component mod S if it is a connected component of G-S

ol = (V' US, E'UE") is a strong component mod S . Here E" is the

set of edges connecting u or v with vertices of V' .

A3: If G' = (V',E') 1is a weak component mod {u,v} then V' N ST #£ ¢ .
Otherwise we could chop G' off and add the edge (u,v) and obtain

an equivalent problem.

Corollary. If {uv} is a separating set of G then G has at most

four weak (strong) components mod {u,v} .

A4: There is no separating set {u,v} which separates s, and t, from

1 1

So and t2, otherwise (assuming Al) we have two disjoint paths

connecting Sq with tl and s, with t2

A5: Noset {u,v} separates s and s from t. and t2 . Assume to

1 2 1
the contrary that such u and v exist. Let GS and GT be the
strong components mod {u,v} containing 1 15, and tl ,t2
respectively. We first construct two disjoint paths Pl , P2
connecting S1 and S5 with tl and ’c2 s (using an O(m+n)
flow algorithm such as [er]). If Pl connects 51 with tl and
P2 connects S5 with t2 , we are done. So let us assume that

21



Pl connects S1 with t2 and P2 connects s, with tl "

Since {u,v} separates s1 and s from tl and t

o we may

2 14
also assume that Pl goes through u and P2 goes through v
It is now easy to see that the original TPP has an affirmative

solution iff at least one of the following has.

TPP(S): G' = Gg » 8] = Sq » 8 = 85 t o= v, th = u
. LI "o "no_ "o "o_
TPP(T): G GT,sl_u,sz_v,tl_tl,tg_te

Note that IH_ and Ib induce two pairs of disjoint paths, one in
GS and'one in GT between the sources and sinks in both reduced problems.

Thus they are constructed only once and can be used in further reductions

of the same type. Theorem A follows now by induction.

If Al through AS hold and G is not 3-connected, we may assume that
sy is separated from S, tl ,» and ts by a separating set {u,v} .
If the strong component mod ﬁhv} which contains 52 , tl , and t2
is 3-connected, then we are done. The original problem is reduced into
two smaller problems, restricted to this 3-connected component, by
substituting'sl = u and s, =7V, one at a time. If this component 1is
not 3-connected, a further decomposition of this component takes place

and the worst case is illustrated in Figure A-1. It involves 16 subproblems

restricted to the central 3-connected component.

3-connected
component

Figure A-1.
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