Stanford Artificial Intelligence Laboratory
Memo AIM-3 11

Computer Science Department
Report No. STAN-CS-78-652

SIMPLIFICATION BY COOPERATING DECISION PROCEDURES
by
Greg Nelson and Derek C. Oppen

[Stanford Verification Group]

. Research sponsored by

National Science Foundation
and
Hertz Foundation

COMPUTER SCIENCE DEPARTMENT
Stanford University

April 1978

Stanford Artificial Intelligence Laboratory April 1078
Memo AIM-3 11

Computer Science Department
Report No. STAN-CS-78-662

SIMPLIFICATION BY COOPERATING DECISION PROCEDURES
by
Greg Nelson and Derek C. Oppen

[Stanford Verification Group]

We describe a simplifier for use in program manipulation and verification. The simplifier finds a
normal form for any expression over the language consisting of individual variables, the usual
boolean connectives, equality, the conditional function eond (denoting if-then-else), the numerals,
the arithmetic functions and predicates +,- and 1, the LISP constants, functions and predicates
nil, car, cdr, cons and atom, the functions store and select for storing into and selecting from
arrays, and uninterpreted function symbols. Individual variables range over the union of the
reals, the set of arrays, LISP list structure and the booleans true and false.

The simplifier is complete; that is, it simplifies every valid formula to true. Thus it is also a

decision procedure for the quantifier-free theory of reals, arrays and list structure under the

above functions and predicates.

The organization of the simplifier is based on a method for combining decision procedures for
several theories into a single decision procedure for a theory combining the original theories.
More precisely, given a set S of functions and predicates over a fixed domain, a satisfiability
program for S is a program which determines the satisfiability of conjunctions of literals (signed
atomic formulas) whose predicate and function symbols are in S. We give a general procedure
for combining satisfiability programs for sets S and T into a single satisfiability program for S u
T, given certain conditions on S and T.

The simplifier described in this paper is currently used in the Stanford Pascal Verifier.

An earlier version of this paper appeared in the Proceedings of the Fifth ACM Symposium on
Principles of Programming Languages, 1978. This research was supported bythe Advanced
Research Projects Agency of the Department of Defense under Contract MDA%03-76-C-0206, by
the National Science Foundation under contract M CS 76-000327, and by the Fannie and John

Hertz Foundation.

1. Introduction

In this section we give some examples of simplifications. We also specify the syntax and semantics of
the language accepted by our simplifier. In section 2, we give a precise definition of a satisfiability
program for a set S of functions, predicates, and constants. Essentially, such a program determines
the satisfiability of conjunctions of literals (signed atomic formulas) whose predicate and function
symbols are in S. The formal definition specifies the interpretations of the elements of S in such a
way that it makes sense to “merge” satisfiability procedures for two sets S and T into one for S u T.
We give a method for doing this, based on Craig’s interpolation lemma ([Craig 1957]). Section 3
shows how a satisfiability procedure can be used to implement a simplifier for general expressions.

1.1 Examples of the Use of the Simplifier
Here are some examples of simplifications.

2+ 3x%xb;
17,

P>-P;
- P,

X = F(X) 2 F(F(F(X))) = X;
true;

cons(X, Y) =Z> car(2) + edr(Z)- X -Y = 0;
true;

X<sYAY+DsXA3xD22xD>o>V[2xX -Y]=V[X + D}
true;

A = store(store(A, I, A[J), T, A1) > AlIl = A[J];
Crue

The last formula states the theorem that if the Ith and Jth elements of A are swapped, and if
the resulting array equals the original one, then the Ith and Jth elements are equal.

1.2 The Theories Z,/,J’ and &

All of the theories which we consider are formalized in classical first-order logic with equality,
extended to include the three-argument function cond, where cond(p, a, b) means “if p then a else
b". The logical symbols are =, A, v, ~, 3,cond, V and 3. A theory is determined by its non-logical
symbols (that is, its constant, function, and predicate symbols) and its axioms.

The functions, predicates, and constants to which the simplifier currently gives an
interpretation are those of the theory of reals under addition, the theory of list structure with car,
cdr, cons, atom and nil, and the theory of arrays under storing (store) and selecting (select). We
call these theories £, < and A respectively.

Given a quantifier-free expression F, the simplifier tries to find the simplest F* such that
F = F is entailed by the axioms for Z, Aand L. In particular, if F is a formula entailed by the
axioms, the simplifier returns the boolean constant true.

The non-logical symbols of Z are +,-, <,>,%,2 and the numerals. Its axioms are:

X+ 0=x
X+-x=0
(x+y)+z=x+(y+1)
X+y=y+xXx

X S X

yvys<x
YyAYySXDXx=Y
yAy<iox<i
yox+z1sy+1
1

1

O O X X X X
IA A A IA

A X

The numerals 2, 3, . . . and <,>, and 2 are defined in terms of O, 1, t, - and < in the usual
way. We also allow multiplication by integer constants; for instance, 2% x abbreviates x t x.

The integers, rationals and reals are all models for these axioms. Any formula which is
unsatisfiable over the rationals or reals can be shown unsatisfiable as a consequence of these axioms.
Thus our simplifier is complete for the rationals or reals. It is not complete if the variables range
over the integers, since there are unsatisfiable formulas, such as x t x = 5, which cannot be shown
unsatisfiable as a consequence of the above axioms. In this respect, our simplifier does not differ
from most theorem provers. The reason for the incompleteness is that determining the
unsatisfiability of a conjunction of integer linear inequalities -- the integer linear programming
problem -- is much harder in practice than determining the satisfiability of a conjunction of
rational linear inequalities. This incompleteness is not as bad as it seems, since most formulas that
arise in program verification and program manipulation do not depend on subtle properties of the
integers. Further, there are some easily-implemented heuristics (such as converting X <y into
xt 1< y) for integer variables which work well in practice.

