
mma ow qr

? by
ADAGSYIYy (7% TN

/ r : Q 2°©

COMPUTER SCIENCE DEPARTMENT
School ofHumanitiesand Sciences

Eo \potty-76—C =Pk; YASENes 25-247)

A
REPORT DOCUNENTATION PAGE

YE PORT NUM 2. GOVT ACCESSION NO

CS =e SO

8. TITLE (and Subtitle) S. TYPE OF REPOAT& PEMOD COVERED

rhaaiys o> A TUB LYN
7 Fast (a SCad Ne. LVI SRV Lem vvocvony wn 6. PERFOMMING ORG. REPORT NUMBER

an Row Cutan [WAN Ca 16 who
7 AutTwONe . CONTRACT OR GRANT NUNBENR(0)

{

Twemas hen aa h 2 oat “ory ann Noey -1e -C ~LoS9
| 4

. PERFOMMNNG ORGANIZATION NAME ANC ADDRESS ne. Po RAM E ¥. PROJECT. J ASK

- ror dU: ¢ TN AREA& BORK UNIT NUMIEWSCo vwy “we

“wtasadecd CA Coq
1). CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

-— . Mach ATE
Ny we ER PAaLr 19. NUMBER OF PAGES
Dtandhoch CA

To TTTTYL
RET MOU T10n STATEMENT (of Bis Rapest)

7 METIS." .0u STATEMENT (af the sdotvast catered In Bleck 30, N¥ Siissent en Report)

| ars pe lengamerA MGest A. Tanjes
Bie paper pounente & ft fr finding dopinstess is + few ie

the mie of ope wie ie the meas of vErttens tn the PoNEE Sr [|
SPhialina Spiammistion sus val) Sun, Wasee ie o Esk‘ ennl SaTAGNS

I « SHE S3gaap fp

TINT SELLPELE
Hi FHHHENE
TH i SEH HHI >
[FTE HRHTHTH TPg 4 tH THEI TATE| 3 i Els HI alr pf - ¥

SEH ERIE HEpgfic¥ea. Fgh fF

i | ' AHEAUHIT i ;
th i Hitt HH 3

1. Introduction.

The followinggraph problem arisesin the study of globalflow

analysis and program optimization [2,6]. let Gs (V,E,r) be a flow

graph with start vertex r J A vertex v dominates another vertex

wgv in G if everypath fraw r to w contains v. Vertex v

is the immediate dominator of w , denoted v = idom(w), if v

dominates wv and every other dmxinator of w dominates v .

Theorem1 [2,6]. Every vertex of a flow graph G = (V,E,r) except r

has a uaique immediate dominator. The edges {(idom(w),w) | we V-{r}}

Zomm u directedtree rooted at r , called the daminstortree of G,

such that v dominatss vw if and onlyif v is a proper ancestor

of w in the dominatortree, fee Figures1 apd ~.,

(Figure1)

[Pigare2]

We wish to construct the dominator tree of an arbitrary flow greph G .

Aw and Ullmen (2) amd Purdon and Moore (7] describe a straightforward

algorithmfor solving this problem. Por each vertex v¢ r , we carry

out the followingstep:

Quneral Step: Determine,by means of a search fram r , theset § of

vertices reachebls fram »r YWJothswhich svadd v, The

verticesin V-{v]}-8S are emactlythoee which v Aacminates,

Rculing the set of vortices dsndngbed by cash vertem, it is an cosy matter

to canstrustthe Gmminater tree.
PromReRSRRRESIEREREEEEEER REAR AE ARR AR A RS CC CS

Y ppentiz A ewrteins the graph-thseretis terrinelogy used in this paper.

?

To analyze the running time of this algo ithm, let us aasume that

G has m edges and n vertices. Each execution of the general step

requires O(m) time, and the algoritim performs n-. executions of the

general step; thus the algorithm requires O(mn) time total.

Aho and Ullman [3] describe another simple algorithm for computing

dominators. This algorithm manipulates bit vectors of length n . Each

vertex v has a bit vector which encodes a superset of the dorinators

of v . The algoritim makes several passes over the graph, updating

the bit vectors during each pass, until no further changes to the bit

vectors occur, The bit voctor for each vertex v then encodes the

dominators of v .

This algeritim requires O(m) bit vector operations per pass for

O(n) passes, or O(mm) bit vector operations total. Since each bit

vector operation requires O(n) time, the mumning time of the algorithm

is O(n°m) . This bound is pessimistic, however; the constant factor

associated with the bit vector operations is very srall, amd on typical

graphs representing real programs the mmber of prsses is small (on

reducible flow graphs [3] only two passes are raquired [4]).

In this paper we shall describes a faster algorithm for solving the

dominators problem. The algorithm uses deplh-first search [9] in

combination vith a data structure for evaluating functions definedom

pethsin trees [13]. We presemt a simple implementationof the algerithm

vhich runs in O(m log n) timeamd a move sophistisated Luplemsmtatiom

which rms in O(m a(mn)) tims, where a(myn) is a fwmetional inverse

of Aclermman's function.

b

The algorithm is a refinement of earlier versions appearing in

(10,11,12]). Although prcving its correctness and verifying its running

time require rather complicated analysis, the algorithm is quite simple

to program and is very fas' in practice. We programmed both versions of

the algorithm in Algol W, » Stanford University version of Algol, and

tested the programs on an IBM 370/168, We compared the programs with

a transcription into Algol W of the Purdom ~ Moore algorithm and with

an implementation of the bit vector algorithm. On all but the smallest

graphs tected our algorithm beat the other methods.

