
Stanford Artificial intelligence Laboratory February 1973
Memo MU-309

Computer Science Department
Report No. STAN-CS-77-5646

FAST DECISION ALGORITHMS

BASED ON CONGRUENCE CLOSURE

by

Greg Nelson
and

Derek C. Oppen

Stanford Verification Group

Research sponsored by

National Science Foundation

and

Hertz Foundation

COMPUTER SCIENCE DEPARTMENT

Stanford University

Stanford Artificial Intelligence Laboratory February 1978
Memo AIM-309

Computer Science Department

Report No. STAN-CS-77-646

FAST DECISION ALGORITHMS

BASED ON CONGRUENCE CLOSURE

by

Greg Nelson
and

Derek C. Oppen

Stanford Verification Group

We define the notion of the congruence closure of a relation on a graph and give a simple
algorithm for computing it. We then give decision procedures for the quantifier-free theory of
equality and the quantifier-free theory of LISP list structure, both based on this algorithm. The
procedures are fast enough to be practical in mechanical theorem proving: each procedure

determines the satisfability of a conjunction of length n of literals in time O(n?). We also show
that 1f the axiomatization of the theory of list structure 1s changed slightly, the problem of
determining the satisfiability of a conjunction of literals becomes NP-complete. We have
implemented the decision procedures in our simplifier for the Stanford Pascal Verifier.

An earlier version Of this paper appeared in the Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, Providence, October 1977. This research was supported by tire
National Science Foundation under contract MCS 76000327 and by the Fannie and John Hertz
Foundation.

1. Introduction

Let G=(V, E) be a directed graph with labelled vertices and R a relation on V. The congruence

closure ~ of R on G is the unique minimal extension of R such that ~ is an equivalence relation

and any two vertices of G are equrvalent under ~ if they have the same label and the same

outdegree, and all their corresponding successors are equivalent under ~.

In section 2, we give a simple algorithm for computing the congruence closure of R on G

whichrequires O(mn + k) time, where n is the number of vertices in G, m is the number of edges in

G, and k is the nui.aber of pairs in R.

In section 3, we describe a decision procedure for the quantifier-free theory of equality with

uninterpreted function symbols based on the congruence closure algorithm. The algorithm

determines the satisfiability of a conjunction of equalities and disequalities of length n in time

O(n?)

In section 4, we describe a decision procedure for the theory of LISP list structure with the

usual functions CAR, CONS, and CDR and the predicate LISTP, which asserts that its argument is

non-atomic. The axioms for the theory are:

CAR(CONS(X,Y) =X

CDR(CONS(X,Y) =Y

LISTP(X)> CONS(CAR(X), CDR(X)) =X

LISTP(CONS(X,Y))

The decision procedure determines the satisfiability of a conjunction of length n of literals in

time Ofn°). The terms in the literals may contain uninterpreted function signs.

We also show in section 4 that the satisfiability problem for conjunctions of literals is

NP-complete if the following axioms are used instead of the above axioms:

CAR(CONS(X,Y)) =X

CDR(CONS(X, Y)) =Y

X = NIL > CONS(CAR(X), CDR(X))= X

CONS(X, Y) = NIL

CAR(NIL)= NIL

CDR(NIL)= NIL

In section 5, we give some notes on the implementation of our algorithms.

2

2. The Congruence Closure Aigorithm

LetG = (V, E) be a directed graph with labelled vertices, possibly with multiple edges. For a

vertex v, let A(v) denote its label and 6(v) its outdegree, that is, the number of edges leaving v. The

edges leaving a vertex are ordered. For 1<i< 6(v), let v{i] denote the ith successor of v, that 1s, the

vertex to which the ith edge of v points. A vertex u is a predecessor of v if v =uli] for some 1. Since

multiple edges are allowed, possibly vl[il=v{j] for ij. Let [V|= n, [E| = m. We assume that there

are no isolated vertices and therefore that n = O(m).

