AL -
e W aliehatdatalina LI By &/‘1
UR l-(n‘l.;ﬁ.a n.uh‘n RYPYW “ (yey

ﬁfAST;ALGOR ITHM FOR FINDING DOMINATORS IN A FLOW GRAPH

lhomS/i,engaucr o __;om _Endre A‘mn
ADAGSHI4y (%

COMPUTER SCIENCE DEPARTMENT
School of Humeniies and Sciences

STANFORD UNIVERS e — |
& yppotty -7~ - Pty Yhskwegzs-2uy

SECURITY CLASMIPICATION OF THIS PAGE M- Dete Entored)

REPORT DOCUMENTATION PAGE

CS =S

. GOVY ACCESSION NO.

READ INSTRUCTIONS
BEFORE COMPLETING FORM
3 RECIPIENT'S CATALGG NUMBER

8. TITLE (and Subiitie)

b.' 4% U\-\W-\-\-N\ \&‘ \‘\»\b\~\.\ &(‘"““m‘k
N N L vow CyCinph~ -

S. TYPEL OF REFPOAT & PEMOD COVERED

I)Mh.‘slb N (figorhimg

6. PERFORMING ORG. REPORT NUMBER

SEAN -Ca- 16 0O

7. AUTHON(s)

Twonas M“H\OAJJRV' “!; beu‘\."u.r\m

. CONTRACT OR GRANT WUMBER(S) |

Nt 4 - e -C ~L0%$
174

mm
Tror Ao A U jars!
Covrmy “we.

wtambecd |, CA Caace

, PROJECT. Y ASK
AREA & WO ns

¥,
UNIT NUNeT

1. CONTROLLING OFFICE NANME AND ACDRESS

RS A T T
Drlandvoc CA

12. REPOART DATE

e AT

13. NUMBER OF PASES

e —

T 00 TOMNG ABERCY NARE & ADORESHI! differont rom Contwolling OWies)

18. SECUMTY CLASS. (of N5 report)

e, %'Et FI. .Fic ATION/ COUNGRADING

T DisTmou1on STATERENT (of Bis Repert)

Kebsomobie. Wrlhsat (umitaong om diaiennt on

17 GISTENG . " .0u STATYENENT (af the cdotvast catered in Bleck 30, ¥ Giiisrent hem Nepart)

A Fast Algorithm for Winding Dominators

in a Flow Greph

Thomas H.b.ﬁ!.inn\
Robert Endre Terjan—/
Camputer Science Department

Stanford Univers’ty
Stanford, California 94305

Abstruct,

This paper presents a fast algorithm for finding dominators in a
flow graph. The algorithe uses depth-first search and an efficient method
of camputing functions defined au paths in trees. A simple imp smentation
of the algorithm runs in O(m log n) time, where m is the mmber of
edges and n 1is the number of vertices in the prodlem graph. A more
sophisticated implementation runs in O{m x(m,n}) time, where a(m,n)
is & functional inverse of Ackermami's function.

Both versions of the algorithm were implowmented in Algol W, a Stanford
University version of Algol, and tested on an IM! 370/168. ?i
were capared with an implemmntation by Purdom and ioore f a strajghtforward
O(mn) -time algorithm, end with a bit vector algoritim described by Aho and

Ulman., The fast algoritim bdest the strajightforwvard algoritim and the bit
vector algoritim on all but the smllest grephs tested.

Egvords: depth-first search, deminators, global flow amalysis,
sreph algorithm, path compression,

1. Introductiom.

The following graph problem srises in the study of globel flow
analysis and program optimization [2,6]. let G = (V,E,r) be a flow
graph with start vertex r .:/ A vertex v dominates arother vertex
wg v in G 4if every path fraw r to w contains v . Vertex v
is the immediate dominator of w , denoted v = idom(w) , if v

dominates w and every other dmxinator of w Adominates v .

Theorem 1 [2,6]. Every vertex of a flow graph G = (V,E,r) except r
has a unique immediate dominator. The edges {(idom(w),w) |we V-{r}}
Zorm u directed tree rooted at r , ocalled the dominator tree of G,
such that v daminatss v 1if and only if v is a proper ancestor
of w in the daminator tree., fee Figures 1 apd ,

(rigure 1)

(rigure 2]

We wish to construct the dominator tree of an arbitrary flow greph G .
Ao and Nlmen [2) and Purdon and Noore (7] descridbe a strajghtforward
algorithm for sclving this problem. Por each vertex v ¢ r , we carry
cut the following step:

M:mw.m:otnmm r,thesst 8 of
vertices reschebls frem r Y Joths which avedd v, The
vertioss in V-{v]}-S are emactly those which v dominates.

ocuing the set of vortiess deningbed by cash vartam, it is an casy mabter
to canstrwst the Gmminater tree.

Y rppemtiz A certains Whe graph-tiseretis terrinelegy used in this peper.

To analyze the running time of this algos ithm, let us aasume that
G has m edges and n vertices. Each execution of the general step
requires O(m) time, and the algorithm performs n-. executions of the
general step; thus the algorithm requires O(mn) time total.

Aho and Ullmsn (3] descrite ancther simple algorithm for compuiing
dominators. This algorithm menipulates bit vectors of length n . Each
vertex v has a bit vector which encodes a superset of the dorinators
of v . The algorithm makes several passes over the graph, updating
the bit vectors during each pass, until no further changez to the bit
vectors occur. The bit voctor for each vertex v then encodes the
dominators of v .,

This algoritim requires O(m) bit vector operations per pass for
O(n) pmsses, or O(mm) bit vector operations total. Since each bit
vector operation requires 0(n) time, the rumning time of the algoritim
15 O(n°m) . This bound is pessimistic, however; the constant factor
associated with the bit vector operations is very srall, and on typical
graphs representing real programs the mmber of prsses is small (on
reducible flow graphs (3] only two passes are roquired [4]).

