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Abstract.

We call attention to the problem of proving lower bounds on

probabilistic Turing machine computations. It is shown that any

probabilistic Turing machine recognizing the language

L={wg¢w|uwe {0,11} with error AM < 1/2 must take Q(n log n)

time.
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1, Introduction.

The idea of including controlled stochastic moves in algorithms has

received considerable attention recently [4,9,10,12], The demonstration

by Rabin [9] and Solovay and Strassen [10}, that fast tests for prime

numbers can be done probabilistically with a small error, raised the hope

that many more problems may allow similar fast algorithms. As in

deterministic computations, a challenging problem is to prove lower

bounds to the computational complexity of specific problems for such

probabilistic algorithms. An investigation for decision tree type models

was initiated in Yao [12], The techniques used there [12], however,

are not applicable te Turing machine computations, for which a number

of lower bound results are known for the deterministic computations

(see, e.g. [5]). In this paper, we call attention to proving lower

bounds in probabilistic Turing machines, by proving a non-linear bound

to a palindrome-like language.

It 1s well known that it takes any deterministic one-tape Turing

machine a(n) steps to recognize the language L = {w ¢ w | we {0,1}

(see, e.g. [5]). A very interesting result of Freivald [3], cited in

Gill's paper [4], states that L can be recognized with a small error

by a one-tape probabilistic Turing machine in time 0(n(log n)?) :

Recently, this bound was improved to O(n log n) by Nick Pippenger [7].

This seems to be the only example known in a Turing machine model where

a provable speed-up 1s achieved, in an order-of-magnitude sense, by

allowing stochastic decisions. The purpose of the present paper is to

show that Q(n log n) -time is also a lower bound to any one-tape

probabilistic Turing machine recognizing I, with a small error (Theorem 4.1).
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. 2. Definitions and Notations.

We first give an informal description of probabilistic Turing machines,

the readers are referred to Gill [4] (and references therein) for more

detailed discussions. A probabilistic one-tape Turing machine (1-PTM) M

consists of a finite control, a read-write head on an infinite l-dimensional

tape, and a random symbol generator (RSG) capable of generating integers 1

between 1 and i, with fixed probabilities Ps - Before each move,

a random symbol 1 is generated by the RSG, and the action of Turing

machine M depends on the current state of M , the symbol on the tape

being read, and the random symbol i . There are three distinguished

states 9 > dq » and ab. The machine starts in 9 (initial state),

. and 1f it halts, it must halt in either 4; (the accepting state) or a,
(the rejecting state). For a given input vv , it is possible that M

will not halt for some infinite sequences of random symbols that are

generated by RSG. We shall restrict ourselves to M which, for any

given input vv , halts with probability 1 (it may still not halt for

sane sequences). For each input v , let B; (v) be the probability

that M halts in state a (i =1,2) . A language L is recognized

| by M with error AM (0 < A < 1/2) , if B,(v) > 1-» for each vel ,

and B, (Vv) > 1-A for each VEL . Intuitively, given an input v on M,

~ 1f we accept or reject v when M halts depending on whether the state

1S q Or aq, then we would be wrong at most with probability MN .



=

We shall now introduce some notations, and give a formal definition

of terms involving probability described in the last paragraph. Let vv be

an 1nput word, and 0 a finite sequence of integers between 1 and 1

generated by RSG that leads to the halting of M, 1.e., M halts

immediately after the last element in 0 Is generated. We say that o

is a decision sequence for v on M . Let A(v) denote the set of all

decision sequences for vv , and A; (v) c A(V) (i = 1,2) be the subsets

consisting of © leading to state q; when M halts. We use o[ J]

for the j-th element in the sequence ¢ , and |o| for the length of o . .

Define P(o0) = Por1] Pof2] . Polo] the probability that the first
|o] random symbols generated by RSG form the sequence 0 . We now

restate some terms defined earlier in these notations. The condition

that M halts for any v with probability 1 means 2s P(e) = 1 ;
0 ¢ Av)

the quantities B; (Vv) are )D P(o) for i = 1,2 . Also, the
oe A, (Vv)

expected number of steps M will make for input v 1s equal to

Ty (Vv) = 2, P(a)elo| (1)
oe A(v)

since |0] 1s the number of steps made when 0 1s the decision sequence

generated. The running time of M for inputs of length n 1s defined

to be the expected number of steps M will make for the worst input of

length n , 1.e.,

T(Myn) = max{T(v) | |v] =n] . (2)

The quantities Ty (V) , T(Myn) may be o .
We assume that the tape cells are numbered consecutively from -o

to ® . Initially, an input v occupies cells 1 to |v] , and the

head points to cell 0 .



