ON CONSTRUCTING MINIMUM SPANNING TREES IN
k-DIMENS IONAL SPACES AND RELATED PROBLEMS

by
Andrew C. Yao

STAN-CS-77-642
DECEMBER 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

On Constructing Minimum Spanning Trees in

k-Dimensional Spaces and Related Problems

Andrew Chi-Chih Yao

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

The problem of finding a minimum spanning tree connecting n points
in a k-dimensional space is discussed under three common distance metrics
-— Euclidean, rectilinear, and L . By employing a subroutine that
solves thekpost office problem, we show that, for fixed k > 3 , such
a minimum spanning tree can be found in time O(nz-a(k)(log n)l-a(k)) s
where a(k) = 2_(k+l) The bound can be improved to O((n log n)1‘8)
for points in the 3-dimensional Euclidean space. We also obtain o(n2)

algorithms for finding a farthest pair in a set of n points and for

other related problems.

This research was supported in part by National Science Foundation
grant MCS 72-03752 AQ3.

1. Introduction.

Given an undirected graph with a weight assigned to each edge, a
minimum spanning tree (MST) is a spanning tree whose edges have a minimum
total weight among all spanning trees. The classical algorithms for
finding MST were given by Dijkstra [7], Kruskal [13], Prim [14], and
Sollin {4, p. 179]. It is well known (e.g., see aho, Hoperoft and
Ullman [1]) that, for a graph with n vertices, an MST can be found
in O(ne) time. (All time bounds discussed in this paper are for the
worst—-case behavior of algorithms.) For a sparse graph with e edges
and n vertices, it was shown by Yao [16] that an MST can be found in
time O(e log log n) . More studies of MST algorithms can also be found
in Cheriton and Tarjan [6], Kerschenbaum and Van Slyke [11].

An interesting application of MST occurs in connection with
hierarchical clustering analysis in pattern recognition (see, for
example, Dude and Hart [9, Chapter 6], Zahn [21]). In this application,

n vertices V = {51,§2,. ..ﬁh} are given, each a k-tuple of numbers.

The graph is understood to be a complete graph G(V) on these n vertices,
with the weight on each edge {;i’;j} being d(;i’;j) where d is a
certain metric function computable from the components of ;1 and ;j .
A simple way to find an MST in this case is to compute all the weights
d(;i,§j) » and then use an O(n2) MST algorithm for general graphs.
However, as there are only kn input parameters, it is interesting to
find out if there are algorithms which take only o(ne) time. Several
empirically good algorithms were proposed in Bentley and Friedman [2],

where a list of references to other applications of finding MST in

k-dimensional spaces can also be found. Shamos and Hoey [16] gave an

O(n log n) algorithm for n points in the plane (k = 2) with
Euclidean metric. No algorithm, however, is known to have a guaranteed
bound of o(n2) when k >3

In this paper, we consider three common metrics in k-dimensional
spaces, namely, the rectilinear (Ll) s the Euclidean (L2) , and the
L, metric. We use Eg (p = L,2,») to denote the space of all k-tuples

of real numbers with the L_-metric, 1i.e., the distance between two points
- - k 1/p
x and ¥y is given by dp(x,y) = 2 Ixi-yilp . (It is agreed
i=1

that dw(;c,sr) = max |xi-yi| .) We give new algorithms which construct,

. . . k .
for a given set V of n points in EP , an MST for the associated

complete graph G(V) . The algorithms work in time O(ng-a'(k) (Llog n)l_a’(k)) ’

- (k+
(le+1) for any fixed k >3 . Fast algorithms for

where a(k) = 2
related geometric problems are also given using similar techniques,
The main results of this paper are summarized in the following

theorem. Sections 2 -5 are devoted to a proof of it.

= 2-(k+l) , and all

Theorem 1. Let k >3 be a fixed integer, al(k)
points to be considered are in E]; with pe {1,2,00} . Then each of the
following problems can be solved in time O(ne-a(k) (Log n)l-a'(k)) . For
the case when k = 3 and p = 2 , the bound can be improved to

o((n log n)*%)

MST-problem Let V be a set of n points, find a minimum spanning
tree on V .
NEN-problem (Nearest Foreign Neighbor): Let Vl’v2’ . "’Vl be disjoint

sets of points, V = Vi , and |V| =n . For each Vi
i

and every ;ceVi , find a S}eV-Vi such that
dp(;c,’;r) - min{dp(;c,}:) | zev-v,} .
GN-problem (Geographic Neighbor) : Let V be a set of n points.
For any xeV , let N(X) = (V|v; > % for all 1< i <k
v#% VeV} . For each XeV , find a yeN(x) such
that dp(§,§) = min{dp(i'c,w?) | ve N(x) } if N(x) # ¢ .
AFP-problem [3] (All Farthest Points): Let V be a set of n points.
For each xeV , find a §eV such that
dp(;c, y) = max{dp(;c,i') | veV} .
F&problem [3] (Farthest Pair): Let V be a set of n points, find

X,y eV such that dp(;c,i'r) = max{dp(ﬁ,%) \ﬁ,\"'reV} .

In Section 6, we briefly describe, for the L2 and the Lm metric,
how to obtain o(knz) algorithms when k is allowed to vary with n

A remark on the model of computation: We assume a random access
machine with arithmetic on real numbers, and charge uniform cost for
all access and arithmetic operations [1]. In this paper, we often carry
out computations of dp(;;;,&) s, which involves an apparent square root
operation when p = 2 . However, since our construction of MST only
depends on the linear ordering among the edge weights, we can replace
%(32,5) throughout by some monotone function of dP(;C;§r) . In particular,
dz(;c,:fr) may be replaced by («:12(}“&,37))2 =2 (X:.L-yi)2 everywhere to
produce a valid algorithm without square root operations. We shall,
however, retain the original form of the algorithm for clarity and for

consistency with the cases p =1, » .