In this paper we shall deseribe a faster algoritim for solving the
dominators prodlem. The algorithm uses depth-first search [9] in
coambination wvith a data structure for evalnating fumctions defined om
peths in trees [13]. We present a simple isplementation of the algerithm
vhich rms in O(m log n) time and a move sophistissted Luplemsmtatiom
which rwms in O(m a(mn)) time, wvhere a(mn) is s fwmectional inverse
of Achermmm's function.

The algorithm is a refinement of earlier versions appeering in
[10,11,12]. Although prcving its correctness and verifying its running
time require rather complicated analysis, the algorithm is quite simple
to program and is very fas' in practice. We programmed both versionsz of
the algorithm in Algol W, » Stanford Uhiversity version of Algol, and
tested the programs on an IBM 370/168, We compared the programs with
a transcription into Algol W of the Purdam -~ Moore algorithm and with
an implementation of the bit vector algorithm. On all but the smallest
graphs tested our algorithm beat the other methods.

The paper consists of five sections. Section 2 describes the
properties of depth-first search used by the algorithm and proves
several theorems which imply the correctness of the algoritlm., Some
kncwledge of depth-first search as described ir [9] and Section 2 of [10]
is useful for understanding this section. Section 3 develops the
algoritim, using as primitives two procedures that manipulate treea.
Section 4 discusses two implementations, simple and sophisticated, of
these tree manipulation priritives. Some knowledge of sectioms 1, 2,
and 5 of [13] is useful for understanding this section. Section 5
presents our experimental results.

2. Depth-First Search and Dominators.

Suppose we perform a depth-first search on & flow graph G = (V,E,r)
starting from vertex r , and that we mmber the vertices of G from 1
to n as they are reached during the search., The search generates a
spouning tree T rooted at r , with vertices mmbered in preorder [5).
See Figure 3.

[rigure 3]

The following paths lemma is s important property of depth-first
search and 1ls crucial to the correctness of the dominators slgorithm,

Leamal [9]. If v and w are vertices of G such that
muber(v) < number(w) , then any path from v to v in G must
contain a comomon ancestor of v and w in T .

As an intermediate step, the dominators alyorithm camputes a value
for each vertex w ¢ r called its semi-dominator, denoted by sdom(w)
and defined by

(1) saam(w) - xin{mmber(v) | therc is a path v = VorVyreeerVy = W such
that m(vi) > mmber(w) for 1 <1 < k-1} .

Sce Pigure 3,
The following lemas descride same basic properties of semi-dcminators
and immedizte dominstors.

Iawme 2. Poremg vertex wgér, let v be the vertex sich that
paber(v) = siga(v) . Then v Ssapreper ancestor of T in T,

Proof. Let paremt(w) be the parent of w in T . Since (parent(w),w) is
an edge of G, by (1) mmber(v) = sdom(w) < mmber(parent(w)) < mmbex(w) .
By (1) and the choice of v , there is a path Vv = Vy,Vys...0Vy = ¥

such that pumber(v,) > mmber(w) for 1<i<k-1. By Leewa 1, some
vertex v, on the path is a common ancestor of v and w . But such

a common ancestor vy must satisfy M(vi) < x_rlb_e_r(v) . This

means i = 0, i.e,, vi-v,md v is a proper ancestor of w. [

lenma 3. For any vertex wg r , let v be the vertex such that

pmber(v) » sdam(w) . Then idam(w) is an ancestor of v in T .

Proof., The tree path from r to w contains only ancestors of w in T.
Thus idom(w) 3is an ancestor of w . The path consisting of the tree

path fram r to v followed by a path Ve VyVyseeasVy = W such that
M(vi) > mmber(v) for 1<i< k-1 (which must exist by (1))

avoids all proper descendants of v which are also proper ancestors

of w, It fallows that idom(w) is an ancestor of v. (O

Corallary 1. For any vertex wg r , idom(w) v,

Lesma 4, Let vertices v, v satisfy viw in T. Them vroidc(v)
or m(v):idc(v).

Proof. let X Dbe any proper descendant of idom(v) which is also &
proper ancestor of v . By Theorem 1 and Corcllary 1, there is a path
from r to v vhich avoids x . By concatenating this path with the
tree path fram v to w, we cbtain a path from r to w which avoids x-.

Thus idom(w) must be either a descendant of v or an ancestor of

idom(v) . O

Using Lemmas 1 -4, we obtain two results which provide a way to

compute immediate dominators fram semi-daminators.

Theorem 2. Let w g r and let v be the vertex such that
mmber(v) = sdom(w) . Suppose no vertex u satisfies
mmber(u) > number(v) , u v , and sdar(u) < sdom(w) . Then

_1d_ﬂl..(') =V,

Proof, By lemma 3, it suffices to show that v dominates w . Consider
any path fram r to w . Let x be the last vertex on this path

satisfying number(x) < mumher(v) . If there is no such x, then va=r

daminates w . Otherwise, let y be the first vertex following x on

‘the path and satisfying v : Yy :\r . A1l vertices 2z following x on

the path but preceeding y must satisfy 2z >y by Lemma 1 and the

choice of x and y . Thus sdom(y) < mumber(x) < mmber(v) = sdam(w) .
By the hypothesis of the theorem, y cannot be a proper descendant of v .
Ts y= v and v liez on the path, Since the path selected was

arbitrary, v dominates wv. 0O

Theorem 3. let wyg r end let v be the vertex such that
mmber(v) = sdcm(v) . Let u be a vertex for which sdom(u) is minimm
among vertices satisfying mmber(u) > mmber(v) and Liw. Them
sdom(u) < sdam(w) and idom(u) = idam(w) . |

Proof. Let x be the vertex such that v —X ~w . Then
sdon(u) < sdom(x) < mmber(v) = sdam(v) .