The theory of arrays, A, has the non-logical symbols store and select, and the axioms:

select(store(v, i, e), j) = cond(i=j, e, select(v, j))
store(v, i, select(v, 1)) = v

store(store(v, i, e), i, f) =store(v, i, f)

i= jostore(store(v, i, e), j, f) = store(store(v, j, f), i,)

select(v, i) is the ith component of the one-dimensional array v. We may write v[i] for
select(v, i). store(v, i, e) is the vector whose ith component is e and whose jth component, for j = i,
is the jth component of v. Thus, if the program variable A has the value Ay before the assignment
Ali]l« e, then afterwards A will have the value store(Ao, i, €). A two-dimensional array can be
treated as a vector of vectors, so Ali, j) is shorthand for Alil{jl Had the assignment above been
Ali, jl« e, the value of A after the assignment would be store(Ao, i, store(Ao[i], j» €)).

The last three axioms are only needed if equalities between array terms are allowed.

The theory of list structure, o, has the non-logical symbols car, cdr, cons, atom and nil, and
the axioms:

car(cons(x, y)) =X
cdr(cons(x, y)) = y
- atom(x) > cons(car(x), cdr(x)) = x
- atom(cons(x, y))
atom(nil)

Notice that acyclicity is not assumed; for instance, car(x) = x is regarded as satisfiable.

Finally, it is technically convenient to define the theory & whose non-logical symbols are all
uninterpreted function, constant, and predicate symbols and which has no axioms. The theorems of
& follow from the properties of equality; hence its name.

2. Merging Sat isfiability Programs

In this section, we define satisfiability programs. We then show how to “merge” satisfiability
programs for two theories which have no common non-logical symbols.

2.1 Satisfiability Programs

If S is a theory, then a term is an S-rerm if each non-logical symbol occurring in the term is a
non-logical symbol of §. We define S-literal and S-formula analogously. For example, x =y and
X <yt 3 are Z -literals but x < car(y) is not. Notice that a term is an &-term if it contains only
uninterpreted function symbols.

If S is a theory, a satisfiability program for Sisa program which determines whether a
conjunction L 1A oLy of S-literals is satisfiable in .S. A satisfiability program is therefore a
deciston procedure for satisfiability for con junctions of literals.

We use the name of a theory to denote both its satisfiability program and the conjunction of
its axioms; for example, we may say that £ .0 > 1 is unsatisfiable, or that the size of £ is 3.5K.

There are efficient satisfiability programs for Z,L and L. For Z, the simplex algorithm is
very fast in practice ([Nelson 1978]). [Nelson and Oppen 19781 describe satisfiability programs for
L and £ which determine the satisfiability of conjunctions of length n in time O(nz). [Johnson and
Tarjan1977) have improved the underlying algorithm to Ofn log2 n). [Oppen1978] describes a
satisfiability program for of which runs in linear time if list structure is assumed to be acyclic. The
satisfiability problem for conjunctions of _4-literals is NP-complete ([Downey and Sethi1976]).

2.2 Example of the Joint Satisfiability Procedure
We illustrate how &, ol and & together detect the unsatisfiability of the following conjunction F:
X <Y A Y <Xt car(cons(0, X)) a P(F(X)-F(Y)) a -~ P(0)

We call a formula homogeneous if all its non-logical symbols are from the same theory. The
first step we take is to make each atomic formula homogeneous, by introducing new variables to
replace terms of the wrong “type” and adding equalities defining these new variables. For instance,
the second conjunct would be a Z -literal except that it contains the term car(cons(0, X)), which is
not a Z-term. We therefore replace car(cons(0,X)) by a new variable, say G 1, and add to the
conjunction the equality G I = car(cons(0, X)) defining CI. By continuing in this fashion we
eventually obtain a formula F’ which is satisfiable if and only if F is, with each literal of F’
homogeneous. In our example, F’ is

X<sYAY <X +GlAaP(G2) A -P(GH)
2G 1 = car(cons(G5, X)) aG2=G3 - G4
AG3 = F(X) AG4 = F(Y) AG5 =0

We next divide F* up into three conjunctions FE’ Fand FL. FE contains all the &-literals, FZ
all the £ -literals and F, all the oLliterals. Here is F divided up into homogeneous parts:

F . FE F

z L
X<Y P(G2) = true G 1 = car(cons(G3, X))
Y <X + Gl P(GS5) = false
G2=G3-G4 G3 = F(X)
G5 =0 G4 = F(Y)

These three conjunctions are given to the three satisfiability programs Z,&, and L. Since
each conjunction is satisfiable by itself, there must be interaction between the programs for the
unsatisfiability to be detected. The interaction takes a particular, restricted form. We require that
each satisfiability program deduce and propagate to the other satisfiability programs all equalities
between variables entailed by the conjunction it is considering. For example, if X € Yand Y £ X
are asserted to £, it must deduce and propagate to the other satisfiability programs the fact that
X =Y. The other satisfiability programs add X = Y to their conjunctions and the process continues.

In our example, neither FZ nor FE entail any equalities between variables, but F, entails
G1=G5. L propagates this equality. Z uses this equality to deduce and propagate X =Y.& then
propagates G3= G4. Z then propagates G2= G5. Now £ has an inconsistent conjunction, and
signals unsatisfiable. The following shows the literals received by the satisfiability programs, and
the propagated equalities, listed in the order in which they were propagated.

