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Abstract.

We call attention to the problem of proving lower bounds on
probabilistic Turing machine computations. It is shown that any
probabilistic Turing machine recognizing the language
L={wg¢w IWE{O,l}*} with error M < 1/2 must take Q(n log n)

time.
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1. Introduction.

The idea of including controlled stochastic moves in algorithms has
received considerable attention recently [4,9,10,12], The demonstration
by Rabin [9] and Solovay and Strassen [10}, that fast tests for prime
numbers can be done probabilistically with a small error, raised the hope
that many more problems may allow similar fast algorithms. As in
deterministic computations, a challenging problem is to prove lower
bounds to the computational complexity of specific problems for such
probabilistic algorithms. An investigation for decision tree type models
was initiated in Yao [12], The techniques used there [12], however,
are not applicable te Turing machine computations, for which a number
of lower bound results are known for the deterministic computations
(see, e.g. [5]). In this paper, we call attention to proving lower
bounds in probabilistic Turing machines, by proving a non-linear bound
to a palindrome-like language.

It is well known that it takes any deterministic one-tape Turing
machine Q(ne) steps to recognize the language L = {w ¢ w |WE {O,l]*}
(see, e.g. [5]). A very interesting result of Freivald [3], cited in
Gill's paper [4], states that L can be recognized with a small error
by a one-tape probabilistic Turing machine in time O(n(log n)2) .
Recegtly, this bound was improved to O(n log n) by Nick Pippenger [7].
This seems to be the only example known in a Turing machine model where
a provable speed-up is achieved, in an order-of-magnitude sense, by
allowing stochastic decisions. The purpose of the present paper is to
show that Q(n log n) -time is also a lower bound to any one-tape

probabilistic Turing machine recognizing 1 with a small error (Theorem 4.1).




2. Definitions and Notations.

We first give an informal description of probabilistic Turing machines,
the readers are referred to Gill [4] (and references therein) for more

detailed discussions. A probabilistic one-tape Turing machine (1-PTM) M

consists of a finite control, a read-write head on an infinite l-dimensional

tape, and a random symbol generator (RSG) capable of generating integers i

between 1 and io with fixed probabilities P - Before each move,
a random symbol i is generated by the RSG, and the action of Turing
machine M depends on the current state of M , the symbol on the tape
being read, and the random symbol i . There are three distinguished

states 9 » qi » and % . The machine starts in 9 (initial state),

and if it halts, it must halt in either 4; (the accepting state) or %,

(the rejecting state). For a given input v , it is possible that M

will not halt for some infinite sequences of random symbols that are
generated by RSG. We shall restrict ourselves to M which, for any
given input v , halts with probability 1 (it may still not halt for
sane sequences). For each input v, let Bi(v) be the probability
that M halts in state 9 (i =13,2) . A language L is recognized

by M with error M (0 < M < 1/2) , if Sl(v) > 1-A for each wvelL ,

and Bgﬁﬂ > 1-N for each v#L . Intuitively, given an input v on M,
- if we accept or reject v when M halts depending on whether the state

is qQ or q, » then we would be wrong at most with probability A .




We shall now introduce some notations, and give a formal definition
of terms involving probability described in the last paragraph. Let v be
an input word, and 0 a finite sequence of integers between 1 and io
generated by RSG that leads to the halting of M, i.e., M halts
immediately after the last element in 0 Is generated. We say that o

is a decision sequence for v on M . Iet A(v) denote the set of all

decision sequences for v , and Ai(v) c A(v) (i = 1,2) be the subsets
consisting of 0 leading to state Q when M halts. We use o[j]
for the j-th element in the sequence ¢ , and |0| for the length of ¢ .

Define P(o0) = po[l] Pc[z] . PU[IU\]’ the probability that the first

6

o] random symbols generated by RSG form the sequence 0 . We now

restate some terms defined earlier in these notations. The condition

that M halts for any v with probability 1 means 2 P(o) = 1 ;
0 ¢ Alv)
the quantities Bi(V) are ) P(o) for 1 = 1,2 . Also, the
UeAi(v)

expected number of steps M will make for input v is equal to

T, (V) = 2 P(o)elo| (1)

oeA(v)

since |0] 1is the number of steps made when 0 is the decision sequence

generated. The running time of M for inputs of length n is defined

to be the expected number of steps M will make for the worst input of

length n, i.e.,

T(Mn) = max{T (v) | |v| =n] . (2)