Let R be a relation on V. 1 wo vertices u and v are congruent under R if h(u) = h(v),

§(u)= 6(v), and, for all i such that 1 <i< 6(u), (ulil, v[i))e R. There is a unique minimal extension

~ of R which satisfies 1. ~1s an equivalence relation, and 2. if u and v are congruent under ~, then

u~v . The relation ~is called the congruence closure of R. In the congruence closure, two vertices

are equivalentif they have the same label and the same outdegree, and all their corresponding

successors are equivalent.

Inthis section we describe an algorithm for computing congruence closures which requires

O(mn + k) time and O(m) space in the worst case, where k is the number of pairs in R.

We represent an equivalence relation by its corresponding partition, that is, by the set of its

equivalence classes. An equivalence class is represented by a list of its members. We use two

procedures for operating on the partition: UNION and FIND. UNION(u, v) combines the

equivalence classes of vertices u and v. FIND(u) returns the equivalence class of vertex u.

In the most straightforward implementation of UNION and FIND, each vertex u contains a

field EQCLASS(u), pointing to the equivalence class of u, that is, to the head of the list of vertices

representing its equivalence class. If u and v are equivalent, then EQCLASS(u) and EQCLASS(v)

point to the same list. FIND(v) simply returns EQCLASS(v).UNION(u, v) updates the EQCLASS

pointer of ail the vertices in v’s equivalence class to point to u’s equivalence class, and destructively

appends the former equivalence class to the latter. In this simple implementation, FIND takes

constant time while UNION takes time linear in the sum of the lengths of the two equivalence
classes being merged and thus takes worst case time O(n). [Tarjan1975] analyzes an implementation

of UNION and FIND which is much faster in theory and in practice, but which affects only the

constant factor of the time bound of our simple congruence closure algorithm.

For each vertex u, define the signature of u to be the tuple <A(u), Vio Ve where k is the
outdegree of u and v, is the first vertex in the equivalence class of uli}. The signature of a vertex is
thus an encoding of its label together with the list of its successors’ equivalence classes.

Two vertices are congruent if and only if they have identical signatures. When two

equivalence classes are merged, the signatures of some vertices in the graph may be changed. To

find all new congruences, we sort the vertices on the basis of their signatures. Congruent vertices will

be adjacent in the sorted list.

3

Congruence Closure Algorithm

This algorithm computes the congruence closure of a relation R on a graph G.

i. For each of the k pairs (u, v) in R, if FIND(u) » FIND(v) then UNION(u,v).

2. Sort the vertices inG on the basis of their signatures. Let L be the resulting sorted list and
L{i}theith vertex in L.

3 For i «1 to n- 1, if L{i] and L{i+1] have the same -ignature but FIND(L[i])= FIND(L[i+1]),

then UNITON(LI[i],L{i+ 11).

4. If any unions were done in step 3, then go to 2. Otherwise, return.

The algorithm is obviously correct. Since there are only n vertices in G, there can be at most

n - 1 calls to UNION. Therefore the total cost of calls to UNION in the algorithm is O(n®). Using
lexicographic sorting, the cost of each pass through steps 2, 3 and 4 is O(m + n), excluding the cost

of any calis to UNION. There can be at most n passes through these steps of the algorithm. It

follows that the worst case running time of the algorithm is O{mn + k). The algorithm requires

linear space.

Faster congruence closure algorithms are possible. [Johnson and Tarjani977) describe an

algorithm which requires, depending on its implementation, O(m (log n)?) time and O(m) space in
the worst case, or O(m log n) time’and O(mn) space in the worst case, or O(m log n) time on the

average and O(m) space. [Downey, Samet and Sethil978) have discovered essentially the same

algorithm. [Kozen1977] also gives a polynomial time algorithm.

There 1s a directional dual to the problem of constructing the congruence closure of a relation

R: constructing the equivalence relation ~ containing R such that if u ~ v, then ulil~ v[i] for all i

such that {<i<§(u) = 6(v). In this dual problem, if two vertices are equivalent, then so are all their

corresponding successors. This is essentially the problem of determining the equivalence classes of

states of a finite automaton. There is an O(n a(n)) algorithm for solving this problem ([A ho,

Hopcroft and Ulimann 1974]), where a(n) is the inverse of a version of Ackermann’s function.