Z L S
X<Y P(G2) = true Gl= car(cons(G5, X))
Y <X +GlI P(G5) = false
G2=G3-G4 G3 = F(X)
G5=0 G4 = F(Y)
Gl =G5

X=Y

G3 =G4
G2=G5

unsatisfiable

If one of the conjunctions FZFE,and F, becomes unsatisfiable as a result of these
propagations, the original conjunction must be unsatisfiable. For Z,&, and L, the converse holds
as well; that is, if the original con junction is unsatisfiable, then one of the conjunctions FZ' FE’ and
FL will become unsatisfiable as a result of propagations of equalities between variables. For some
other theories, such as /4, the converse does not hold. For these theories, a final “case-splitting” step,

described in the next section, is required.

It is important to realize that it is never necessary to propagate disequalities, nor equalities
other than those between variables. For instance, after receiving G 1 = G5, there was no need for z
to propagate that Y < X or that X = Y + G5, even though these were deducible facts. None of the
other satisfiability programs could make use of this information -- none of them knows anything
about < or +. Further, no disequality need be propagated, even though every theory shares =and —.
A disequality x = y is needed to prove inconsistency only if x = y is deduced. If some program
deduces x =Yy, it will propagate this fact to the other programs, and the one that has deduced x =y
will detect the inconsistency.

Notice that the only satisfiability programs that can make use of a propagated equality
between two variables are those whose conjunctions contain occurrences of both variables. For
instance, when of propagated Gl= G5, only Z ever made use of this equality. When equalities are
propagated, the only satisfiability programs that need to receive the equality are those which already
“know” about both variables in the equality.

2.3 Joint Satisfiability Procedure

In this section we present the joint satisfiability procedure illustrated in the previous section. We
assume that we have two theories .S and J with no common non-logical symbols. The case for

more than two theories follows easily.

Given a conjunction F of literals whose non-logical symbols are among those of S and I, the
joint satisfiability procedure determines whether F is satisfiable in the theory axiomatized by
Sad 'FS and FT are program variables containing conjunctions of literals.

1. [Make F homogeneous.1 Assign con junctions to FS and FT by the method described in
section 2.2 so that F. contains a conjunction of S -literals, FT a conjunction of 3-|iterals, and
FSAFT is satisfiable if and only if F is.

2. [&satisfiable?] If either FS or FT are unsatisfiable, return unsatisfiable.

3. [Propagate equalities.1 If either FS or FT entail some equality between variables not
entailed by the other, then add the equality as a new conjunct to the one that does not entail

it. Go to step 2.

4. [Case split necessary?] If either FS or FT entail a disjunction Up=vyv...vu, =v, of
equalities between variables, without entailing any of the equalities alone, then apply the
procedure recursively to the k formulas FgaFyau 1=V FS AFpau =v . If any of
these formulas are satisfiable, return satisfiable. Otherwise return unsatisfiable.

5. Return satisfiable.

If the procedure returns unsatisfiable, it is clear that F is unsatisfiable. We will prove in the
next section that the procedure is also correct if it returns satisfiable. The procedure always halts,
since each repetition of step 3 or recursive call in step 4 conjoins an equality to one of the
con junctions F. or F.r not previously entailed by the conjunction. This can happen at most n -1
times, where n is the number of variables appearing after step 2, since there can be no more than
n -1 non-redundant equalities between n variables.

We have not implemented the joint satisfiability procedure. It is subsumed by the
simplification algorithm described in section 3.

[Kaplan 19681 proves that the quantifier-free theory of arrays with constant indices is
decidable. [Shostak 1978] proves that quantifier-free Presburger arithmetic with uninterpreted
function symbols is decidable. [Suzuki and Jefferson 1977) prove that quantifier-free Presburger
arithmetic with arrays is decidable. The joint satisfiability procedure provides practical decision
procedures for each of these theories.

2.4 Convexity and Case Splitting
In this section, we characterize the theories which require case splitting.

A formula F is non-convex if there exist 2n variables X;,¥,..., X, ¥, 02 2, such that
Fo Xy =y v...vx =y but for no i between I and n does F 2 x. =y, Otherwise, F is convex.

A theory S is convex if every conjunction of S-literals is convex. If the satisfiability
programs merged by the joint satisfiability procedure are satisfiability programs for convex theories,
case splitting never occurs. Case splitting may occur if one or more of the theories are non-convex.

Z is convex, since the solution set of a conjunction of Z-literals is the intersection of a
convex set with a finite number of complements of hyperplanes. Such a set cannot be a subset of a
union of finitely many hyperplanes unless it is a subset of one of them.

£ and L are convex; this follows from the characterization in [Nelson and Oppen 1978) of
the set of equalities entailed by a conjunction of £~ or oL -literals.

A is not convex, as shown by the following example. Suppose that the theories merged by the
joint satisfiability procedure are A and Z, and that after step 1 the two formulas are:

Fp: store(v, i, e)[jl=x avljl=y

Fix>enx>y

Each formula is satisfiable, the whole conjunction is unsatisfiable, but there are no equalities
to propagate in step 3. In step 4, A propagates the disjunction X =e v x = y; each case leads to a
contradiction in Z.

We plan to extend Z to be complete for the integers. It will then no longer be convex, since
for example x = Ay =2 Alszaz £ 2 entails the disjunction x =z vy =z without entailing
either disjunct alone. However, since we need only propagate equalities between variables, not
between variables and constants, literals such as 1 sz < 100 will not cause splits (unless there are
100 variables equal to 1, 2, . . ., 100 respectively!).