By Lemma 3, idom(w) is an ancestor of v and thus a proper
ancestor of u . Thus by Lemma 4 idom(w) i}g_m(u) . To prove
idom(u) = idom(w) , it suffices to prove that idom(u) dominates w .

Consider any path from r to w. Let x be the last vertex an
this path satisfying number(x) < mmber(idam(u)) . If there is no
such x , then idom(u) = r dominates w ., Otherwise, let y be the
first vertex followaing x on the path and satisfying id_g(u) ot y ot w .,
All vertices z following x on the path but preceding y satisty
number(z) > number(y) by Lemma 1 and the choice of x and y. Thus
sdom(y) < number(x) . Since number(idam(u)) < sdom(u) by Lemma 3, we
have sdom(y) < mmber(x) < mmber(idom(u)) < sdam(u) .

By the definition of u, y camot be a proper descendant of v .,
Furthermore y cannot be both a proper descendant of idom(u) and an
ancestor of u, for if this were the caze the path consisting of the
tree path from r to sdom(y) followed by a path sdom(y) = Vg VqreesVy @y
such that mmber(v,) > mmber(y) for 1< 1< k-1 followed by the tree

path froz y to u would avoid idam(v) ; but no path fram r to u
avoids idom(u) .

The only remaining possibility is that idom(u) =y . Thus idam(u)
lies cn the path fram r to v . Since the path selected was arbitrary,
idom(u) dominates w. 0O |

Corollary 2. Let w4 r and let v be the vertex such that
muber(v) = sdam(w) . ILet u be a vertex for which sdam(u) is
minimm among vertices satisfying mumber(u) > mmber(v) and u tvw.
Then

v if sdom(w) = sdom(u) ,

(@) idom(w) =
idom(u) otherwise,

Proof. Imnediate from Theorems 2 and 3. [

The following theorem provides a way to campute semi-dominators.

Theorem 4, TFor any vertex wg r,

(3) sdan(w) = min({number(v) | (v,¥) ¢ E and mumber(v) < number (w) }
U {sdam(u) | number(u) > mmber(w) and there is
edg- v.w) such that u -V in T} .

Proof. TLet { equal the right side of (3). We shall first prove that
sdam(w) < f . Suppose ! = mmber(v) for eame vertex v such that

(vsw) €E and pumber(v) < mmber(w) . By (1) sdom(w) < I . Suppose

on the other hand (= sdam(u) for same vertex u such that

mmber(u) > mmber(w) and there is an edge (v,w) such that uiv.

let x Dbe the vertex such that number(x) = sdom(u) . By (1) there ia

a path X = V5 Vy5ee0)Vy, = U such that mmber(v;) > number(u) > mmber(w)

for 1<1<Jj-1. The tree path u = -V

VJ J+1 ladt X X ""k.lﬂv
satisfies mmber(v,) > mmber(v) > mmber(w) for J<i<k-l. Ths
the path x = vO’vl"""k-]. =V, Vk = ¥ satisfies M(vi) > M(')

for 1<1<k-l. By (1), sdom(w) < mumber(x) « sdom(u) = 2 .

It remains for us tc prove that sdom(w) > ¢ . Let x be the
vertex such that mmber(x) =« sdom(w) , and let x = VpVy resVy = W
be a simple path such that M(vi) > mumber(w) for 1< i< k-l.
If k=1, (x,w)eE, and rumber(x) < number(w) by Lemma 2. Thus

sdom(w) = mmber(x) > ¢ ., Suppose on the othe: hand that k > 1 .

Let j be minimm such that J>1 and v, =V, . Swha § exisis
since k-1 1is a candidate for J .

We claim m(vi) > m(v‘j) for 1 <4< j-1. Suppose to
the contrary that M(vi) < M(VJ) for some i in the range
1<i<J-1. Choose the i1 such that 1<i<J-1 and mmber(v,)
is minimim, By Lemma 1, vy o vd » which contradicts the choice of J .
This proves the claim,

The claim implies sdom(w) = mmber(x) > &(VJ) >1 . Thus
whether k=1 or k >1 we have sdam(w) > ¢, and the thecrem is
true, 0O

3. A Past Daminators Algorithm,

In this zection we develop an algoritim which uses the results in
Section 2 to find dominstors. Earlier versions of the algorithm appear
in [10,11,12]; the version we present is refined to the point where it is
as simple to program as the straightforward algorithm [2,7] or the bit vector
algoritim [3,4], similar in speed on small grsphs, and much faster or large graphs.
The algorithm consists of the following four steps.

Step 1. Carry out a depth-first search of the problem graph, Number
the vertices from 1 to n as they are reached during the
search, For each vertex v , determine the set pred(w) of
vertices v such that (v,w) is an edge and the vertex
parent(v) which is the parent of w in the spamming tree
generated by the search. Initialige the variables used in
succeeding steps.

Step 2. Compute the semi-dominators of all vertices by applying Theorem b,
Carry out the computation vertex-by-vertex in decreasing order
by mmber.

Step 3. Implicitly define the lmmediate dominator of each vertex by
applying Corallary 2.