3. The Quantifier-free Theory of Equality

The language of the quantifier-free theory of equality consists of variables, uninterpreted function

symbols, the usual boolean connectives and the predicate =. Every term is either an atomic symbol

(which represents an individual variable) or an expression of the form ft, . — t,) where f 1s an
atomic symbol and each t is a term. An example of a formula in the theory is x =y2 f(x) = f(y).
The theory was first proved decidable by [Ackermann1954].

4

In this section we give a decision procedure which determines the satisfiability of a

conjunction F of literals i n time OF), where |F| is the length of F. The decision procedure
represents the terms of the con junction by vertices in a directed graph and uses the congruence

closure algorithm to make all possible inferences following from the substitutivity of equality.

Wcrepresent a term t by the root of a tree T(t) in the obvious way: if t is atomic, 7(t) contains

a single vertex labelledt with no successors; if t is of the form ft, ..., 1), T(t) has a root labelled f,
whose successors are the roots of Tt,), co, Tt,) We €all the root of T(t) the representative of t; we
use T(t) to denote this root as well as the tree itself when the context makes the meaning clear.

The decision algorithm first constructs the disjoint union of the trees representing the terms In

| the conjunction. Itthenmerges (makes equivalent) each pair of vertices which represents a pair of
| terms asserted equal in the formula and closes this initial relation under congruences. We will show

that two vertices are equivalentin the congruence closure if and only if the terms they represent are

entatled equal by the formula. It therefore suffices for the decision algorithm to check if the

representatives of any two terms asserted unequal are equivalent in the congruence closure. If so, the

algorithm returns UNSATISFIABLE; if not, it returns SATISFIABLE.

Figures! and 2 illustrate how our decision procedure determines that the formula F = f(a) = a

A g(f(f(a)), a) = g(a, a) is unsatisfiable. The algorithm first constructs the disjoint union G of the

trees representing the four terms a, f(a), g(f(f(a)), a), and g(a, a). (In the figure, vertices have been

numbered for the purpose of this description.) The algorithm then merges vertices i and 2, which

represent the terms a and f(a) asserted equal in F. The result is illustrated in figure 1; we use a
dotted line to represent the fact that vertices I and 2 are equivalent. The decision algorithm next

computes the congruence closure on G of the initial equivalence relation in which vertices | and 2

are equivalent. Figure 2 illustrates the resulting equivalence relation: vertices 1, 2, 3, 5, 6, 7, 8, 10 and

[1 are all equivalent to each other, as are vertices 4 and 9. In the final step, the decision algorithm

checks whether the representatives of any terms asserted unequal by F are equivalent in the

congruence closure. In our example, the terms represented by vertices 4 and 9 were asserted unequal,

but have been merged. The decision algorithm therefore terminates with UNSATISFIABLE.

Decision Algorithm

Let Fr=t, =U; A... At b= u, AT Soa. AT S Be a conjunction of equalities and
disequalities. This algorithm determines whether F is satisfiable.

I. Construct a graph G, the disjoint union of T(t), T(u,), . T(t), Tu), T(r), T(s;), Co
T(r) Tis) Let R be {(T(t), T(u.)) | 1 sip}. Construct ~, the congruence closure of R on G.

2. For 1 from 1 to q, if T(r) ~ Ts) return UNSATISFIABLE. Otherwise, return
SA TISFIA BLE.

9

[©

; |
V4

7

0} 3 7 18 11
. Figure1

4

(0)
~

N

AN5 :
\

- en on os aa \

/ \
/

, \
2 / 0 9

FOE
AN

/

/

| D) 3 7 18 1
Figure2

|

It 1s straightforward to verify that the algorithm is correct if it returns UNSATISFIABLE. To

show that it is correct if it returns SATISFIABLE, we construct an interpretation W satisfying F.