The theory of sets, which we intend to add to the simplifier, is another example of a
non-convex theory; for example, x €{y, z} causes the case split X =y v X = Z.

Non-convexity complicates simplification. If a case split occurs for which some, but not all,
cases are satisfiable, a good simplifier must determine which of the cases are satisfiable. To see this,
consider the problem of simplifying x € (4, -6) ax> 0 to x = 4. This conjunction of literals is
satisfiable, as the joint satisfiability procedure determines by doing the case split x =4 v x = -6. The
simplifier must discover that the satisfiable branch of the split is the one in which x = 4.

2.5 Correctness of the Joint Satisfiability Procedure

The proof of correctness requires several lemmas. Our first goal is to define the residue of a
formula. Essentially the residue is the strongest boolean combination of equalities between variables
which the formula entails. For example the residue of the formula x = f(a) Ay = f(b) is
a=b>o>x =1y, and the residue of x SyAy<xisx =Y.

We make the following assumptions about the underlying formal system: (1) Individual
variables are distinguishable from function variables. (2) There is no quantification over functions
or predicates. (3) There are no propositional variables. The third restriction is not essential, but it
simplifies the statement of the proof.

A parameter of a formula is any non-logical atomic symbol which occurs free in the formula.
Thus the parameters of a = b v Vx P(x, f(x)) =c are a, b, P, f, and c.

We define a simple formula to be one whose only parameters are individual variables. For
instance, X #»y vz =1y and VX x = y are simple, but x <y and f(x) = y are not. Thus an unquantified
simple formula is a propositional formula whose atomic formulas are equalities between individual
variables. The next lemma characterizes quantified simple formulas.

Lemma 1: Every quantified simple formula F is equivalent to some unquantified simple
formula G. G can be chosen so that its variables are all free variables of F.

Proof: Suppose F is of the form 3x W(x). Let ¥, be the formula resulting from ¥ by first
replacing any occurrences of X = x and x # X by true and false respectively, and then replacing any
remaining equality involving x by false. Then, if Vipoo.a Yy are the parameters of W, F is
equivalent to W, v¥(v) v... v¥(v), since, in any interpretation, x either equals one of the v, or
else differs from all of them. By repeatedly eliminating quantifiers in this manner, we eventually
obtain an equivalent quantifier-free formula whose only variables are free variables of F.

Any interpretation ¥ for a formula F determines an equivalence relation ~ on the free
variables of F by the rule u ~ v if and only if ¥(u)=¥(v). It follows from lemma 1 that if F is
simple, ~ completely determines whether ¥ satisfies F.

Lemma 2: (Craig’s interpolation lemma) If F entails G, then there exists a formula H such
that F entails H and H entails G, and each parameter of H is a parameter of both F and G.

Proof: see [Craig, 19571.

Lemma 3: If F is any formula, then there exists a simple formula Res(F), the residue of F,
which is the strongest simple formula that F entails; that is, if H is any simple formula entailed by F,
then Res(F) entails H. Res(F) can be written so that its only variables are free variables of F.

Proof: Let {G,} be the set of all simple formulas which F entails. For each G,,choose H, so
that F DHXD G,, the only parameters of H)\ are parameters of both F and Gk’ and H)\ is

unquantified. The existence of H)\ is guaranteed by lemmas I and 2. Now, each H)\ isa
propositional formula whose atomic formulas are equalities between individual parameters of F. It is
easy to show that an infinite conjunction of propositional formulas over a finite set of atomic
formulas is equivalent to some finite propositional formula over these atomic formulas. Therefore
the conjunction of the H)\ is equivalent to some finite subconjunction H. Any simple formula G
entailed by F is entailed by some Hx, and so by H. The only parameters of H are free individual
parameters of F. Thus H is the residue of F.

Here are some examples of residues.

Formula Residue

x =f(a) Ay = f(b) a=box=y

x+y-a-bs>0 ~(x=aAy=b)A-(x=bAy=a)
x = store(v, i, e)lj] i=jox=e

x = store(v, i, e)[jlay =vlj] cond(i =j, x=¢, X =y).

Notice in the last two formulas how the addition of an individual variable as a “label” affects
the residue.

As a final example to relate the notion of residue to that of joint satifiability, here are the
residues of the formulas which appeared in the example of section 2 2

b4 £ of
XsY P(G2) G I = car(cons(G5, X))
Y <X +Gl -~ P(GS)
G2 =G3-~-G4 G3= F(X)
G5=0 G4 = F(Y)
G5=Gl=X=Y A G3=G4=G2=GH
G2« GHAX=Y>G3=04

Gl =G5

As we found in section 2.2, the residues are inconsistent. An essential fact needed for proving
the correctness of the joint satisfiability procedure is that these residues are always inconsistent if the

original formula is. This fact is a consequence of the following lemma.

Lemma 4: If A and B are formulas whose only common parameters are individual variables,
then Res(A A B) =Res(A) A Res(B).

Proof: Obviously the left side of the equivalence entails the right side, so we need only show

the converse.

10

From A aB > Res(A aB) we get A > (B © Res(A aB)) and so, by Craig’s interpolation
lemma, there is a formula H entailed by A which entails B > Res(A aB) and whose only
parameters are parameters of A and B. But these must be individual variables, so H is simple and
therefore Res(A)> (B o Res(A aB)). Writing this as B >(Res(A)>Res(AB)), and observing that
the right hand side is simple, we have Res(B)>(Res(A)> Res(A aB)), or, equivalently,
Res(A)aRes(B) > Res(A aB), which proves the lemma.

