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ABSTRACT

A common tool for proving the termination of programs is the well-founded set, a set
ordered in such a way as to admit no infinite descending sequences. The basic approach

is to find a termination function that maps the elements of the program into some well-
founded set, such that the value of the termination function is continually reduced

throughout the computation. All too often, the termination functions required are difficult

S to find and are of a complexity out of proportion to the program under consideration.
However, by providing more sophisticated well-founded sets, the corresponding

: termination functions can be simplified.

Given a well-founded set S , we consider multisets over S , "sets" that admit multiple
occurrences of elements taken from S . We define an ordering on all finite multisets over

S that is induced by the given ordering on S . This multiset ordering is shown to be weli-
founded.

The value of the multiset ordering is that it permits the use of relatively simple and

intuitive termination functions in otherwise difficult termination proofs. In particular, we

apply the multiset ordering to provide simple proofs of the termination of production

systems, programs defined in terms of sets of rewriting rules.
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Proving termination with multiset orderings

I. INTRODUCTION

The use of well-founded sets for proving that programs terminate has been suggested

by Floyd [1967]. A well-founded set (S,”>) consists of a set of elements S and an

ordering » defined on the elements, such that there can be no infinite decreasing

sequences of elements. The idea is to find a well-founded set and a termination function

that maps the elements of the program into that set, such that the value of the termination

function is continually reduced throughout the computation. Since, by the nature of the

set, that value cannot decrease indefinitely, the program must terminate. The

well-founded sets most frequently used for this purpose are the natural numbers under the

"greater-than" ordering and n-tuples of natural numbers under the lexicographic ordering,

In this paper, we define and illustrate a class of orderings on multisets. Multisets,

sometimes called bags, are like sets, but allow multiple occurrences of identical elements.

For example, (3, 3, 3, 4, 0, 0} is a multiset of natural numbers; it is identical to the

multiset {0, 3, 3, 0, 4, 3) , but is distinct from (3, 4, 0}.

The ordering >» on any given well-founded set S can be extended to form a

well-founded ordering » on the finite multisets over S . In this ordering, M»M’ | for two

finite multisets M and M' over S , if M’ may be obtained from M by the removal of

at least one element from M and/or by the replacement of one or more elements in M

with any finite number of elements taken from S , each of which is smaller than one of the

replaced elements. Thus, if S is the set of natural numbers 0, 1, 2, . . . with the >

ordering, then under the corresponding multiset ordering » over S , the multiset

{ 38 38 4, 0) is greater than each of the three multisets {3, 4} ,
3,2, 2,1, 1, 1, 4, 0}, and {3 3, 3, 3, 2, 2). In. the first case, two elements have |
been removed; in the second case, an occurrence of 3 has been replaced by two

occurrences of 2 and three occurrences of I; and in the third case, the element 4 has

been replaced by two occurrences each of 3 and 2 , and in addition the element 0 has
been removed.

As an example of the use of a multiset ordering for a proof of termination, consider the

following trivial program to empty a shunting yard of all trains:

loop until the shunting yard is empty
select a train

if the train consists of only a single car

then remove it from the yard

else split it into two shorter trains
| f1

repeat .
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| This program is nondeterministic, as it does not Indicate which train is to be selected nor
how the train is to be split.

Let Y denote the set of trains in the yard, and trains(¥Y) be the number of trains in

the yard. For any train teY, let cars(t) be the number of cars it contains. We present

two proofs of termination.

If we take the set of natural numbers as our well-founded set, then we are led to the

selection of the termination function

: 7(Y) = 2+ 2 - trai| (Y) 2 Zy cars(t) - trains(Y)

] (see Dijkstra [1976]). This solution uses the fact that “splitting” conserves the number
of cars in the yard, 2 cars(t) . Thus, splitting a train increases the number of trains in the

: yard, trains(Y) , by 1 , thereby decreasing the current value of the termination function

T by 1. Removing a one-car train from the yard reduces 2+2 cars(t) by 2 and

increases -trains(Y) by I, thereby decreasing T by I.

If we use multisets of natural numbers as our well-founded set, then the function

| 7(Y) = {cars(t) : teY}

| demonstrates the termination of the shunting program. That is, for any configuration of the

yard ¥ _ T(Y) denotes the multiset containing the size of each of the trains in Y . Each

iteration of the program loop clearly decreases the value of T(Y) under the multiset

ordering: removing a train from the yard reduces the multiset by removing one element;

splitting a train replaces one element with two smaller ones, corresponding to the two

| shorter trains.

| Programs are sometimes written in the form of a production system. The following system
of three rewrite rules is an example:

white, red = red, white

| blue, red = red, blue
blue, white = white, blue .

| This program solves the “Dutch-flag” problem: Assuming that we have a series of marbles,
| colored red , white or blue and placed side by side in no particular order, then the above

program will rearrange the marbles so that all the red marbles are on the left, all blue

marbles are on the right, and all white marbles are in the middle. The first rule, for

example, states that if anywhere in the series there is an adjacent pair of marbles, the

left one white and the right one red , then they should be exchanged so that the red

marble is on the left and the white one is on the right.
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The three rules may be applied in any order and to any pair of marbles matching a

left-hand side of a rule. The program terminates when no rule can be applied. Clearly, if

no rule can be applied, the marbles are in the desired order, since nowhere does a red

marble have anything but a red marble to its immediate left (or else one of the first two

| rules could be applied), and nowhere does a blue marble have anything but a blue marble
to its right (or else one of the last two rules could be applied). The only thing we need to

ascertain is that the program will not just keep on running, never reaching a situation when

no rule can be applied; in other words, we must prove that the above production system

terminates.,

There are several ways of proving termination. The three we give here all use the

following ordering on colors:

blue is greater than white and white is greater than red.

It follows from the transitivity of orderings that blue is also greater than red .

The first method counts the total number of “inversions” of marbles, i.e. the number of

| pairs of marbles a and b (not necessarily adjacent), such that a appears to the left of

b and the color of ais greater than the color of 5. For example, if five marbles are

arranged blue, red, white, red, blue , then there are four inversions: blue-red , blue-white |,

blue-red, and white-red . Thus, the well-founded set is the set of natural numbers under

their standard > ordering, and the termination function counts the number of inversions by

summing, for each marble, the number of marbles with a greater color to its left. Each of

the rules, when applied, eliminates one inversion by exchanging the positions of one

inverted pair, thereby reducing the value of the termination function by one.

For the second method, suppose that therearen marbles. The well-founded set we

use is the set of n-tuples of colors. This tuple is ordered lexicographical/y: it is reduced if

some component is reduced without changing any component to its left. The termination

function simply yields the tuple containing the colors of the marbles in order, from left to

right. To prove termination, we note that whenever one of the rules is applied to two

marbles, only the values of the two corresponding components of the tuple change. By the

nature of the lexicographic ordering, we need only consider the change in the left

component, and indeed it is reduced in its color: if it was blue , then now it is either white

or red , and if it was white , then now it is red.