The quantities iM(v) » T(M,n) may be o
We assume that the tape cells are numbered consecutively from -o
to « . Initially, an input v occupies cells 1 to |v| , and the

head points to cell 0




3. Crossing Sequences, Signatures, Patterns.

Let M be any probabilistic one-tape Turing machine. We develop
some concepts concerning the behavior of M . For convenience, we assume

that M satisfies the following conditions:

Standard-Form 1-PIM: Before it halts, the head always moves to the

rightmost non-blank cell, where M enters either q; or 9 - The
machine then stays in the same state while making a full sweep to the
left, and halts at the leftmost non-blank cell. Furthermore, it is

assumed that M cannot enter either g or 4, until this last sweep,

A routine argument shows that any 1-PIM M can be transformed into an

M' of standard form with T(M',n) = O(E[‘(M,n)+n)

Crossing Sequences.

We extend the notion of crossing sequences used in deterministic
one-tape Turing machines (e.g. [5]). Consider the behavior of M for
input v and some decision sequence oeA(v) . At the boundary between
the j-th and the j+l =~st cells, let p(v,c,j) denote the sequence of
states in which M .passes through this position. The length of
p(v,0,3) is denoted by |p(v,0,3)| , which is 0 if p(v,0,3) is the

empty sequence. The expected length of crossing sequence at j is

- defined as

;(V: j) = Z P(U)‘Ip(v:%j) I ’
oeA(v)

which may be « .

A basic connection between running time and crossing sequences is

given by the following lemma.



Lemma 3.1. For any input v , ’E‘M(v) > 2 (v, 3) .
J

Proof. The lemma is obviously true if E‘M(V) = » ; we therefore assume
that '.T.‘M(v) is finite. For each 0eA(v) , the number of steps taken is

at least as large as the sum of the lengths of all crossing sequences. Thus,
o] > Z e 09 | .
dJ
By definition,

'I'M(V) = z P(G)-‘U' > 2 EP(UHP(V)C:J'H = 2 1(v,3)
ogeAv) oeAlv) 3

where in the last step we have changed the order of summation of an

absolutely convergent double series (see, e.g. [1l, p.28, Example 1]). O

Signatures and Patterns.

Let Q = {qo,ql;qg,..., qr} be the set of states, and ' be the set

of tape symbols used by M . Denote Q - {ql, qe} by Q'

Suppose during the computation process of M , the following
configuration is encountered. A word uel'™® is on the tape from the
Jtl -st cell to (,j+|u|) -th cell, and all cells to the right of u
are blank (see Figure 1 top). The machine M is in state s , and

its head is just crossing from the j-th to the j+l -st cell.

cell 7 word u blanks
a - f — - - -
B
cell 7 word z blanks
\ - — N .
I I I l I I I 1
h
t
Figure 1. Illustration for g(s,u;t,z) .



We are interested in the situation when M comes back crossing from
the J+l -st cell to the Jj-th cell for the first time. As M is not
deterministic, the state M is in and the contents of cells at this
time may not be unique. We shall usqg(s,u;t,z) , wWhere teqQ , zer‘* ’
to denote the probability that M is in state t and the contents of
cells from the j+l1 -st cells on are the word z followed by blanks
(see Figure 1, bottom). The function g is independent of the contents
in cells i < j , and the explicit value of j . Clearly

2 g(s,ustyz) < 1 .,

t, 2z

Definition 3.2.  Let uer® and k> 1 . The k-th-order left signature

2k-1
of u is the following 2+(r-1) k ~tuple of numbers,

k
G( ) (u; Sl’tl) 82, te} & e e @ Sk’ tk)

= 2 * g(sl’u;tl’ Zl) XQ(SE: zl;te, ZE) Xeore Xg'(sk,zk-l;tk’zk) b
Zl,ZQ,--.,ZkGF

(3)
for each systysSpstosyeeess, €Q and t) e {ql,qe} .

We shall show that G(k) are well defined by (3)and in fact, satisfy

0 S G(k)(u;sl,tl’ . . '}sk)tk) S 1. ()4')

As all terms in the sumation (3) are non-negative, it is sufficient to
L * *
prove that, for every finite subset Vc I , and every uel ,

sl,tl,...,ske Q' , tke {ql,q2} , the following is true:




Z g(sl)u;tl, Zl) Xg(se’ Zl;t2’22) ) S Xg(sk’zk-l;tk’ zk) S 1

zl,zg,...,zkeV

This can be proved by induction on k ; we have

z g(s.,ust sz Y xgl(s 2.3t 5,2 )y e
\ J_r 2 lr l/ NSO\ 21 l) 21 2/ 2l
zl,zg,...,zke \
< o g(sl,u;tl, Zl) max z
zleV zeV z2, z3,..., zkev
< L_‘ g(sl)u;tl’zl) Xl < 1 4
zZ, €V

AL

when the induction hypothesis is used to bound th

by 1

g(SQ: Zitg)ze) X ese Xg(sk’ Zk-l;tk]ik)

e expression max 2, ...
z2eV

In a similar way, we shall define the "right-signatures". Denote by

h(t,x;s,y) the probability that, given M entering the word x from

the right end in state t , the head first comes back across the right

end, having changed the word x to y (Figure 2).

