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ABSTRACT

A common tool for proving the termination of programs is the well-founded set, a set
ordered in such a way as to admit no infinite descending sequences. The basic approach
is to find a termination function that maps the elements of the program into some well-
founded set, such that the value of the termination function is continually reduced
throughout the computation. All too often, the termination functions required are difficult
to find and are of a complexity out of proportion to the program under consideration.
However, by providing more sophisticated well-founded sets, the corresponding
termination functions can be simplified.

Given a well-founded set S , we consider multisets over S , "sets" that admit multiple
occurrences of elements taken from S . We define an ordering on all finite multisets over
S that is induced by the given ordering on S . This multiset ordering is shown to be well-
founded.

The value of the multiset ordering is that it permits the use of relatively simple and
intuitive termination functions in otherwise difficult termination proofs. In particular, we
apply the muitiset ordering to provide simple proofs of the termination of production
systems, programs defined in terms of sets of rewriting rules.

The authors are also dffiliated with the Department of Applied Mathematics of the Weizmann
institute of Science, Rehovot,Israel.

This research was supported in partby the United States Air Force Office of Scientific Research
under Grant AFOS R-76-2909 (sponsored by the Rome Air Development Center, Griffiss AFB,

NY), by the National Science Foundation under Grant MCS 76-836%5, and by the Advanced
Research Projects Agency of the Department of Defense under Contract MDA 903-76-C-0206.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of
Stanf ord Universityor theU . S . Government.

Reproduced in the U.S. A. Available from the National Technical Inf ormation Service,
Springfield, Virginia 22 16 I






Proving termination with multiset orderings

I. INTRODUCTION

The use of well-founded sets for proving that programs terminate has been suggested
by Floyd [1967]. A well-founded set (S,>) consists of a set of elements S and an
ordering > defined on the elements, such that there can be no infinite decreasing
sequences of elements. The idea is to find a well-founded set and a termination function
that maps the elements of the program into that set, such that the value of the termination
function is continually reduced throughout the computation. Since, by the nature of the
set, that value cannot decrease indefinitely, the program must terminate. The
well-founded sets most frequently used for this purpose are the natural numbers under the
"greater-than" ordering and n-tuples of natural numbers under the lexicographic ordering,

In this paper, we define and illustrate a class of orderings on multisets. Multisets,
sometimes called bags, are like sets, but allow multiple occurrences of identical elements.
For example, (3, 3, 3, 4, 0, 0} is a multiset of natural numbers; it is identical to the
multiset {0, 3, 3, 0, 4, 3) , but is distinct from (3, 4, 0} .

The ordering > on any given well-founded set S can be extended to form a
well-founded ordering » on the finite multisets over S . In this ordering, M¥»M’ | for two
finite multisets M and M’ over S , if M’ may be obtained from M by the removal of
at least one element from M and/or by the replacement of one or more elements in M
with any finite number of elements taken from S , each of which is smaller than one of the
replaced elements. Thus, if S is the set of natural numbers 0, 1, 2, . . . with the >
ordering, then under the corresponding multiset ordering » over S , the multiset
{ 38 3 4 0) is greater than each of the three multisets {3, 4} ,
(3,2 2,1, 1, 1, 4, 0},and {3 3, 3,3, 2, 2). In the first case, two elements have '
been removed; in the second case, an occurrence of 3 has been replaced by two
occurrences of 2 and three occurrences of I; and in the third case, the element 4 has
been replaced by two occurrences each of 3 and 2 , and in addition the element 0 has
been removed.

As an example of the use of a multiset ordering for a proof of termination, consider the
following trivial program to empty a shunting yard of all trains:

loop until the shunting yard is empty
select a train
if the train consists of only a single car
then remove it from the yard
else split it into two shorter trains
fi
repeat .
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This program is nondeterministic, as it does not Indicate which train is to be selected nor
how the train is to be split.

Let ¥ denote the set of trains in the yard, and trains(¥) be the number of trains in
the yard. For any train t€Y , let cars(t) be the number of cars it contains. We present
two proofs of termination.

If we take the set of natural numbers as our well-founded set, then we are led to the
selection of the termination function

7(Y) = 2 té;)’ cars(t) - trains(Y)

(see Dijkstra [1976]). This solution uses the fact that “splitting” conserves the number
of cars in the yard, Z cars(t) . Thus, splitting a train increases the number of trains in the
yard, trains(Y) , by 1, thereby decreasing the current value of the termination function
T by 1. Removing a one-car train from the yard reduces 2:Z cars(t) by 2 and
increases -trains(Y) by 1, thereby decreasing T by 1.

If we use multisets of natural numbers as our well-founded set, then the function
7(Y) = {cars(t) : teY}

demonstrates the termination of the shunting program. That is, for any configuration of the
yard Y  T(Y) denotes the muitiset containing the size of each of the trains in Y . Each
iteration of the program loop clearly decreases the value of T(Y) under the multiset
ordering: removing a train from the yard reduces the multiset by removing one element;
splitting a train replaces one element with two smaller ones, corresponding to the two
shorter trains.

Programs are sometimes written in the form of a production system. The following system
of three rewrite rules is an example:

white, red = red, white
blue, red = red, blue
blue, white =  white, blue .