Step b. Explicitly define the immediate dominator of each vertex, carrying
out the camputation vertex-by-vertex in increasing order by

mmber.

Here is an Algol-like version of Step l.

stepl: n = O3
Zor each veV do pred(v) = §; semi(v) = O od;
ors(r);
1

S

Step 1 uses the recursive procedure DFS, defined below, to carry
out the depth-first search. The procedure assumes that succ(v) is
the set of vertices w such that (v,w)e¢E . When a vertex v receives
a number i , the procedure assigns semi(v) := i and vertex(i) := v.

procedure DFS(vertex v);
begin
semi(v) := n := n+l;
vertex(n) := v;
coamnent initialize variables for steps 2, 3, and k;
for sach we suce(v) do
if semi(w) = O then parent(v) := v; DFS(w) fi;
add v to pred(w) od
51‘«1 DFS;

After carrying out Step 1, the algorithm carries out Steps 2 and 3
similtaneously, proceesing the vertices v ¢ r in decreasing order by mmber.
When processing a vertex v , the algorithm compates sdom(v) by applying
Theores 4. Each edge (w,v) is examined. If mmber(u) < mmber(v) ,
nuber(u) is a candidate for sdom(v) . If mmber(u) > mgber(v) , the
algorithm finds a vertex x of minimmm sdop(x) among vertices satisfying
mmber(x) > mmber(v) amd x:u; séan(x) 13 & cantidete for
sdom(v) . The mindmm of all the candidetes is shap(v) . Afver
computing sdom(v) , the algoritim assiges sepi(v) = sion(v) nd adds
vertex v to the set bucket(u) , vhere u 13 the vertex swh that
mmber(u) = sdoa(v) . This completes Step 2 for v . Note that befere
sdom(v) is fomd, squti(v) « muber(v) , and after oQqu(v) is femd,
seni(v) = sdom(v) .

Aft r the semi-dominitor of v is computed, the algoritim empties
bucket (parent(v)) . For each vertex wc bucket(parent(v)) , the algorithm
finds a vertex u of minimue sdom(u) smmong vertices satisfying
number(n) > pusber(parent(v)) and u =w . If sdom(u) = sdom(v) ,
then by Corollary 2 the immediate dominator of w is parent(v) , and
the algorithm assigns dom(v) := parent(v) . If sdam(u) < sdom(w) ,
then by Corollary 2, u and w have the same immediate dominator, and
the algorithm assigns dom(w) := u . The intemnt of this assigmment
is to implicitly define the immedigte dominator of w to be the
immediate dominator of a vertex with smaller semi-dominator than v .
This completes Step 3 for vertices we bucket(parent(v)) .

Both Step 2 and Step 3 require determining, for certain paths v — w
in the spamning tres, a vertex u on the path v ~v having minimm
sdom(u) . To find such vertices the algorithm uses a method described
in [10]. The algoritim maintains a data structure which represents a
forest with vertex set V and odge set {(parent(v),v) | sdom(v) has been
camputed} . To manipulate this data structure, the algoritim uses two
procedures:

LINK(v,w): MA edge (v,¥v) to the forest.

EVAL(v); If v 4is the root of a tree in the forest, retum v .
Othervise, 1ot r bde the root of the tree in the forest

which comtains v. Metwn a vertex u g r of minimm

sdop(u) om the path r>v in the forest.

Here iz an Algol-like version of Stepe Z and 3 which uses LINK

and EVAL.

camment initialize variables;
Eg'rui :-nﬂ-lmtith
v := yertex(i);
stepd: for each ue pred(v) 92
x im EVAL(u); if semd(x) < semi(v) then semi(v) := semi(x) od;
I‘MM(V):V)E
add v to bucket(vertex(semi(v));
step3: for each we bucket(parent(v)) do
delete v from bucket (parent(v));
u := EVAL(w);
dom(v) = if semwi(u) < semi(paret(v)) them u
else parent(v) fi od od;

Step L4 exsmines vertices in increasing order by mmber, filling in
the immediate dominators not explicitly computed by Step 3. Here is an
Algol-1ike version of Step h,

steph: for 1 := 2 wmtiln do
v := vertex(i);
if dom(v) ¢ vertex(semi(v)) then dam(v) := dom(dam(v)) o4

This caspletes our presemtataion of the algoritim emcept for the
implenentation of LTNK and EVAL. Pigure b illustrates how the algorithm
works.

(rigwre V]

Arpeudix B contains a cemplete Algol-1ike versien of the algeritim,
including varishle declaretions and imitialisstion. Using Theerem A emd
Corollary 2 it 4s not hard te prove thut, after emssution of the algerithm,

»

dom(v) = idom(v) for each vertex v ¢ r , assuming that LINK and EVAL
perform as claimed. The running time of the algorithm is O(m+n)
Plus time for n-1 LINK and wm+n-1 EVAL instructions.

L. Implementation of LINK and EVAL.

Reference [13] provides two ways to implement LINK and EVAL, cne
simple and one sophisticated. We shall not discuss the details of these
methods here, but merely provide Algol-like implementations of LINK and
EVAL vhich are adapted fram [13].

The simple method uses path compression to carry out EVAL. To
represent the forust built by the LINK instructions (henceforth called
the forest), the algoritlm uses two arrays, ancestor and label,

Initially ancestor(v) = O an. label(v) = v for each vertex v .
In general ancestor(v) = O only if v is a tree root in the forest;
otherwise ancestor(v) 1is an ancestor of v in the forest.