, 3 Crossing Sequences, Signatures, Patterns.

Let M be any probabilistic one-tape Turing machine. We develop

some concepts concerning the behavior of M . For convenience, we assume

that M satisfies the following conditions:

Standard-Form 1-PIM: Before 1t halts, the head always moves to the

rightmost non-blank cell, where M enters either dy Or q, - The

machine then stays in the same state while making a full sweep to the

left, and halts at the leftmost non-blank cell. Furthermore, it 1s

assumed that M cannot enter either gq; or q, until this last sweep,

A routine argument shows that any 1l-PTM M can be transformed into an

M' of standard form with T(M',n) = O(T(M,n)+n) .

Crossing Sequences.

We extend the notion of crossing sequences used 1n deterministic

one-tape Turing machines (e.g. [5]). Consider the behavior of M for

inputv and some decision sequence oeA(v) . At the boundary between

the j-th and the j+l -st cells, let o (Vv, g,j) denote the sequence of

states in which M .passes through this position. The length of

p(v,0,3) is denoted by |p(vs0,3)| , which is 0 if p(v,0,3) is the

empty sequence. The expected length of crossing sequence at Jj 1s

- defined as

2(v, j) = 2. P(0)«|p(v, 0,3) ’
oe A(v)

which may be « .

A basic connection between running time and crossing sequences 1S

given by the following lemma.



Lemma 3.1. For any input v , T,(v) > 2] 2(v, 3) .
J

Proof. The lemma is obviously true 1f T,,(v) = © ; we therefore assume

that Ty (V) is finite. For each o0eA(v) , the number of steps taken is
at least as large as the sum of the lengths of all crossing sequences. Thus,

lo] > 22 |p(v, 0,3)| . -
J

By definition,

hv) = 2 P(o)elo] > ZL ZP(9)|p(v,0,5)| = 7 i(v,3)
oc Av) ceAlv) J J

where 1n the last step we have changed the order of summation of an

absolutely convergent double series (see, e.g. [1l, p.28, Example 1]). [OO

Signatures and Patterns.

Tet Q — {57930955 0-05 a,] be the set of states, and [ be the set

of tape symbols used by M . DenoteQ - {q;, as } byQ' .

Suppose during the computation process of M , the following

configuration 1s encountered. A word uel™ is on the tape from the

j+l -st cell to (j+|u|) -th cell, and all cells to the right of u

are blank (see Figure 1 top). The machine M 1s 1n state s , and

its head 1s just crossing from the j-th to the j+l -st cell.

cell 7 word u blanks

a — f — — — —

=

cell jJ word z blanks

EE ES — Ee
(od
t

Figure 1. Illustrationfor g(s,u;t,z) .
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We are 1nterested in the situation when M comes back crossing from

2

the Jj+l =-st cell to the j-th cell for the first time. As M is not

deterministic, the state M 1s in and the contents of cells at this

time may not be unique. We shall use g(s,u;t,z) , Where teQ , ze ’

to denote the probability that M is in state tT and the contents of

cells from the Jj+l1 =-st cells on are the word z followed by blanks

(see Figure 1, bottom). The function g 1s independent of the contents

in cells 1 < J , and the explicit value of j . Clearly

2 g(s,ustyz) < 1
t,2

Definition 3.2. Let uer'’* and k> 1. The k-th-order left signature
2k-1

} of u 1s the following 2+ (r-1) -tuple of numbers,

. (k) (.,.
G (us 8121585) ts ® eo = S109 t.)

= 2 x 8(spousty; zg) x8(sp 21385, 2,) X ove X882) 338,52) 5
Z13Zp3 00032, €T

(3)

for each 51°? ts YAN cee) Sic € Q' and ty, € {ay, 9,1 .

(k)
We shall show that G are well defined by (3) and in fact, satisfy

k

0 < 6 (uss, sty, . 0s 8st) <1. (1)

As all terms in the summation (3) are non-negative, it is sufficient to

_ * *

prove that, for every finite subset V cI , and every uel ,

Spsbyseeess, € Q' , te {9,9} , the following is true:

)

¢
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2 g(sy,u3t,, z,) x &(s,; 2935%552,) X **° x (8, Zp 15 by 2.) < 1.
Z19%5r ees Zp €V

This can be proved by induction on k ; we have

2 g(sy,u3ty, 21) x gs, 715% Z5) X=°* x (sys x 13% )
Z932p9 00092 €V } K

N [

< =, Bris) max oo 2 _ (ep stg) 1 + xslt pst1 ZE 0? 37° oe) k V

< 2 elspustyyzy) x1 <1,
Zy eV

when the induction hypothesis 1s used to bound the expression MEX J oe.
zeV

by 1 .