Lemma 5: Let Fl, F2, Ce Fn be simple, convex formulas and V be the set of all variables
appearing in any Fi‘ Suppose that for all x, y in V and for all i, j from 1 to n, either both Fi and F.
entail x = y, or neither do. Then FIAFZA. .. AFn is satisfiable if and only if each Fi is satisfiable!

Proof: The “only if” part is obvious. To prove the “if,, part, assume that each F; is satisfiable.
Let S be the set of equalities between variables in V entailed by some (hence all) of the Fi and T be
the set of all other equalities between variables of V. We claim that any interpretation which makes
every equality in S true and every equality in T false satisfies each Fi‘ If it does not satisfy Fi’ then
Fi entails the disjunction of all equalities in T. Now we consider three cases. If T is empty, Fi is
unsatisfiable. If T contains only one equality, it is entailed by Fi and so it is in S. If T contains more
than one equality, F, is non-convex. Each case contradicts our assumptions.

We can now complete the proof of correctness of the joint satisfiability procedure by showing
that if it returns satisfiable, F is satisfiable. To show that F is satisfiable, it suffices to show that
Res(S a FS aJ aF..) is not the constant fake. But by lemma 4, this residue is equivalent to
Res(S AFS)ARe s (AFT). If step 5 of the procedure is reached, each of these residues must be
convex, since step 4 did not cause a case split. Furthermore, the residues entail the same set of
equalities and are each satisfiable, since steps 2 and 3 were passed. By lemma 5, the conjunction of
the residues is satisfiable. Thus F is satisfiable if the algorithm returns from step 5. It follows, by
induction on the depth of recursion, that F is satisfiable whenever step 4 returns satisfiable.

3. Simplification Based on Satisfiability Programs

In section 3. I we describe cond normal form for boolean expressions. In section 3.2 we give a
simplification algorithm for formulas in cond normal form. In section 3.3 we discuss some aspects of
the efficiency of our simplification algorithm, and in section 3.4 discuss some of its deficiencies.

3.1 Cond Normal Form

For convenience we use LISP list notation in this section. That is, the term f(a, b) is denoted (f a b).

Our simplifier first puts expressions into cond normal form. This is similar to the cond normal
form in [McCarthy 1963). An expression is in cond normal form if:

1

(1) The expression does not contain any boolean connectives other than cond. Thus A B is
replaced by the equivalent (cond A B false), and -A by (cond A false true).

(2) No first argument to a cond is a cond. Thus (cond (cond P A B) C D) is replaced by
(cond P (cond A C D) (cond B C D)).

(3) No expression of the form (cond P A B) is the argument to any function other than cond;
thus (F (cond P A B)) is replaced by (cond P (F A) (F B)).

(4) Every boolean subexpression, other than constant subexpressions true and false, is the
first argument to a cond. For instance, a single atomic formula P which is not the first argument to
a cond is replaced by (cond P true false). F(X=Y) is successively replaced by (F (cond (= X Y) true
false)) and (cond (= X Y) (F true) (F false)).

(In practice, the transformation required by (4) is not carried out if the subexpression is a
second or third argument to cond, since this would waste space. If A and B are boolean, the cond
normal form of (cond P A B) is (cond P (cond A true false) (cond B true false)) but we store it
as (cond P A B))

Cond normal form is not a canonical form, since two syntactically different expressions, each
in cond normal form, may be logically equivalent.

An expression in cond normal form corresponds naturally to a binary tree whose nodes are
labelled with atomic formulas. We call this tree the cond tree for the expression. To the expression
(cond P A B) corresponds the tree whose root is labelled with P, whose left son is the tree for the
expression A, and whose right son is the tree for the expression B. The tree for any non-cond
expression E is a node with no sons labelled with E. Thus every node in a cond tree is either an
internal node with two sons and a boolean expression as label, or a leaf node whose label is either
non-boolean or one of the constants true or false.

The maximum number of nodes in the cond tree for an expression of length n is exponential
in n. But, by sharing structure, the tree can be represented as a directed graph; the amount of
storage required is linear in n.

Let N be a node of the cond tree for some expression. Then <Nl N2 - Nk> is the branch to
N if N1 is the root of the tree, Nk' N, and, for each I i<k, Ni+1 is a son of Ni' The context at
N is the conjunction Lya...aL, ,, where each L, is the label of N, if N, , is the left son of N,
and the negation of the label of Ni otherwise.

The context of a node is exactly the condition that must hold for an evaluator to reach the
node during evaluation of the expression. That is, if the conditional expression is regarded as a
program fragment, the context of a node is the strongest “invariant assertion” on the arc leading to
the node. For example, consider the following expression in cond normal form: (cond P (cond QA
B) (cond R C D)). The context of the node for B, that is, P a=Q, is the condition that B would be
evaluated if the whole expression were evaluated.

12

It follows that the disjunctive normal form of a formula is the disjunction of the contexts of
the leaves labelled with true in the cond tree for the formula. Cond normal form is more compact
than traditional disjunctive normal form because, in cond normal form, disjuncts are represented as
branches in a tree (or paths in a directed graph) and thus may share structure.

3.2 The Simplification Algorithm

To simplify an expression, the simplifier traverses its cond tree, maintaining as it does so a
representation of the context of the node it is visiting. When a node is reached with an inconsistent
context, the node and the subtree below it are ignored. Thus the simplifier “prunes” away all
inconsistent branches in the tree. The simplifier also collapses together branches to leaves with
equivalent labels by replacing expressions of the form (cond p x x) by x. If the expression is a valid
formula, every leaf which is reached will be labelled true; all these branches will be collapsed, and

true will be returned. Similarly an unsatisfiable formula simplifies to false.