The algoritbm maintains the labels so that they satisfy the following
property. Let v be any vertex, let r be the root of the tree in
the forest containing v, and let v = VyrVy y12eesVg = T be such
that anccator(vi)-vi_l for 1<i<k. let x be a vertex such
that sdom(x) is minimm smong vertices xec {label(v,) |1<i<K}.
Then

(*) x is a vertex such that sdom(x) 4s minimum smong vertices x

+ *
satislying r <« x - v in the forest.

To carry out LINK(Y,w) , the algorithm assigns smoestor(v) := v .
To carry out EVAL(v) , the algoritim follows mmcestor pointers to
deterxine the sequence v e Yo Vgyr Vg = T such that
mcestor(v,) = v, , for 1<i<k, If var, v is retuwsed.
Otherwise, the algoritim performs a path oggprsegien by assigning
moestor(vy) := r for s<1 <k, wisting lebels to maimtaia (*).
Thm Jahel(v) is retwmsd. Beve is n Adgel-liide yrosefure for EVAL.

»

vertex procedure EVAL(v);
PANANSNPPIN) PSPPI IS
if ancestor(v) = O then EVAL := v
else COMPRESS(v); EVAL := label(v) fi;

Recursive procedure COMPRESS, which carries out the path compression,
is defined by

procedure COMPRESS(v);
comment this procedure assumes ancestor(v) ¢ O;
if ancestor(ancestor(v)) ¢ 0 then
COMPHESS(ancestor(v));
if semi (1abel (ancestor(v))) < semi(label(v)) then
label(v) := label{ancestor(v)) £1;
ancestor(v) := ancestor(ancestor(v)) fi;

The time required for n-1 LINKs and wmén-1 EVALs using this
implementation is O(m log n) [13]. Thus the simple version of the
dominators algorithm requires O(m log n) time,

The sophisticated method uses path campression to carry out the
EVAL instructions but implements the LINK instruction so that path
compression is carried out only on balanced trees. See [13], The
sophisticated method requires tso additional arrays, size and child.

Initially size(y) = 1 and child(v) « O for all vertices v . Here
are Algol-like implementations of EVAL and LINK using the sophisticated
method. These procedures are adapted fram [13].

vertex procedure EVAL(V);
camment procedure COMPRESS used here is identical to that in the
simple method;
if ancestor(v) = O M EVAL := label(v)
- else COMPRESS(v);
EVAL := gﬁ(g_e_l_.(mceltor(v))) > semi(label(v)) then label(v)
else label(ancestor(v)) fifi;

procedure LINK(v,w);
begtn
canent:' this procedure assumes for convenience that
size(0) = label(0) = semi(0) = 0;
8 m W
vhile somi(label(w)) < semi(label(chila(s))) 4o
17 size(s) + size(child(child(s))) > 2" size(child(s)) then
parent(child(s)) := 83 child(s) := child(child(s))
else size(child(s)) := size(s);
8 := parent(s) := child(s) 1 od;
label(s) := label(w);
size(v) = size(v) + size(v);
if size(v) < 2" size(v) then s,child(v) := child(v),s fi;
%sfogm_t_(l) TR :-e_h_in_;(a)gd“
e, v

With this implementation, the time required for p-1 LINKs and mén-l
EVALs is O(m a(m,n)) , where a is s functional inverse of Ackermenn's
function (1], defined a3 follows. For integers 1,J >0, let A(4,0) = O
i 1>0, AG) =20 1f 331, A1) = A1-L2) if 121,
wd A(3,3) = A(4-L,A(4,3-1)) if 1 2>1, J 22, Then
a(myn) = min{i >1|A(i, | 20/n)) > log, B} . Tmus the sophisticated
version of the dcminstors elgorithm requives O(m a(myn)) time.

5. Implementation and Experimental Results.
We translated both versions of the algorithm as contained in

Appendix B into Algol W and ran the programs on a series of randomly
generated program flow graphs, Table 1 and Figures 5 and 6 illustrate
the results. The sophisticated version beat the simple version on all
graphs tested. The relative difference in speed was between 5 and 5%,
increasing with increasing n .

[Table 1]

[Figure 5)

[Figure 6)

Wwe transcribed the Purdom - Moore algorithm into Algol W and ran it
and the sophisticated version of our algorithm on ancther series of
program flow graphs. Table 2 and Figure 7 show the results. Our algorithm
was faster on all graphs tested except those with n = 8 . The
Purdom - Moore algorithm rapidly became non-competitive as n increased,
The trade-off point was sbout n = 10 .

[Teble 2]
[Pigure 7]

We implemented the bit vector algorithm using a set of procedures
for manipulating multi-precision bit vectors. (Algol W allows bit vectors
only of langth 32 cor less.) Table 3 gives the running time of this
algoritim on the second series of test graphs, and Pigure 8 compares the
running times of the bit vector algorittm and the sophisticated varsion
of our algoritim. The speed of the bit vector algorithm varied depending
mmmammrmmummnmmm
fast algoritim,

19

[Table 3]
[Figure 8]

There are several ways in which the bit wvector algorithm can be made
more competitive. First, the bit vector procedure:s can be inserted
in-line to save the overhead of procedure calls, We made this change and
observed a 33 - 454 speed-up. The corresponding change in the fast
algorithm, inserting LINK and EVAL in-line, produced a 20% speed-up.

These changes made the bit vector algorithm almost as fast as our algorithm
on graphs of less than 32 vertices, but on larger graphs the bit vector
algoritim remained substantially slower than our algorithm. See Table 1,
Teble L, and Figure 9.

[Table 4]

(Figure 9]

Second, the bit vector procedures can be written in assembly language.
To provide a falr comparison with the fast algorithm it would be necessary
to write LINK and EVAL in assembly language. We did not txry this approach,
but we believe that the fast algorithm would still beat the bit vector
algoritim on graghs of moderate size.