In a similar way, we shall define the "right-signatures". Denote by

h(t, x;s,y) the probability that, given M entering the word x from

the right end in state t , the head first comes back across the right

end, having changed the word x to y (Figure 2). We further use the

notation hy (x58,¥) for the probability that, given that M entered

the region containing x from the left end in state dy it will first

cross the right end of x in state s and have changed x to y

(Figure 3).



a
ral

Y SEE

ur ct
S

Figure 2. Illustration for h(t,x;s,y) .

iy

9%

Y | ove
—

S

Figure 3, Illustration for hy (x358,Y) .
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Definition 3.3. Let xe" and k >1 . The k-th-order right signature

of x 1s the (r-1)2¥-1 -tuple,

(k) (..
H ) (x35, EEEAY $0 Sie.1? te 1 5)

= p> he (x38,,¥:) xh(t 538,75) xh(tos¥,55:55)oV™ Tvl 1’°91°2%2292 22v 2273?

t

where all SAN €eQ' .

As in the case of ak) , the numbers 1 (E) are well defined and

satisfy

0 < HE 8 5b oe esp) < 1 .

Definition 34. For each ver” and k > 1 , the k-th-order pattern of u

: : 2i-1 2k
is a b, -tuple of integers defined below, where b, = 2 2¢(r-1) < 2r°T

k k .

3 1<i<k
Let Ty =r , the b-tuple 1s given by

FL, 6) (uss bop ennss,pt,)] | L<E<Ky SqpbosBarboyeserssc. sb {apra]k 3 1’ 1?2°°°? i’ i ileal? { 1? 1’ J DI 180) i + oe 2 i 12 9 ) .

some Facts.

Lemme. 3,5, The number of distinct k-th -order patterns is at most

exp(lie °F In 1) .

Proof. Because of (4), the value of each component in a k-th -order

pattern 1s an integer between 0 and Ik' There are thus at most

b 2k
2(I, +1) K < (oF 11) * < exp (2k In r x or°%) distinct patterns. [J
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Definition 3.6. A sequence of states (81581585505 000s Si? ty) is said

Lemma 3.7. Let B be a set of legal sequences and v = xu an input

word to M . Then a(v, |x|,B) , the probability that, with input word +,

the crossing sequence at position |x] 1s in B , 1s given by

(k)
av, |x|,B) = Z 2 H (557581500055,)

k>1 (5qst750eersiot,) €B

k

Proof. The probability that the crossing sequence at |x| is

(ss ty) . 038%) 1s equal to

i 2 or ho (%35805¥7) x8(s15u3t,52)¥12279Y01%59 000 Vier 2

xh(t;5¥73555¥,) x 8(850213552,) x1 (E0s ¥5385, 75) x eo © X 8(8y5 Zoe 15 by Zp) P

k k

which 1s i ) (x3 S11%9, a Sy) «6 )(ss35by5 2a ersy, t,) . The lemma
follows. O

> -

Lemma 3.8. Let x,w,wel and d,m positive integers. If f(xu, |x|) < d

and w, u have the same (md)-th -order pattern, then

2 3.3 2
-d -1 -(md” -d -md

8Gon) > (1- ©) (py (rw)-m7h) - 20 bo

11
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Corollary. Let XW Wel and 4d >10 | If 1 (xu, |x|) < d ,

8, (xu) >9/10 , and Ww, u have the same (2d)-th -order pattern,

then g,(xw) >1/5 .

Proof. Since f(xu;|x|) < d , the probability that the crossing sequence

at |x| has length exceeding md is at most 1/m . Let B, (i =1,2)

be the set of legal crossing sequences ending in a and of length at

most md . Then

a(xu, |x|,B,) + a(xu, |x|,B,) > 1-2.J J 1 > J yo —— m

Since (xu, |x|,B,) < B,, (xu) = 1 - pq (xu) , we have

0) > 1-2 (@-p(mw) = BG) - = (5)(xu, |x|;B)) 2 1 - 3 - P1 - "1 ~ ome

Now, by Lemma 3.7,

ou(oon, |x|, B,) = au, |x],8, )

= 2 H(x;0)(G(w;0) ~ G(u;0))
OeB

1

= pH H(x;0) (G(w;0) = G(u;0))