If the context of a node N is non-convex, the simplifier traverses the subtree rooted at N once

for each branch of the case split.

SIMPLIFY takes two arguments: F, an expression in cond normal form, and CONTEXT, a
conjunction of literals. It returns the simplest F° such that CONTEXT o F = F’. If CONTEXT is
unsatisfiable, it returns the atomic symbol omega. We assume that omega does not appear in F. The
algorithm uses the auxiliary function SIMPATOM; if T is a term, SIMPATOM(T, CONTEXT)
returns the simplest term T’ such that CONTEXT 2T = T .

. SIMPLIFY(F, CONTEXT):

1. If CONTEXT is unsatisfiable, return omega.
2. If F is not of the form (cond P A B), return SIMPATOM(F, CONTEXT).

3. If CONTEXT is not convex, let El V...V Ek be a disjunction of equalities entailed by
CONTEXT no disjunct of which is entailed by CONTEXT.

Set F « (condE, F(condE, F ... (condE, F omega). . .)

4. F is of the form (cond P A B). Set A « SIMPLIFY(A, P ACONTEXT), B «°

SIMPLIFY(B, = P A CONTEXT). If A = omega, return B. If B = omega, return A. If
A = B, return A. Otherwise, let P = SIMPATOM(P, CONTEXT). If A = true and
B = false, return P. Otherwise return the expression (cond P A B).

The proofs of termination, correctness, and completeness of this procedure are straightforward.

13

In the remainder of this section, we describe our implementation of this simplification
algorithm.

The implementation uses a function ASSERT, which conjoins an arbitrary literal to a global
context representing a conjunction of iiterais. The value returned by ASSERT indicates either that
the resulting conjunction is convex and satisfiable, or that the conjunction is unsatisfiable, or that
the conjunction has become non-convex. In the last case, ASSERT also specifies the case split to be
done.

In order to implement ASSERT efficiently, we require that the individual satisfiabiiity
programs have certain properties. An incremental satisfiabiiity program is one which accepts iiterais
one by one and which can determine at any time whether their conjunction is satisfiable. If in
addition it can mark its state, accept more literais, and later return to the marked state by “undoing”
the iiterals asserted after the mark, it is called wetfable. To be used in our simplifier, a satisfiabiiity
program must be resettable and must propagate the equalities and disjunctions of equalities which
are entailed by the conjunction is has received.

More precisely, a satisfiabiiity program for a theory S consists of a global data structure,
CONTEXTS, for representing conjunctions of S-literals, together with the following functions for
manipulating it.

ASSERTS(P) where P is a literal, changes CONTEXTS to represent Q A P, where Q is the
con junction currently represented by CONTEXTS. If Q A P is unsatisfiable, ASSERTS(P) returns
false. Otherwise, if there are any equalities between variables which are entailed by Q A P but not
by Q, then ASSERTS(P) returns the conjunction of ail such equalities. Otherwise, if Q AP is
non-convex, ASSERT ((P) returns a disjunction of equalities between variables entailed by Q A P
no disjunct of which is entailed by Q A P. Otherwise, ASSERTS(P) returns the constant true.

PUSHS() saves the current state of CONTEXTS.

POPS() restores CONTEXTS to the state it was in just before the last call to PUSHS().

SIMPATOMS(F), where F is an S-term or S-literal, returns an expression F’ equivalent to
F in CONTEXT,. F’ is the normal form for F in this context. For example, SIMPATOMZ(x + 0)
returns X and SIMPATOMZ(X— y) returns O if x = y is entailed by CONTEXTS. (SIMPATOMS
will only be called when CONTEXTS is consistent).

Now we are ready to define ASSERT. ASSERT accepts an arbitrary literal, splits it into
homogeneous pieces, and calls the appropriate assertion functions of the individual satisfibiiity
programs. We define it for the case where there are two theories S and J. The case where there

are more than two theories is analogous.

In this program, PS, PT’ QS‘ and QT are variables containing formulas.

4

ASSERT(Q):
1. Divide Qinto homogeneous pieces QS and QT as described in section 2.
2. Set Ps « ASSERTS(QS); Py« ASSERTT(QT).
3. If either PS or PT are fake, return fake.
4. If either PS or PT are disjunctions, return one of these disjunctions.
5. If both PS and PT are true, return true.

6. (One or both of the formulas is a conjunction of equalities. This step propagates the
equalities.) Set each of the variables QS and Q; to be the formula PSAPT, and go to step 2.

ASSERT propagates equalities between the satisfiabiiity programs until one of them
propagates false, or one of them splits (by returning a disjunction), or both of them stabilize.

Notice that a term t in an inhomogeneous literal which has been replaced by a new variable v
in step 1 of some call to ASSERT may in a subsequent call be replaced by another new variable w.
This is ail right, since both t=v and t= w are sent to the same satisfiability program, which will
propagate v = w.

It is not necessary to send ail the equalities to all the satisfiability programs in step 6. As
mentioned in section 2.2, an equality need only be sent to a satisfiability program if both variables
in the equality are parameters of the conjunction represented in the program.

There is one feature of our the simplification algorithm described above which makes it
unsuitable for implementation. If CONTEXT is represented by CONTEXT,a.nd CONTEXTT,
then the tests in steps 1 and 3 require a case split if either CONTEXTS or CONTEXT,. is,
non-convex. If two or more of the cases are satisfiable, the simplifier will repeat the case split. A
better approach is to return omega from step 1 if CONTEXTS or CONTEXTT is unsatisfiable,
and to split in step 3 if CONTEXT,or CONTEXT,. is non-convex. Using this approach, the tests
can be made without a case split, since a case split is not necessary to determine if an individual
context is unsatisfiable or non-convex. ASSERT avoids redundant case splits by returning
immediately if one of the satisfiabiiity programs splits, without checking if any of the branches of
the case split is satisfiable.