We further use the

notation ho(x;s,y) for the probability that, given that M entered

the region containing x from the left end in state 9 - it will first

cross the right end of x in state s and have

(Figure 3).

changed x to y



Figure 2. Illustration for h(t,x;s,y) .

cee X ceoe

Figure 3., Illustration for ho(x;s,y) .



Definition 3.3. Let xeI” and k >1 . The k-th-order right signature

of x is the (r-l)gk'l ~tuple,

k
H( )(X§ Sy0 tlxsg.v'te: ceem B gy tk-l’ sk)

T 0 @%W@ o ho(%5515¥7) xB(615¥7385,0¥,) Xty ¥p385¥5)
g

XeoeeoX h(tk_l) yk-l; Sk, yk) )

1
where all si,ti €eqQ' .

As in the case of G(k) , the numbers H(k) are well defined and

satisfy

2X;Sl}tl)'¢’}sk) < 1

(k

0 < H

Definition 3.4. For each uer* and k > 1 , the k-th-order pattern of u

is a by -tuple of integers defined below, where b = ) 2’(r-1)2i'l < orok
1<i<k

Let Ik =r , the thgﬂe is given by

i . \
(rIk.G( )(ussl’tl’...’si,ti)-] ‘ l<__1<_k’ Sl)tl)se)ta}vco.'sie > e 2 ti€ {ql)qg}) .

Some Facts.

Lemmat5.5. The number of distinct k-th -order patterns is at most

exp(lC 2 In 1)

Proof.  Because of (4), the value of each component in a k-th -order

pattern is an integer between 0 and Ik' There are thus at most

b 2k

(Ik+l) k < (r -+l)2r < exp(Qk; In r x 2r2k) distinct patterns. [

10



Definition 3.6. A sequence of states (Sl’tl’s2’t2""’ S b)) is said

to be Sl,t'l, s2’t2’°"’ Ske Q' and tk € {ql, qe} .

Lemma 3.7. Let B be a set of legal sequences and v = xu an input
word to M . Then a(v, |x|,B) , the probability that, with input word v,
the crossing sequence at position |x| is in B , is given by

a(v, |%],B) = T 2 B (x5, 05000 8,)
k>1 (STitW..’.""s"n’tk) €eB

k
X G( )(u;sl’tl,'..’sk,tk) 4

Proof. The probability that the crossing sequence at |x| s

(sl, tl" . .,sk,tk) is equal to

Zl h (X;S » ¥V )xg(s ,u't 2 )
Y9925 59205 000 a2 2 er* 0 1’71 1’271’
1’"1°72°72 k’ “k

X0ty Y1555 V,) X&(8pr 21 5t0025) X B(boy Y385, ¥5) .« o o XB(Sip 2 3357)

. , k k
which is H( )(x; sl,tl, .. "sk) xG( )(u;sl,tl, © ey Sk’ ‘tk) . The lemma

follows. O

* -
Lemma 3.8. Let xuwel and d,m positive integers. If f(xu, |x]) < 4
and w,u have the same (md)-th -order pattern, then

2

333_42
py(ow) > (1= r™% ) (B, (xu) -n7h) - - (@& -a%-na)



Corollary. Let X,u,wel"* and 4 >10 . If 2(xu, |x|) <d,
Bl(xu) >9/10 , and w,u have the same (2d)-th -order pattern,

then Bl(xw) >1/5 .

Proof. Since I(xu;|x|) < d , the probability that the crossing sequence
at |x| has length exceeding md is at most 1/m . Let Bi (i =1,2)
be the set of legal crossing sequences ending in 9 and of length at

most md . Then

1

a(m,lx[,Bl) + a(xu,]xl,Bz) >1-=.

