
|

ON CONSTRUCTING MINIMUM SPANNING TREES IN

k-DIMENS IONAL SPACES AND RELATED PROBLEMS

by

Andrew C. Yao

STAN-CS-77-642

DECEMBER 1977

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

=

On Constructing Minimum Spanning Trees in

- k-Dimensional Spaces and Related Problems

Andrew Chi-Chih Yao

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

The problem of finding a minimum spanning tree connecting n points

in a k-dimensional space 1s discussed under three common distance metrics

—— Euclidean, rectilinear, and L . By employing a subroutine that

solves the post office problem, we show that, for fixed k > 3 , such

] a minimum spanning tree can be found in time 0228) (1050 nyL-ak), ,
-(k+

] where a(k) = 2 (kt1) . The bound can be improved to O((n log ny 1-8)

for points in the 3%-dimensional Euclidean space. We also obtain o(n®)

algorithms for finding a farthest pair 1n a set of n points and for

other related problems.

This research was supported in part by National Science Foundation

grant MCS T2-03752 A03.

1

1. Introduction.

Given an undirected graph with a weight assigned to each edge, a

minimum spanning tree (MST) 1s a spanning tree whose edges have a minimum

total weight among all spanning trees. The classical algorithms for

finding MST were given by Dijkstra [7], Kruskal [13], Prim [14], and

Sollin [4, p. 179]. It is well known (e.g., see Aho, Hopcroft and

Ullman [1]) that, for a graph with n vertices, an MST can be found

in 0(n°) time. (All time bounds discussed in this paper are for the

worst-case behavior of algorithms.) For a sparse graph with e edges

and n vertices, it was shown by Yao [16] that an MST can be found in

time O(e log log n) - More studies of MST algorithms can also be found

in Cheriton and Tarjen [6], Kerschenbaum and Van Slyke [11].

An interesting application of MST occurs in connection with

hierarchical clustering analysis in pattern recognition (see, for

example, Dude and Hart [9, Chapter 6], Zahn [21]).In this application,

n vertices V = vy Vos WV) are given, each a k-tuple of numbers.

The graph 1s understood to be a complete graph G(V) on these n vertices,

with the weight on each edge (viv) being A (vv) where d is a
certain metric function computable from the components of v, and vs
A simple way to find an MST in this case 1s to compute all the weights

avy) , and then use an O(n?) MST algorithm for general graphs.
However, as there are only kn input parameters, it is interesting to

find out 1f there are algorithms which take only o(n°) time. Several

empirically good algorithms were proposed in Bentley and Friedman [2],

where a list of references to other applications of finding MST 1n

k-dimensional spaces can also be found. Shamos and Hoey [16] gave an

2

O(n log n) algorithm for n points in the plane (k = 2) with

Euclidean metric. No algorithm, however, is known to have a guaranteed

bound of o(n°) when k >3 .

In this paper, we consider three common metrics in k-dimensional

spaces, namely, the rectilinear (Ty) , the Euclidean (L,) , and the

L metric. We use aa (p = 1,2,0) to denote the space of all k-tuples
of real numbers with the L metric, i.e., the distance between two points

- - k 1/p

x and y is given by a,(x) = (2 nl?) . (It is agreedi=1

that a_(x,¥) = Dax |x, -v; | .) We give new algorithms which construct,

for a given set v of n points 1in on , an MST for the associated
complete graph G(V) . The algorithms work in time o(n?-2(k) (log nya (k) ,

where a(k) = , = (+1) for any fixed k >5% . Fast algorithms for
related geometric problems are also given using similar techniques,

The main results of this paper are summarized in the following

theorem. Sections 2 -5 are devoted to a proof of it.

Theorem 1. Let k >3 be a fixed integer, al(k) = ,- (k+l) , and all

points to be considered are in ES with pe {1,2,o} . Then each of the
: following problems can be solved in time o(n2-2(k) (log nyl-a(k), . For

the case when k = 3 and p = 2 , the bound can be improved to

0((n Log n)'-%).

MST-problem Let V be a set of n points, find a minimum spanning

tree on V .

NFN-problem (Nearest Foreign Neighbor): Let UTE , a V, be disjoint

sets of points, V = | Vi , and |v] = Nn . For each Vs
i

3

and every xeV, , find a ye V-V, such that

4 (%¥) = min{d_ (x2) | zev-v,} .
GN-problem (Geographic Neighbor): Let V be a set of n points.

For any XeV , let N(x) = (v A > xX, for all 1 < i <k,
v #4 X, VeV} . For each xeV , find a ye N(x) such

that a(x) = min{d_(x,V) | ve N(x) } if N(x) £0 .
AFP-problem [3] (All Farthest Points): Let V be a set of n points.

For each xeV , find a veV such that

a (%, 7) = max{d_ (xv) | vevy} .
F&problem [3] (Farthest Pair): Let V be a set of n points, find

X,y €V such that a, (%¥) = max{d (u,v) | u,v eV) .

In Section 6, we briefly describe, for the L, and the L, metric,

how to obtain o(kn®) algorithms when k 1s allowed to vary with n .

A remark on the model of computation: We assume a random access

machine with arithmetic on real numbers, and charge uniform cost for

all access and arithmetic operations [l]. In this paper, we often carry

out computations of a(x) , which involves an apparent square root
operation when p = 2 . However, since our construction of MST only

depends on the linear ordering among the edge weights, we can replace

dp (5) throughout by some monotone function of d,(%,7) . In particular,
4, (%¥) may be replaced by (4, (%7))° = 2; (x, ,)° everywhere to
produce a valid algorithm without square root operations. We shall,

however, retain the original form of the algorithm for clarity and for

consistency with the cases p =1, « .

4

2. The Post Office Problem and Its Applications.

In this section we review solutions to the post office problem, and

show how 1t can be used to prove Theorem 1 for the AFP, FP and NFN

problems.

The post office problem can be stated as follows. Given a set of

n points Vis Vos veer Vy in ES we wish to preprocess them so that
any subsequent query of the following form can be answered quickly:

nearest-point query: Given a point X , find a nearest v, to x

(i.e., a (xv;) < a, (57) for 511 J).