This program solves the “Dutch-flag” problem: Assuming that we have a series of marbles,
colored red , white or blue and placed side by side in no particular order, then the above
program will rearrange the marbles so that all the red marbles are on the left, all blue
marbles are on the right, and all white marbles are in the middle. The first rule, for
example, states that if anywhere in the series there is an adjacent pair of marbles, the
left one white and the right one red , then they should be exchanged so that the red
marble is on the left and the white one is on the right.
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The three rules may be applied in any order and to any pair of marbles matching a
left-hand side of a rule. The program terminates when no rule can be applied. Clearly, if
no rule can be applied, the marbles are in the desired order, since nowhere does a red
marble have anything but a red marble to its immediate left (or else one of the first two
rules could be applied), and nowhere does a blue marble have anything but a blue marble
to its right (or else one of the last two rules could be applied). The only thing we need to
ascertain is that the program will not just keep on running, never reaching a situation when
no rule can be applied; in other words, we must prove that the above production system
terminates.,

There are several ways of proving termination. The three we give here all use the
following ordering on colors:
blue is greater than white and white is greater than red .
It follows from the transitivity of orderings that blue is also greater than red .

The first method counts the total number of “inversions” of marbles, i.e. the number of
pairs of marbles a and b (not necessarily adjacent), such that a appears to the left of
b and the color of ais greater than the color of b . For example, if five marbles are
arranged blue, red, white, red, blue , then there are four inversions: blue-red , blue-white ,
blue-red , and white-red . Thus, the well-founded set is the set of natural numbers under
their standard > ordering, and the termination function counts the number of inversions by
summing, for each marble, the number of marbles with a greater color to its left. Each of
the rules, when applied, eliminates one inversion by exchanging the positions of one
inverted pair, thereby reducing the value of the termination function by one.

For the second method, suppose that therearén marbles. The well-founded set we
use is the set of n-tuples of colors. This tuple is ordered lexicographical/y: it is reduced if
some component is reduced without changing any component to its left. The termination
function simply yields the tuple containing the colors of the marbles in order, from left to
right. To prove termination, we note that whenever one of the rules is applied to two
marbles, only the values of the two corresponding components of the tuple change. By the
nature of the lexicographic ordering, we need only consider the change in the left
component, and indeed it is reduced in its color: if it was blue , then now it is either white
or red , and if it was white , then now it is red .

The third solution illustrates the use of multiset orderings. Each of the n positions in
the series is assigned a number, beginning with n-1 at the left, and going down to O for
the rightmost position. We take the multisets of pairs of the form (position, coor)as the
well-founded set. The position-color pairs are ordered lexicographically: we say that a
pair is greater than another, if it has a higher position number than the other, or if it has
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the same position number but a greater color. For each marble, the termination function
yields one pair, giving its position and color. When a rule is applied to the marbles at
positions iand i-1, it decreases the value of the multiset by decreasing the color of the
marble at position i. The fact that the color at position i-l is increased does not matter,
since any pair with position iis lexicographically greater than any pair with position i-l ,
regardless of the colors.

These two examples have demonstrated how the muitiset ordering may be used in
termination proofs. These proofs, however, did not have a clear advantage over the
alternative proofs, using the more common “greater-than” relation on the natural numbers
and lexicographic ordering on n-tuples. In practice using these conventional orderings
often leads to complex termination functions that are difficult to discover. For example,
the termination proofs of programs involving stacks and production systems are often quite
complicated and require much more subtle orderings and termination functions. Finding an
appropriate ordering and termination function for such programs is a well-known challenge
among researchers in the field of program verification. In the remainder of this paper, we
shall demonstrate how the multiset ordering permits the use of relatively simple and
intuitive termination functions in otherwise difficult termination proofs.

In the next section, Section ll, we rigorously define the multiset ordering and prove that
it is well-founded. In Section 1ll, we apply the multiset ordering to a number of termination
proofs of programs. Then, in Section 1V, we use the multiset ordering to prove the
termination of production systems.
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II. THE MULTISET ORDERING

A partially-ordered set (S, *») consists of a set S and a transitive and irreflexive
binary relation » on elements of S . For example, both the set Z of all integers and the
set N of nonnegative integers are ordered by the "greater-than" relation > . The
ordering may be partial: for two distinct elements @ and b of the set, we may have
neither a>b nor bra .

A partially-ordered set is said to be well-founded if there can be no infinite decreasing
sequences of elements from the set. Thus, the set (N,>) is well-founded, since any
descending sequence of natural numbers cannot go beyond 0 . On the other hand, the
partially-ordered set (Z,>) is not well-founded.

For a given partially-ordered set (S, »), we consider the multisets over S | ie.
unordered collections of elements ("sets") that may have multiple occurrences of identical
elements. We denote by %/(S) the set of all finite multisets with elements taken from the
set S , and associate an ordering » on ¥W(S) that is induced by the given ordering >
on S .

In the following definition, as well as in the rest of this paper, set operators will denote
their multiset analogues: The equality A=B of two multisets, for example, means that any
element occurring exactly n times in A , also occurs exactly n times in B, and vice
versa. The union of two multisets AUB is a multiset containing m+n occurrences of any
element occurring m times in A and n times in B. For example, the union of the
multisets {2, 2, 4) and (2, 0, O}is (2, 2, 4, 2, 0, 0}.