Since a(xu, |x|,B,) < B, (xu) = 1-8,(xu) , we have
ofxu, |x|,B) > 1 - = - (1-p () = Bym) - F. (5)

Now, by Lemma 3.7,

a(xw, |x|, Bl) - a(xu, ‘x|,Bl)

2 H(x;0)(G(w;0) - G(u;0))

tJeB1

S H(x;0)(a(w;0) - G(u;0))
g¢ Bl

d2
G(u30) <r /Imd

+ > H(x;0) (G(w;0) - G(u;0)) .  (6)
Oe Bl

]

2
G(u; 0) 2 < /Imd

12




We have used here abbreviations G(v;0) and H(v;0) for
k k .
G( )(vssl,tl,.-.,sk,tk) and H( )(V;Sl,’cl,---:sk) respectively,

where 0 = (sl,tl,...,sk,’ck) . The absolute value of the first term

2 2
d d 3 2
omd T (& -a°-md
in (6) is bounded by IBll X“—; < or™ = 2er ( md) , and
md md
that of the second term by 2 H(x;0) -i!'— <
crc—:B:L md
d2
G(u;0) >r" /I 4
2 H(x;0) L G(uz0) < a(xu, Ix‘,B ) 2 Thus, we have
2 - 1 2
UEB1 rd rd

a®,
Glu; 0) >r~ /I 4

from (6),

2

(& -d°- -
(m”d” -d"~md) _¢ e |x|’B]_) .

oW, |X|,Bl) - a(xu, |x|,Bl) > -@r

op (nPd3 —dz-md)

2
oo, |x|,B) > (1-r™% )a(x, |x|,B,) - (7

Using (5 ), (7)we obtain

e 3_2
Bl(XW) 2 a(xw, lxl’Bl) > (1_r’d ) (Bl(xu) - % ) - 2r-(m§d -d"-md)

- This proves the lemma. The corollary follows by setting m =2. [J

13



4. Palindrome Recognition.

In this section we prove the following main result of this paper,

using lemmas developed in Section 3.

Theorem 4.1. Let M be a probabilistic one-tape Turing machine that
recognizes the language L = {w ¢ w [WE {O,l}*} with error A , where
0 < A< 1l/2 . Then there exists a constant c > 0 such that

T(M,n) > cn log n for infinitely many n

Corollary. If M is a 1-PTM recognizing the language [ln ¢ 1" | n > 1}
with error M <1/2 , then for infinitely many n , T(Mn) > cn log log n

for some constant ¢ > 0 .

Proof. We shall assume that A = 1/10 . The general case follows
because, from any 1l-PTM M that recognizes L with error A =1§ - A< él-,
one can construct an M' recognizing L with error 1/10 and with
running time at most a constant multiple of M . In fact, one can

run M 2t-1 times, where t satisfies t(l-hAe)t < 1/10 , and pick

the majority answer as the output. This new M' has an error bounded by

2t-1 2t-1-k . k

2t-1 t-1.1% 1 2.t
A AN < = t(1-4 < 1/10
k>t - t( t )(l ) cz ) ( ) /_ ’

Qt-l) < 22t_l . Without loss of generality, we can

where we have used ( £
further assume that M is of the standard form.

Let L, = (1" w ¢ 1w | we {O,l}n} € L . Roughly, the idea is to show
that, at each of the n+l positions after the ¢ mark (between the j-th
and j+l -st cells for 2ntl < j < 3n+l ), most of the words in Ln have

an expected length of crossing sequence greater than Q(log n) . This

14



leads to the existence of a veLn with an Q(n log n) expected total
length of crossing sequences. From Lemma. 3.1, we would then have

5(M,hn+l) > "i'M(v) > Q(n log n) , proving the theorem.

Definition 4.2. Py, J.(d.) = {v|veLn, L(vyd) < d} .

Claim 4.3. Let d > 10 be an integer. For each 2n+l < j < 3n+l ,

[Fy s 5(@)| < exp(32d3rkd 1nr)

Proof of Claim 43.  For any Vel , write v = v'v" with v = 3
It is easy to—--verify that, for any v ;éWE I..n , the word v'w"fL .
If the lemma is false, then |Fn j(d) | > exp(52d3rhd Inr) , and
2

by Lemma 3.5, there exist v # we Fn J.(d) such that v", w" have the
)

same (2d) =-th order pattern. Now Bl(v'v") > 9/10 . By the corollary

to Lemma 3.8, we have ﬁl(v'w") > 1/5 , contradicting'the fact that

viw" £ L, (thus Bl(v'w') = 1-52(v'w") <1/10). @O

Let d = ri% iogr n1 . Then, for all sufficiently large n ,

Claim 4.3 leads to

n

@] > P-exp(32r™ 1n 1) > Ly " - 5 Il -

Ty~ F = 2

n, j

Thus, for each 2n+l < j < 3ntl , we have

T iwm3) > a|n -5 @] > 3

veI..n

15
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Now Lemma 3.1 implies

- 1 - 1 -
max T > - 2 T(v) > 2 > £(v,3)
VE L ul") 2 ‘Ln[ ve L M B anl vel 2ntl<j<3ntl
= ! z z E(V:j) .

anr 2ntl <j<3ntl veLn

Because of (8), this gives

max 'I‘M(v) > L 2 %-" de |Ln| = 22'- d(nt+l)
VE I Lir oml<j<3ntl

= q(n log n)

As explained earlier, this proves Theorem 4.1.