Let S be the partition of the vertices of G corresponding to the equivalence relation ~.{ maps

individual variables into elements of S (that is, equivalence classes of vertices) and k-ary function

symbols into functions from s¥to S.

If x 1s anindividual variable, let W(x) be the equivalence class of any vertex labelled x with
outdegree zero. (Since all such vertices are equivalent, this definition 1S unambiguous.) If fsa

function variable, let W(ENQ,, Ce Q,) be the equivalence class of any vertex v in V such chat
A(v)= f, 6(v) = k, and for all i between i and Kk, viileQ.. (U(f) is well-defined because, if two
vertices u and v both satisfy these conditions, they are congruent and therefore in the same

equivaience class.) If no such vertex v exists, then WIEXQ,), Ce Q) is arbitrary.

It 1s straightforward to verify that for all terms t in F, Y(t) is the equivalence class of T(t).

Thus, (satisfies F, since T(t.) is in the same equivalence class as T(u,), for each 1, and T(r.) 1S In a
different equivalence class than T(s,), for each i.

[Shostak 1977) proves a similar result.

Let m be the number of edges and n the number of vertices in C. Since m<|F), n s|F], and

q <|F}, step 1 requires time O(|F i), step 2 time O([F]), and the whole algorithm time O(F[°).

As presented, the algorithm is not incremental in the sense of [Nelson and Oppent 978]; that

15, it does not accept iiterals one by one and determine unsatisfiability as soon as the conjunction

becomes inconsistent. It 1S easy to modify the procedure so that it is incremental. We keep a list of all

pairs of vertices which have been asserted unequal, adding a new pair to the list every time a

disequality is presented. The list never contains more than q pairs, so checking if a merge violates

some disequality requires O(q) time. Since there can be at most n-l merges, whether or not they are

done incrementally, this incremental version of the algorithm spends O(nm) time in the congruence

Closure algorithm and O(nq) time checking if merges violate disequalities, or O(FI°) time in all.

4. Extension to Theories of List Structure

In this section we show how the decision procedure given in the previous section can be modified to

handle the function symbols CAR, CDR and CONS and the predicate LISTP in addition to

uninterpreted function symbols. An example of a formula in this theory is CAR(x) = CA R(y) A

CDR(x) = CDR(y) A LISTP(x) A LISTP(y) > f(x) = f(y). The decision procedure determines the

satisfiabili’ty of a conjunction of length n of literals in time on).

/

We assume the LISP functions satisfy the following axioms.

CAR(CONS(x, y)) = x

CDR(CONS(x,y)=y (1)
LISTP(x) > CONS(CAR(x), CDR(x)) = x

LISTP(CONS(x, y))

Notice that we do not restrict the domain of the LISP functions to non-circular lists, so that a

formula like CAR(x) = x is satisfiable. If we include axioms enforcing acyclicity of list structure, and

exclude uninterpreted function symbols, a linear algorithm is possible. (Oppen1978] describes a

decision algorithm which determines the satisfiability of a conjunction of length n in time O(n).

The algorithm represents terms by vertices in a directed graph as in section 3. The basic idea

of our decision algorithm is to add all reievant instances of (I) to this graph. For each term

CONS(x, y) represented in the graph, we will add the equalities x = CAR(CONS(x, y)) and

y = CDR(CONS(X,y)) to the graph.

It is convenient inthe statement and proof of correctness of the algorithm to assume that each
positive literal LISTP(t) has been eliminated from the conjunction and replaced by an equality

t= CONS(u, v), where u and v are variables appearing nowhere else in the formula. We can

therefore assume that the oniy literals involving LISTP are negative.

Decision Algorithm

This algorithm determines the satisfiability of a conjunction F of the form:

~LISTP(u;) A~LISTP(uy) A... A = LISTP(u) A
] VISW ALLLAY = WA

Sal FIEARIIAR PU) JN

where the terms in the literals may contain uninterpreted function symbols as well as the functions

CAR, CDR, and CONS.