This problem was mentioned in Knuth [12] for the case of points in the

Euclidean plane (k = p = 2) . For this special case, several solutions

were given by Dobkin and Lipton [83 and Shamos [15]. For example, it

1s known that with an 0(n%) -Lime preprocessing, any nearest-point query

can be answered in O(log n) time [15]. A solution for the k-dimensional

Euclidean space was given in Dobkin and Lipton [8], where it was shown

that, it is possible to preprocess n points such that any subsequent

nearest-point query can be answered in 02" log n) time. Their

. technique is quite general, and applies equally well 1f we wish to

answer "farthest-point" queries -- Given X , find a farthest vy to Xx —-

instead of nearest-point queries. The preprocessing procedure was not

discussed in great details in [8]. A straightforward, but tedious

implementation [19] gives the following result.

Definition. We shall use b(k) = 2°71 , and a(k) = b(k)"t = o~ (k1) :

Lemma 2.1. Let k > 3 be a fixed integer, and p e€ {1,2} . There

is an algorithm which preprocesses n points in E in time om? (¥)y

such that each subsequent nearest-point query can be answered in

O(log n) time. In the special case k = 3, p = 2 , the preprocessing

time can be improved to O(n’ log n) with a query response-time

0((log n)%) . The preceding statements remain true 1f the farthest-

point query 1s used in place of the nearest-point query.

We shall now demonstrate the use of Lemma 2.1 by applying it to

solve the MST problem in a special case. It also gives us some insight

into the connection between MST and some typical nearest neighbor

problem [3],[16]. -

Consider the case when V consists of two widely separated clusters A

and B . For definiteness, assume that a, (4B) > ne. (diam(A)+ diam(B)) JY
In this case any MST on V consists of the union of an MST for A and an

MST for B , plus a shortest edge between A and B . Thus, to be able to

solve the MST problem efficiently, we have to be able to solve the following

problem efficiently:

Problem RMST: Given two well-separated sets A and B in E: » with
|A] on |B] =n , find a shortest edge between A and B .

This problem looks very similar to the problem of finding the closest

pair-in a set, which has an O(n log n) -time algorithm. However, there

does not seem to be any simple divide—-and-conquer o(n°) solution. We

shall presently give a o(n°) -time algorithm employing the post-office }

problem as a subroutine.

*/ We use the notations a.,(4,B) = min{d_(u,7) | ueh, veB}, a, (w, S) =
min{d (u,v) | ve Ss) , and diam(s) = max{d_ (3,7) | 5, ve 8) .

6

Consider the following algorithm.

(s1) Divide B into r = n/q’ sets BiyByseessB, each with at most
gq points (gq to be determined).

(s2) For each 1 < 1 <r , preprocess B, for nearest-point queries as
in Lemma 2.1. i

(S3) For each Xe , and each 1 <i <r, find a point v(%,1) eB;
that is nearest to x among all points 1n B. .

(sh) For each XeA , find a z (x) €eB nearest to x by comparing

v(%,1) for all 1 <i<r.

(s5) Find a shortest such edge (x,2(x)} :

The time taken is dominated by (S2) and (83), i.e.,

O(r . adel + nrlog q) .

Choosing gq = (n log n) (0 (x) y the time 1s O(n(n log n) + (bk) ™
Thus, we have found an algorithm that solves RMST in time

o(n2=2(k) (log n)t-a(k), . For the case k = 3 and p = 2 , one can

choose g = (n log n) 1/5 to obtain an O((n log ny 18 algorithm.

We wish to make two observations concerning the above procedure.

Firstly, the AFP and FP problems can be solved with the same time

bounds by very similar procedures (employing farthest-point queries

and preprocessing, of course). We will thus consider that Theorem 1

~ has been proved for these problems. Secondly, the RMST problem is

a type of nearest neighbor problem with some restrictions on the

"legal" neighbors. It is reasonable to expect more such problems

can be solved with similar techniques. The NFN and GN-problems are

problems of this type, and we will see that their efficient solutions

enable the MST problem to be solved efficiently. We shall give a fast

7

algorithm for NFN-problems presently, leaving the more involved proof

of Theorem 1 for MST and GN to the later sections.

We are given disjoint sets Vis VoseeesV, with a total of n points

in V = U Vs « For a point xeV, , every point yev-v, is a foreign

neighbor of x . Let g= (0 log n) 2%) j call a set V; small if
|v; | < gq, and large if |v; | > g . We partition V into r = 0(n/q)

parts B15 Bo . . +B., where each part (call it a block) either 1s the

union of several small Vv. or 1s totally contained in some large Vs ,

Furthermore, each part contains at most 2g points, and except possibly

for B. , at least g points. The above partition can be accomplished

in O(n) time by breaking each large v. into several blocks and

grouping small Vs into blocks of appropriate sizes. We now preprocess

each block Bs so that, for any query point x , a polnt nearest to X

in B; can be found in O(log gq) time, According to Lemma 2.1, this

preprocessing can be accomplished in time O(r p(k) for all blocks Bs
We are now ready to find, for each point XeV , a nearest foreign

neighbor y , 1.e., a, (%¥) = min{d, (x, z) | zeV-V,] , when xeV,.

Assume that x eV, and X 6B, . Let us find, for each block B, that 1s
disjoint from Vv. , a point 2(x, 3) nearest to x among all points in B.. .
Then we find a nearest foreign neighbor y from the points z(X, 3)

and points in B.-Vs by computing and comparing their distances to x .
The running time for finding y , for each x , 1s thus O(r log gq + (r+q)) .

In summary, the total running time of the above procedure for NFN is

O(n + rq? (E) + nrlog g+ ng) , which is 0 (n2-a(E) (log n)L-a(E), . As

before, an O((n log n) 1.8, algorithm can be obtained for the case

k=3% and p= 2 .