Third, use of the bit vector algorithm can be restricted to graphs
known to be reducible, On a reducible gragh only one pass of the bit
vector algoritim is necessary, because the only purpose served by the
second pass is to prove that the bit vectors don't change, a fact
guaranteed Dy the reducibility of the graph. Ve delieve that a ne-pass
in-line bit vector algoritim would de campetitive with the fast algoritim
on reducible graphs of moderate sisze, dut oaly if one ignores the time
needed to test reducidbility.

The bit vector algorithm has two disadvantages not possessed by the
fast algorithm, First, it requires 0(n2) storage, which may be
prohibitive for large values of n . Second, the dominator tree, not
the dominator relation, is required for many kinds of global flow analysis
[8,14], but the bit vector algorithm camputes only the dominator relation.
Camputing the relation from the tree is easy, requiring constant time per
element of the relation or 0(n) bit vector operations total. However,
camputing tne tree from blt vectors encoding the relation requires O(ne)
time in the worst case,

We can summarize the good and bad points of the three algoritims as
follows: the Purdom - Moore algorithm is easy to explain and easy to
program but slow on all but small graphs. The bit vector algorithm is
equally easy to explain and program, faster than the Purdom - Moore algorithm,
but not competitive in speed with the fast algoritim unless it is run an
small graphs which are reducible or almost reducible, The fast algorithm
is much harder to prove correct but almost as easy to program as the cther
two algorithms, competitive in speed on small graphs, and mich faster on
large graphs. We favor same version of the fast algorithm for practical
applications,

We conclude with a few camments on ways to improve the efficiency of
the fast algoritlm., One can speed up the algoritim by rewriting DFS and
COMFRESS as non-recursive procedures vhich use explicit stacks. One can
avoid using an suxiliary stack for COMPRESS by instead using & trick of
reversing ancestor pointers; see [12]. A similar trick allows one tc avoid
the use of an suxiliary stack for DFS. One can save same additional storage
by combining certain arrays, such as Jepent and sncestor. These mdiﬁcatiqu
save running time and storage space, but culy st the expense of progrea clarity.

21

Appendix A: Graph-Theoretic Terminology.

A directed graph G = (V,E) consists of a finite set V of

vertices and a set E of ordered pairs (v,w) of distinct vértices,
called edges. If (v,w) is an edge, w 1is a successor of v and v
is a predecessor of w . A graph G, = (Vl, ETL) is a subgraph of G
if \'1<_'._'V and F'_LEE‘ Apath p of length k fram v to w

in G 1s a sequenca of vertices p= (v = VyrVyresesVy = W) such that

1 k
(vi,vi+1) eE for 0<i<k. The path is simple if v,,...,v, are
distinct (except possibly Vo =V) and the path is a cycle if Vo =V
By convention there is a path of no edges from every vertex to itself
but a cycle must contain at least two edges. A graph is acyclic if it
contains no cycles. If p; = (u= UpUyseeesy = V) 15 a path from u
to v and p = (v= Vo VyseeasV, = w) i1s a path from v to w, the
path p, followed by p, is p = (u= UgslyseoesUy = Vom VouViseeasV, = w) .

A flow gragh G = (V,E,r) is a directed graph (V,E) witha

distirguished start vertex r such that for any vertex veV there is
a path from r to v . A program flow graph is a flow graph such that

eact vertex has exactly two successors. A (directed, rooted) tree

T = (V,E,r) 18 a flow graph such that |E| = |V|-1 . The start vertex
r 1s the root of the tree, Any tree is acyclic, end if v 1is any vertex
in a tree T , there iz a wmique path from r to v . If v and w

are vertices in a tree T and there is apath from v to v, them v is
en ancestor of v and v is a descendant of v (denoted by v:v). it
in addition v w, then v i3 a proper ancestor of w emd w is a
proper descendant of v (dencted by vivw)e If v:w and (v,w)

is sn edge of T (dencted by v -w), then v is the pegwet of w

and w iz achildof v. In atres each vertex hes & wnigue peremt

(excert the root, which has no parent). If G = (V,E) is a graph
end T = (V',E',r) is a tree such that (V',E') is a subgraph of G

and V=V', then T is a spanning tree of G .

Appendix B: The Camplete Daminators Algorithm,

This apperdix contains & complete listing of both versions of the
dominators algorithm. The algorithm essumes that the vertex set of the

problen graph is V= {v|l1<v<n}.

procedure DOMINATORS (intcger set array succ(l::n); integer r,n;
integer ;&Eﬂ@l::n));
begin
minteger array parent, ancestor, [child,] vertex (1::n);
ix;teger array latel, semi [,size] (0::n);

integer set array pred, Lucket (1::n);

integer u,v,x;
Lo a o o o o

procedurz DFS(integer v);
begin
Wﬁ(v) = n = ntl;
vertex(n) := label(v) := v;
ancestor(v) := [child(v) :=] 0;
fsize(v) := 1;]

fox gach we suee(v) do
if semi(v) s O then parent,v) := v; DPS(w) fi;
ad v to m(wm -
22‘; DF8; -

Rrocedure CM&(inwr v);

if ancestor(sncestor(v)) $ O then
COMPRESS (ancestor(v)); —
if semi(label(ancestor(v))) < semi(label(v)) then
label(v) := label(ancestor(v)) fi;
. ancestor{v) := ancestor(ancestor(v)) 13

integer procedure EVAL(integer v);
gm(v) = O them EVAL := v
elsa COMPRESS(¥); “VAL := lubel(v) f3i;