The paper consists of five sections. Section 2 describes the

properties of depth-first search used by the algorithm and proves

several theorems which imply the correctness of the algorithm, Some

kncwledge of depth-first search as described ir [9] and Section 2 of [10]

is useful for understanding this section. Section 3 develops the

algorithm, using as primitives two procedures that manipulate trees.

Section 4 discusses two implementations, simple and sophisticated, of

these tree manipulation priritives. Some knowledge of Sections 1, 2,

and 5 of [13] 1s useful for understanding this section. Section 5

presents our experimental results.

| & Ca

AG IR
4 no AT
S&. ¥

NY
(>

b

2. Depth-First Searchand Dominators.

Suppose we. performa depth-first searchon a flow graph G = (V,E,r)

startingfrom vertex r , and that we mmber the vertices of G from 1

to n as they are reached during the search. The search generates a

spanning tree T rooted at r , with vertices nmmbered in preorder [5].

See Figure3.

[Figure3]

The following paths lemma is sn important property of depth-first

search and ls crucial to the correctness of the dominators slgorithm.

lJeama1 [9]. If v and vw are verticesof G such that

mmber(v) < number(w), then any path from v to w in G must

containa coomon ancestor of v and w in T.

As an intermediate step, the daminators al tori thm camputes a value

for each vertex wyr called its semi-dominator, denotedby sdom(w)

and defineddy

(1) sim(v) = min{mmber(v) | therc is a pathv = Vor Vr eeesVy= ¥ such

that mmber(v,) > mmber(w) for 1 <i <k-1}.

Sce Figure3,

The following lemmas describe some basic properties of semi-dcminators

and immediste dominstors.

Lowme2. Por amy vertex wg r, let v be the vertexsich that

paber(v)« sdga(v) . hes v ds apreper ancestor of + in T.

3

Proof, Let parent(w) be the parent of w in T . Since (parent(w),w) is

an edge of G , by (1) mmber(v) = sdom(w) < mmber(parent(w)) < mmber(w) .

By (1) and the choice of v , there is a path Vv = Vj,Vyse.cosVy = ¥

such that mmber(v,) > mmber(w) for 1 <i <k-1., By Leoma1, same

vertex vy on the path is a coomon ancestor of v and w. But such

a common ancestor v, must satisfy mmber(v,) < namber(v) . This

means i =0, i.e, Vv, =v, and Vv iz a proper ancestor of w. 0O

Lenma3. For any vertex wgr , let v be the vertexsuch that

mumber(v) = sdom(w) . Then idam(w) is an ancestor of v in T.

Proof. The tree path fram r to w containsonly ancestors of w in T.

Thus ijidom(w) 3s an ancestor of w . The path consisting of the tree

path fram r to v followedby a path Ve VpVyseeasVy = W such that

number (v,) > mmber(w) for 1<i<k-1 (which must exist by (1))
avoids all proper descendants of v which are also proper ancestors

of w, It follows that idom(v) is an ancestorof v.

*

Corollary1. For any vertex wg r, idom(w) -w.

Lemma4, Let vertices v,wv satisfy viw in T. Then v > 1aam(w)
*

or idom(w) - 1dem(v) .

Proof. let XxX De any proper descendantof idom(v) whichis also a

proper ancestor of v. By Theorem 1 and Corallary1, thereis a path

fram r to v which avoids x. By concatenatingthis path with the

tree path from v to ww, we obtain a path fram r ¢t0 vw which avoids x.

6

Thus idom(w) must be either a descendant of v or an ancestor of

idom(v) . O

Using Lesmas 1-4, we obtain two results which provide a way to

compute immediate dominators fram semi-dominators.

Theorem 2. let wg r and let v be the vertex such that

mmber(v) = sdam(w) . Suppose no vertex u satisfies

mmber(u) > mmber(v) , u ~w, and sdom(u) < sdam(w) . Then

idai(w) = v .

Proof. By Lemma 3, 1t suffices to show that v dominates w . Consider

any path fran r to w. Let x be the last vertex on this path

satisfying number (x) < mumbher(v) . If there is no such x, then var

dominates w . Otherwise, let y be the first vertex following x on

‘the path and satisfying v ot y Sw All vertices z following x on

the path but preceeding y must satisfy z >y by Lemma 1 and the

choice of x and y . Thus sdom(y) < mmber(x) < mmber(v) = sdam(w) .

By the hypothesis of the theorem, y cannot be a proper descendant of v .

Tus y= v and v lies on the path, Since the path selected was

arbitrary, v dominates w. (

Theorem3. let wgr and let v be the vertexsuch that

mmber(v) = sdom(w) . Let u be a vertex for which sdom(u) is minis

among vertices satisfying mmber(u) > muber(v) and wu fw. Then

sdou(u) < sdom(w) and idom(u) = idam(w) . |

T

EE —————

Proof. Let x be the vertex such that v -x »w . Then

sdam(u) < sdom(x) < mmber(v) = sdom(w) .

By Lemma 3, ldom(w) is an ancestor of v and thus a proper

ancestor of u . Thus by Lemma 4 idom(w) % 1dom(u) . To prove

idom(u) = idom(w) , it suffices to prove that idom(u) dominates w .

Consider any path from r to w. Let x be the last vertex an

this path satisfying number(x) < mmber(idam(u)) . If there is no

such x , then idom(u) = r dominates w . Otherwise, let y be the

first vertex following x on the path and satisfying idam(u) ~ y wv.