For a partially-ordered set (S, »), the multiset ordering » on W(S) is defined a s
follows:
M > M
if for some multisets X, Y, Zin #¥(S) , where X is not empty,
M = XUZ and M’ = YUZ
and
(VyeY )(AxeX) x>y

In words, a multiset is reduced by the removal of at least one element (those in X ) and
their replacement with any finite number — possibly zero — of elements (those in Y ), each
of which is smaller than one of the elements that have been removed.
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We must first show that » is in fact a partial ordering, i.e. that If > is irreflexive and
transitive, then » also is:
e To show irreflexivity, we must show that there can be no multiset M such that
M»M . Suppose that M>M , then there would be some nonempty finite multiset X ,
such that M=XUZ and (VyeX)(IxeX)x>y . In other words, for every element of X there
would be a distinct element of X greater than it, which is impossible for a finite X .
e To show transitivity of » , consider the following irreflexive relation »’ on multisets in
WI(S) 1 ZU{x}»'ZUY i f (VyeY)x>y . In other words, a finite multiset is reduced in the
relation »’ by replacing a single element with zero or more smaller elements. Note that
the multiset ordering » is the transitive closure of the relation »’ , i.e. M»M' if and
only if M' can be obtained from M by replacing elements in M one by one. It follows
that » is transitive.

We have the

THEOREM: The multiset ordering (W(S),») over (S, ») is well-founded, if and
only if (S, ») is.

Proof:

e “only if" part. If (S, ») is not well-founded, then there exists an infinite decreasing
sequence s,>s.»s,> ... of elements in §. The corresponding sequence of singletons
{s > {s.}»{s}» ... forms an infinite decreasing sequence of elements in #(S) , and

(MI(S), ») is therefore not well-founded.

® "if" part. Assume that (S, >) is well-founded. We first extend S by adding to it an
element 1L , and extend the ordering > on S to make L the least element, i.e. for every
element s#=1in S, s>L . Clearly S remains well-founded, thereby. Now, suppose that
(Mi(S),») is not well-founded; therefore, there exists an infinite decreasing sequence
M>M»M»> .. of multisets from W(S) . We derive a contradiction by constructing
the following tree. Each node in the tree is labelled with some element of S ; at each
stage of the construction, the set of all terminal nodes in the tree forms a multiset in

H(s) .

Begin with a root node with children corresponding to each element of M, .
Then since M »>M_ there must exist multisets X, Y, Z , such that
M =XUZ, M=YUZ , X is not empty, and (VyeY)(IxeX)x>y . Then for each
yeY | add a son labelledy to the corresponding x . In addition, grow a child
1 from each of the elements of X . (Since X is nonempty, growing 1

ensures that even if Y is empty, at least one node is added to the tree.
Since Y is finite, the nodes corresponding to X each have a finite number

of sons.) Repeat the process for M »M, , M. >M, , and so on.
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Since at least one node is added to the tree for each multiset M, in the sequence, were

the sequence infinite, the tree corresponding to the sequence would also be. But by
Konig's Infinity Lemma, an infinite tree (with a finite number of children for each node) must
have an infinite path. On the other hand, by our construction, all paths in the tree are
descending in the well-founded ordering > on §, and must be finite. Thus, we have
derived a contradiction, implying that the sequence M ,M,M, ... cannot be infinite.

cl

Remark: If (S, ») is totally ordered, then for any two multisets M, M’ e #I(S) , one may
decide whether M»M’ by first sorting the elements of both M and M’ In descending
order (with respect to the relation » ) and then comparing the two sorted sequences

lexicographically. For example, to compare the multisets (8, 3, 4, 0} and
(8, 2, 1, 2,0, 4), one may compare the sorted sequences (4, 3, 3, 0) and
(4, 3, 2,2, 1, 0). Since (4, 3, 3, 0) is lexicographically ~ greater  than
4, 3,2, 2, 1,0), itfollowsthat (3, 3, 4, 0}»{3, 2, 1, 2, 0, 4) . a

Remark: 1f (S, >) is of order type a, then the multiset ordering (W(S),») over (S, >) is
of ordertype w” . This follows from the fact that there exists a mapping ¥ from M(S)
onto w” that is one-to-one and order-preserving, i.e. if M>M' for M, M’eli(S) , then
the ordinal Y(M) is greater than ¥(M’) . That mapping is
$(m)
M) = w ,
vM) me%

where 2 denotes the natural (i.e. commutative) sum of ordinals, and ¢ is the
one-to-one order-preserving map from S onto «. O

Remark: Consider the special case where there is a bound k on the number of
replacement elements, i.e. |V{<k. Any termination proof using this bounded multiset ordering

over N may be translated into a proof using (N,>) . This may be done using the
order-preserving function

von = 5, ¥

which maps multisets over the natural numbers into the natural numbers by summing the

n
number k  for every natural number n in a multisetM . Two special cases of interest
are: if |V |g|X] (i.e. the size of the multiset is not increased), then the simpler function

VM) = 3 n o+ M|

is order-preserving; if |V |=|X| (i.e. the size of the muitiset is constant), then
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VM) = nezﬂ‘/l "

is order-preserving. O

We turn’ now to consider nested multisets, by which we mean that the elements of the
multisets may belong to some base set S , or may be multisets of elements of S , or may
be multisets containing both elements of S and multisets of elements of S , and so on,
For example,

{{1, 1}, {{0}, 1, 2}, 0}

is a nested multiset. More formally, given a partially-ordered set (S, »), a nested multiset
over S is either an element of S , or else it is a finite multiset of nested multisets over

S . We denote by #*(S) the set of nested multisets over S .