- This proves Theorem 1 for the NFN-problem. An interesting connection

exists between MST and NFN-problems, In fact, in Sollin's algorithm

[4, p. 179], an MST can be found essentially by solving NFN-problems

O(log n) times. Thus, we have shown that an MST can be found in

log ny 0 (n> 8K) (log nyL-a(k)y —time, The log n factor can be

avoided by reducing MST to a generalized version of the GN-problem,

which can be solved in time o(n2-alk) (log nyL-a®)y . The proof

requires additional techniques beyond the simple application of post

office problems to small parts of V . We shall illustrate the ideas

for two dimensions in the next section, and complete the proof in

Sections 4 and 5,

3. An Illustration in Two Dimensions.

We 1llustrate the ideas of our MST algorithms with an informal

description for the 2-dimensional Euclidean space. Let us first consider

a special type of "nearest neighbor" problem. Let p be any point in the

plane. We divide the plane into eight regions relative to D as shown in

Figure 1. The regions are formed by four lines passing through D and

having angles of 0° , 5° , 90° , and 135° , respectively with the x-axis.

We number the regions counterclockwise as shown in Figure 1, and use R,(p)
to denote the set of points in the [~th region (including its boundary),

for 1<1<8.

3 2

4 qa 1
sn

’ “ pr
fp q

5 F 8

6 7

Figure 1. Regions R,(p) for 1<1<8.,

Lemma 3.1. If ag and q' are two points 1n R, (2) for some [, then
d (ew a') <max{d,(p;q) , 4d(p,q")} .

10

Proof. Consider the triangle Taq (see Figure 1). Since

2974" < 45° < 1/3 , its opposite side qQq' cannot be the longest

side of the triangle. O

Let V be a set of n distinct points in the plane. For each point

veV, let N, (v) be those points of V , excluding . itself, that are
in the {-th region relative to v . That 1s,

N, (v) = VNR, (v)-{v} for 1<£<8.

A point u 1n N,(v) 1s sald to be a nearest neighbor to v in the f-th

region if a, (Vv, u) - min{d, (v,w) | wen, (v)] . Note that such a nearest
neighbor does not exist if N, (v) = fp , and may not be unique when it
exists. Now, consider the following computational problem:

The Eight Neighbors Problem (ENP). Given a set V of n points in the

plane, find for each veV and 1 < I < 8 a nearest neighbor to Vv in

the f-th region if it exists.

We first show that, once the eight neighbors problem 1s solved for V ,

it takes very little extra effort to find an MST on V . To see this, we

form E, the set of edges defined by

E = {{v,u} | veV and u is a nearest neighbor to v selected by ENP} .

We assert that the set of edges E contains an MST on V . As E contains

at most 8n edges, we can then construct an MST for the sparse graph (V,E)

in O(n log log n) steps [17], a very small cost.

11

Theorem 3.2. The set of edges E contains an MST on V .

Proof. Let T be a set of edges that form an MST on V . We will show

that, for any edge (va w) that 1s in T but not in E , we can replace

(v, Ww) by an edge in E and still maintain an MST. This would prove the

theorem since we can perform this operation on T repeatedly until all

edges in T are from E .

Let (v, w} be an edge in T-E . Assume weR,(V) . Then N,(v) £0,

and there is a nearest neighbor u to v in , (v) such that {v,u} e E .

Clearly u # w and d,, (v,u) < a, (v,w) . Let ws delete (v,W)
from T. Then T is separated into two disjoint subtrees with v and

Ww belonging to different components. Now, u and w must be in the

same component. For if they were not, (1) would be a shorter

. connecting edge for the two subtrees than {v, Ww) by Lemma 3.1,

contradicting the fact that T is an MST. Therefore u is in the same

subtree as W , and adding the edge {v,u} to T- {v,w) results in a

spanning tree with total weight no greater than that of T . J

We now proceed to solve the eight neighbors problem. We will find

. a nearest neighbor to each point in the first region. The procedure can

be simply adapted to find nearest neighbors in the [-th region for other [.

As demonstrated earlier, the MST problem can be thus solved in a total of

8.f(n)+0(n log log n) steps, if the first-region nearest neighbors can

be found in f(n) steps.

To study the first regions, 1t 1s convenient to tilt the y-axis by

L5° clockwise (see Figure 2). That is, transform the coordinates (%15%,)

of a point v into (x15%}) , defined by

12

-

! -—

xq 1 1 Xy

x5 oO Jz x,

In the new coordinates, a point u = (usu) 1s in the first region

relative to v = (y»v) if and only if (uy >vi) A (uy >v)).

vy!

u, === --—--el

- 2 _ 7
-— en em -— eV,’

1 ,° 7
V4

Pi
Ak ay a X

V1

u'
1

Figure 2. New coordinate system.

For simplicity we assume that all the 2n coordinates X15 Xp) of

points xeV are distinct numbers. This restriction shall be removed in

the general algorithm in Section 3. Let us first sort the points according to

Ss = (n/q)Y/2 consecutive
their first coordinates x] , and divide them into

15

a

groups each with # gs points (Figure 3), gq to be determined later. Then

for each of these s groups we sort the points in ascending order of the

coordinates x5 , and divide them into s consecutive groups with = gq

points each (Figure 4).

- .

° [, .

[] e ‘ ’

4 . ’

e 9

’ ; ’

3 ‘ 4
~. ,

Figure 3, Division of points into s groups according to values
1

of Xq oe

LJ ’ .

| p)

’

’ ’ ’

. to

Figure 4. Completing the division of V into s° cells.

1h

-

The set V 1s thus divided into s° "cells". For any VeV , the cells can

be classified into three classes by their position relative to v :

class 1, cells all of whose points are 1in N, (v) 3 class 2, cells with

no points 1in N, (v) ; and class 3%, the remaining cells. A useful
observation is that the number of cells in class 3 is at most 2x Ss .