All vertices 2z following x on the path but preceding y satisfy

number(z) > number(y) by Lemma 1 and the choice of x and y. Thus

sdom(y) < number(x) . Since number(idom(u)) < sdom(u) by Lemma 3, we

have sdom(y) < mmber(x) < mmber(idom(u)) < sdam(u) .

By the definition of u, y camot be a proper descendant of v .

Furthermore y cannot be both a proper descendant of idom(u) and an

ancestor of u, for if this were the case the path consisting of the

tree path from r to sdom(y) followed by a path sdom(y) = VgrVareeesVy my

such that mmber(v,) > mmber(y) for 1 <4 <k-1 followed by the tree

path froz y to u would avoid idam(u) ; but no path fram r to u

avoids idom(n) .

The only remaining possibility is that idom(u) = y . Thus idam(u)

lies on the path fram r to vw. B8incethe path selectedwas arbitrary,

1dom(u) dominates wv. 0 : |

| .

Corollary 2. Let wg r and let v be the vertex such that

number(v) = sdam(w) . Iet u be a vertex for which sdam(u) is

minimm among vertices satisfying number(u) > number(v) and wu tw.
Then

v if sdom(w) = sdom(u) ,

idom(u) otherwise,

Proof, Immediate from Theorems 2 and 3. [OO

The following theorem provides a way to compute semi-dominators.

Theorem 4, For any vertex ws r,

(3) sdan(w) = min({number(v) | (v,w) ¢ E and mmber(v) < number (w) }

U {sdom(u} | number(u) > number(w) and there is

edg- v.w) such that u Vv in T}) .

Proof. Tet { equal the right side of (3). We shall first prove that

sdom(w) < f . Suppose { = mmber(v) for some vertex v such that

(v;w)€E and pumber(v) < mmber(w) . By (1) sdom(w) < tf . Suppose

on the other hand { = sdom(u) for some vertex u such that

nmber(u) > mmber(wv) and there is an edge (v,w) such that u Av .

let x be the vertex such that number(x) = sdom(u) . By (1) there is

apath x = VosVyseeesVy, = U such that maber(v;) > number(u) > nubar(w)

for 1<1< Jj-1. The tree path UeVy=Vyy “cee =Vga=V
satisfies mmber(v,) > mmber(w) > mmber(w) for J <i <k-1. Thus

the path x = Vo VireesVp1 = Vy Vy= VW satisfies mmber (v,) > mmber(w)
for 1 <41<k-1, ny (1), sacm(v) < puber(x) « sdom(u) = 2,

/ 9

It remains for us tc prove that sdam(w) > 2. Let x be the

vertex such that mmber(x) = sdom(w) , and let x = VgrVy resVy = W

be a simple path such that number (v,) > mumber(w) for 1l< 2 <k-1.

If k=1l, (x,w)eE, and number(x) < number(w) by Lemma2, Thus

sdom(w) = mmber(x) > f . Suppose on the othe: hand that k > 1 .

Let J be minimm such that J >1 and v, =v, . Suwcha J exists
since k-1 1s a candidate for J.

We claim number (v,) > number (v,) for 1<31<Jj-1. Suppose to

the contrary that mumber(v,) < number (v, } for some i in the range
1<i1<J-1. Choose the i such that 1<1i< J-1 and mmber(v,)

is minimm, By Lemma 1, vy ot vy » which contradicts the choice of J .
This proves the claim,

The claim implies sdom(w) = mmber(x) > sdom(v,) > 1. Thus
whether k=1 or k >1 we have sdam(w) > f , and the thecremis

true, 0

10

3. A Fast Dominators Algorithm.

Tn this section we develop an algorithm which uses the results in

Section 2 to find damingtors. Earlier versions of the algorithm appear

in [10,11,12]); the version we present is refined to the point where it is

as simple to program as the straightforward algoritim [2,7] or the bit vector

algorithm [3,4], similar in speed on small graphs, and much faster or large graphs.

The algorithm consists of the following four steps.

Step1. Carry out a depth-first search of the problem graph. Number

the verticesfram 1 to n as they are reached during the

search, For each vertex vw , determine the set pred(w) of

vertices v such that (v,w) is an edge and the vertex

parent(vw) which is the parentof w in the spamming tree

generated by the search. Initialize the variables used in

succeeding steps.

Step2. Compute the semi-dominators of all verticesby applying Theorem kL,

Carry out the computation vertex-by-vertex in decreasing order

by mmber.

Step3. Dmplicitly define the immediate dominator of each vertex by

applying Corollary 2.

Stepb. Explicitly define the immediate dominator of each vertex, carrying

out the computation vertex-by-vertex in increasing order by

mmber.

Here is an Algol-like version of Step l.

stepl: n = 0} |
for each veV do pred(v) := §; semi(v) = 0 od;

ws(r); g

Ec

Step 1 uses the recursive procedure DFS, defined below, to carry

out the depth-first search. The procedure assumes that suce(v) is

the set of vertices w such that (v,w)eE . When a vertex v receives

a number 1 , the procedure assigns semi(v) := 1 and vertex(i) := v .

procedure DFS(vertex v);

begin
semi(v) := n := n+l;

vertex(n) := v;

comment initialize variables for steps 2, 3, and k;

for each we succ(v) do |

if semi(w) = O then parent(w) := v; DFS(w) ri;
add v to pred(w) od

end DFS;

After carryingout Step 1, the algorithm carries out Steps 2 and 3

simultaneously, processing the vertices v ¢ r in decreasing order by mmber.