In addition to ASSERT, the second simplification algorithm uses the functions PUSH, POP,
and SIMPATOM. PUSH and POP simply call the push and pop functions .for each of the
satisfiabiiity programs. SIMPATOM takes an arbitrary term or literal and simplifies it using the
information in CONTEXTS and CONTEXT, by calling the appropriate SIMPATOM functions.
A record is kept of the individual variables generated as labels for terms in step 1, so that
SIMPATOM can put the iiterais back together, replacing generated labels by the terms they
represent. We omit the details.

15

The following simplification algorithm is a refinement of the one given above.
SIMPLIFY(F):

1. If F is not of the form (cond P A B), return SIMPATOM(F).

2. F is of the form (cond P A B). Call PUSH(). Set Q « ASSERT(P).

If Q = false, then POP() and return SIMPLIFY(B).

If Q= true then set A « SIMPLIFY(A), POP() and go to step 3.

Otherwise, Qis a disjunction El v . . . v E,.

Set A « SIMPLIFY((cond El A...(cond E, A omega). . .)), POP() and go to step 3.

3. Call PUSHY(). Set Q « ASSERT{-P).

If Q = false, then POP() and return A.

If Q = true then set B « SIMPLIFY(B), POP() and go to step 4.

Otherwise, Qis a disjunction El v . . . v Ek‘

Set B « SIMPLIFY((cond El B...(cond E, B omega). . .)), POP() and go to step 4.

4. If A = omega, return B. If B = omega, return A. If A = B, return A. Otherwise, let

‘P = SIMPATOM(P). If A =true and B = false, return P. Otherwise return the expression
(cond P A B).

We sketch the proof of the completeness of the algorithm. Whenever CONTE X T, or
CON'TEXTT are non-convex, SIMPLIFY calls itself recursively on some cond expression. Thus
whenever its argument is not a cond expression, CONTEXT,and CONTEXTT are convex. By
the definition of ASSERT, CONTEXT,and CONTEXT; entail the same set of equalities when
ASSERT returns. It follows from lemma 5 that if CONTEXT,and CONTEXTT are convex,
satisfiable, and entail the same set of equalities, then their conjunction is satisfiable. Therefore
whenever SIMPLIFY returns from step I, the context is consistent. If F is valid, every leaf of its
cond tree with a consistent context is iabeiied with true, so every term returned in step 1 is true. It
follows by induction that A and B are always true, and therefore that the algorithm is complete.

16

3.4 Comparison with DNF-style Theorem Proving

We do not know how to give an adequate analysis of our simplifier. Its behaviour in practice is
much better than its worst case behaviour. Instead, we will compare our approach, using cond
normal form, with an obvious alternative approach, using disjunctive normal form, which we call a
DNF-style approach. The DNF-style approach is not suited to arbitrary simplification, but only to
proving the validity of formulas.

Let F be a formula represented as a cond tree with n internal nodes. The most obvious
algorithm to determine if F is provable is to put its negation into disjunctive normal form and test
each disjunct for unsatisfiabiiity. This corresponds to testing that the context of each leaf iabeiied
with false is unsatisfiable. The standard DNF-style approach builds up the context for each leaf
from scratch, that is, from the root of the cond tree. The number of calls to ASSERT equals the
sum, taken over ail leaf nodes iabeiied with false, of the length of the branch to the leaf. This sum
varies from O(n) to O(nz), and has an average value of O(nl's), if one considers all binary trees
with n internal nodes and ail external node iabeiiings with true or false to be equally likely. There
are no calls to PUSH or POP. A non-resettable satisfiabiiity program can be used.

Our algorithm makes n calls to PUSH, n calls to POP, and 2n calls to ASSERT. Therefore,
DNF-style algorithms minimize (to zero) the number of calls to PUSH and POP, while our
algorithm minimizes the number of calls to ASSERT. To determine which method is better, we
would need to know the expected number of calls to ASSERT which each algorithm makes on
realistic input distributions and the relative costs of resettable satisfiability programs and

non-resettable ones.

The formulas which arise in the Stanford Verifier are often implications between ,
conjunctions of iiterais. (Formulas with this structure arise in program verification whenever the
invariant assertion on a simple loop is a conjunction of iiterais.) If there are n conjuncts in the
antecedent of such a formula and m conjuncts in the consequent, then the disjunctive normal form
of the negation of the formula has length m(n + 1), while the cond tree has only m + n internal
nodes. A DNF-style algorithm can therefore make as many as m(n+1) calls to ASSERT, while our
algorithm can make at most m + n calls to ASSERT, PUSH and POP.

3.5 Finding the Simplest Form

In this section, we note some problems with our simplifier. The problems do not arise when our
simplifier is used as a theorem prover, but only when it is being used to simplify expressions which
do not simplify to an atomic symbol such as true. These problems arise in the design of any
simplification algorithm.

First, a problem common to ail normal forms is that they may lose some of the structure of the
original expression. It is hard to recover this structure if the expression does not significantly
simplify. For instance, using cond normal form, the formula (A v B v C) a(D v E v F) is

“simplified” to

17

(cond A (cond E true (cond D true F))
(cond B (cond E true (cond D true F))
(cond C (cond E true (cond D true F))
false)))

and (cond E true (cond D true F)) is duplicated in three places. Our simplifier converts this
formula back to a formula involving the usual boolean connectives, but the present version of the
simplifier does not find the original, simplest form of the expression.