We define now a nested multiset ordering »* on W*(S) ; it is a recursive version of the

standard multiset ordering. For two elements M, M’eW*(S) , we say that
M>*M’

if
® M, MeSandM>M
(two elements of the base set are compared using >),
or- else
® M¢Sand M'eS

(any multiset is greater than any element of the base set),
or else

® M, M'¢S , and for some X, Y, ZeM*(S) , where X is not empty,
M = XUZ and M’ = YUZ

and

(VyeY )(IxeX) xp¥y .

For example, the nested multiset

({1, 1}, ({0}, 1, 2}, 0}

is greater than

{{1,0,0} 5 {{0} 1,2} 0},
since { 1,1} is greater than both {1, 0, 0) and 5 . The nested muitiset

({1, 13, {{0}, 1, 2}, 0}

is also areater than
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{({{3. 1. 2}, {5, 5 2}, 5} ,

since {{0}, 1, 2) Is greater than each of the three elements {{}, 1, 2}, {5,5, 2},
and 5.

Let 7}71(3) denote the set of all nested multisets of depth i . In other words,
i+ 1
NIO(S)=S and #'*'(5) contains the multisets whose elements are taken from mO(S)

I

H?](S), ﬂlt(S) , with at least one element taken from ml(S) . Thus, the set W*(S)

0 1
is the infinite union of the disjoint sets M (5), ¥ (S)."72(S). . . . . The following
property holds:

For two nested multisets, M and M’ , if the depth of M is greater than the
depth of M’ , then M»*M' .

12
In other words, the elements of W (S) are all greater than the elements of 7)7‘1(8) , forany
i<i .

Proof: This property may be proved by induction on depth. It holds vacuously for M of
depth 0 . For the inductive step, assume that nested multisets of depth i are greater
than nested multisets of depth less than i ; we must show that a nested multiset M of
depth it 1 is greater than any nested multiset M’ of lesser depth. If the depth of M '

is 0 , then M’eS while M¢S , and therefore M»*M’  as desired, If the depth of M’ is
less than i but greater than 0 , then each of the elements in M’ is of depth less than
i-I . The nested multiset M , on the other hand, is of depth i+1 and must therefore
contain some element of depth i. By the inductive hypothesis, that element is greater

than each of the elements in M’ . Again, it follows that M»*M’ . cl

The relation »* is a partial ordering; it can be shown to be both irreflexive and
transitive. The following theorem gives the condition under which it is well-founded:

THEOREM: The nested multiset ordering (W*(S), »*)  over (S, ») s
well-founded, if and only if (S, >) is well-founded.

Proof:
a "onlyif" part. If (S, >) is not well-founded, then there exists an infinite decreasing
sequence s>s.>s.> ... of elements in S . This sequence is also an infinite decreasing

sequence of elements in H*(S)under »* | and (M*(S),»*) is therefore not
well-founded.
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a "if" part. In order to show that (W*(S),»*) is well-founded, it suffices to show that

each ?Hl(S) is itself well-founded under »* . For assume that #*(S) were not
well-founded, then there would exist an infinite decreasing sequence of nested multisets

M »*M»* . By the above property, the depth of any nested multiset M,  in the
sequence cannot be greater than the depth of its predecessor M, . Since the sequence
is infinite, it must have an infinite subsequence of nested multisets all of the same depth

)
i, which contradicts the well-foundedness of W (S).

We prove that each (HIL(S),»*) is well-founded by induction on i : The ordering »*
on N?O(S)=S is simply the ordering > on S, and it follows that (H]O(S), »*)is
well-founded. For the inductive step, assume that each (7)}7(5 ), ¥, j<i s
well-founded, and note that each of the elements of ml(S) is a member of the uhion of

HIO(S), Hil(S), Coe ?711_1(5). By the induction hypothesis, each of these H'?I(S) is

well-founded under $*; therefore their union under »* also is. Furthermore, the
12
ordering »* on two nested multisets from #(S) is exactly the standard multiset

t
ordering over that union, and since the union is well-founded, so is ¥ (S), cl

Remark: We have seen above that for (§,>) of order type a , the multiset ordering
a
(MW(S),») is of order type W . In a similar manner, it can be shown that the order type

of (' (S). %) is

a
'l
i times
w
(v )
the limit of which is the ordinal ¢, — provided that a is less than € . Thus, if (S, >) is

of order type less than €, then (W*(S),»*) is of order type €, .(Gentzen[1938] used an
¢ ordering to prove the termination of his normalization procedure for proofs in

arithmetic.) O

In the following two sections, we shall apply the multiset ordering to problems of
termination, first proving the termination of programs, and then proving the termination of
production systems.
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III. TERMINATION OF PROGRAMS
The following basic theorem is generally used to prove the termination of programs:

THEOREM (Floyd): A program P with variables X ranging over a domain D
terminates, if and only if there exist

a set of labels [ cutting all the loops in P,

a well-founded set (W, ») , and

a termination function T mapping XD into W,
suchthat whenever control traverses a path from one label to another, the value of the

termination function 'TL(E) decreases for the current label L and value of X .