When processinga vertex v , the algorithm comgutes sdom(v) by applying

Theorem 4. Each edge (u,v) is examined. If mmber(u) < mmbex(v) ,

number(u) is a candidate for sdam(v) . If mmber(u) > mgmber(v) , the

algorithmfinds a vertex x of minim sdop(x) among vertices satisfying

mmber(x) > mmber(v) amd x =u sdon(x) 13 o camtidetefor

sdam(v) . The minimum of all the candidatesis sdgp(v) . After

computing sdom(v) , the algorithm assigas segi(v) := sicn(v) end adds

vertex v to the set bLucket(u), where u is the vertexswh that

mmber(u)= sdou(v) . This completesStep 2 for v. Wetethat defere

sdom(v) is found, oqui(v)« mgher(v) , ad after gdglv) is femd,

seni(v) = sdom(v) .

x

Aft -r the semi-domdunitor of v is computed, the algorithm empties

bucket (parent(v)) . For each vertex we bucket (parent(v)) , the algorithm

finds a vertex u of minimuwe sdom(u) among vertices satisfying

number(n) > pumber(parent(v)) and usw . If sdom(u) = sdom(w) ,

then by Corollary2 the immediate dominatorof w is perent(v) , and

the algoritim assigns dom(v) := paremnt(v) . If sdam(u) < sdom(w) ,

then by Corollary2, u and w have the same immediate dominator, and

the algorithm assigns dom(w) :=s u , The intent of this assignment

is to implicitly define the immediagte dominator of w to be the

immediate dominator of a vertex with smaller semi-dominator than vw.

This completes Step3 for vertices we bucket(parent(v)) .

Both Step 2 and Step 3 require dstermining, for certain paths vow

in the spanningtres, a vertex u on the path v — wv having minimm

sdam(u) . To find such vertices the algorithm uses a method described

in [10]. The algoritim maintains a data structure which represents a

forestwith vertex set V and edge set {(parent(v),v)| sdom(v) has been

computed]. To manipulate this dsta structure, the algorithm uses two

procedures:

LINK(v,w): MA edge (v,¥) to the forest.

EVAL(v) ; If v is the root of a tree in the forest, retum v.

Othervise,let r de the root of the tree in the forest

which contains v. PMotwrna vertex ufr of minim

sdon(s) on the path r =v in the forest.

3 |

Here is an Algol-like version of Steps Zz and 3 which uses LINK

and EVAL.

camment initialize variables;

for 1 t= n by -1 until 2 do
v := vertex(i);

stepe: for each ue pred(v) do
Xx := EVAL(u); it semi (x) < semi(v) then semi(v) := semi (x) od;

LINK(parent(v),v);

add v to bucket (vertex(semi(v));

stepd: for each we bucket(parent(v)) do
delete wv from bucket (parent(v));

u := EVAL(w);

dom(w) := ir semi (u) < semi (parent(v)) them u
else parent(v) fi od od;

Step 4 examines vertices in increasing order by mmber, filling in

the immediate dominators not explicitly computed by Step 3. Here is an

Algol-1like version of Step k,

steph: for1 := 2 wntil n do
v := vertex(i);

if dom(v) ¢ vertex(semi(v)) then dam(v) :e dom(dam(v)) od;

This caspletes our presentation of the algoritim except for the

implementationof LINK and EVAL. Pigare hb illustrateshow the algorithm

works.

(Figure A]

Appendix B contains a complete Algol-liks versien of the algaritim,

including variable declarations asd initialisation. Using Thesrem § smd

Corollary 2 it 1s not hard te prove thet, after emeutienof the algorithm,

pV|

dom(v) = idom(v) for each vertex v ¢ r , assuming that LINK and EVAL

perform as claimed. The running time of the algorithm is O(m+n)

plus time for n-1 LINK and m+n-1 EVAL instructions.

J

4. Implementation of LINK and EVAL.

Reference [13] provides two ways to implement LINK and EVAL, cue

simple and one sophisticated. We shall not discuss the details of these

methods here, but merely provide Algol-like implementations of LINK and

EVAL which are adapted fram [13].

The simple method uses path compression to carry out EVAL. To

represent the forust built by the LINK instructions (henceforth called

the forest), the algorithm uses two arrays, ancestor and label,

Initially ancestor(v) = O an. label(v) = v for each vertex v .

In general ancestor(v) = O only if v is a tree root in the forest;

otherwise ancestor(v) is an ancestor of v in the forest.

The algoritim maintains the labels so that they satisfy the following

property. Let v be any vertex, let r be the root of the tree in

the forest containing v, and let v = Vr Vy12e°°2Vg = T be such

that ancestor(v,)sv, , for 1<i<k. lst x be a vertexsuch

that sdom(x) is minimm among vertices xc {lsbel(v,) |1<i<k}.
Then

(#) x is a vertex such that sdom(x) is minimumamong vertices x

satisiying rox tv in the forest.

To carry out LINK(v,w) , the algorithm assigns amcestor(v) := v.

To carryout EVAL(Y) , the algorithm follows mcestor pointers to

determine the sequence vs Vr VyypeeerVg= TF such that

mcestor(v,)=v, , for 1<i<k. If var, v is retwued,

Otherwise, the algoritim performs a pathoggprsegicn by assigning

moestor(v,) =r for s<1<k, wisting labels to maintain (0).

he Jahel(v) is returned. Neve is an Algel-iide procefure fur EVAL.