The third solution illustrates the use of multiset orderings. Each of the n positions in

oo the series is assigned a number, beginning with n-1 at the left, and going down to 0 for
the rightmost position. We take the multisets of pairs of the form (position, coor) as the

] well-founded set. The position-color pairs are ordered lexicographically: we say that a
| pair is greater than another, if it has a higher position number than the other, or if it has
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the same position number but a greater color. For each marble, the termination function

yields one pair, giving its position and color. When a rule is applied to the marbles at

positions i and i-1 , it decreases the value of the multiset by decreasing the color of the

marble at position i. The fact that the color at position i-1 is increased does not matter,

since any pair with position iis lexicographically greater than any pair with position i-1 ,

regardless of the colors.

These two examples have demonstrated how the multiset ordering may be used in

termination proofs. These proofs, however, did not have a clear advantage over the

alternative proofs, using the more common “greater-than” relation on the natural numbers

and lexicographic ordering on n-tuples. In practice using these conventional orderings

often leads to complex termination functions that are difficult to discover. For example,

the termination proofs of programs involving stacks and production systems are often quite

complicated and require much more subtle orderings and termination functions. Finding an

appropriate ordering and termination function for such programs is a well-known challenge

among researchers in the field of program verification. In the remainder of this paper, we

shall demonstrate how the muitiset ordering permits the use of relatively simple and

intuitive termination functions in otherwise difficult termination proofs.

In the next section, Section Il, we rigorously define the multiset ordering and prove that

it is well-founded. In Section Ill, we apply the multiset ordering to a number of termination

proofs of programs. Then, in Section IV, we use the multiset ordering to prove the

termination of production systems.
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II. THE MULTISET ORDERING

A partially-ordered set (S, >») consists of a set S and a transitive and irreflexive
binary relation > on elements of S . For example, both the set £ of all integers and the

set N of nonnegative integers are ordered by the "greater-than" relation > . The

ordering may be partial: for two distinct elements a and b of the set, we may have

neither a>b nor bra .

A partially-ordered set is said to be well-founded if there can be no infinite decreasing

sequences of elements from the set. Thus, the set (N,>) is well-founded, since any

descending sequence of natural numbers cannot go beyond 0 . On the other hand, the

partially-ordered set (Z,>) is not well-founded.

For a given partially-ordered set (S, >), we consider the multisets over S , ie.

unordered collections of elements ("sets") that may have multiple occurrences of identical

elements. We denote by %/(S) the set of all finite multisets with elements taken from the

set S , and associate an ordering » on W(S) that is induced by the given ordering >
on S .

In the following definition, as well as in the rest of this paper, set operators will denote

their multiset analogues: The equality A=B of two multisets, for example, means that any

element occurring exactly n times in A , also occurs exactly n times in B , and vice

versa. The union of two multisets AUB is a muitiset containing m+n occurrences of any

element occurring m times in A and n times in B. For example, the union of the

multisets {2, 2, 4) and (2, 0, O}is (2, 2, 4, 2, 0, 0}.

For a partially-ordered set (S, »), the multiset ordering » on W(S) is defined as
follows:

M >» M'

if for some multisets X, Y, Zin ¥(S) , where X is not empty,

M = XUZ and M’' = YUZ

and

(VyelY )(IxeX) x>y .

In words, a multiset is reduced by the removal of at least one element (those in X ) and

their replacement with any finite number — possibly zero — of elements (those in Y ), each
of which is smaller than one of the elements that have been removed.
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| We must first show that » is in fact a partial ordering, i.e. that If > is irreflexive and

transitive, then » also is:

eo To show irreflexivity, we must show that there can be no multisetM such that

| M>»M . Suppose that M>M then there would be some nonempty finite multiset X ,

| such that M=XUZ and (VyeX)(IxeX)x>y. In other words, for every element of X there
would be a distinct element of X greater than it, which is impossible for a finite X .

| e To show transitivity of » , consider the following irreflexive relation »’ on multisets in

HIS) : ZU{x}>'ZUY i f (VyeY)x>y . In other words, a finite multiset is reduced in the

| relation »’ by replacing a single element with zero or more smaller elements. Note that
the multiset ordering » is the transitive closure of the relation »’, i.e. M»M' if and

only if M' can be obtained from M by replacing elements in M one by one. It follows

that » is transitive.

| We have the

THEOREM: The multiset ordering (H(S),%) over (S, ¥) is well-founded, if and

| only if (S, ») is.

| Proof:

e “only if" part. If (S, >) is not well-founded, then there exists an infinite decreasing

sequence s,»s.»s,»... of elements in §. The corresponding sequence of singletons

I>{> {s,}*» ... forms an infinite decreasing sequence of elements in W(S) , and

(M(S),») is therefore not well-founded.

® "if" part. Assume that (S, >) is well-founded. We first extend S by adding to it an

element 1 , and extend the ordering >» on § to make 1 the least element, i.e. for every

element s#=1 in S, s>L. Clearly S remains well-founded, thereby. Now, suppose that

(WI(S),») is not well-founded; therefore, there exists an infinite decreasing sequence

M>PM>M> of multisets from W(S) . We derive a contradiction by constructing
the following tree. Each node in the tree is labelled with some element of S ; at each

stage of the construction, the set of all terminal nodes in the tree forms a multiset in

HIS) .

Begin with a root node with children corresponding to each element of M, .

Then since M>M_ there must exist multisets X, Y, Z , such that

M=XUZ,M=YUZ , X is not empty, and (VyeY)(IxeX)x>y. Then for each

yeY , add a son labelledy to the corresponding x . In addition, grow a child

1 from each of the elements of X . (Since X is nonempty, growing 1

ensures that even if Y is empty, at least one node is added to the tree.