0eBy

3°
G(u;0) <r” /I4

+ 2 H(x30) (G(w;0) = G(u30)) . (6)

Oe By

3 3°
Glu; 0) $v /I,

12



_

We have used here abbreviations G(v;o0) and H(v;0) for
k

60) (385,05 vues 50) and 5 J(¥38,5t0s 00 es8) respectively,
where 0 = (875%q5 000; Sy By) . The absolute value of the first term

2 2

d d m0 5 .2‘~.md -(mrd” -d"-md

in (6) is bounded by |B, | XT < or X — = 2er ( md) » and
md md

1

that of the second term by 2 H(x;0) To <
oe By md

qc
G(u;0) >r /T.3

2.  H(x;o) = G(u;0) < a(x, |x|,B,) 2X  . Thus, we have2 - 1 2
OeB d d

1 r r

4°
Glu; 0) >r” [Is

from (6),

239 _a52 2
-(m”d”-d -md ~d

2 a2 -3°-a -(mrd”’-d -md

alow, |x|,By) > (1rT ala, |x|,8,) - 20 ) 7)

Using (5), (7) we obtain

j 2 3 2_d 1 - (rd -d"-nd
By (xw) > oxw, |%[,B,) > (1-r 7) (ym) - = ) - op ) ,

. This proves the lemma. The corollary follows by setting m = 2. a

13



ah Palindrome Recognition.

In this section we prove the following main result of this paper,

using lemmas developed in Section 3.

Theorem 4.1. Let M be a probabilistic one-tape Turing machine that

recognizes the language L = {w ¢ w | ue {0,11} with error A , where

0 < AKL 1/2 . Then there exists a constant c¢ > 0 such that

T(M,n) > cn log n for infinitely many n .

Corollary. If M is a 1-PTM recognizing the language {1" ¢ 1° | n > 1}

with error M < 1/2 , then for infinitely many n , T(M,n) > cn log log n

for some constant c¢c > 0 .

Proof. We shall assume that AM = 1/10 . The general case follows

because, from any 1l-PTM M that recognizes IL with error A = 5 - A < 5
one can construct an M' recognizing L with error 1/10 and with

running time at most a constant multiple of M . In fact, one can

ran M  2t-1 times, where t satisfies (1 - 42°)" < 1/10 , and pick

the majority answer as the output. This new M' has an error bounded by

(FT)am Wk < o (251) ant tb < sry tek)” < 1/10
where we have used (*5) < p2t-1 . Without loss of generality, we can
further assume that M is of the standard form.

Let I, = 1" Ww ¢ 1" w | we {0,11%} C L . Roughly, the idea is to show
that, at each of the ntl positions after the ¢ mark (between the j-th

and J+1 -st cells for 2ntl < Jj < 3ntl ), most of the words in L, have

an expected length of crossing sequence greater than Q(log n)., This

14
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leads to the existence of a vel, with an Qn log n) expected total

length of crossing sequences. From Lemma. 3.1,we would then have

T(M, bn+1) > I, (v) > Q(n log n) , proving the theorem.

Definition 4.2.  F 5d) = {v|veL,, 1(v,J) <a} .ee ne , >

Claim 4.3. Let d > 10 be an integer. For each 2n+tl < j <3ntl ,

[Fy 0 5(@) < exp(32a3rkd 1nr) |

Proof of Claim 4.3. For any vel , write v = v'v" with |v* | = Jj .

It is easy to--verify that, for any v # wE L, + the word VW EL

If the lemma is false, then IF, 5(d) | > exp (328313 In r) , and2

by Lemma 3.5, there exist v # we Fo 5(d) such that v", w" have theJ)

same (2d) =-th order pattern. Now By (v'v") > 9/10 . By the corollary

to Lemma 3.8, we have By (v'v") > 1/5 , contradicting'the fact that

vw" § L, (thus By (v'w') = 1-g,(v'w") < 1/10). ©

Let d = [+L log, | . Then, for all sufficiently large n ,
Claim 4.3 leads to

} n 3 ka ln _ 1
I Fo, 5 (@ | > 2 -exp(32d’r In r) > 5X2 = 5 |Z, | .

Thus, for each 2ntl < j < 3ntl , we have

- . 1

Z iw) > aly-F, (@] > Fan] . (8)ve L
n

15
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Now Lemma 3.1 implies

max Ty (v) > oT 2 T,,(V) > ToT 2 PR 2(vy3)VE L_ fl over nl vel entl<j<3ntl

1 - .