2k

procedure LINK(integer v,w);
PSPPI L a0 oV V)

ancestor(vw) := v;

stepl: for v := 1 until n do

pred(v) := bw;:t(v) = P, semi(v) := D od;
n := 0;
DFS(r);

[size(0) := label(0) := semi(D) := O;]
£er i =n 2y~ -1 % 2 do
v := vertex(i); =
step2: for each ue pred(v) do
x := EVAL(u); }Eiea_i(x) < semi(v) then semi(v) := semi(x) od;
LINK (parent (v), v);
odd v to bucket(vertex(semi(v)));
stepl: for each we bucket(parent(v)) do
delete w from bucket(parent(v));
u :« EVAL(w);
dom(w) :m= ir semi(u) < semi(parent(v)) then u
sise parent(v) £1 ot ot;

steph: 1 := 2 until n do
v := vertex(i);
if dou(v) ¢ yertex(semi(v)) them dom(v) := dom(dom(v)) od

end DOMINATORS;

The simple version of the algoritim consists of the procedure above,
with everything in brackets deleted. The sophisticated version of the
algoritim consists of the procedure sbove, with everything in breckets
included, and the fallowing procedures swbstituted for EVAL amd LINK,

integer procedure m(umﬁ_ v);
if ancestor(v) = O them EVAL := lebel(v)
else CONFRESS(v); ;
EVAL := 1f semi(label(smosstor(v))) > somi(label(v)) then Lsbal(v)
Sise Jghe) (smoustor(v)) £ f1;

3

procedure m(mtfﬁr v,vw)3
begln integer =;
8 = W3
while semd(label(vw)) < semi(label(child(s))) do
if size(s) + size(child(child(s))) > 2" size(child(s)) then
ancestor(child(s)) := s; child(s) :» child(child(s))
else size(child(s)) := size(s);
s := ancestor(s) := child(s) fiod;
label(s) := label(w);
size(v) := size(v)+ sise(w);
if size(v) < 2" size(v) then s,child(v) := child(v),s fi;
vhile s $0 gg-neutur(-) :» v; 8 := child(s) od
end LINK;

References

(1] W. Ackermann, "Zum Hilbertschen Aufbau der reellen Zahlen," Math.
Ann. 99 (1928), 118-133.

{(2] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and
Compiling: Volume II: Compiling, Prentice-Hall, Englewood Cliffs,
N.J. (1972).

(3] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-
Wecley, Reading, Mass. (1977).

(4] M. 3. Hecht and J. D. Ullman, "A simple algorithm for global data
flow analysis problems," SIAM J. Camput. 4 (1973), 519-532.

[5] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundsmental
Algorithms, Addison-Wesley, Reading, Mass., 1968.

(61 E. 8. Lorry and C. W. Medlock, "Object code optimiszation,"
Comunications ACM 12 (1969), 13-22.

(7] P. W. Purdom and E. F. Moore, "Algorithm h30: immediate predominators
in a directed graph,” Communicstions ACM 15 (1972), TT7-T78.

[8] J. Reif, "Combinatorial aspects of symbolic program analysis,” TR-11-T7,
Center for Research ia Computing Technology, Harvard University (1977).

{9) R. E. Tarjan, "Depth-first search and linear graph algoritims,"

SIAM J. Camputing 1 (1972), 1h6-160,

(10] R. Tarjen, "Finding dominators in directed graphs,” SIAM J. Computing
3 (1974), 62-89.

{11] R. E. Tarjan, "Edge-disjoint spemning trees, daminators, and depth-
firat search,"” Technical Report STAN-C8-Th-A55, Computer Science
Department, Stanford Mniversity (197k).

{12] R. E. Tarjan, "Applications of path compression on balanced trees,”
Technical Report STAN-C8-75-512, Computer Science Dupartment,
Stanford University (1975).

{13) R. E. Tarjen, "Applications of path campression on balanced trees,"
Journal ACM, submitted.

(14] R. E. Tarjan, "Solving path problems on directed grephs,” Techmical
Report STAN-C3-525, Comgputer Science Department, Stemford University
(2975).

OO G 00w

® © ()

Figure 2, Dominatar tres of flow graph in Figure 1.

Figure 3. Depth-first search of flow greih in Figure 1.
80114 edges are spamming tree edges, dashed edges are

non-tree edges,
Pirst nmber in paremtheses is vertex mumber, second
is semi-dominstor.

Flgure k4,

() (3,-) () (8,-)

(») (1) (x) (,2)
(9 -)

(p) (12,8) (p) (12,8)
(20,1)

(L) (13,12) (1) (3,02)

(2) (v)

(a) (11,1)
(0) (12,8)

(1) (13,12)

(e)

Forest maintained by LINK and EVAL during steps 2 and 3 of the
daminators algorithm. (Trees in the forest comsisting of
single vertices are not showm.)
(a) Before vertex H is processed. Candidates for sdam(H)
are 9 = mmber(E) and 1 = min{sdam(v) | B i:TL} .
(b) Before vertex E 1s processed. Candidates for sdom(E)
are 8 o mmber(s) snd 1 = min{sdom(v) |E%v 2E} .
After sdom(E) = 1 is camputed, bucket(B) is waloaded.
At thistime D 1s the only element of bucket(B) .
A 1s the vertex such that sdom(A) = min{sdom(v) |2 %4 2D} .
Since sdam(A) = 1 < 2dm(P) = 8, damm(D) 45 assigned
dom(D) := A . Kote that idm(D) = jdom(A) = R .
(c) After E is processed,

5

30 5

25 4

20

Time

simpl

sophisticated

Figure 5. PRumning times in 10"3 seconds of the simples and sophisticated
versions of the fast algerithm, '

300 "

250 4

200 <

150 -
Time

100 J sophisticated

0

0O 100 200 300 %0 500 60 700 80 900 1000
n

Pigure 6. Running times in 10™> seconds of the simple smd
sophisticated versions of the fast algoritim.