Since Y is finite, the nodes corresponding to X each have a finite number

of sons.) Repeat the process for M.>M, ,M >M_ , and so on.
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Since at least one node is added to the tree for each multiset M, in the sequence, were

the sequence infinite, the tree corresponding to the sequence would also be. But by

Konig's Infinity Lemma, an infinite tree (with a finite number of children for each node) must

have an infinite path. On the other hand, by our construction, all paths in the tree are

descending in the well-founded ordering >» on §, and must be finite. Thus, we have

derived a contradiction, implying that the sequence M ,MM,... cannot be infinite.

cl

Remark: If (S, ») is totally ordered, then for any two multisets M, M’ € ¥I(S) , one may

decide whether M»M’ by first sorting the elements of both M and M’ In descending

order (with respect to the relation » ) and then comparing the two sorted sequences

lexicographically. For example, to compare the multisets 3, 3, 4, 0} and
(3, 2, 1, 2, 0, 4), one may compare the sorted sequences (4, 3, 3, 0) and

(4, 3, 2, 2, 1, 0). Since (4, 3, 3, 0) is lexicographically ~~ greater than

“4, 3, 2, 2, 1, 0) ,itfollowsthat (3, 3, 4, 0}»{3, 2, 1, 2, 0, 4) . 0

Remark: If (S, >) is of order type a, then the multiset ordering (W(S),») over (S, >) is

Of order type Ww” . This follows from the fact that there exists a mapping ¥ from W(S)
a

onto Ww that is one-to-one and order-preserving, i.e. if M»M' for M, M’eWi(S) , then

the ordinal Y(M) is greater than ¥(M’) . That mapping is

wim)
M) = Ww :vim) = 2

where 2 denotes the natural (i.e. commutative) sum of ordinals, and ¢ is the

one-to-one order-preserving map from S onto «a. [

Remark: Consider the special case where there is a bound k on the number of

replacement elements, i.e. [Y|<k. Any termination proof using this bounded multiset ordering

over N may be translated into a proof using (N,>) . This may be done using the

order-preserving function

v(m) kB ry

which maps multisets over the natural numbers into the natural numbers by summing the

number kK" for every natural number »n in a multisetM. Two special cases of interest
are: if |Y|<|X]| (i.e. the size of the multiset is not increased), then the simpler function

v(M) = 2 n + |M]

is order-preserving; if |V|=|X] (i.e. the size of the multiset is constant), then
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M) =v(M) py n

is order-preserving. 0

We turn’ now to consider nested multisets, by which we mean that the elements of the

multisets may belong to some base set S , or may be multisets of elements of S , or may

be multisets containing both elements of S and multisets of elements of S , and so on,

For example,

{{1, 1}, {{0}, 1, 2}, 0}

is a nested multiset. More formally, given a partially-ordered set (S, >»), a nested multiset

over S is either an element of S , or else it is a finite multiset of nested multisets over

S . We denote by ¥*(S) the set of nested multisets over S .

We define nowa nested multiset ordering »* on W*(S) ; it is a recursive version of the

standard multiset ordering. For two elements M, M’et*(S) , we say that

M»*M’

if

®@ M MeSandMrM

(two elements of the base set are compared using >),
or- else

® M¢S and M'eS

(any multiset is greater than any element of the base set),

or else

® M M'¢S , and for some X, Y, ZeW*(S) , where X is not empty,

M = XUZ and M’ = YUZ

and

(VyeY )(IxeX) x»*y

For example, the nested multiset

{{1, 1}, {{0}, 1, 2}, 0}

Is greater than

{{t, 0,0}, 5 {{0}, 1,2}, 0},

since { 1,1} is greater than both (1, 0, 0) and 5. The nested multiset

{{1, 1}, {{0}, 1, 2}, 0}

is also areater than
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{({{3. 1, 2}, {5,5 2}, 5},

since {{0}, 1, 2) Is greater than each of the three elements {{}, 1, 2}, {5, 5, 2},
and 5.

Let W'(S) denote the set of all nested multisets of depth i. In other words,
| i+]

in°(s)=s and HI" (S) contains the multisets whose elements are taken from ms)
) )

mls) Ca wh(s) , with at least one element taken from MW (S) . Thus, the set W*(S)

is the infinite union of the disjoint sets WM (S),WM (S),M(S),. . . . The following

property holds:

For two nested multisets, M and M’ , if the depth of M is greater than the

depth of M’ , then M»*M’.
l

In other words, the elements of MW (S) are all greater than the elements of ws) , for any
j<i .

Proof: This property may be proved by induction on depth. It holds vacuously for M of

depth 0 . For the inductive step, assume that nested multisets of depth i are greater

than nested multisets of depth less than i ; we must show that a nested multisetM of

depth it 1 is greater than any nested multiset M’ of lesser depth. If the depth of M ’

is 0 , then M’eS while M¢S , and therefore M»*M’| as desired, If the depth of M' is
less than i but greater than 0 , then each of the elements in M’ is of depth less than

i-l . The nested multiset M , on the other hand, is of depth i+] and must therefore

contain some element of depth i. By the inductive hypothesis, that element is greater

than each of the elements in M’ . Again, it follows that M»*M’ cl

The relation »* is a partial ordering; it can be shown to be both irreflexive and
transitive. The following theorem gives the condition under which it is well-founded:

THEOREM: The nested multiset ordering (H*(S), ®*) over (S, >) is

well-founded, if and only if (S, >) is well-founded.

Proof:

a "only if" part. If (S, >) is not well-founded, then there exists an infinite decreasing

sequence s>s.»s,>... of elements in S . This sequence is also an infinite decreasing

sequence of elements in H*(S) under »* | and (W*(S),»*) is therefore not
well-founded.
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a "if" part. In order to show that (}*(S), »*) is well-founded, it suffices to show that

each WHS) is itself well-founded under »*. For assume that #*(S) were not
well-founded, then there would exist an infinite decreasing sequence of nested multisets

M >¥M »* . . .. By the above property, the depth of any nested multiset M, in the
sequence cannot be greater than the depth of its predecessor M, . Since the sequence

is infinite, it must have an infinite subsequence of nested multisets all of the same depth

)

[ , which contradicts the well-foundedness of M (S).

We prove that each Ws). 5%) is well-founded by induction on i: The ordering »*
0 0

on HM (S)=S is simply the ordering > on S , and it follows that (HI (S), »*)is

well-founded. For the inductive step, assume that each HS), $%) , j<i, Is
i")

well-founded, and note that each of the elements of # (§) is a member of the uhion of

0 1 i-1
WS), His), . . ., W'S). By the induction hypothesis, each of these #/(S)i s
well-founded under »*: therefore their union under »* also is. Furthermore, the

1

ordering »* on two nested multisets from # (S) is exactly the standard muitiset
!

ordering over that union, and since the union is well-founded, so is # (S), cl

Remark: We have seen above that for (S,>) of order type a , the multiset ordering
a

(W(S),») is of order type W . In a similar manner, it can be shown that the order type

of MS), >X) is

a

]| [ times

WwLo) |
the limit of which is the ordinal ¢ — provided that a is less than € . Thus, if (S, >) is

of order type less than €_, then (WX(S),%*) is of order type €,.(Gentzen[1938] used an

€ ordering to prove the termination of his normalization procedure for proofs in

arithmetic.) 0

In the following two sections, we shall apply the multiset ordering to problems of

termination, first proving the termination of programs, and then proving the termination of

production systems.
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III. TERMINATION OF PROGRAMS

The following basic theorem is generally used to prove the termination of programs:

THEOREM (Floyd): A program P with variables * ranging over a domain D
terminates, if and only if there exist

a set of labels .f cutting all the loops in P ,

a well-founded set (W, >), and

a termination function T mapping [xD into W

such that whenever control traverses a pathfrom one label to another, the value of the

termination function T , (x) decreases for the current label L and value of x .