7 J

vertex procedure EVAL(v);

if ancestor(v) = O then EVAL := v

else COMPRESS(v); EVAL := label(v) fi;

Recursive procedure COMPRESS, which carries out the path compression,

is defined by

procedure COMPRESS(v);

coment this procedure assumes ancestor(v) ¢ 0;

if ancestor(ancestor(v)) ¢ O then
COMPHRESS(ancestor(v));

if semi (label (ancestor(v))) < semi(label(v)) then
label(v) := label (ancestor(v)) fi;

ancestor(v) := ancestor(ancestor(v)) fi;

The time required for n-1 LINKs and wmin-1 EVALs using this

implementation is O(m log n) [13]. Thus the simple version of the

dominators algorithm requires O(m log n) time,

The sophisticated method uses path compression to carry out the

EVAL instructions but implements the LINK instruction so that path

compression is carried out only on balanced trees. See [13], The

sophisticated method requires tso additional arrays, size and child.

Initially size(y) = 1 and child(v) « O for all vertices v . Here

are Algol-like implementations of EVAL and LINK using the sophisticated

method. These procedures are adapted fram [131].

bv4

EE

vertex procedure EVAL(V);
comment procedure COMPRESS used here is identical to that in the

simple method; |

if ancestor(v) = 0 then EVAL := label(v)
else COMPRESS(v);

EVAL := if semi(label(ancestor(v))) > semi(label(v)) then label (v)
else label (ancestor(v)) fi ri;

procedure LINK(v, Ww);
begin

comment this procedure assumes for convenience that
size(0) = label(0) = semi (0) = 0;

8 im Wj

while semi(label(v)) < semi(label(child(s))) do

i? size(s) + size(child(child(s))) > 2* size(child(s)) then
parent (child(s)) := 8; child(s) := child(child(s))

else size(child(s)) := size(s);

8 := parent(s) := child(s) fi od;
label(s) := label(w);

size(v) := size(v)+ size(w);

1f size(v) < 2" sise(v) then s,child(v) := child(v),s fi;
while s 4 O do parent(s) = v; 8 := child(s)od

ed, LON;

With this implementation, the time required for p-1 LINKs and mén-l

EVALs is O(m a(myn)) , where a is a functional inverse of Ackermann's

function [1], defined a3 follows, Yor integers 1,J > 0, let A(4,0) = O

it 1>0, AO) =2 1f 331, A(L1) = A(1-1,2) if 121,
ad A(3,3) = A(1-L,A(4,3-1)) if 1 >1, J2>2, Them

amen) = min{i >1|A(i,|2m/n]) > log, un} . Thus the sophisticated

version of the dominstors elgoritim requires O(m a(mn)) time.

38

5. Implementation and Experimental Results.

We translated both versions of the algorithm as contained in

Appendix B into Algol W and ran the programs on a series of randomly

generated program flow graphs, Table 1 and Figures 5 and 6 illustrate

the results. The sophisticated version beat the simple version on all

graphs tested. The relative difference in speed was between 5 and 25%,

increasing with increasing n .

[Table 1]

[Figure 5)

[Figure 6)

We transcribed the Purdom - Moore algorithm into Algol W and ran it

and the sophisticated version of our algorithm on ancther series of

program flow graphs. Table 2 and Figure 7 show the results. Our algorithm

was faster on all graphs tested except those with n = 8 . The

Purdom- Moore algorithm rapidly became non-competitive as n increased.

The trade-off point was about n= 10 .

{Table 2]

[Figure 7]

We implemented the bit vector algorithm using a set of procedures

for manipulating multi-precision bit vectors. (Algol W allows bit vectors

only of langth 32 cr less.) Table3 gives the rumning time of this

algorithmom the second series of test graphs, and Figure 8 comparesthe

running times of the bit vector algoritts and the sophisticated version

of our algoritim. The speed of the bit vector algorithm varied dspending

vpon the mmber of passes required, but it was alwys slower than the

fast algorithm.

19 | |

[

[Table 3]

[Figure 8] |

There are several ways in which the bit vector algorithm can be made

more competitive. First, the bit vector procedures can be inserted

in-line to save the overhead of procedure calls. We made this change and

observed a 33 - 454 speed-up. The corresponding change in the fast

algorithm, inserting LINK and EVAL in-line, produced a 20% speed-up.

These changes made the bit vector algorithm almost as fast as our algorithm

on graphs of less than 32 vertices, but on larger graphs the bit vector

algorithm remained substantially slower than our algorithm, See Table 1,

Table i, and Figure 9g.

[Table 4]

[Figure 9]

Second, the bit vector procedures can be written in assembly language.