80 1

70 1

Time

20 1

Lo 1

30 J

Purdam - Moore

20 4

10 1 /

Figure 7. Running times in 107> seccnds of the Purdom - Noore algorithm
and the sophisticated version of the fast algorithm. '

3h

L4 passes

701

50 4 ’

Time

passes

361 /

bit vect /{pu ses

o v - v v . v

0 20 ho 60 8 100 120

Figwe 8, Running times in 107 gecomds of Whe DAt vestor algoritim and
the sophisticated version of the fast slgoeithm.
. .

70 ;

60 1 o

4 passes
50 4
40 4
4
"
’I
¢
’
4
30¢ 1 /
/ © passes
, 3 passes
201 K
’ —
’ '/2 passes

in-line bit vector

o | k passes ° 2 passes
[X4 [4
‘l
in-line sophisticated
) + s ¢ + + +
0 20 ko 60 8o 100 120

Figare 9. Raning times in 1073 seconds of the in-lire bit vector
algoritim and the in-line soghisticated version of the
fast algoritim.

%

simple sophisticated simple sophisticated
n min max min max n min max min max
10 2.0 2.1 1.9 2.0 200 | W64 M7.2 36.2 36.4
20 4.3 L.y 3.7 3.9 300 70.1 72.3 55.0 55.7
30 6.2 6.8 5.5 5.8 Loo 98.5 101 74,7 78.1
ko 8.0 8.8 7.1 7.6 500 | 123 125 2.0 $B.7
50 10.5 1.4 8.9 9.6 600 | 150 152 10 120
60 2.k 13,4 10.9 11.6 700 | 175 6L 130 137
70 14,6 15.4 | 12.6 13.1 800 | 214 217 158 167
& 17.% 18,6 | 14.5 15.6 900 | 238 2Ly 173 188
90 20.0 20.2 16.7 16.8 1000 | 263 268 | 192 206
100 | v22.4 22,7 18.0 19.3

Table 1. Running times in 10'5 seconds of the simple and sophisticated
) versions of the fast algorithm (three graphs for each value
of n).

in-line
sophisticated sophisticated Purdaom - Mocre
n min max min max min - max
8 1.7 1.7 1.k 1.5 1.3 1.4
16 3.0 3,2 2.5 2.6 %.6 .7
24 U 4.5 3.6 3.7 10.1 10.3
32 5.8 6.1 L.7 4,8 18.4 18,6
Lo 7.4 7.6 6.0 6.1 29,4 29.6
48 3.8 9.2 7.0 Tk 40.8 k2,5
56 10 11 8.0 8.8 56.5 58.2
6L 12 13 9.3 10.0 74,3 5.5
72 15.2 13.8 10.3 10.9
80 1k.9 15.1 11.8 12.0
8% 16.5 7.k 3.0 3.9
26 17.7 17.9 14,0 4.5
104 19.3 20.4 15.4 16.4
112 19.9 20,6 15.9 16.7
120 22,3 23.4 7.7 19.0
128 23.5 23.8 18.7 19.2

Table 2. Running times in 10-3 scconds cf the Purdom - Moore algorithm
and the sophisticated version of the fast algorithm (three
graphs for each value of 1),

bit vector

n time passes time ©passes time opasses
8 3.2 3 3.4 3 3.4 3
16 6.3 3 6.3 3 6.4 3
2k 9.3 3 9.k 3 9.5 3
32 12,k 3 12.k 3 5.7 L
Lo 12,8 2 12.9 2 17.3 3
48 20.9 3 20,9 3 21.0 3
56 2h.3 3 24.3 3 24.3 3
64 27.9 3 28.2 3 28.2 3
T2 25.6 2 35.1 3 35.5 3
80 28.6 2 39.2 3 39.6 3
88 43,7 3 43.8 3 L1 3
96 46.6 3 W7.7 3 47.7 3
104 40.6 2 41.0 2 56.0 3
12 43,9 2 43.9 2 61.3 3
120 65.9 3 66.0 3 66.6 3
128 70.5 3 T1.3 3 91.5 k
Table 3. Running times in 1072 seconds and mumber of passes

of the bit vector algoritim (three grsphs for each

value of n).

39

in-1line bit vector

n time passes time passes time passes
8 ~ 8 3 1.8 3 1.9 3
16 33 3 3.b 3 3.4 3
2k 4.9 3 5.0 3 5.1 3
32 6.4 3 645 3 7.9 L
Lo TT 2 T.T 2 10,1 3
L8 12.1 3 12.2 3 12.4 3
56 14,2 z 14,2 3 1,2 3
6t 16.1 3 16.3 3 16.3 3
72 16,8 2 2.k 3 22.7 3
80 18.4 2 24,7 3 24,8 3
88 2r.1 b 2745 3 27.8 3
96 29.5 3 29.6 3 29.8 3
10L 27.1 2 27.2 2 38.1 b
112 30.4 2 30.8 2 41,5 3
120 k4,0 3 Lk,1 3 44,3 3
128 k6.5 3 46.9 3 60.6 'Y

Table i. Running times in 10~ secands and mmber of passes

of tke in-line bit vector algorithm (three graphs for

each value of n).