Proof:

® '"onlyif" part. If the program does terminate, then the set (./xD,>,) is well-founded,

where the relation >, is defined so that (L,d)>,(L’,d’) if the program reaches the

label L with the value d before it reaches L’ with the value d’ . Thus, if T,(x)

returns the pair (L, x) , then with each traversal of a path, the current value of T, (x)
decreases.

a "if" part. If the program does not terminate, then there exists an infinite sequence of

label-value pairs (L,.d).(L.d),..., corresponding to the sequence of labels
through which control passes during a nonterminating computation and the values of the

variables at those points. Since the function T decreases with each traversal of a path,

it follows that the sequence 7, (d),7T,(d), ... forms an infinite decreasing sequence
| 2

in the set W , contradicting its well-foundedness.

In the following examples, we shall prove the termination of programs using multiset

orderings as the well-founded set.

EXAMPLE 1 : Counting tips of binary trees.

Consider a simple program to count the number of tips — terminal nodes (without

descendents) — in a full binary tree. Each tree % that is not a tip has two subtrees,

left(y) and right(y) . The program is
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S := (1)

c = 0

loop until S=()

y =

if tip(y) then S = (55, ...,5,)
¢ = c+]

else S = Gn ..., Sy, left(y),  right(y))
fi

repeat .

It employs a stack § with the |§| elements Ssp- + - 5 S08, , and terminates when § is
empty. At that point, the variable ¢ is to contain the total number of tip nodes in the

given tree ¢.

Initially the given tree is placed in the stack. With each iteration the subtree at the top

of the stack is tested to determine whether it is a tip: if it is, then it is removed from the

stack and the count is incremented by 1; if it is not a tip, then it Is replaced in the stack

with its two subtrees, so that the number of tips in each subtree may be counted.

The termination of this program may be proved using the well-founded set (N, >) . The

appropriate termination function is

T(S) = 2 nodes(s) ,
SES

where nodes(s) is the total number of nodes in the subtrees— not just the tip nodes. To

show that the value of T decreases with each loop iteration, we must consider two

cases: If the subtrees is a tip node, then that node is removed from the stack, and the

sum is decreased by I. If s is not a tip, then it is replaced by its two subtrees, left(s)

and right(s)). But s, contains one node more than left(s) and right(s,) combined, and

again the sum is reduced.

Using the multiset ordering over trees, we can prove termination with the simple
termination function

T(S) = {s : s5€8} ,

where the trees themselves are ordered by the natural well-founded subtree ordering, i.e.

any tree is greater than its subtrees. Thus, removal of a tree from the stack decreases

T in the multiset ordering by removing an element, and the replacement of a tree with two

smaller subtrees decreases 7.
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This solution uses multisets over trees. One could just as well have used multisets over

natural numbers, taking as the termination function {nodes(s):seS} or {tips(s):seS} . The

first solution, using the conventional well-founded set (N,>) , does not provide such

flexibility. cl

EXAMPLE 2: McCarthy's 9 1 -function.

The following is a contrived program to compute the simple function

fx) = 1f x>100then x-10 else 91

over the set of integers £ , in a round-about manner. Though this program is short, the

proof of its correctness and termination are nontrivial, and for this reason it is often used

to illustrate proof methods.

The program is:

no oi=

2 = X

n

loop L: assert f(x)=f (2), n2l
if z>100 then n = n-1

z = z-10

else n = n+l

z = z+l1l

f1

until n=0 .

repeat

assert z=f(x) .

n.

The predicates f (x)=f (z) and n2 I, in the assert clause at the head of the loop, are
invariant assertions; they hold whenever control is at label L . When the program

terminates, the variable z contains the value of f(x) , since the loop is exited when the
0

condition n=0 of the until clause is satisfied; at that point, f(x)=f (X)=x .

Using the conventional well-founded set (M, >), Katz and Manna [1875] prove the

termination of this program with the termination function

T(n,z) = -2:z+21n+2:max(111, x)

at L .
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2 For an alternative proof of termination, we consider the following well-founded
partial-ordering » on the integers:

a>b if and only if a<bslill |

: (This is the same ordering on integers as in the usual structural-induction proof, due to Rod
Burstall, of the recursive version of this program.) As the well-founded set, we use the set

(H1(Z),») of all multisets of integers, under the corresponding multiset ordering. The

appropriate termination function T at L yields a multiset in #1(Z) , and is defined as
:

; T(n,z) = {z, f(x), . . . , f (}.

We must show that for each loop iteration this function decreases. There are three
cases to consider:

1) z>100 at L : In this case, the then branch of the conditional is executed and both

: n and z are decremented. When control returns to L (assuming that the loop has not
been exited), we have, in terms of the old values of n and z,

T(n-1, z-10) = (z-10, f(z-10),..., f (z-10)} .

| Since z>100, we have f(z)=z- 10 , and therefore

: T(n- 1, z-10) = {f(), Ff (0, ..., f (2} .

Thus, the value of the termination function T has been, decreased by removing the

: element z from the original multiset{z, fiz), . . ., f (2)}.

: 2) 90<z<100 at L : In this case, the else branch is taken and both n and z are
incremented, yielding

T(n+l, z+11) = {z+11, fGz+11), f(z+11),. . . | f (z+11)} .

Since z+11>100, we have f(z+11)=z+1 and f(z+11)=f(z+1). Furthermore, either

: z+1=101 or else z+I<100, and in both cases f(z+1)=91=f(z) and consequently

| £2(2+ 1 =F (2) . Thus, we get
n-1l

| T(n+l, z+11) = {z+11,z+1, f(z), . . .  f (0}.

Since z<z+1i<z+11<111, we have z>z+11 and z>z+1. Accordingly, the multiset has been

reduced by replacing the element z with the two smaller elements, z+ 11 and z+ 1,
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3) 2289 atL : The else branch Is taken and we have

2 n

T(n+l, 2411) = {z+11, f(z+11), f +11),. . . | f (2+11)}.

2 |

Since z+11<100, we have f(z+11)=81 and f (z+11)=£(91)=91=f(z), and thus

n-1

T(n+l, z+11) = {z+11,01, f(»), . . . , ff ()} .

Agai nz has been replaced by two smaller elements (under the > relation), z+ 11 and
o1. cl

EXAMPLE 3: Ackermann’sf unct i on.

Ackermann's function a(m, n) over pairs of natural numbers is defined recursively as

aim, n) «if m=0 then n+l

else if n=0 then a(m-1, 1)

else a(m-1, a(m, n-1))
fi f1 .