[. Construct G, the disjoint union of Tu), Ca Tu) TV), Ce T(v,), T(W)), a T(W), T(x),
TxTC) Ty) Let R be {(T(v)), Tw) Isis}

2. For each vertex u in G labelled CONS, add vertices v, labelled CAR, and w, labelled CDR,

both with outdegree I, such that v{1]J= wll]= u. Add the pairs (v, ull]) and (w, u{2]) to R. (That is,

given a term CONS(x,y), add vertices representing CAR(CONS(x,y)) and CDR(CONS(x, y) and

merge them with the vertices for x and y.)

3. Construct ~, the congruence closure of R on G.

8

4. Fort from 1 to s, if T(x.) = Ty), return UNSATISFIABLE. For i from | to q, if the
equivalence class of T(u,) contains a vertex Jabelied CONS, return UNSATISFIABLE. Otherwise,
return SATISFIA BLE.

It is straightforward to verrfy that the algorithm is correct if it returns UNSATISFIA BLE.

Suppose that it returns SATISFJABLE; we will construct an interpretation satisfying F.

Let So be the partition of the vertices of G corresponding to the final equivalence relation ~.
We define two functions CA Ro and CDR, from Sg to Sy» and a function CONS, from a subset of
SgXSg, to Sq If the equivalence class Q contains a vertex v with a predecessor u Jabelied CAR,
then CARol) is the equivalence class of u; otherwise CA Ry(Q) is arbitrary. If Q contains a vertex
v with a predecessor u labeiied CDR, then CDR,(Q) is the equivalence class of u; otherwise
CDRolQ) is arbitrary. The pair (QQ) is in the domain of CONR. yan, if there exists a vertex v
labelled CONS such that v(1JeQ, and v[2]€Q,; in this case CONS ,(Q,,Q,) 1s the equivalence
class of v. Note that CA R, CDR, and CONS, are well-defined because the graph is closed under
congruences.

CARo CPR, and CONS, have the following two properties:

i. If (Qy Q,) is in the domain of CONS, then CAR,(CONS(Q,, Q,)) =Q, and
CDR (CONS,(Q,, Q,)) = Q,.

2. If Q is in the range of CONS, then (CA Ro(Q) CDR,(Q) is in the domain of CONS,
and CONS(CAR(Q), CDR (Q)) = Q,

Proof of property 1: If (QQ) is in the domain of CONS, then there is a vertex u with
A(u) = CONS, ullJeQ,, and ul2}eQ,,. Since u is a CONS, two vertices v and w labelled CAR and
CDR respectively were added as predecessors of u. These vertices satisfy the requirements of the

definitions of CARy and CDRj, so CARLCONS4(Q,,Q,)) is the equivalence class of v and
CDR,(CONS4(Q,,Q,)) is the equivalence class of w. Furthermore the pairs (v, ul1)) and (w, ul2])
were added to R in step 2, so v and w are in the equivalence classes Q, and Q, respectively.

- The proof that the functions have the second property is similar.

To construct an interpretation, we must extend CONS, so that it is defined on all of Sq X So-
We will first extend it to a function CONS, which agrees with CONS, where CONS, is defined,
and otherwise just returns the ordered pair of its arguments. Since CONS, returns elements of
So X Sq the domain Sy of the interpretation must be extended to a domain S$ 1 Which includes both
So and part of So X So: Now CONS, must be extended so that it is defined on all of S, xS. To
construct an interpretation we repeat, this extension step infinitely many times.

M or e precisely, suppose that we have defined the first i + 1 quadruples in the infinite

sequence (Se. CONS, CAR, CDR), (S,, CONS ,CAR,,CDR,), co (S,, CONS,, CAR, CDR),
.... We define the next quadruple (S,, CONS, |,CAR. ,,CDR, ,) by the following ruies.

Let D. be the domain of CONS.

I-51 = 5 VS; xS;-Dy y

2. The domain of CONS, is SxS; CONS, (x,y) = CONS/(x,y) if (x,y) is in the domain
of CONS;; CONS, (x,y)= (x,y, otherwise.