Proof:

® ‘"onlyif" part. If the program does terminate, then the set (./xD,>,) is well-founded,
where the relation >, is defined so that (L,d)>,(L’, @) if the program reaches the
label L with the value d before it reaches L’ with the value @' . Thus, if T (x)
returns the pair (L, x) , then with each traversal of a path, the current value of TL(E)
decreases.

a “if" part. If the program does not terminate, then there exists an infinite sequence of
label-value pairs (L.'Rl)‘(?\' 3) ..., corresponding to the sequence of labels
through which control passes during a nonterminating computation and the values of the
variables at those points. Since the function T decreases with each traversal of a path,
it follows that the sequence T,ll(a),n?(a?), ... forms an infinite decreasing sequence

in the set W , contradicting its well-foundedness.

In the following examples, we shall prove the termination of programs using multiset
orderings as the well-founded set.
EXAMPLE 1 : Counting tips of binary trees.

Consider a simple program to count the number of tips — terminal nodes (without
descendents) — in a full binary tree. Each tree y that is not a tip has two subtrees,
left(y) and right(y) . The program is
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S = (t)
c =0
loop until S=()
y =g
if tip(y) then S = Gg ..., )
¢ = c+l
else S = (g, ..., 5, left(y), right(y))
fi
repeat .
It employs a stack S with the |S| elements Ssp s S Sy and terminates when § is

empty. At that point, the variable ¢ is to contain the total number of tip nodes in the
given tree t.

Initially the given tree is placed in the stack. With each iteration the subtree at the top
of the stack is tested to determine whether it is a tip: if it is, then it is removed from the
stack and the count is incremented by | ; if it is not a tip, then it Is replaced in the stack
with its two subtrees, so that the number of tips in each subtree may be counted.

The termination of this program may be proved using the well-founded set (N, >) . The
appropriate termination function is

T(S) = 2 nodes(s) ,
SES

where nodes(s) is the total number of nodes in the subtrees— not just the tip nodes. To

show that the value of T decreases with each loop iteration, we must consider two
cases: If the subtrees is a tip node, then that node is removed from the stack, and the

sum is decreased by I. If s is not a tip, then it is replaced by its two subtrees, left(s))
and right(s)) . But s, contains one node more than left(s)) and right(s,) combined, and

again the sum is reduced.

Using the multiset ordering over trees, we can prove termination with the simple
termination function

T(S) = {s : seS} ,

where the trees themselves are ordered by the natural well-founded subtree ordering, i.e.
any tree is greater than its subtrees. Thus, removal of a tree from the stack decreases
T in the multiset ordering by removing an element, and the replacement of a tree with two
smaller subtrees decreases T.
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This solution uses multisets over trees. One could just as well have used multisets over
natural numbers, taking as the termination function {nodes(s):seS} or {tips(s):se€S} . The
first solution, using the conventional well-founded set (N,>) , does not provide such
flexibility. cl

EXAMPLE 2: McCarthy’s 9 1 -function.
The following is a contrived program to compute the simple function
fx) = 1 f x>100then x-10 else 91

over the set of integers £, in a round-about manner. Though this program is short, the
proof of its correctness and termination are nontrivial, and for this reason it is often used
to illustrate proof methods.

The program is:

noi=
z = x
n
loop L:assert f(x)=f (z), n2l
if z>100 then n = n-1

= z-10
else n = n+l
2 = 2+l
fi
until n=0 .
repeat

assert z=f(x)

|

n.
The predicates f (x¥)=f (z) and n2 I, in the assert clause at the head of the loop, are
invariant assertions; they hold whenever control is at label L . When the program
terminates, the variable 2z contains the value of f(x) , since the loop is exited when the

0
condition n=0 of the until clause is satisfied; at that point, f(x)=f (X)=x .

Using the conventional well-founded set (M, >), Katz and Manna [1976] prove the
termination of this program with the termination function

T(n,z) = -2:2+421n+2smax(111,x)

at L .
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For an alternative proof of termination, we consider the following well-founded
partial-ordering > on the integers:

a>b if and only if a<b<II .

(This is the same ordering on integers as in the usual structural-induction proof, due to Rod
Burstall, of the recursive version of this program.) As the well-founded set, we use the set
(M(2),») of all multisets of integers, under the corresponding multiset ordering. The
appropriate termination function T at L yields a multiset in #(Z) , and is defined as

T D) = (& f@, .., @)

We must show that for each loop iteration this function decreases. There are three
cases to consider:

1) z>100 at L : In this case, the then branch of the conditional is executed and both
n and z are decremented. When control returns to L (assuming that the loop has not
been exited), we have, in terms of the old values of n and z,

T(n-1, 2z-10) = (z-10, f(z-10), ..., fn-2(z-10)}.