The corollary can be proved using the same idea. Denote the words
ii ¢ 1* 'by Vv, (i >1) and define L = {vy |2n < i < 3n} . One shows
that, at each of the ntl positions after the ¢ mark, say the j-th
position (1 <_j <_ntl) , at least half of the words v, in Lr'1 have
an expected length of crossing sequence ;(Vi,i“‘j) greater than
Q(log log n) . As before, this implies the existence of a v, € Lr'1
whose expected total length of crossing sequence is Q(n log log n)

The corollary follows. We omit details of the derivation, as they are

very-similar to the proof of the theorem, 0O

16



5. Some Remarks,

One curious fact is that, while the recognition of {w¢w} requires
only O(n log n) steps on an 1-PIM allowing a small error, a closely
related "copying" problem -- changing an input w to W¢Ww -- needs
Q(n2) steps on any 1-PIM allowing a small error [13]. It seems in
general easier to speed up the computation probabilistically if only the
"checking" of an answer is involved.

In this connection the following interesting phenomenon concerning
integer multiplication is worth noting -- one can check the answer of
multiplying two n-bit integers x and y probabilistically with a
small error quter than calculating the answer exactly. m fact, on a
random access machine, if two n-bit numbers can be multiplied without
error (probabilistically or deterministically) in M(n) bitwise operations,
then one can check the validity of xx¥y = z , for a 2n-bit number z ,
probabilistically with a small error in O(%M(m)) bitwise operations,
where m = 2[1g(2n)7 . For example, the Sch¥nhage - Strassen algorithm
(see, e.g. [1]) gives M(n) = O(n(log n)(log log n)) , which implies
that the checking of xxy = z can be done probabilistically in only
0(n(log log n)(logiog log n)) operations.

We now show that the above result easily follows from some basic

observations of Pippenger [7] in his O(n log n) -time 1-PTM for
recognizing {w¢vﬂ -— (a) A t-bit random prime p (i.e., a random
prime between 1 and 2t—1 ) can be generated probabilistically with
a small error in time Oﬁﬁ) for some constant & , and (b) if W, W,
are two distinct positive integers of at most n bits, then for a
2(1lg n -bit random prime p , we have wi(mod p) # Wé(mod p) with

probability greater than some absolute constant € > 0 ; thus one can

17



decide if W) = W, with only a small chance of error by comparing
wl(mod. p) with we(mod p) for a fixed number of such random primes p
generated by, for example, the method used in (a). These ideas imply
that we can check the equation xxy = 2z With only a small chance of
error by generating a few m-bit random primes P - computing x(mod p) ,
y(mod p) and z(mod p) , and checking equations
(x (mod p)ey(mod p)) (mod p) = z(mod p) . The running time is dominated
by the computing of X,¥,z(mod p) , which takes 0 (% M(m)) time
(cf. [1]).

To end this section, we remark that the bound in the corollary to
Theorem 4.1 is the hest possible. By a slight adaptation of Pippenger's
1-PIM for recognizing {w¢w}[7], one can construct a 1-PIM recognizing

{ln ¢ 1" | n > 1) with a small error in time Of(n log log n) , thus

achieving the lower bound stated in the corollary.

18




6. Conclusions.

The subject of proving lower bounds for probabilistic Turing machines
offers many challenging problems, of which only one is solved in this
paper. It seems to be most fruitful to consider problems where good
bounds exist in the deterministic case. e believe such studies will
provide insights to probabilistic computations beyond the framework of
Turing machine models. We mention only two such problems for further

research.

(i) With a read-only input tape and several working tapes, is the extra
space requirement for recognizing {w¢w} probabilistically (with
error) Q(log n) ? (See [5, p.154, Exercise 10.3] for the

deterministic analogue.

(i1) Can Rabin's language defined in [8] be recognized in real time by
a probabilistic Turing machine with one working tape?

(Deterministically it cannot [8].)

Finally we like to mention that the overlap argument for on-line
multiplication (Cook and Aanderaa [2], also Paterson, Fischer, and

Meyer [6]) can be extended to the probabilistic case [13].
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