3. CAR, ,(x)=CAR(x) if x €S.. Otherwise x «5S, X S, -D, and is thus an ordered pair (y,z),
inthis case define CA R., (x)= y.

4, CDR, (x) = CDR.(x) if X € S.. Otherwise X € S, X S, - D. and is thus an ordered pair (y, 2),
in this case define CDR, (x) = 1.

It is trivral to verify that if CONS, CAR, and CDR, satisfy properties I and 2, then so do
CONS, _,, CA Rit and CDR. ,. Since the properties are satisfied for i= 0, they are satisfied for
every i. Let S° be the union of ail the S.. Let CAR’(x) be CAR (x), for the first 1 such that x €S.. Let
CDR’ and CONS’ be defined similarly. It follows that CAR’, CDR’, and CONS’ have properties]
and 2 and that CONS’ is defined on all of S” x S’.

We are finally ready to define an interpretation ¢ which satisfies F. The range of ¥ is S’. ¢

interprets CAR, CDR, and CONS as CAR’, CDR’, and CONS’. An element of S’ is interpreted to

be non-atomic if and only if it is in the range of CONS’. If f is an uninterpreted function symbol,

Qs CL , Q, are in S and there exists a vertex v such that X(v) =f, 6(v) = k, and viileQ for each 1
from 1 to k, then W(EXQ,, Ce. Q,) is the equivalence class of v. If this definition does not
determine the value of Y(f), then the value is arbitrary.

) It follows from properties 1 and 2 and the fact that the set of non-atoms is exactly the range
of CONS’ that this interpretation satisfies the axioms (1). It remains to show that ¥ satisfies F.

- It is straightforward to show that for each term t in the original formula, Y(t) is the

equivalence class of 7(t). But T(v.) and and T(w,) have been merged, for each i from tor, so ¥
satisfies the equalities in F. T(x.) and T(y.) are in different equivalence classes {since step 4 returned
SATISFIABLE), so V satisfies the disequalities in F. Finally, no equivalence class of any T(u)
contains a. node labelled CONS; hence these classes are not in the range of CONS, They are
certainly not in the range of any of the other functions GONS, so they are interpreted as atoms by
WV. Hence ¥ satisfies F.

This completes the proof of correctness of the decision algorithm.

10

Somewhat surprisingly, when the result of a selector function on an atom 1sspecified by the

ax 101115, the problem of determining the satisfiability of a conjunction of literals becomes

NP-complete. Consider the following axioms for the theory of CAR, CDR, and CONS with the

single atom NIL:

CAR(CONS(X,Y)) =X

CDR(CONS(X, Y)) =Y
X= NIL 2 CONS(CAR(X), CDR(X)) =X

CONS(X, Y) = NIL

CAR(NIL) = CDR(NIL) = NIL

We show that the problem of determining the satisfiability in this theory of a conjunction of

equalities and disequalities between terms containing CAR, CDR, CONS, NIL, and uninterpreted

function signs is NP-complete.

It is straightforward to show that the problem is in NP, since a non-deterministic piogram

can guess the equivalence relation on the set of terms in the conjunction and then check that the

equivalence relation does not violate any of the above axioms or the substitutivity of equality.

To show that the problem. is NP-hard, we will reduce the 3-satisfiability problem for

propositional calculus to it. (See [A ho, Wopcroft and Ullmann 1974].)

Let P TERE Pp be propositional variables and F a conjunction of 3-element clauses over the
bP. We will construct a conjunction G of equalities and disequalities between list-structure terms
involving CAR, CDR, CONS, NIL, and the 2n variables Xi Y TRERE Xo Yn such that G is
satisfiable if and only if F is and |G}=O(|F}).

The first part of G is:

CAR(X) = CAR(Y,) A CDR(X,) = CDR(Y) A Xi ” Y, A
CA R(X,) = CA R(Y,) A CDR(X,) = CDR(Y,) A xX, ” Y, A
Co (2)

CA R(X) = CAR(Y) A CDR(X) = CDR(Y) A Xx, Y,

For no i can X. and Y. both be non-nil, since then x. and Y. would be equal by the third
axiom and the substitutivity of equality. One of them must be NIL and the other CONS(NIL, NIL).