= 1 2 2 (v3) .
rar 2Zntl<j<3ntl vel,

Because of (8), this gives

- 1

VE I 1bnr ntl< j<3ntl

= Q(n log n) .

As explained earlier, this proves Theorem 4.1.

The corollary can be proved using the same 1dea. Denote the words

1’ ¢ 1 'by ve (i > 1) and define L = {vs | 2n < i < 3n} . One shows

that, at each of the ntl positions after the ¢ mark, say the j-th

position (1 <_j <ntl) , at least half of the words 2 in L have

an expected length of crossing sequence 1(v;,i+]) greater than

(log log n) . As before, this implies the existence of a v, eI

whose expected total length of crossing sequence is Q(n log log n) .

The corollary follows. We omit details of the derivation, as they are

very-similar to the proof of the theorem, [I
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5. Some Remarks,

* One curious fact 1s that, while the recognition of {wg wl requires

only O(n log n) steps on an 1-PIM allowing a small error, a closely

related "copying" problem -- changing an input w to W¢Ww —— needs

(n°) steps on any 1-PTM allowing a small error [13]. It seems in

general easier to speed up the computation probabilistically if only the

"checking" of an answer is involved.

In this connection the following interesting phenomenon concerning

integer multiplication 1s worth noting -- one can check the answer of

multiplying two n-bit integers x and y probabilistically with a

small error faster than calculating the answer exactly. mm fact, on a

- random access machine, if two n-bit numbers can be multiplied without

error (probabilistically or deterministically) in M(n) bitwise operations,

then one can check the validity of xxy = 2 , for a 2n-=bit number z ,

probabilistically with a small error in o( 3 Mem) ) bitwise operations,
where m = 2[1g(2n)] . For example, the Sch¥nhage - Strassen algorithm

(see, e.g. [1]) gives M(n) = 0(n(log n)(log log n)) , which implies

that the checking of Xx¥ = Zz can be done probabilistically in only

. 0(n(log log n)(loglog log n)) operations.

We now show that the above result easily follows from some basic

observations of Pippenger [7] in his O(n log n) -time 1-PTM for

recognizing {w¢w} —— (a) A t-bit random prime p (i.e., a random

prime between 1 and 2b 1 ) can be generated probabilistically with

a small error in time 0(t°) for some constant & , and (b) if WsW,
© are two distinct positive integers of at most n bits, then for a

2[1lg nl -bit random prime p , we have wy (mod p) # Ww, (mod p) with
probability greater than some absolute constant e¢ > 0 ; thus one can

17
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decide if Ww) = W, with only a small chance of error by comparing

wy (mod p) with Ww, (mod p) for a fixed number of such random primes p
generated by, for example, the method used in (a). These 1deas imply

that we can check the equation xxy = Zz With only a small chance of

error by generating a few m-bit random primes Pp , computing x(mod p) ,

y (mod p) and z (mod p) , and checking equations

(x (mod p) ey (mod p)) (mod p) = z(mod p) . The running time 1s dominated

by the computing of x,y,z(mod p) , which takes 0 ( M(m) ) time
(cf. [1]).

To end this section, we remark that the bound in the corollary to

Theorem 4.1 is the best possible. By a slight adaptation of Pippenger's

1-PTM for recognizing (we w}lTl, one can construct a 1-PIM recognizing

(1" ¢ 1" | n > 1) with a small error in time O(n log log n) , thus

achieving the lower bound stated in the corollary.

18



6. Conclusions.

FF

The subject of proving lower bounds for probabilistic Turing machines

offers many challenging problems, of which only one is solved in this

paper. It seems to be most fruitful to consider problems where good

bounds exist 1n the deterministic case. We believe such studies will

provide insights to probabilistic computations beyond the framework of

Turing machine models. We mention only two such problems for further

research.

(1) With a read-only input tape and several working tapes, 1s the extra

space requirement for recognizing {w¢w} probabilistically (with

error) Q(log n) ? (See [5, p.154, Exercise 10.3] for the

deterministic analogue.

(ii) Can Rabin's language defined in [8] be recognized in real time by

a probabilistic Turing machine with one working tape?

(Deterministically it cannot [8].)

Finally we like to mention that the overlap argument for on-line

multiplication (Cook and Aanderaa [2], also Paterson, Fischer, and

. Meyer [6]) can be extendedto the probabilistic case [13].

Acknowledgments. I wish to thank John Gill for a stimulating conversation

and for communicating Pippenger's result [7] to me.
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