To provide a fair comparison with the fast algorithm it would be necessary

to write LINK and EVAL in assembly language. We did not try this approach,

but we believe that the fast algorithm would still beat the bit vector

algorithm on graphs of moderate size. :

Third, use of the bit vector algorithm can be restricted to graphs

known to be reducible. On a reducible graph only one pass of the bit

vector algoritim is necessary, because the only purpose served dy the

second pass is to prove that the bit vectors dom‘'t change, a fact

guaranteed by the reducibilityof the graph. Ve believe that a me-pass

in-line bit vector algoritim would de competitive with the fast algorithm

on reduciblegraphs of moderate size, Dut oaly if one ignores the time

needed to test reducibility. |

20

The bit vector algorithm has two disadvantages not possessed by the

fast algorithm. First, it requires o(n°) storage, which may be

prohibitive for large values of n . Second, the dominator tree, not

the dominator relation, is required for many kinds of global flow analysis

[8,14], but the bit vector algorithm computes only the dominator relation,

Camputing the relation from the tree is easy, requiring constant time per

element of the relation or O(n) bit vector operations total. However,

canmputing the tree from bit vectors encoding the relation requires 0(n°)

time in the worst case,

We can summarize the good and bad points of the three algoritims as

follows: the Purdom- Moore algorithm is easy to explain and easy to

program but slow on all but small graphs. The bit vector algorithm is

equally easy to explain and program, faster than the Purdom- Moore algorithm,

but not competitive in speed with the fast algorithm unless it is run an

small graphs which are reducible or almost reducible. The fast algorithm

1s much harder to prove correct but almost as easy to program as the other

two algorithms, competitive in speed on small graphs, and much faster on

large graphs. We favor same version of the fast algoritim for practical

applications,

We conclude with a few comments on ways to improve the efficiency of

the fast algoritlm. One can speed up the algorithm by rewriting DFE and

COMPRESS as non-recursive procedures vhich use explicit stacks. One can

avoid using an auxiliary stack for COMPRESS by instead using a trick of

reversing ancestor pointers; see [12], A similar trick allows one tc avoid

the use of an auxiliary stack for DFS. One can save same additional storage

by combining certain arrays, such as parent and smcestor. These modifications
save running time and storage space, but caly at the expense of progrea clarity.

21

Appendix A: Graph-Theoretic Terminology.

A directed graph G = (V,E) consists of a finite set Vv of

vertices and a set E of ordered pairs (v,w) of distinct vertices,

called edges. If (v,w) is an edge, w is a successor of v and Vv

is a predecessor of w . A graph G, = (Vy E,) 1s a subgraph of G

if V,cV and By CE . Apath p of length k fram v to w

in GC is a sequenca of vertices p= (Vv = VgrVyreeerVy = w) such that

(V53V541) eE for 0<1i<k. The path is simple if v,,...,v, are

distinct (except possibly Vo = Vy) and the path is a cycle if Vg = Vy

By convention there is a path of no edges from every vertex to itself

but a cycle must contain at least two edges. A graph is acyclic if it

contains no cycles, If p, = (u = Vyr Uys eeesly, = v) is a path from u

to v and p = (v= Vg VyreeesV, = wv) 1s a path from v to w, the

path p, followed by P, is p= (u= UgpUyserosUy = Vom VuVise00sV, = wv) .

A flow graph G = (V,E,r) is a directed graph (V,E) with a

distirguished start vertex r such that for any vertex veV there is

a path fram r to v. A program flow graph is a flow graph such that

each vertex nas exactly two successors. A (directed, rooted) tree

T= (V,E,r) 1s a flow graph such that |E| = |V|-1 . The start vertex

r is the root of the tree. Any tree is acyclic, end if v is any vertex

in atree T, there ic awmnmiquepath from r to vv. If v and w

are verticesin a tree T and there is a path from v to wv, them v is

en ancestorof wv and w is a descendant of v (denotedby vou). bb¢
in addition vg w, then v is a proper ancestor of w amd vw isa

proper descendant of v (denotedby viw)s If viw and (v,w)

isaneigeof T (demotedby vw), then Vv is the perent of wv

and w is achildof v. In a tres each vertex hes a wmigue perent

ee

(excert the root, which has no parent). If G = (V,E) is a graph

and T= (V',E',r) is a tree such that (V',E') is a subgraph of G

and V=V', then T 1s a spanning tree of G.

Cy)

Appendix B: The Camplete Daminators Algorithm,

This apperdix contains a complete listing of both versions of the

dominators algorithm. The algorithm assumes that the vertex set of the

problem graph is V= {v|1<v <n}.

procedure DOMINATORS(intcger set array succ(l::n); integer r,n;

integer array dom(l::n));

begin

integer array parent, ancestor, [child,] vertex (1::n);

integer array latel, semi [,size] (0::n);

integer set array pred, bucket (l::n);

integer u,v, Xx;

procedurz DFS(integer v);

begin

semi(v) := n := n+l;

vertex(n) := label(v) := v;

ancestor(v) := [child(v) :=] 0;

fsize(v) := 1;]

for each we suce(v) do
if semi(w) « O then parent.v) := v; DFS(w) fi;

add v to pred(w) od

end DFS;

procedure COMPRESS (integer Vv);
if ancestor (ancestor(v)) § O then

COMPRESS (ancestor(v));

ir semi (label (ancestor(v))) < semi (label(v)) then
label (v) := label(ancestor(v)) £1;

~ ancestor{v) :« ancestor(ancestor(v)) i;

integer procedure EVAL(integer v);
if ancestor(v) = O then EVAL :=Vv

else COMPRESS(v); “VAL := ladel(v) 1;

2h

procedure LINK(integer v,w);

ancestor(vw) := v;

stepl: for v = 1 until n do

pred(v) := bucket(v) := fp; semi(v) := © od;
n := 0;

DFS(r);