This can be understood as follows: 1f we draw a horizontal and a vertical

line through v , only those cells that are "hit" can be 1n class 3, and

there are at most 2 xs of them. We can now try to find a nearest

neighbor for v in N, (v) using the following strategy: We examine

each cell in turn for cells in class 3, and compute a, (v1) for all u

in the cell; for a cell in class 2, we ignore it; for a cell C in

class 1, we compute u and a, (v,u) defined by a, (v,u) = min{d,(v,x |xecC} .
A nearest point can now be found by selecting the point u with minimum

a, (v,u) from the preceeding calculations. The cost 1is

0(2s.q + # of class 1 cells x a) = 0(2sq + sa) = o(3 + 5 a) , where a
is the cost of computing a, (v;,C) for a cell C of gq points. If we

have to compute d, (v,u) for each ueC , then a = O0(gq) , and the total
cost would be O(n) , and we have not made any progress. However, we

know from the post office problem that we can lower a to log gq 1f we

are willing to preprocess the set C (in 0(g°) time) . So let us do

the following: (1) preprocess every cell C to facilitate the

© computing of a, (v,C) ; (cost o(2 . ®) = 0 (nq)) (ii) for
each v , compute the nearest neighbor in the above manner in time

o(3+ 5 log 2) . The total cost 1s then o(nq + i + 2 log 1) .
Take q = n> and we obtain an algorithm that runs in time

on’/? log n) . This gives an o(n°) algorithm for finding an MST in

2-dimensions. We shall generalize the ideas to general k .

15

Li, Reduction of MST to a General GN Problem.

We shall prove Theorem 1 for the MST and GN problems in this and the

next sections. Without loss of generality, we shall assume that the n

given points in V are all distinct.

In this section we reduce the finding of MST in Ey to a version

of the geographic neighbor problem. We assume that p «¢ {1,2,} throughout

the rest of the paper.

We make 4 a vector space by defining X+ ¥ = (2,777 5 X5tY5 ce ey x +)
: and cx = (cxqsCXps ex,) , where c¢ 1s any real number and xX 5 Vs

are the components of X and y . We shall refer to any element of By

as a point or a vector. The j-th component of a vector z will be

denoted as Zs without further explanation. The inner product of two

~~ ~t ~~ ~~ k Land
vectors X and y 1s X°*y = 2 X.V5 , and the norm of X 1s

i=1

~ ~ ~ 1/2 | ~ | ~
|| x | = (x. x) . A unit vector x is a vector with |x || = 1 .

Notice that all these definitions are independent of p .

~~ ~ J ~

Vectors b.;b,;.ee;0. are linearly independent if 2, Nb. =0
172 J s-1 1

implies all hs = 0 . A set of k linearly 1ndependent vectors 1n Ey
~~ ~ | K

is called a basis (of E;). Let B= {bj,b,...;0,} be a basis of BE,
k ~

The convex cone of B is Conv(B) = 2 LH | Ms > () for all i .
i=1

~ k | ~ |
For any Xe Ey , the region B of X 1s defined as

R(B;x) = (y | y-xe Conv (B)} :

Let V be a set of n distinct vectors in BE . Denote by N(B,v)
the set Vn {u | ueR(B;V) - {Vv 1} , for each veV . We shall say that W

1s a geographic neighbor to Vv in region B if we N(B;Vv) and

a, (nv) < a_ (u,v) for all UeN(B;V) .
16

The GGN-Problem (General Geographic Neighbor). Given a basis B and a

set V of n distinct vectors in EY, find, for each veV , a& geographic
neighbor to v in region B 1f one exists.

Notice that this reduces to the GN-problem when B = 5,5, | nb
with by 5 = 04 3 . The rest of this section 1s devoted to showing the
following theorem, which states that, 1f there 1s a fast algorithm to

solve the GG@V-problem, then one can solve the MST-problem efficiently.

Theorem 4,1, Let k > 2 be a fixed integer. Suppose there 1s an

algorithm that solves the GGN-problem for n gilven points 1n LH 1n at
k

most f(n) steps. Then a minimum spanning tree for n points in Ey

can be found in O(f(n) + n log log n) steps.

Define the angle between two non-zero vectors x and y as

~ ~ -1 Xey ~~
(x,y) = cos A -PPH 0 < O(x;y) < ®t . For any basis B

lx{-llvll/

of oy , the angular diameter of B 1s defined by
Ang(B) = sup {6 (x,y) X;y€ Conv(B)} . It can be shown that

Ang(B) = max {6 (by,b) | bysbs € B) , although we shall not use that fact.

Let B be a finite family of basis of ES . We call # a frame
if U Conv(B) = BS . The angular diameter of a frame [2 1s given

Bef

by Ang(B) = mex{Ang(B) | BeBS} . For example, let b = (1,0) , b, = (-1,1) ,
~ ~ 1 | | ~~

by = (0, -1) yb) = (- 5 1) as shown in Figure 5, then By = {P75} ,
- ~z 2

By =1{byyb3}, By = {by,D,] are bases of g , and B = {B15 Bys Bs}

a frame; 8(By) = 6(B,) = 3n/L , 6(B;) = 2n/3 , and 6(B) = >7/k |

17

i.

by

b) Ps

Figure 5. Illustration of "basis" and "frame".

Intuitively, the convex cone of a basis B has a "narrow" angular

coverage if Ang(B) is small. The following result asserts that a

frame exists in which every basis 1s narrow, and such a frame can be

constructed.

Lemma 4.2. For any 0 <¢§ < m, one can construct in finite steps a
k

frame SB of E such that Ang(B) < ¢ .

Proof. See Appendix. [J

We consider the following MST algorithm. Let us construct a frame

(L412)k .=1 1 2 Pp

B of ES such that Ang(B) < sin 5 k . Next, for each

Bef , we solve the GGN-problem —-- for each veV , find a geographic

neighbor u to v in region B 1f it exists —-— and form the set E(B) ,

the collection of all such edges {u,v} . Clearly,

| UE(B)| < ne|p| = O(n) . We now claim that au E(B) contains
Bes Bes

18

an MST on V. If this is true, then we can find an MST in an additional

O(n log log n) steps. The total time taken by the MST algorithm is then

O(f(n) + n log log n) . It remains to prove the following result.

Lemma 4.3. u E(B) contains an MST on V .
Befs

Proof. The proof 1s almost identical to the proof of Theorem 3,1,

except that we need to establish the next lemma.