The following iterative program computes this function:

S = (m)

2 =n

loop L: assert gh, n) = alsg,alsg \,. .., als, als, 2)). ..))

if 5=0 then S = (55. ..., 5)
z = z+]

else

if z=0 then S = (isp 5-1)
z = |

else S = (55, RE 5-1, 5)
z = z-1

fi fi

until §=()

repeat

assert z= am, n) .

The three branches of the conditional statement correspond to the three cases in the

recursive program.

The termination of this program was proved by Manna and Waldinger [1978] using the

intermittent-assertion technique. We give here two proofs using multisets.
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® Solution 1 : Consider the set NxN of lexicographically-ordered pairs of natural

numbers, and use the corresponding multiset ordering over NxN | The termination function
at L is

T(S,2) = {G5 1, 0), (s5.,#1, 0), ... 0 (+1, 0), Gs, 2)} .

Thus, 7(S,2) yields a multiset containing one pair per element in the stack S . Note that

at L , the stack S is nonempty, and all the elements in S as well as z are nonnegative.

The proof considers three cases, corresponding to the three branches of the conditional

in the loop:

1) s=0 . If the loop is not exited, then the new value of 7 at Lis

Tsp «oy shzel) = {G+ 1,0), oo (541, 0), (s,, z+1)}

This represents a decrease in 7 under the multiset ordering, since the element (s ,2)

has been removed and the element (s,+1,0) has been replaced by the smaller (5,z+ 1) .

2) 5,2 0 and z=0 . In this case we obtain

TG ov Sa $710 1) = {Gly 0), Loo, (#1, 0), G1, DY

Thus, the element (s,, z) has been replaced by the smaller element (s-1,1).

3) s,#0 and z# 0 . Here we have

T(Gp ooo, Sy 5-Ls) z]) =

The element (s,, z) has been replaced by the two smaller elements (s,, 0) and (s,,z-1).

@® Solution 2: As our well-founded set, we take H(N)xN , that is, the set of pairs where

the first component is a multiset over the natural numbers and the second component is a

natural number. For example, the pair ((3, 3, 0, 1,1,2}, 2) is an element of this set.

The appropriate termination function at Lis

T(S, 2) = ({s;€§ : (Vj<i) 5,25}, 2) ;

thus, the first component of the pair is a multiset containing those elements s, in the

stack S for which none of s._,...,s,s are larger than s, . Note that s, always

belongs to the multiset. For example, if §=(3,1, 0, 0, 1) and z=0 , then

T(S,2)=({3,1,1}, 0) . The same case analysis as in the previous solution applies. O
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EXAMPLE 4: Program schemafor double recursion.

Consider the following program schema that utilizes muitisets:

2 = €

S = {x}

loop L: assert flx)=h(f(s),A(.. A(f(sis), 2). .))
until S={}

y € S

S = S~{y}
if p(y) then =z = h(g(y), 2)

else  S := SU{k(y), (y)}
f1

repeat

assert 2=f(x).

Here S is the multiset {s,, 5, Ce $151) , {} is the empty multiset, the statement
y:€S is the nondeterministic assignment of an arbitrary element of S to y, and S~{y} is

S with one occurrence of y removed. By instantiating the predicate variable p and the

function variables 2,9, k,l, and e , one obtains an instance of the schema that

computes some particular function f(x).

This iterative program computes the same function f(x) as the recursive program

schema

F(x) « if p(x) then g(x) else AFKRX), FU) fi |

provided that the function #4 is associative and commutative and e is its identity

element — i.e. for al u , » , and w, A(u, A(v, w))=h(A(u,v), w) , A(x, v)~A(v, u) , and

Alu, e)=u .

We wish to show that the loop of the iterative program terminates for every

instantiation, over some domain D , for which there exists a well-founded ordering (D,>)
such that

p(x) > x>k(x) A x(x).

(It is under this condition that the recursive program terminates.) To prove termination,

consider the muitiset ordering (¥/(D),») over the given domain (D,>) and the

termination function 7(§)=§ at L . With each iteration an element § is either removed

from S or replaced by the two smaller elements k(y) and {(y) , thereby decreasing T.

O
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Remark: The previous examples suggest the following heuristic for proving termination:

given a program over a domain (D, ») that computes some function f(x) , If the program
has a loop invariant of the form

fx) = a(flg, 0), feo, . . ., flg,0oM)

try the mulitiset ordering (W(D), ») , and use the termination function

(9) = {gO &O®», - ., &M}

The idea underlying this heuristic is that 7 represents the set of unevaluated arguments

of some recursive definition of the function f 0
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IV. TERMINATION OF PRODUCTION SYSTEMS

A production system IT over a set of expressions E is a (finite or infinite) set of
rewriting rules, called productions, each of the form

| a,8, ...) = xia,8, ...),

where a, 8,... are variables ranging over £ . (The variables appearing in A’ must be

a subset of those in *.) Such a rule is applied in the following manner: given an

expression e¢€£ that contains a subexpression

(a,b, . ..),

(i.e. the variables a 8, ... are instantiated with the expressions a, b,...,

respectively) replace that subexpression with the corresponding expression

(a,b, . . . ).

We write ee’, if the expression ¢/ can be derived from e by a single application of

some rule in II to one of the subexpressions of e.

For example, the following is a production system that differentiates an expression,

containing + and . , with respect to x:

Dx = 1

Dy = 0

D(a+f) = (Da + D8)

D(a) = ((BDa) + (a*DB)),

where y can be any constant or any variable other than x . Consider the expression

D(D(x+x)+y) .

We could either apply the third production to the outer D , or else we could apply the

fourth production to the inner D. In the latter case, we obtain

D( ((x-Dx)+(x+Dx))+y) ,

which now contains three occurrences of D . At this point, we can still apply the third

production to the outer D , or we could apply the first production to either one of the inner

| D's . Applying the third production yields

(D((x*Dx)+(x-Dx))+Dy) .

Thus,

D(D(x<x)+y) = D(({(x-Dx)+(x*Dx))+y) => (D((x+Dx)+(x+Dx))+Dy) .
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In general, at each stage in the computation there are many ways to proceed, and the

choice is made nondeterministically. In our case, all choices eventually lead to the

expression

; (((( 1+ D)+(x20))+((1+1)+(x:0)))+0) ,

for which no further application of a production is possible.