Since z>100 , we have f(z)=z- 10, and therefore

2 n-1
T(n- 1, z-10) = {f(x), f @), ..., f (@} .
Thus, the value of the termination function 7 has been, decreased by removing the
-1 ’
element z from the original multiset{z, fiz), . . ., fn (2)} .
2) 90<z<100 at L . In this case, the else branch is taken and both n and z are

incremented, yielding

T(n+l, z+11) = {z+11, f(z+11), f2(z+ll),' o, fn(z+ll)}

Since z+11>100, we have f(z+11)=z+1 and f%z+ll')=f(z+l). Furthermore, either
z+1=101 or else =z+I<100, and in both cases f(z+1)=91=f(z) and consequently

f2(z+ 1 )=f (z) . Thus, we get

T(n+l, z+11) = {z+11, z+1, f(), . . . | fn—l(z)}.

Since z<{z+i<z+11I<111, we have z>z+11 and z>z+1 . Accordingly, the multiset has been
reduced by replacing the element z with the two smaller elements, z+ 11 and z+ 1,
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3) z289 at L : The else branch Is taken and we have
2 n
T(n+l, 2411) = {z+11, fQ+11), f@+1D), . . . | f(2+11)} .
Since z+115100, we have f(z+11)=91 and f2(z+ll)=f(91)=91=f(z), and thus

n-1
T(n+l, z+11) = {z+11,91, f(x), . . . , f (@} .
Agai n  z has been replaced by two smaller elements (under the > relation), z+ 11 and
91. cl
EXAMPLE 3: A ckermann’s f unct i on.
Ackermann's function a(m, n) over pairs of natural numbers is defined recursively as
alm,n) «if m =0 then n+1
else if n=0 then a(m-1, 1)
else a(m-1, a(m, n-1))
fi fi

The following iterative program computes this function:

S :=(m)
Z = n
loop L:assert qh, n) = alsg, alsy . . ., a(s,, als, 2)). . ).
if s=0 then S = (5, ...,5,)
2 = z+1
else
if z=0 then S = (sm, Ce e S, Sl-l)
z = |
else S = (55 ..., 5 5-15s)
z = z-1
fi fi
until $=()
repeat
assert z = a(m, n)

The three branches of the conditional statement correspond to the three cases in the
recursive program.

The termination of this program was proved by Manna and Waldinger [1978] using the
intermittent-assertion technique. We give here two proofs using multisets.
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® Solution 1 : Consider the set NxN of lexicographically-ordered pairs of natural

numbers, and use the corresponding multiset ordering over NxN . The termination function
at L is

T(S,2) = {(sg+ 1, 0), (55,41, 0), (5,41, 0), (s, 2)} .

Thus, T(S,z) yields a multiset containing one pair per element in the stack S . Note that
at L , the stack S is nonempty, and all the elements in S as well as z are nonnegative.

The proof considers three cases, corresponding to the three branches of the conditional
in the loop:

1) 5,=0 . If the loop is not exited, then the new value of 7 at L is
Ty . oo, sz D) = {Ggr1,0), o0 Gl 0), Gy, 241D}

This represents a decrease in 7 under the multiset ordering, since the element (s,,z)

has been removed and the element (s,+1, 0) has been replaced by the smaller (s,,z+ 1) .
2) s, 0 and z=0 . In this case we obtain

T((sgp - - -0 Sa S7D D= {(grl 0, o0 o, (5,41, 0), (-1, D} .

Thus, the element (s,, z) has been replaced by the smaller element (s-1,1).
3) 5,20 and z# 0 . Here we have

T(Ggp - oy Sus7Ls), zl) =
{(SLSI*LO), ce, (52{], .0), (Sl, 0), (SI' 2-1 )} ',

The element (s,, z) has been replaced by the two smaller elements (s,, 0) and (s,,2-1).

@ Solution 2: As our well-founded set, we take HI(N)xN , that is, the set of pairs where
the first component is a multiset over the natural numbers and the second component is a

natural number. For example, the pair ((3, 3, 0, 1,1,2}, 2) is an element of this set.
The appropriate termination function at L is

T(S, 2) = ({5;€§ : (Vj<i) siZSj}, 2)

thus, the first component of the pair is a multiset containing those elements s, in the

stack S for which none of s, 5,5, are larger than s, . Note that s,  always

IE R R A |
belongs to the multiset. For example, if §=(3,1, 0, 0, 1) and z=0 , then
T(S,2)=({3,1,1}, 0) . The same case analysis as in the previous solution applies. O
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EXAMPLE 4: Program schema for double recursion.

Consider the following program schema that utilizes muitisets:

4 €

S _: {x}

loop L:assert f(x)=a(f(s), (..., A(f(s5),2)...))
until S={}
y '€ s
S = 8~{y}

if p(y) then =z := A(g(y), 2)
else S = SU{k(y), (y)}
fi

repeat

assert z=f(x).

Here S is the muitiset{s,s, ..., s5}, {} is the empty multiset, the statement

y:€3 is the nondeterministic assignment of an arbitrary element of S to y, and S~{y} is
S with one occurrence of y removed. By instantiating the predicate variable p and the
function variables 2,9, k,!, and e , one obtains an instance of the schema that
computes some particular function f(x).