(+1)
Lemma 4.4. Let x, V z in E: satisfy ©(x-z, y-z) < sin! Zk 2 bp ,
then 4 (x,y) < max{d (vy, z), ad (x,2)} .

b D D

Proof. Use 0% By, ¥ to denote angles as shown in Figure 6. By assumption,

1 (1 + 2)
sina < 5k r/o (1)

Without loss of generality, assume that a+ g > n/2 . Let w be the

projection of y on the segment fromz to x By the triangle

inequality satisfied by metric q, , we have

ad (z,w) + d_(w,y) > d_(¥,z0 yW) o »Y) 2 os)

a (x,w) + d_ (wy) > da (xy) .o »W) ol 5 Y) Z of »Y)

Thus,

a (z,w) + 4d (x,w) > a (5,7) + (4 (¥,2) - 2d (w,5)) . 2

But, since Ww is on the segment 2 to X , we have

a, (xz) = d (2, %) + d(x) . Therefore, if we can further show that

d (y,z) - 2d_(w,y) > O (3)
D D

19

J

then (2) implies a(x, 2) > a (xy) , proving the lemma.
To prove formula (3), we notice that for any positive £ , and U, v

7"
in BE,

1/1 = ~~ efi Nn

i max lu, -v, | > a, (wv) > max uy vs | : (Lt)
This leads to

HERS 2 a @Y 2 KVR RT G)

In particular,

~~ 1 ~~

a, (yw) < K /P lv -w|| >
(6)

- 1/2 15

Now, clearly by (1),

1 (3 ’ :) - ~
Iv - wl = (sin a) |y-z| <5 k =z (7)

Formula (3) follows from (6) and (7). O

.

od)

ON
z W X

Figure 6, Illustration for the proof of Lemma 4.4.

20

: De An Algorithm for the General Geographic Neighbor Problem.

5.1 An Outline.

As shown in the preceeding section, the MST-problem can be reduced

to the GGN-problem, and the GN-problem 1s a special case of the GGN-problem,

In this section, we shall give an asymptotically fast algorithm for the

GGN-problem, which completes the proof of Theorem 1.

Given a basis B and a set V of n points in oN , the algorithm
works 1n two phases.

Preprocessing Phase.

(A). Partition V in O(kn log n) steps into r = [n/q7] subsets

- Vis Vos cees Vos each with at most g points (0 to be determined later).

The division will be such that, for any Xe oa , all but a fraction
Lk of the subsets ve have the property that the entire set ve 1s
either 1n region B of X or outside of region B .

(B). Preprocess each Vs in o(q? (Ey steps such that, for any
new point Xe EY, a nearest point u in Vs can be found in 0(log q)
steps.

Finishing Phase.

(C). For each VeV , we find a geographic neighbor in region B as

follows. We examine the r sets Vir Voseees V,, in turn. For each Vs ’

we perform a test which puts Ve into one of the three categories.

A category-1 vs has all its points in region B of v , a category-2 Vy

has all its points outside of region B . The nature of a category-3 vs

1s unimportant, except that there are at most PIR v; in this

21

-

category; we consider the Vy that contains v itself to be of
category 3 independent of the above division. As we shall see later,

the test will be easy to carry out, in fact in O(k) time per test.

For a category-1 Vs , we find a nearest Ww in Vj in 0(log gq) time.

For a category-2 vs , nothing need be done. For a category-3 v; , We
find a nearest w(# v) eV, in region B , if it exists, by finding all
the ze, that are in region B and computing and comparing a (zv)
for all such z . Call Ww a candidate from v.. . After all the v,

have been so processed, we compare 4 (nv) for all the candidates Ww
obtained (at most r of them), and find a nearest one Wu to v . This

4 is the geographic neighbor we seek for v . Return "non-existent" if

no candidate w exists from any Ve .
In the above description, three points need further elaboration:

‘how step (A) 1s accomplished, how we check a subset Vv. for its category,

and how gq is chosen. We shall deal with the first two points in

Section 5.2, and the last point in Section 5.3.

5.2 A Set Partition Theorem.

We shall show that step (A) of the preprocessing phase in Section D.l

can be accomplished. The key is the following result in Yao and Yao [20].

For completeness, a proof 1s included.

+ For any finite set F of points 1in Be » let high (F) = max{x , | xe F}
and low, (F) = min{x | x ¢ F] , for 1<t<k.

22

*

Lemma 5.1 [20]. Let g and k be positive integers, and F a set
J

of n points in all Then, in O(kn log n) steps, the following can

be done.

(1) F is partitioned into r = [n/q1 sets FisFseeesF, , each with

at most gq points,

(ii) the 2kr numbers high (F,) , Low (F;) , 1 <1i< rr, and

1 <1t<k, are computed,

(iii) the partition satisfies the condition that, for any ye ES , there
1/k_k-1

existat most kfr /] sets Fs such that Hf with
Low, (F,) <y, =< high (F,) .

Proof. We shall prove 1t for the case k = 3 ; the extension to general
Z

k 1s obvious. For the moment, let us assume further that n = gm' for

some integerm . We use the following procedure to partition F .

(a) Sort the points of F in ascending order according to the first

components into a sequence XX), 000k . Divide the sorted
sequence into m consecutive parts of equal size. That is, let

Gp = fx, [1 <3 < n/m) , Gy = {*; | n/m + 1 <j<en/m),. ..,G.

(b) For each 1 < 1 <m , sort the points in Gs according to the 2nd

components; divide the sorted sequence of Gy into m consecutive

parts Of equal size, Gigs Ciny +o 0G

(c) For each 1 < i,j < m , sort the points in Gy according to their

3rd components; divide the sorted sequence of Sp into m consecutive
(2

parts of equal size, Gi5175507 02 iim .
3 /

This lemma was proved in [20] with g = n1/K ; 1t will be absent in a
revised version.

25

(d) We rename the mw sets G as F.3F yesesF where r = n/g= nw
"ijf 1’ 2’ Fr :

(e) Compute high (F,) low (F,) for 1<i<r, 1<14<3 according
to the definitions.

The above procedure takes O(n log n) steps; and each Fs contains

exactly g points. It remains to show that property (111) in the lemma

1s satisfied.