A production system Il terminates over E , if there exist no infinite sequences of

i expressions ¢,¢€, e, ... such that eee... ande is an expression in E.
In other words, given any initial expression, execution always reaches a state for which

1 there is no way to continue applying productions. The difficulty in proving termination of a
production system such as the one for differentiation above, stems from the fact that

while some productions (the first two) may decrease the size of an expression, other

] productions (the last two) may increase its size. Also, a production (the fourth) may

4 actually duplicate occurrences of subexpressions. Furthermore, applying a production to a
i subexpression, not only affects the structure of that subexpression, but also changes the

structure of its superexpressions, including the top-level expression. And a proof of

termination must take into consideration the many different possible sequences, generated

s by the nondeterministic choice of productions and subexpressions.

The following theorem has provided the basis for most of the techniques used for

i proving the termination of production systems:

3 THEOREM: A production system over E terminates, if and only if there exists a

well-founded set (W,>) and a termination function T:E-W | such that for any

i e, ¢ €¢ E

: ee’ implies T(e)>T(e').

Proof:

® ‘only if” part. Assume that the system does always terminate, then the set Eis

i well-founded under the * ordering, where ® is the transitive closure of the relation =.
Let (W, >) be (E,®) and let T be the identity function. Then clearly e=¢’ implies

T(e)=e HB e'=T(e) .

1 ® "if" part. Assume that e=¢ implies T(e)>T(¢') in some well-founded set (W,>).
Suppose that the system does not terminate. Then by definition, for some expression

eck, there exists an infinite sequence of expressions e=¢=e =¥¢,= . . . . In that case,

there exists an infinite decreasing sequence T{(¢)>T(e,)>7T(¢)>... in W , which

contradicts the assumption that » is a well-founded ordering. Thus, it follows that the

system must terminate. cl
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Several works have considered the problem of proving the termination of production

systems. Among them: Gorn [19658] is an early work that addresses this issue; Iturriaga

[1967] gives sufficient conditions under which a class of production systems terminates;

Knuth and Bendix [1968] define a well-founded ordering based on a weighted size for

expressions; Manna and Ness [ 1970) and Lankford[1975] use a “monotonic
| interpretation” that decreases with each application of a production; Lipton and Snyder

[ 1977 ] make use of a “value-preserving” property as the basis for a method of proving
termination.

In the following examples, we illustrate the use of multisets In proving termination

alongside some previous methods.

EXAMPLE 1 : Associativity.

Consider the set of arithmetic expressions E constructed from some set of atoms

(symbols) and the single operator + . The production system

| (a+8)+Y = a+(f+7) |
over E , contains just one production which reparenthesizes a sum by associating to the

right, For example, the expression (a+b)+({c+d)+e) becomes either a+(b+((c+d)+e)) or

(a+b)+(c+(d+e)) , both of which become a+(b+(c+(d+e)})) . Since the size of the expression

remains constant when the production is applied, some other measure is needed to prove

termination.

® Solution | (Manna and Ness): Let the well-founded set be (N,>) . The termination

function T:E-N maps expressions into the well-founded set, and is defined recursjvely as
follows:

T(a+8) = 2:T(a)+T(6)

for expressions of the form «+8 , and

T(u) = 1

for any atom u . For example, the value of 7 for the expression (a+b)+((c+d)+e) is

2021+ 1)+(2+(2:141)+1) = 13.

The key point in the proof is that this function possesses the following two important

properties:

1) The value of the termination function 7 decreases for the subexpression that the

production is applied to, i.e. for any possible value of a , 8, and 7,

T(asB)+¥) > T(a+(B+7)
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This is so since

T((a+B)+Y) = 2-T(a+B)+T(Y) = 4-T(@)+2-T(B)+T(Y)

while

T(a+(B+7)) = 2:T(a)+T(B+Y) = 2:T(a)+2:T(8)+7(Y) ,

and T{(a) is at least 1.

2) The function Tis monotonic in each operand in the sense that If

Te) > Tle) |

for some expressions e, and e¢,, then for any expression e,,

T(e +e) > Tle +e) |

and

T(e,+e) > T(e +e) .

Thus, if ¢=¢"|, for the outermost expression e¢, then some subexpression (a+8)+%Y of

¢ has been replaced by a+(8+7) to obtain e . We have T((a+8)+Y)>T(a+(8+7)), by

the-first property. Therefore, by the monotonicity property, we get that

ee’ implies T(e)>T(e') ,

and by the theorem, it follows that the production system must terminate.

@ Solution 2 (Knuth and Bendix): For this solution, the termination function 7(e) yields a

sequence of natural numbers, listing the sizes of the subexpressions of ein preorder: the

sequence begins with the size of ¢, Je}, and is followed by the sequence of sizes

corresponding to the left operand of ¢, and then by the sequence of sizes corresponding

to the right operand of ¢. These sequences of sizes are compared lexicographically.

However, in order for a set of lexicographically-ordered sequences to be well-founded,

the sequences must be of bounded length. In fact, the length of 7 is constant for each

computation, since the number of subexpressions is unchanged by the production.

To prove termination by this method, we need to show that any application of the

production has the following two properties:

1 ) The value of the termination function 7 decreases with each application of a production.

Since

|(a+8)+7]| = |a+(B8+7)] ,
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we proceed to compare the left operand a+8 with « . But

la+B] > Jaf |

and therefore T(w) is lexicographically greater than T(x’).

2) Since the production does not change the size of the expression it is applied to, i.e.

Il = I=],

the sizes of all the expressions preceding * in the preorder are also unchanged.

Thus, e=¢’ implies that T(e) is lexicographically greater than T(e’).

® Solution 3 (multisets): For this solution, we use the multiset ordering over the natural

numbers, (H(N),») , and let T:E-H(N) return the multiset of the sizes |a| of all the
subexpressions of the form a+8 ine, i.e.

T(e) = {Ja : a+f in e} .

For example,

T((a+b)+((c+d)+e)) = (I, 3,1, 3) ,

since the left operands of the operator + are a , a+b, c¢, and c+d.

Again there are two crucial properties:

1 ) The value of the termination function T decreases with each application of a production,

le.

T(a+8)+7) D> T(a+(8+7)) .

Before an application of the production, the multiset T((a+8)+7Y) includes one occurrence

of |a+8| and one of |a] , along with elements corresponding to the subexpressions of a,

8, and Y . After application of the production, the new multiset T(a+(8+7%)) includes

one occurrence of |a] and one of |8] , leaving the subexpressions of a, 8 , and ¥

unchanged. Thus, the element |a+8] has been replaced by the smaller element |], and

the multiset has accordingly been decreased.

2) Since the production does not change the size of the expression it is applied to, i.e.

LANE

the size of superexpressions containing (a+8)+Y is also unchanged.
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| The muitiset 7(e) consists of all the elements in T((a+8)+7) plus the sizes of the
superexpressions and the sizes of their other subexpressions. The only elements in 7(e)

that are changed by the production are those in T(w), and they have been decreased by

the production. Thus, e=¢’ implies that T(e)»T(¢'). O

EXAMPLE 2: Distributivity.