This iterative program computes the same function f(x) as the recursive program
schema

F(x)«< if p(x) then g(x)else AFkK), FUX)) fi ,

provided that the function #% is associative and commutative and e is its identity
element — ie. for all u , » , and w, A(u, Ay, w))=h(A(u, v), w) , A(u, v)~A(v, u) , and
A(u, e)=u .

We wish to show that the loop of the iterative program terminates for every
instantiation, over some domain D , for which there exists a well-founded ordering (D,>)
such that

—p(x) > xPk(x) A x>(x) .

(It is under this condition that the recursive program terminates.) To prove termination,
consider the muitiset ordering (M¥(D),») over the given domain (D,>) and the
termination function 7(S)=S at L . With each iteration an element y is either removed
from S or replaced by the two smaller elements k(y) and {(y) , thereby decreasing T .
a
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Remark: The previous examples suggest the following heuristic for proving termination:

given a program over a domain (D, ») that computes some function f(x) , if the program
has a loop invariant of the form

) = Ao, o), . . flg,0M
try the multiset ordering (W(D), ») , and use the termination function

0 = {80, &0 - &} .

The idea underlying this heuristic is that 7 represents the set of unevaluated arguments
of some recursive definition of the function f . 0
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IV. TERMINATION OF PRODUCTION SYSTEMS

A production system Il over a set of expressions E is a (finite or infinite) set of
rewriting rules, called productions, each of the form

rma, B, ...) = 7(a, B, ...),

where a, B8,... are variables ranging over £ . (The variables appearing in A’ must be
a subset of those in 7.) Such a rule is applied in the following manner: given an
expression e€E that contains a subexpression

m(a, b, . . . ),

(i.e. the variables a4 8,... are instantiated with the expressions a, b,.. .,
respectively) replace that subexpression with the corresponding expression

m™@a, b ... ).

We write e-e’, if the expression ¢ can be derived from e by a single application of
some rule in II to one of the subexpressions of e .

For example, the following is a production system that differentiates an expression,
containing + and . , with respect to x:

Dx = |

Dy = 0

D(a+f) = (Da + DB)

D(a+8) = ((BDa) + (a*DB)),

where y can be any constant or any variable other than x . Consider the expression
D(D(x+x)+y) .

We could either apply the third production to the outer D , or else we could apply the
fourth production to the inner D . In the latter case, we obtain

D(((x*Dx)+(x*Dx))+y) ,

which now contains three occurrences of D . At this point, we can still apply the third
production to the outer D , or we could apply the first production to either one of the inner
D's . Applying the third production yields

(D((x*Dx)+(x+Dx))+Dy) .
Thus,

D(D(xx)+y) = D(((x*Dx)+(x*Dx))+y) = (D((x+Dx)+(x+Dx})+Dy)
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In general, at each stage in the computation there are many ways to proceed, and the
choice is made nondeterministically. In our case, all choices eventually lead to the
expression

(((C Te1)+(x+0))+((1+1)+(x+0)))+0) ,

for which no further application of a production is possible.

A production system Il terminates over E, if there exist no infinite sequences of
expressions ¢,¢, e, ... such that e~¢=¢~> ... ande is an expression in E .
In other words, given any initial expression, execution always reaches a state for which
there is no way to continue applying productions. The difficulty in proving termination of a
production system such as the one for differentiation above, stems from the fact that
while some productions (the first two) may decrease the size of an expression, other
productions (the last two) may increase its size. Also, a production (the fourth) may
actually duplicate occurrences of subexpressions. Furthermore, applying a production to a
subexpression, not only affects the structure of that subexpression, but also changes the
structure of its superexpressions, including the top-level expression. And a proof of
termination must take into consideration the many different possible sequences, generated
by the nondeterministic choice of productions and subexpressions.

The following theorem has provided the basis for most of the techniques used for
proving the termination of production systems:

THEOREM: A production system over E terminates, if and only if there exists a
well-founded set (W,>) and a termination function T:E-W | such that for any
e, ¢ €E

e=e¢’ implies T(e)>T(e') .

Proof:

@ ‘'only if” part. Assume that the system does always terminate, then the set E is
well-founded under the % ordering, where % is the transitive closure of the relation = .
Let (W, ») be (E,®) and let T be the identity function. Then clearly e-»¢’ implies
T(e)=e He'=T(e') .

® "if" part. Assume that ¢=¢’ implies T(e)>T(¢') in some well-founded set (W,>) .
Suppose that the system does not terminate. Then by definition, for some expression
eck , there exists an infinite sequence of expressions e=¢ =¢,=¢,=> . . . . In that case,

there exists an infinite decreasing sequence 7(¢)>T(e¢)>T(e)> ... in W , which
contradicts the assumption that » is a well-founded ordering. Thus, it follows that the
system must terminate. cl
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Several works have considered the problem of proving the termination of production
systems. Among them: Gorn [1966] is an early work that addresses this issue; lturriaga
[1967] gives sufficient conditions under which a class of production systems terminates;
Knuth and Bendix [1968] define a well-founded ordering based on a weighted size for
expressions; Manna and Ness [ 1970) and Lankford[1976] use a “monotonic
interpretation” that decreases with each application of a production; Lipton and Snyder
[ 1977 ] make use of a “value-preserving” property as the basis for a method of proving
termination.