Let 5 & . We shall prove that, for each 1<({<3 , there are

at most ee Fy with Low (F,) < y, < high, (F;) . The proof is based
on the following properties of the partition:

Low, (G;) < high, (G;) < low, (G,) < high, (G,) <.< low, (G) < high, (G_) (5 .1)

low, (G1) < high, (Gq) < 1ow,(Gi,) < high, (Gy) < «v0 low, (Gy) < high, (Gy) (5.2)

Lov (Gy 47) < high (Gy 57) < Low (Gj 55) < high, (CG; s5)

< vee < Low, (Cy 5) < high, (Gs 4) (5.3)

1<i,j<m

For £ = 1, according to (5.1), there is at most one j such that

Low, (G) < vy, < high, (G.) :
2

Thus, only the m Gsts (1 < t,s < m) can have Lowy (Gy) < Vy <

high, (Gyo) . This proves our assertion for f= 1 . We now prove the
case for £ = 2 . For each i , by (5.2), there is at most one J such

that low, (6; 4) <¥, < high, (G; 5) . Thus, for each i , only the m G; 5¢

(1< t_< m) may have Low, (Gy 54) <y, < high, (Gy 51) . Therefore, at most

2L

’ 2 have 1 high im]m G;4, can have ow, (Gy 54) < ¥, < hig ALE . A similar proof

works for f = 3 , making use of formula (5.3).

This proves that, when k = 3, and n = qr = — for some integer m ,

Lemma 5.1 is true. We now drop the-restriction on n (still k = 3).

In this situation, r =[n/q] . Let m = req , and use the same

procedure. At most Ze G; st will satisfy (111) by the same proof.
This completes the proof for k =3., O

We now extend the above result. Let B = {P1sPys easy] be a basis

of BX ; for any XE, we shall define a k-tuple (%s Xhr ees Xp) by2

k LL -

X = 2, X:be . For any finite set F of points, define for each
1=1

1<t<k,

high (BF) = max {x | x ¢ F)

low, (B;F) = min{x, | xeF}

Theorem 5.2. Let q , n , k (qk < n) be positive integers, B a basis

. of E , and V a set of n points 1n Be . Then, 1n

O(kn log n + kn + 1) steps, we can accomplish the following:

ST V is partitioned into r = [n/q] sets VysVgseeesV., , each with

at most g points,

(ii) the 2kr numbers high, (B,V;) , low, (B,V;) , (1 <i<r, 1<¢t<k)

} are computed,

. furthermore, the partition satisfies the condition:

25

(iii) for any k-tuple of numbers (y15¥,0 ceesVy) , there exist at most

xr’ EEL Vv. such that, 91,

Low ,(B;V,) <vy, < high (B;V.) :

Before proving this theorem, let us check that this partition fulfills

the requirements of step (i) in the preprocessing phase (see Section 5.1).

Lemma 5.3. A point y¥ 1s in the region B to x , i.e., ¥eR(B:x),

if and only if y, > x, for all 1<f<k.

~~ ~~ k ~~
Proof. The lemma follows from the equation y-x = 2. (y' - x')b, . J

1=1 yA x x

~ Kk _ k
Lemma H.h4. If xXe® , B a basis, and F a finite set of points in E ,

then

either (i) x} < Low, (B;F) for all 1< £ <k, in which case all points

in F are in region B to x »

or (ii) cI x > high (BF) , in which case none of the points
in F are 1n region B tO x ’

or (iii) none of the above, there exists an {£ such that

low, (A;F) <x) < high (BF) :

Proof. An immediate consequence of Lemma 5.3. OJ

There are two consequences of Lemma 5.4% of interest to us. Firstly,

it shows that the requirements of step (A) in Section 5.1 are satisfied,

For any x , a Vy such that neither all points of Vv. are 1n R(B;x)
nor none are in R(B;X) must satisfy the condition that

26

, Low, (8B, V,) < x, < high (BV) for some £ , due to Lemma 5.4. By Theorem 5.2,
1 ==

there are at most about r k such Ve . This proves the claim. Secondly,
Lemma 5.4 gives a simple way to detect most of the Vy that satisfy

Vs - R(B;x) or vs NR(B;x) =) . Namely, compare X, with high (B;V;)

and low, (B;V,) for all #2 , and determine whether case (i), (ii), or
(iii) applies in Lemma 5.4. The test only takes O(k) for each i and J ,

and can be conveniently used in step (C) 1n the procedure in Section 5.1,

We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2, Let M be the k by k matrix (bs 5) , (recall

that b; = CIPLIPY . TL); and M be its inverse. We use the
following procedure to partition V .

-1 J(1) Compute M © in O(k") steps (see e.g. [1]).

(2) Compute, for each xeV , the k-tuple (x15 %05 ee 0sx)) by
-1 : 2

(%15%0s eer x)) = (%y5%55 ee us x) eM . This takes 0(k™n) steps.

(3) Consider the set F = { (x; Xp oe es Xp) | x ev} . We now use the

procedure in Lemma 5.1 to divide F into r parts FFs oF, .

. Let Vs be the subset of V obtained from F. by replacing

every (x; o ** Xk) by the corresponding x.

(4) Set high (B;V;) ~ high (F;) , end low,(B;V;) «~ low, (F,) .

The procedure clearly takes O(kn log n + kn +) steps. The quantities

high, (B;V;) and low, (BV,) are correctly computed by their definitions.
Items (1) and (11) in Theorem 5.2 are obviously true, and (i111) 1s true

because of the properties of high (F,) , Low, (F;) stated in Lemma 5.1. (J

27

ou

5.3 Finishing the Proof.

We now analyze the running time of the algorithm for fixed k and

b (k)
choose q . The Preprocessing Phase takes time O(n log n + Teq)

In the Finishing Phase, the running time is dominated by the search

for candidates Ww , which 1s of order

n[(# of category-1 Vi)ew q + (# of category-3 Vy)eal . The last
1-k-1

expression 1s bounded by n(r log g + r eq) . The total running
-1

time of the algorithm 1s thus O(n log n + reg (¥) + nr log gq + nqr®)
k+1 _

Remembering that b(k) = 2 and r = 0(n/q) , we optimize the

Ny a(k)
expression by choosing g~ (n log n) . This gives a time

on? 2k) (log n) Lmatk)y . The improved time bound for the special case
k=3%3, p= 2 can be similarly obtained.