A nother problem occurs when simplifying conjunctions like x SyAy<xAx=y. The
simplifier discovers that the last equality is redundant and simplifies the conjunction to
X £y Ay< x instead of to x = y. (Had the equality appeared first, both inequalities would have
been removed as redundant.) Handling this problem requires extending the set of primitives for
manipulating contexts. For example, if a call to ASSERT made earlier conjuncts in the context
redundant, this might be detected and exploited.

A significant problem concerns implementing the test A = B in step 4 of our simplification
algorithm. This is intended to collapse branches of the cond tree which lead to identical results. If A
or B are atomic symbols, there is no problem. If they contain conds, testing for logical equivalence is
possible but probably impractical. If they contain no conds, then testing them for equality (using the
lisp EQUAL) will usually be sufficient, if SIMPATOM puts expressions into a canonical form.
There is, however, a difficulty: consider (cond (= X 1) (F I) (F X)), which we would like to simplify
to (F X). Our SIMPATOM chooses (F 1),not (F X), as the canonical form when X = 1 is known, so
instep4 Ais (F 1) and B is (F X). A completely adequate test for collapsing the two branches
would require testing whether Q A P entailed A = B, in which case B should be returned, otherwise
whether Q A -P entailed A = B, in which case A should be returned. (Qis the context of F, which
is of the form (cond P A B).) Again the overhead may be prohibitive. This problem actually arises
frequently and is more troublesome in practice than any of the other problems we have mentioned
in this section.

4. Notes

The language accepted by the simplifier is richer than that described in section 1. Ail predicates
(including =) and boolean connectives are considered boolean-valued functions (that is, functions
which evaluate to the booieans true and false). Terms are allowed to contain arbitrary
boolean-valued expressions. Expressions are allowed as functions. The following simplifications
illustrate this generality.

F(true) o F(X v~X);
true;

cond(true, F, GXX)
F(X);

18

e

Our simplifier does not enforce strict typing. For instance, cons(X, Y) + store(V, I, E) is an
acceptable expression (that the simplifier will simplify to itself). We plan to add type predicates (or
type constants and a type function) to the next version of our simplifier.

The simpiifer does not store conjunctions of atomic formulas as strings or LISP s-expressions,
but instead in a graph with one vertex for each term and subterm in the conjunction. Another data
structure is used to represent an equivalence relation on the vertices. Two vertices are equivalent if
the terms they represent are known to be equal in this context. To propagate an equality, a
satisfiabiiity procedure merges two equivalence classes; this can be done very efficiently. More details
of this representation are given in [Nelson and Oppen 19781.

Using this representation, it is not necessary to generate “labels” for terms which appear in
in homogeneous iiterais.

This representation also allows the implementation of other routines in our simplifier to be
more efficient, such as PUSH and POP. Obviously, one way to implement PUSH would be to have
it make a physical copy of the existing context; this is not very satisfactory. The approach we take is
to keep a history of all changes we make to our global data structure; popping then involves undoing
these changes until we reach the context of the last call to PUSH.

Our simplifier is not a general purpose theorem prover; it cannot prove quantified theorems
of the predicate calculus. However, in the Stanford Verifier, it is used in conjunction with a
program called the rule handler which accepts user-supplied lemmas. During a simplification, the
rule handier instantiates the free variables of the lemmas and sends the instantiated lemmas to the
simplifier. In our system, the rule handier stands in the same relation to the simplifier as the
satisfiabiiity programs. The rule handier can be viewed as a satisfiability program driven by
user-supplied axioms.

Acknowledgment
We thank the Stanford Verification group for their patience in waiting two years for this simplifier.

References

[Craig 1957) W. Craig, “Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory
and Proof Theory”, Journal of Symbolic Logic, volume 22.

[Downey and Sethi1976] P. Downey and R. Sethi, “Assignment Commands and Array Structures”,
manuscript.

[Johnson and Tarjan 19771 D. S. Johnson and R. E. Tarjan, “Finding Equivalent Expressions”,
manuscript.

19

[Kaplan 1968] D. M. Kaplan, “Some Completeness Results in the Mathematical Theory of
Computation”, Journal of the ACM, volume 15.

[McCarthy 19631 J. McCarthy, “A Basis for a Mathematical Theory of Computation”, in Computing
Programming and Formal Systems, edited by P. Braffort and D. Hirshberg, North-Holland.

[Nelson 1978) C. G. Nelson, “The Simplex Algorithm in Mechanical Theorem Proving”, in
preparation.

[Nelson and Oppen 1978] C. G. Nelson and D. C. Oppen, “Fast Decision Algorithms based on
Congruence Closure’”, AI Memo AIM309, CS Report No. STAN-CS-77-646, Stanford University.
(An earlier version appeared in the Proceedings of the 18th Annual IEEE Symposium on
Foundations of Computer Science, October 1977.)

[Oppen 1978] D. C. Oppen, “Reasoning about Recursively Defined Data Structures”, Proceedings of
the Fifth ACM Symposium on Principles of Programming Languages, January 1978.

[Shostak 1978] R. Shostak, “An Efficient Decision Procedure for Arithmetic with Function Symbols”,
to appear JACM.

[Suzuki and Jefferson 1977] N. Suzuki and D. Jefferson, “Verification Decidability of Presburger
Array Programs,” Proceedings of a Conference on Theoretical Computer Science, University of
Waterloo, A ugust 1977.

20