The following system has two productions to apply the distributive law to an arithmetic

expression composed of atoms and the operators + and *:

a (8+7) = (af)+(a*?)

B+Y)a = (Bra)+t(Ya) .

Both productions increase the size of the expression.

® Solution | (Manna and Ness): Take (N,>) as the well-founded set. Let the

termination function T:E-N be defined by

T(a+B) = T(a)+T7(8)+1]

and

T(aB) = T(a) TB) |

for expressions of the form a+8 or a*8 , respectively, and let

Tu)= 2 |,

for any atom u .

1 ) The value of the termination function 7 decreases with each application of a

production. In fact, both productions decrease 7 from

T(@)(TB)+T7(Y)+1) = T(a)T(8) + T(a) T(Y) + T(a)

to

T(a)T(B) + T(a)T(Y) + 1.

Since T(a)22 , this is a decrease of at least |.

2) The function 7 is monotonic in each operand of + and . .

It follows that e=>¢’ implies T(e)>T(¢).
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oe Js00eexOm 2 (Lipton and Snyder): For this method to be applicable, each production

m=7' must satisfy

Im] < |=],

i.e. the size of the expression must be increased by the production, as is indeed the case

in this example.

Now, consider the function val2:E-N , which maps expressions into the set of natural

numbers, and returns the arithmetic value of the expression when the value 2 is assigned

to each atom. For example, val2((a+1)+(c+0))=(2+2)+(2+2)= 16 . This function has the

following two properties, which ensure termination:

1) val? is monotonic in the sense that for any subexpression ¢’ of an expression e,

val2(e) > val2(e’) .

2) The productions are value-preserving for val2 , i.e.

val2(w) = val2(7') ,

for each production #=71'.

Suppose that the system does not terminate. Then there exists an infinite sequence of

expressions of the form ee de> LL. By the value-preserving property,

val2(e )=val2(e )=val2{(e )= . . . . Furthermore, for any given value ¢ , the monotonicity

property clearly ‘imposes a maximum depth ¢— and consequently a maximum size — on

any expression e¢ such that val2(e)=¢. In particular, since the expressions in the

sequence have a constant value, they have a maximum size, say m , i.e.|e,|<m for any

¢. in the sequence. On the other hand, since each production increases the size of the

subexpression it is applied to, it follows that |e [<|e[<]e.|< . . . , and, consequently, there

must be some n such that |e,|>m . But this is a contradiction. The system must
therefore terminate.

® Solution 3 (multisets): For this solution, we use multisets over natural numbers,

(MI(N),») . The termination function T:E-H{(N) is defined by

7(e) = {vall(a+B) : af in e} ,

where vall(a+8) gives the arithmetic value of «+8 when all the atoms are assigned the
value 1.
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| 1 ) The value of the termination function T decreases with each application of a

production. Applying the first production replaces the element vall(a+(8+7)) in the

multiset T(m) with the two smaller elements vall(a*f) and vall(a*Y) . The production

| also duplicates the products in «, but the value of each subexpression of a must also

be less than the value of a+(8+7). Thus,

| T(T) » T(n')

| The same is true for the second production.

2) Since

vall(w) = vall(m’) |

| the value of superexpressions of 7 in the multiset 7(e) is preserved by the productions,

| Therefore, e=>¢’ implies T(e)»T(e’) , and the system must terminate.

® Solution 4 (nested multisets): Note that the products are reduced in size by each

production. One would therefore like to prove termination using the well-founded set

(‘W(M), ») , and a termination function that yields the multiset containing |a+8| for each

occurrence of a product «+8:

) T(e) = {|a*B] : a*f in e}

The value of this function is decreased by the application of a production, i.e. T(w)»7T(®w’)

for each of the two productions w=%'. The problem is that the size of superexpressions

increases, since |7'|>|7]|; applying a production to a subexpression of e¢ , will therefore

increase 7(e) .

To overcome this problem, we need a termination function that takes the nested

structure of the expression into consideration, and gives more significance to more deeply

nested products. Fortunately, this is exactly what nested multisets can do for us. Since
this is the first time we illustrate the use of nested multisets, we shall discuss this solution

in greater detail.

Let the well-founded set be the nested multisets over the natural numbers,

(WP¥(N), »¥), and let the termination function T:E-MW*(N) yield |a*8} for each

occurrence of a product a+, while preserving the nested structure of the expression.

For example, the expression (a+((bec)-(d+(e*f))))+(g*A) contains five subexpressions of

form a+8. Their sizes are:
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|as((bec)s(d+(esfND] =11

(bc) (d+CefD] = 9 |,

lbec| = 3,

lef] = 3 , and

lg-2l = 3 .

Considering the nested depths of the products, the structure of the expression is

(as((bec)(d+(e=f))))+(g-h)

9

11

Thus, for

eu (mse (00); (@s(eN)) + (gh),
0 |

we obtain i. |
. I ! ’ !

T(e) = { {I1, {{3},9, {3}}}, {3} }.

1) For each production #=%' , we have

T(r) »* T(x’)

under the nested multiset ordering. We have

T(a+(8+7)) = { {la-(B+7)|, Ta), TA), T(N} }

while

T(aB)+(a¥)) = { {laf}, T(@), T(B)}, {la-7], Fla), T(M} }

where T{a),T(@) , and 7(Y) stand for the elements of the multisets 7(a) , T(8) , and

7(Y) , respectively. This is a decrease in W*(N) , since {Ja*(8+7)},T(a), TB), T(7)}
is greater than both {|a*8], T(a), TF)} and {|a*¥|, T(a), T(¥)} , regardless of the
exact form of a,B8 and Y .

For example,

T((bec)(d+(e+f))) = {{{3}, 9, {3}}}.

and applying the first production yields

T(((bec)d)+((bec)(esf))).= {{{3}, 5}, {{3}, 7, {3}}} .

This is a decrease in the nested multiset ordering, since {{3}, 9, {3}} is greater than

both {{3},5} and {{3},7,{3}} . A similar argument applies to the other production.
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2) It remains to ascertain what happens to the value of T for superexpressions. The

crucial point here is that the termination function gives greater weight to the more deeply

nested products by placing their size at a greater depth in the nested multiset. The

effect of the productions on lower-level expressions is therefore more significant than

their effect on higher-level expressions, and the decrease in 7 for the subexpression to

which the production is applied, overshadows any increase in the size of a

superexpression.

Consider, for example, a+(b+(c+d))> a*((bec)+(b+d)) . The value of 7 for the expression

on the left is {{7,{5}}}, while for the right-hand side expression it is ((9, {3},{3}}}.