28

6. Discussions.

We have shown that, for fixed k and pe {1,2,=} , there are
k

o(n°) -time algorithms for a number of geometric problems in ES,
including the minimum spanning tree problem. We shall now argue that,

when pe {2,»} o(kn®) algorithms exist for all k and n . As

are typical for results under fixed k assumptions, the algorithms

given in the paper have orf) time bounds when k is allowed to grow

slowly with n . In fact, a close examination shows that, if

k < . log log n, the algorithms still run in time o(n®) . For

k > > log log n , it can be shown [19] that the computation of the
distances between all points can be done in o (kn) time when pe {2,=} .

Since all problems considered 1n this paper have 0(n°) —algorithms

once all the distances are known, the previous statement provides

algorithms that run in time o(kn®).

The efficiency of our algorithms 1s dependent on the solution to

*

the post office oroblemny (or its farthest-point analogue). For example,

suppose the nearest-point query could be answered in O(log n) time after

an oP) -time preprocessing, PB >2 , A simple adaptation of the

o-p71 1-p 1
algorithm would give an O(n (log n)) ~time solution to the

-1
. 2-8 .

NFN-problem, which in turn implies an O((n log n)) -time solution

to the MST-problem (see the remark at the end of Section 2). If

1 <p <2, the following modification would also give an

2p" 1-71
O(n (log n)) —algorithm for the NFN-problem (and hence an

op!
O((n log n)) -algorithm for finding MST). We first divide V

: -1

into r ¥ n/(n log n)P blocks BisBos ees as before. Each block
- */ Mike Shamos claimed (private communication) a solution to the post office

problem for general k that requires less preprocessing time than the
Dobkin-Lipton solution.

29

1s preprocessed, and for each x , a nearest point in every block not

containing x 1s found. Now, for every point XxeB, | we need to find

for 1t a nearest "foreign" neighbor in B: . Instead of using brute

force (computing the distance from each XeB, to every other point

in Bi) as was done previously, we divide B; into r subblocks,

preprocess each subblock, and find for X "a nearest point 1n every

subblock in B, . To compute a nearest foreign neighbor to Xx in the
subblock containing X , we shall again break the subblocks. This process

continues until the size of the subblocks are less than ° , Where

do = 1-571 , at which point we compute all distances between points in

the same subblcok. During the above process, we have located, for each x ,

a set of points containing a nearest foreign neighbor u to x . It is then

simple to locate such a uo. This 1s a brief outline of an
-1 -1

o(m="P (log n)™P) —algorithm for NFN-problems, 1<p <2.

However, 1t seems unlikely that a nearest-point query can be answered

in 0(log n) time with an 0(rP) -preprocessing, B <2, when k > 5 .

We conclude this paper with the following open problems.

(1) Improve the bounds obtained 1n this paper.

(2) Analyze the performance of new or existing fast heuristic algorithms

- for MST-problems. For example, can one show that the AMST algorithm

in [2] always constructs a spanning tree with length at most 5% over

the true MST?

(3) Prove bounds on average running time of MST algorithms for some

natural distributions.

(4) Extend results 1n this paper to Ly -metric for general p .

30

-

4 References

[1] A. V. sho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 197k.

[2] J. L. Bentley and J. H. Friedman, "Fast algorithms for constructing

minimal spanning trees 1n coordinate spaces," Stanford Computer

Science Department Report STAN-CS-75-529, January 1976.

[3] J. L. Bentley and M. I. Shamos, "Divide-and-conquer in multi-

dimensional space," Proc. 8th Annual ACM Symp. on Theory of Computing

(1976), 220-230.

[4] C. Berge and A. Ghouila-Houri, Programming, Games, and Transportation

Networks, John Wiley, New York, 1965.

[5] R. C. Buck, "Partition of space," Amer. Math. Monthly 50 (194%),

541-54),

[6] D. Cheriton and R. E. Tarjan, "Finding minimum spanning trees,"

SIAM J. on Computing 5 (1976), 72k-Th2,

[7] E. W. Dijkstra, "A note on two problems in connexion with graphs,"

Numerische Mathematik 1 (1959),269-271.

[8] D. Dobkin and R. J. Lipton, "Multidimensional search problems,"

SIAM J. on Computing 5 (1976), 181-186.

[9] R. 0. Dude and P. E. Hart, Pattern Classification and Science

Analysis, John Wiley, New York, 1973.

[10] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading,

Mass., 1961.

[11] A. Kerschenbaum and R. Van Slyke, "Computing minimum spanning trees

efficiently," Proc. 25th Ann. Conf. of the ACM, 1972, 518-527,

[12] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973.

© [13] J. B. Kruskal, Jr., "On the shortest spanning subtree of a graph and

the travelling salesman problem," Proc. Amer. Math. Soc., 7 (1956),

418-50.

[14] R. C. Prim, "Shortest connection networks and some generalizations,"

Bell System Tech. J. 36 (1957),1389-1401.

. [15] M. I. Shamos, "Geometric complexity," Proc. 7th Annual Symp. on

Theory of Computing (1975), 224-233,

31

-

[16] M. I. Shamos and D. J. Hoey, "Closest-point problems," _ Proc. 16th

Annual Symp. on Foundations of Computer Science (1975), 151-162.

[17] A. C. Yao, "An O(|E| log log |V|) algorithm for finding minimum
spanning trees," Information Processing Letters 4 (1975), 21-23.

[18] A. C. Yao, "On computing the distance matrix of n points in k

dimensions," 1n preparation.

[19] A. C. Yao, unpublished.

[20] A. C. Yao and F. F. Yao, "On computing the rank function for a set

of vectors," Computer Science Department Report UIUCDCS-R-75-699,

University of Illinois, February, 1975.

[21] C. T. Zahn, "Graph-theoretical method for detecting and describing

gestalt clusters," IEEE Trans. Computers, C-20 (1971), 68-86.

52

Appendix. The Existence and Construction of "Narrow" Frames —- Proof

of Lemma 4.2.

We shall prove Lemma 4.2 in this appendix.

Lemma 4.2. For any 0< ¢ < ®, one can construct in finite steps a
k

frame ff of E such that Ang(B) < ¢ .