[size(0) := label(0) := semi(9) := 0;]

for i =n by -1 until 2 do

Stepe: for each uepred(v) do

x := EVAL(u); if semi(x) < semi(v) then semi(v) := semi(x) od;
LINK(parent (v),v);

odd v to bucket (vertex(semi(v)));

step3: for each we bucket (parent(v)) do
delete w from bucket (parent(v));
u := EVAL(w);

dom(w) := if semi(u) < semi (parent(v)) then u
else parent(v) fi od od;

steph: 1 := 2 until n do |
v := vertex(i);

if dom(v) ¢ vertex(semi(v)) them dam(v) := dom(dom(v)) od

end DOMINATORS ;

The simple version of the algoritim consists of the procedure above,

with everythingin brackets deleted. The sophisticated version of the

algoritim consists of the procedureabove, with everythingin breckets

included, and the allowing procedures substitutedfor EVAL amd LINK.

integer procedure FUAL(ixteger v);
if ancestor(v) = O them EVAL := 1lgbel(v)

else CONFRESS(V);
EVAL := if semi(label(smosstor(v))) > semi(iabel(v)) then label(v)

else lshe) (smoestor(v)) £1 £1;

S

procedure LINK(integer v,v);
begin integer =;

while sed (label(v)) < semi(label(child(s))) go
if size(s) + size(child(child(s))) > 2" smise(child(s)) then

ancestor(child(s)) := s; child(s) := child(child(s))

else size(child(s)) := size(s);
s := ancestor(s) := child(s) fi od;

label(s) := label(w);

size(v) := size(v)+ size(w);

if size(v) < 2" size(v) then s,child(v) := child(v),s fi;
vhile s $0 do aneestor(s) = ¥v; 8 := child(s) od

end LINK;

26

ee

References

[1] W. Ackermann, "Zum Hilbertschen Aufbau der reellen Zahlen," Math.

ann. 99 (1928), 118-133.

[2] A. V. Ao and J. D. Ullman, The Theory of Parsing, Translation, and

Compiling: Volume II: Compiling, Prentice-Hall, Englewood Cliffs,

N.J. (1972).

[3] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-

Wesley, Reading, Mass. (1977).

[4] M. 3. Hecht and J. D. Ullman, "A simple algorithm for global data

flow analysis problems," SIAM J. Camput. 4 (1973), 519-532.

[5] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968.
[6] E. 8. Lorry and C. W. Medlock, "Object code optimization,"

Communications ACM 12 (1969), 13-22.

[7] P. W. Purdom and E. F. Moore, "Algorithm 430: immediate predominators

in a directed graph,” Commnicstions ACM 15 (1972), T77-T78.

[8] J. Reif, "Combinatorial aspects of symbolic program analysis,” TR-11-T7,

Center for Research ia Computing Technology, Harvard University (1977).

(9) R. E. Tarjan, "Depth-first search and linear graph algoritims,”

SIAM J. Computing 1 (1972), 16-160,

[10] R. Tarjan, "Finding dominators in directed graphs,” SIAM J.Computing

3 (1974), 62-89.

{11] R. E. Tarjan, "Bdge-disjoint spemning trees, dominators, and depth-

first search,” Technical Report STAN-CS8-Th-455, Computer Science

Department, Stanford Mniversity (197k).

(12] R. E. Tarjan, "Applications of path compression on balanced trees,”

Technical Report STAR-C8-T5-512, Computer Science Departament,

Stanford University (1975).

[153] R. E. Tarjan, "Applications of path compression on balanced trees,"

Journal ACK, submitted.

(14] R. E. Tarjan, "Solving path problems on directed grephs,” Techmical

Report ETAN-CS-520, Computer Science Department, Stamford University

(2975).

4]

 —

&7 .

4p

(R)

OF © (B) BD WwW 0

®» © (1

O

Figure2. Dominator tree of flow graph in Figure 1.

| 29

(1,-)

= (RI —~

J AN
/ \

/ c) (2,1) (8,1) (8) \
\

/ \

(7)G,2) {6)(62) (£) (9:1) \ (A) (1,1)

Vd \
| / \

/

\ 0G — - (6 1), (D) (12,8)

N

\ > ~ 7 N\

Pigure 3, Depth-first search of flow greih in Figure 1.

Solid edges are spamming tree edges, dashed edges are

non-tree edges.

First number in parentheses is vertex mmber, second

is semi dominator.

0

(B) (3,-) (B) (8,-)

(a) (1,1) (1) (1,1)
(9,-)

(p) (12,8) (p) (12,8)
(20,1)

(1) (13,12) (L) (13,32)
(a) (b)

(3) (8,-)

(EE) Ta) an)

(1) (10,1) (D) (12,8)

(1) (23,12)
(c)

Figure i, Forest maintained by LINK and EVAL during steps 2 and 3 of the
daminators algorithm. (Trees in the forest consisting of

single vertices are not shown.)

(a) Before vertex H is processed. Candidates for 3am (i)
are 9 = mmber(E) and 1 = min{sdam(v) |B Lv 21}.

(b) Before vertex E is processed. Candidates for sdom(E)
are 8 = nuber(B) and 1 = min{edom(v) |v ~H) .
After sdom(E) = 1 is computed, bucket(B) is wloeded.

At this time D 1s the only element of bucket (B) .

A 1s the vertex sch that sdam(A)= min{sdom(v) |2 Za 21} .
Since sdam(A) = 1 < edam(P) = 8, dam(D) 4s assigned
dom(D) i= A. Note that idm(D) = idom(A) = R .