Note that this represents a decrease in the nested muitiset ordering over N | despite the

fact that the element 7 , corresponding to the size of the top-level expression, has been

increased to 9 . This is the case since the production has replaced the element (5) in

the multiset by two occurrences of the smaller (3) , and (5) is also greater than 9 — or

any number for that matter — on account of its greater depth.

Thus, ee’ implies T(e)»*T(¢'). cl

EXAMPLE 3: Differentiation.

The following system symbolically differentiates an expression with respect to x :

Dx = 1

Dy = 0 |

D(a+8) = (Da+ DF)

D(a*8) = ( (8:Da) + (a*DB) ) |,

D(-a) 3 (-Da)

D(a-8) 3 (Da-Dg)

D(a/B) = ((Da/B) - ((a+DB)/(B12)))

Dn a) = (Da/a)

D8) = ((Da-(B-(at(8-1))))+ (((Un a)-DB)(a®B))) .

@ Solution 1 (Manna and Ness): Take (N,>) as the well-founded set. Let the

termination function T:E-N be defined by

T(a®8) = Tla)+7(B) ,

where ® is any of the binary operators +,.,-, and T,
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2
T(Da) = T(a)

T(-a) = 7(a)+ 1,

Tn a) = T(a)+l |

and

T(u) = 4

for any atom uw . (If the last three productions were not included in the system, then

T(u)=2 would suffice.)

1) For each of the nine productions m=’ | the value of 7 decreases, i.e. T(®)>T(®’),

For example,

2 2
T(D(a/B)) = (T(a)+T(B)) = Ta) + TB) + 2:7(a)T(B)

while

2 2
T(((Da/B)-((a+DB)/(B872)))) = T(a) + TMB) + Tla)+2:7(8)+ 4 .

This is a decrease, since 2:T(a):T(8)2 4-T(a)+4:7T(8)> T(a)+2:T(B)+4,

2) 7 is monotonic in each operand.

It follows that e=¢’ implies T(e)>T(e’).

@® Solution 2 (multisets): To prove termination, we use the multiset ordering over

sequences of natural numbers. The sequences are compared under the stepped

lexicographic order > , i.e. longer sequences are greater than shorter ones (regardless of
the values of the individual elements), and equal length sequences are compared

lexicographically. The termination function is

7(e) = {(d(x), d(x), ...) ix is an occurrence of an atom in e},

where d(x) is the distance (number of operators) between x and the ith enclosing D,

For example, consider the expression

e=DD(Dy+(y+DDx)) ,

or in tree form (with the D's enumerated for expository purposes),
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I!

D,

D, +
| | 7 N\

7°
xX

There are three atoms: y , y , and x . The left atom y contributes the element

(0, 2,3) to the multiset, since there are no operators between D, and y , there are two

operators (+ and D,) between D, and y , and there are three operators (D,, , and

D, ) between D and y . Similarly the other two atoms contribute (2, 3) and

(0, 1, 4, 5) . Thus,

| Te) = {02 3.23%, (0, 1, 4, 5 } .

Applying the production

D(a) = ( (8+Da) + (a*DB)) |

: to- e , yields e¢’=D(((y+DDx)*DDy)+(Dy-D(y+DDx))). In tree form (with the labelling of the
D's retained), we have

7 D, D. D.
IN A | 33 +

LA SRE Y 7 \\

D. J Y B,
] x D,

I

x

i and accordingly

Te) = { (3). (0, 1, 5), (0, 1, 4), (0, 3), (1, 4), (0, 1, 3 6) } |

Thus, 7T(e)>T(e') , since the element (0, 1, 4, 5) has been replaced by five shorter

sequences and by the lexicographically smaller (0, 1, 3, 6) .
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| In general, the following two properties hold:

1) Applying any of the productions decreases 7 . Consider, for example, what happens to

| the muitiset 7(e) when the production

: D(a) = ((B:Da)+ (aDF))

is applied to some subexpression of e¢. Let x be an atom occurring in a . Applying the

production results in replacing the sequence s=(d(x),d(x),...) corresponding to x,

with two sequences, s’ and ss”, corresponding to the occurrences of xin Da and a,

respectively, But s is greater than both s’ and s” : the sequence s” is shorter than s,

since there is one less D above x ; the sequence $s’ is of the same length as s , but is

lexicographically less, since a D has been pushed closer to x , while the distance to

nearer D's remains unchanged. Similarly, the sequences corresponding to the atoms in

8 are replaced by two smaller sequences.

2) The productions only affect the sequences in 7(e) corresponding to the atoms of the

subexpression that they are applied to.

Therefore, for any application of a production, e=*¢’ implies T(e)»>T(e').

® Solution 3 (nested multisets): Since the arguments to D are reduced in size by each

production, and none of the productions increase the nested depth of D's , nested

multisets constructed from the sizes of the arguments of D are an appropriate tool.

Let the well-founded set be the nested multisets over the natural numbers,

(?/i*(N), »*) , and let the termination function T:E-H#*(N) yield |«| for each occurrence
of Da, while preserving the nested structure of the expression. For example, the

arguments of the six occurrences of D in the expression D(D(Dx-Dy)+Dy)/Dx are

D(Dx+Dy)+Dy ,DxDy x vy ,y, and x. They are of sizes 9, 5, 1 , 1 , |, and 1 ,
respectively. Thus, for

¢ = DCD(Dx . Dy) + Dy) / Dx)
we have ! SE

: 7te) = {{9, {5 {1}, {1}}. {1}}, {1}} .

1) For each production *=7' , we have T(m)»*T(7') . Consider, for example, the
production

D(a*B) = ( (8:Da) + (a*DB) ) |
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and let T(a) and T(B) stand for the list of elements of the multisets T(a) and T(8)

respectively. Applying T to the two sides of the production, yields

T(D(a+B)) = { {laB], Ta), T(B)} }

and

T((B-Da)+(a-DB))= { TB), {la|, T@)}, Tl), {I8], 7@)} } .

This clearly is a decrease in H*(N) , regardless of the exact form of aand 8 , since

{la*B], Ta), TP)} is greater than {|a], T(a)} and {|B], T(B)} , and is also greater
than each of the elements in T(a) and T(8).

For example,

T(D(x+Dy)) = {{4, {1}}} ,

while

T((x-DDy)+(Dy-Dx))) = {{2, {1}}, {1}, {1}} .

This is a decrease in the nested multiset order, since (4, {1}} is greater than both

{2, {1}} and {1}. A similar argument applies to all of the other productions.

2) As in the previous example, the decrease in T for the lower-level expression

overshadows any increase in the size of a higher-level expression.

It follows that e-¢’ implies T(e)»*T(¢’). 0

In this section, we have illustrated the use of multiset and nested multiset orderings in

proofs of termination of production systems, by means of a number of examples. Along

similar iines, using these orderings, one can give general theorems which express

sufficient conditions for the termination of broad classes of production systems.
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