Given an interpretation § for G, we construct an interpretation ¢ for F by defining ¢(P) to
be TRUE if and only if W(X.) = NIL. The remaining conjuncts in G will guarantee that y satisfies
G if and only if ¢ satisfies F.

11

We demonstrate the construction with an example. If one of the clauses of F is P, \ ~P,v
P.. wewanttoadd a conjunct to G whichis equivalent to (X, = NIL v X, = NIL v Xn = NIL). In
Iyrht of (2), this) s equivalent o

~(Y, = NIL AX, = NIL a Y =NIL)

or to the single literal)

CONS(Y,, CONS(X,,, Yy)) = CONS(NIL, CONS(NIL, NIL)) .

Note that we have shown the problem is NP-hard even without uninterpreted function

symbols. A similar construction can be used whenever the result of a selector function on an atom is

specified. The problem is also NP-complete with the axiomatization (1) if predicates are interpreted

as boolean-valued functions and literals such as FIATOM(x))= FIATOM(y)) are allowed.

5. Notes on Implementation

The decision procedures described in this paper have been implemented in our simplifier ([Nelson

and Oppenl1978)). A detailed description of their implementation is beyond the scope of this paper

since many constraints are Imposed by other components of the simplifier but we will make a few

general remarks.

The simplifier represents all terms of formulas as vertices in an graph, essentially as described

previously. This graph replaces the conventional list structure representation of formulas used by

most theorem provers. It is a global data structure used by all components of the simplifier.

The decision procedures we have implemented are incremental; that is, the graph is kept

closed under congruences at all times. Whenever some component of the simplifier deduces an

equality, the-equality is added to the graph by merging the equivalence classes representing the two

terms deduced equal, and the congruence closure algorithm is then run.

Instead of the congruence closure algorithm described in section 2, we use another algorithm

which is slower in the worst case but which may be faster in practice. We plan to implement the fast

algorithm described in [Johnson and Tarjan1977) and compare it with our currently implemented
version.

Our experience suggests that a fast congruence closure algorithm is the best method available

for handling equalities in mechanical theorem provers. .

12

4
I

: Acknowledgment

Our original congruence closure algorithm required O(n®) space. We are indebted to Bob Tarjan
for suggesting the improvement incorporated in this paper.

|

a

| References

| [Ackermannl1954] W. Ackermann, “Solvable Cases of the Decision Problem”, North-Holland,
A msterdam.

| [A ho, Hopcroft and Ullmann 1974] A. V. A ho, J. E. Hopcroft and J. D. Ullmann, “The Design and
| | A naiysis of Computer A Igorithms”, Addison-Wesley, Reading, Massachusetts.

|
| [Downey, Samet and Sethil978] P. J. Downey, H. Samet and R. Sethi, “Off-line and On-line

| A igorithms for Deducing Equalities”, Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages.

[Johnson and Tarjan1977) D. S. Johnson and R. E. Tarjan, “Finding Equivalent Expressions”,
manuscript.

[Kozen 19771 D. Kozen, "Complexity of Finitely Represented Algebras”, Proceedings of the Ninth

Annual ACM Symposium on Theory of Computing.

[Nelson and Oppen 1978] C. G. Nelson and D. C. Oppen, “A Simplifier Based on Efficient Decision

A lgorit hms”, Proceedings of the Fifth ACM Symposium on Principles of Programming Languages.

[Oppen 1978] D. C. Oppen, “Reasoning about Recursively Defined Data Structures”, Proceedings of

| the Fifth ACM Symposium on Principles of Programming Languages.

[Shostak 1977} R. Shostak, “An Algorithm for Reasoning about Equality”, Proceedings of the Fifth

Annual International Conference on Artificial Intelligence, 1977.

[Tarjan 1975] R. E. Tarjan, “Efficiency of a Good But Not Linear Set Union Algorithm”, Journal

of the: A CM, pp. 2 15-225.

¥

13