In the following examples, we illustrate the use of multisets In proving termination
alongside some previous methods.
EXAMPLE 1 : Associativity.

Consider the set of arithmetic expressions E constructed from some set of atoms
(symbols) and the single operator + . The production system

(a+B)+Y = a+(+7)

over E , contains just one production which reparenthesizes a sum by associating to the
right, For example, the expression (a+b)+((c+d)+¢) becomes either a+(b+((c+d)+e)) or
“(a+b)+(c+(d+e)) , both of which become a+(b+(c+(d+e))) . Since the size of the expression
remains constant when the production is applied, some other measure is needed to prove
termination.

® Solution | (Manna and Ness): Let the well-founded set be (N,>) . The termination
function T:E-N maps expressions into the well-founded set, and is defined recursjvely as
follows:

T(a+B) = 2:7(a)+T(8)
for expressions of the form a+8 , and
T(u) = 1

for any atom u . For example, the value of 7 for the expression (a+b)+((c+d)+e) is
20(2:1+1)+(2+(2:1+1)+1) =13

The key point in the proof is that this function possesses the following two important
properties:

1) The value of the termination function 7 decreases for the subexpression that the
production is applied to, i.e. for any possible value of a , 8, and 7,

Ta+8)+7) > T(a+(8+7)) .
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This is so since

T((@+B)+7) = 2:T(@+B)+T(Y) = 4-T(a)+2:T(B)+7(Y) ,

while

T(a+(B8+7)) = 2:T(a)+T(B+7) = 2:T(a)+2:T(B)+T(Y) |

and T(a) is at least 1.

2) The function T is monotonic in each operand in the sense that If

L]

T(e,) > T(e)
for some expressions e, and e, , then for any expression e,
T(e+e,)) > Tle+e)

and

T{e,+e) > T(e +e,)

Thus, if e=¢’, for the outermost expression e, then some subexpression (a+8)+7Y of
¢ has been replaced by a+(8+7) to obtain e . We have T((a+8)+Y)>T(a+(8+7)), by
the-first property. Therefore, by the monotonicity property, we get that

e->¢’ implies T(e)>T(e')

and by the theorem, it follows that the production system must terminate.

@ Solution 2 (Knuth and Bendix): For this solution, the termination function 7(e) yields a
sequence of natural numbers, listing the sizes of the subexpressions of ein preorder: the
sequence begins with the size of ¢, |¢J, and is followed by the sequence of sizes
corresponding to the left operand of ¢, and then by the sequence of sizes corresponding
to the right operand of ¢. These sequences of sizes are compared lexicographically.
However, in order for a set of lexicographically-ordered sequences to be well-founded,
the sequences must be of bounded length. In fact, the length of 7 is constant for each
computation, since the number of subexpressions is unchanged by the production.

To prove termination by this method, we need to show that any application of the
production has the following two properties:

1 ) The value of the termination function 7 decreases with each application of a production.
Since

[(a+B8)+Y]| = |a+(B+7)| ,
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we proceed to compare the left operand a+8 with a . But
la+B] > |a| ,

and therefore T(w) is lexicographically greater than T(w’).

2) Since the production does not change the size of the expression it is applied to, i.e.
Il = =},

the sizes of all the expressions preceding ¥ in the preorder are also unchanged.

Thus, e=¢’ implies that T(e) is lexicographically greater than T(e’).

® Solution 3 (multisets): For this solution, we use the muitiset ordering over the natural
numbers, (HI(N),») , and let T:E-H(N) return the multiset of the sizes |a] of all the
subexpressions of the form a+8ine,i.e.

T(e) = {Ja] : a+B in €} .
For example,
T((a+b)+((c+d)+e)) = {1, 3,1, 3) ,

since the left operands of the operator + are a , a+b,c¢, and c+d .
Again there are two crucial properties:

1 ) The value of the termination function 7 decreases with each application of a production,
i.e.

T((a+B)+7) > T(a+(B+7))

Before an application of the production, the multiset T((a+8)+7Y) includes one occurrence
of |a+8| and one of |a| , along with elements corresponding to the subexpressions of a,
8, and Y. After application of the production, the new multiset T(a+(8+7%)) includes
one occurrence of |a] and one of |8] , leaving the subexpressions of a,f8 , and ¥
unchanged. Thus, the element |a+8} has been replaced by the smaller element |8], and
the multiset has accordingly been decreased.

2) Since the production does not change the size of the expression it is applied to, i.e.
I*l = =},

the size of superexpressions containing (a+8)+Y is also unchanged.
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The multiset 7(e) consists of all the elements in T((a+8)+7Y) plus the sizes of the
superexpressions and the sizes of their other subexpressions. The only elements in 7(e)
that are changed by the production are those in T(w), and they have been decreased by
the production. Thus, e=¢’ implies that T(e)»T(e') . O

EXAMPLE 2: Distributivity.

The following system has two productions to apply the distributive law to an arithmetic
expression composed of atoms and the operators + and *:

a(f+7) = (af)+(a*Y)
(B+Y)a =  (Bra)(Ya) .

Both productions increase the size of the expression.