As the discussion 1s independent of p , we shall use as instead

of EX
P

We begin with the concept of a "simplex" familiar in Topology

(see, e.g. [10]). Let PyPyse-+»P; be J*H0<_j < k) points in ES,
where the vectors D,-D, , L< i<j, are linearly independent. We

J

shall call the set > As Ps | As > 0 for all 1, and 2 As = 1
. 1i=0 1

a (geometric) jJj-simplex in ol s» denoted by (PgrPys ++ +9 D3) . Informally,
1t 1s the convex hull formed by vertices Drs DrseoeesDs on the minimal

/ AL J

linear subspace containing them (see Figure A). The diameter of a simplex

§ is diam(s) = supf |x -y|| | %y eS) :

Py

5,
Po

Figure A. A 2-simplex in E |

55

ou

The following two lemmas give the connection between simplices and

bases. Let §t be a k-tuple CF INRTRY £1) , where . ¢€ {-1,1} for
A k

all i. Denote by H(t) the hyperplane {x 2 es¥Xy = 1) in E .

A A A k

Lemma 7.1. Let s = (PgsPysevesP)y 1) be a (k-1) -simplex in E ,

where pe H(t) for every 1 . Then the set B(s) = (Ps Pps veer Dy)
is a basis. Furthermore, the angle ¢ = Ang(B(s)) satisfies

1 . 2

cos cp> 1-3 k(diam(s)) .

k-1

Proof. Suppose 2 APs = 0 . We shall show that As = 0 for all 1 .
i=0""

k-1 k-1 k-1,
If 2». = 0 , then 2 ns (pa-pn) = 2) MP: = 0 . This implies. 1 . 11 0 A Res RE

1=20 1l=1 1=0
k-1

Ng = 0 for all i , by the definition of simplex. If 2 Ay = A # 0 ,
i=0

then v = 2 (A;/M)P; = O . But it is easy to check that veH(%) ,
i=0 °

a contradiction.

We have thus shown that B(s) 1s a basis. To prove the rest of the

lemma, let x and . be any two non-zero vectors 1n Conv (B(s)) , we

shall prove that cos (x,y) > 1 - = 1 (diam(s))® . Without loss of
generality, we can assume that X,7 € s . Then

. 2 ~~ roe ~n2 =n ~~ ~ ~~
(diam(s))” > (x-y) « (x-y) . |x|". vl" -2f x ||* || ¥ || cos o(x,¥)

> 2x|l¢|l¥y||(T - cos 6(x,¥)) .

It follows that

~~ (diam(s))®cos O(x,y) > 1 - >= £ (AL)
2 x fle lv |]

As can be easily verified, x,veH(}) , which implies

3

u

~ 2 > 1 2

BE =z 2 §(Tex) 2%.i i td k

~ 1 C ~ 1
Therefore, lx] — and similarly |v || >==. . Formula (Al) then

J Vk
implies

~ k]

cos O(xy) > 1 - 5 (diam(s))® :

This proves Lemma T.l.

We shall use B(s) to denote the basis corresponding to simplex s .

Lemma 7.2. Let s C€ H(t) be a simplex, o a finite collection of

simplices, and 's = U s' . Then Conv(B(s)) = U Conv(B(s')) .
s' ed s' ed

Proof. It is easy to see that Conv (B(s)) oU Conv(B(s')) . To prove
s' eof

the converse, let s = (Dg? Pys ++ By 1’ , Where each D, S H(%) . If a point

ue Conv(B(s)) , then WU = 2 A;P; , where A; > 0 . We shall prove
i=0

that ue Conv(B(s')) for some s' es . It is trivial if uw = 0 .

. | | 1 ~ 1 ~
Otherwise, the point — Un € 8 = U s' , and hence —— ue s'

1

2 Ai s' eof L As
_ for some s' eo . This implies ue Conv(B(s')) . O

The above lemmas suggest that we may try to construct a frame with

narrow bases, by first constructing a family of simplices all with small

diameters. We use the following scheme:

bY,

-

Let e, denote the unit vector in oa , whose 1-th component 1s 1
and all others are 0 .

For each of the of k-tuples & = (eqs Eps esos £1.) , Where e; = 1,
do the following.

(a) Let s = CCE ens 7 ce. £18) . (Clearly S C H(E) «)

(b) Construct a finite family of simplices all contained in H(E) such that

s = 4 8 and diam(s') < (2(1- cosy) /k) 2 for all s'eyf .
s' ed

(c) Form B(s') for all s' en .

The collection B of all the B(s') constructed this way is clearly

a frame because of Lemma 7.2. Using Lemma 7.1, it is easy to verify that

Ang(B(s')) < y for all s' . Thus, such a construction would give a

frame satisfying the conditions in Lemma 4.2. It remains to show that

step (b) above can be carried out.

A procedure in Topology ([10, p. 209, Theorem 5-20]), known as

barycentric subdivision, guarantees that step (b) can be accomplished

in a finite number of steps. For completeness, we shall give a brief

description below.

. There 1s a basic procedure, called first barycentric subdivision (FBS),

which, for a given j-simplex s , constructs in finite steps a family

of simplices such that s = U s' and max (diam(s')) < ~ (diam(s)) .
| S' €/ s' eof CA

If we apply this procedure iteratively, at each iteration we apply FBS to

every simplex present, then all the simplices will have a diameter less

than any prescribed positive number after enough number of iterations, |

This then constitutes a procedure for step (b). -

36

Finally, we describe the FBS procedure. For a proof that it

produces simplices with the desired properties, see [lo]. Let

~~ — Ld ~~ 1 & ~~
Ss = (PgrPys ++ #7P3) , the point cs) = I, ~ Pi is called the

centroid of simplex s . For any t distinct integers 0 < pig eeerdy <3,

let Ps i 3 = e((p; » Py >eeesDs }) « For each 0 = (igi15-0051) €Y,
172° tt t J

where © is the set of all permutations of (0,1,2,...,3) , let s'(0)

denote the simplex (Pg »DPgy 30003Pg) with o = 1glyee-iy . The FBS
oO 1 J

of s 1s defined by

J = {s" (0) | oex} .

57