(c) After E is processed. :

51

30

25

20

Time

15

simple

10 Sophisticated

5

0

0 10 20 30 LO 50 6 70 80 90 100
n

Figure5. Rumming times in 10° seconds of the simple and sophisticated
versions of the fast algeritim, |

x

300]

250

200

150

Time simple

100 sophisticated

50

0

0 100 200 300 oO S500 600 700 800 900 1000
n

Figure6. Running times in 107 secondsof the simple amd
sophisticated versions of the fast algorithm.

» |

80 |

70

60

50

Time

Lo

30

Purdom- Moore

20

10 J

oo —
o

0 10 Ces; 30n © 2 %

Figure7. Running times in 1070 seconds of the Purdom - Moore algorithm
and the sophisticated version of the fast algorithm.

Q0 | ¢
c I passes

80

70

) /
/

/

50 /
/

Time

” LE passes
passes |

/

/

/

3G /

bityd Apasses
20 JL passes

¢

’’ eo 2 passes

10 Ps sophisticated
0 —y

0 20 hO 60 80 100 120 10
n

Figare8. Ruming times in 1072 seconds of the Mt vertor algoritim amd

T0

60 L passes

50

) yd
7

J
/

J)
30 J

~~ 2passes, 3 passes

20 , _—’

/ —2passes

in-line bitrad
10 L passes° 2 passes

@ ®

2’

a in-line sophisticated
0

0 20 oO 60 80 100 120 1hO

Figare9. Rexing times in 1072 seconds of the in-line bit vector
algoritimand the in-line sophisticated versionof the '

fast algoritim.

simple sophisticated simple sophisticated
n min max min max n min max min max

10 2.0 2.1 1.9 2.0 200 | 46.4 47.2 36.2 36.4

20 4.3 L,Y 3.7 3.9 300 70.1 72.3 55.0 55.7
30 6.2 6.8 55 5.8 LOO 38.5 101 Th.7 78.1
LO 8.0 8.8 T.1l 7.6 500 | 123 125 R.0 PB.T
50 10.5 11.bk 8.9 9.6 600 | 150 152 110 120
60 12.4 13.L 10.9 11.6 700 | 175 161 130 137
70 14.6 15.4 | 12.6 13.1 800 | 21k 217 158 167
80 17.4 18.6 | 14.5 15.6 900 | 238 244 173 188
90 20.0 20.2 16.7 16.8 1000 | 263 268 | 192 206
100 | “22.4 22,7 18.0 19.3

Table 1. Running times in 107 seconds of the simple and sophisticated
versions of the fast algorithm (three graphs for each value

of n),

n

in-line

sophisticated sophisticated Purdom = Moore

n min max | min max min max

8 1.7 1.7 1.4 1.5 1.3 1.4%

16 2.0 3,2 2.5 2,6 L,6 h.7

oy 4h 4.5 3.6 3.7 10.1 10.3

32 5.8 6.1 L.7 4,8 18.4 18,6

40 7.4 7.6 6.0 6.1 29,4 29,6

18 3.8 9.2 7.0 Tok 40.8 42,5

56 10 11 8.0 8.8 56.5 58.2

64 12 13 9.3 10,0 74,3 75.5

Te 15.2 13.8 10.3 10.9

80 14.9 15.1 11.8 12.0

80 16.5 17.4 15.0 13.9

26 17.7 17.9 14.0 14.5

104 19.3 20.4 15.4 16.4

112 19.9 20.6 15.9 16.7

120 224.3 23.4 17.7 19.0

128 23.5 23.8 18.7 19.2

Table 2. Running times in 10° soconds cf the Purdom- Moore algorithm
and the sophisticated version of the fast algorithm (three

graphs for each value of in),

58

bit vector

n time passes time passes time passes

8 3.2 3 3.4 3 3.4 3

16 6.3 3 6.3 3 6.4 3

el 9.3 3 9.b 3 945 3

32 12.4 3 12.4 3 15.7 Lh

40 12,8 2 12.9 2 17.3 3

48 20.9 3 20.9 3 21.0 3.
56 2h,3 3 2h.3 3 24.3 3

64 27.9 3 28,2 3 28.2 3

72 25.6 2 35.1 3 35.5 3
80 28.6 2 39.2 3 39.6 3

88 43.7 3 43.8 bo) Lh.1 3

96 46.6 5 W7.7 3 47.7 py
104 k0.6 2 41.0 2 56.0 3

112 43.9 2 43.9 2 61.3 3

120 65.9 3 66.0 3 66.6 3
128 70.5 3 71.3 3 91.5 L

Table 3. Running times in 10™° seconds and mmber of passes
of the bit vector algoritim (three graphs for each

value of n). |

39

SE

in-line bit vector

n time passes time passes time passes

8 > 8 3 1.8 3 1.9 3

16 3.3 3 Jeb x 3.4 3

2h 4,9 3 2.0 3 2.1 3

32 6.4 3 6.5 3 7.9 L

LO T.7 2 T.7 2 10.1 3

18 12.1 3 12.2 3 12.4 3

56 14.2 z 1h.2 3 14,2 3

és 16.1 3 16.3 3 16.3 3

72 16.8 2 22.4 3 22.7 3

80 18.4 2 24,7 3 24,8 3

88 27.1 3 275 3 27.8 3
96 29.5 3 29.6 3 29.8 5

104 27.1 2 27.2 2 38.1 3

112 50.4 2 30,8 2 41,5 3

120 44,0 3 Lk,1 3 4h,3 3

128 46.5 3 46.9 3 60.6 L

Table 4. Running times in 10™° seconds and muber of passes
of tke in-line bit vector algorithm (three graphs for

each value of n).

o