2. The Post Office Problem and Its Applications.

In this section we review solutions to the post office problem, and
show how it can be used to prove Theorem 1 for the AFP, FP and NFN
problems.

The post office problem can be stated as follows. Given a set of

~ o~

~ k)
n points VisVos eees Vy in EP , we wish to preprocess them so that

any subsequent query of the following form can be answered quickly:
nearest-point query: Given a point x , find a nearest ;i to x

(i.e., dp(i,x"ri) < dp(x,?rj) for 411 J).

This problem was mentioned in Knuth [12] for the case of points in the
Euclidean plane (k = p = 2) . For this special case, several solutions
were given by Dobkin and Lipton [83 and Shamos [15]. For example, it

is known that with an O(n2) -time preprocessing, any nearest-point query
can be answered in 0(log n) time [15]. A solution for the k-dimensional
Euclidean space was given in Dobkin and Lipton [8], where it was shown
that, it is possible to preprocess n points such that any subsequent
nearest-point query can be answered in 0(2k log n) time. Their
technique is quite general, and applies equally well if we wish to

answer "farthest-point" queries —-- Given X , find a farthest ;i to X —-
instead of nearest-point queries. The preprocessing procedure was not
discussed in great details in [8]. A straightforward, but tedious

implementation [19] gives the following result.

k+1 - o (k+1)

Definition. We shall use b(k) = 2 , and a(k) = b(k)'l

Lemma 2.1. Let k > 3 be a fixed integer, and p € {1,252} . There
. . . : . k. . b (k)
is an algorithm which preprocesses n points in EP in time O(n)
such that each subsequent nearest-point query can be answered in

0(log n) time. 1In the special case k = 3 , p = 2 , the preprocessing
time can be improved to O(n5 log n) with a query response-time
0((1og n)e) . The preceding statements remain true if the farthest-

point query is used in place of the nearest-point query.

We shall now demonstrate the use of Lemma 2.1 by applying it to
solve the MST problem in a special case. It also gives us some insight
into the connection between MST and some typical nearest neighbor
problem [3],[16]. -

Consider the case when V consists of two widely separated clusters A
and B . For definiteness, assume that dP(A,B) > n-(diam(A) + diam(B)) .f/
In this case any MST on V consists of the union of an MST for A and an
MST for B , plus a shortest edge between A and B . Thus, to be able to
solve the MST problem efficiently, we have to be able to solve the following

problem efficiently:

Problem RMST: Given two well-separated sets A and B in ég, with

|A| = |B| = n , find a shortest edge between A and B

This problem looks very similar to the problem of finding the closest
pair-in a set, which has an O(n log n) -time algorithm. However, there
does not seem to be any simple divide-and-conquer o(ne) solution. We
shall presently give a o(nz)-time algorithm employing the post-office

problem as a subroutine.

* ~ o~ ~ ~ ~
%/ We use the notations dp(A,B) = min{dp(u,v) |uea, veB}, dp(u,S) =

min{dp({i,x"r) | ve 8) , and diam(8) = max{dp(ﬁ,%) |8, ve s} .

6

Consider the following algorithm.

(81) Divide B into r = [n/ql sets B;sBys+.eyB, each with at most
g points (g to be determined).

(s2) For each 1 < i < r , preprocess B, for nearest-point queries as
in Lemma 2.1.)

(83) For each XecA , and each 1 < i <r , find a point §(§,i)eBi
that is nearest to x among all points in Bi .

(s4) For each xeA , find a z(X)eB nearest to x by comparing
y(X,1i) for all 1 <1i<r

~ o~

(S5) Find a shortest such edge {x,z(x)} .

The time taken is dominated by (S2) and (s3), i.e.,
O(r . qb(k) +nrlog q) .

-1

Choosing g = (n log n)(b(k))-l sy the time is O(n(n log n
Thus, we have found an algorithm that solves RMST in time
O(ne-a(k)(log n)l-a(k)) . For the case k = 3 and p = 2 , one can
choose g = (n log n)l/5 to obtain an O((n log n)l’8) algorithm.
We wish to make two observations concerning the above procedure.
Firstly, the AFP and FP problems can be solved with the same time
bounds by very similar procedures (employing farthest-point queries
and preprocessing, of course). We will thus consider that Theorem 1
has been proved for these problems. Secondly, the RMST problem is
a type of nearest neighbor problem with some restrictions on the
"legal" neighbors. It is reasonable to expect more such problems
can be solved with similar techniques. The NFN and GN-problems are

problems of this type, and we will see that their efficient solutions

enable the MST problem to be solved efficiently. We shall give a fast

algorithm for NFN-problems presently, leaving the more involved proof
of Theorem 1 for MST and GN to the later sections.

We are given disjoint sets Vl,Vé,...,Vl with a total of n points
in V=y Vi . For a point ;ceVi , every point ;reV-Vi is a foreign
neighborlof X . Let g=[(n log n)a(k)1 i call a set V, small if
\Vﬁ|'< q , and_large if PQJ > g . We partition V into r = 0(n/q)
parts %VBB’- . oB where each part (call it a block) either is the
union of several small Vi or is totally contained in some large Vi ’
Furthermore, each part contains at most 2qg points, and except possibly
for Br , at least g points. The above partition can be accomplished
in O(n) time by breaking each large Vi into several blocks and
grouping small Vi into blocks of appropriate sizes. We now preprocess
each block Bi so that, for any query point X , & point nearest to X
in Bi can be found in O(log g) time, According to Lemma 2.1, this
preprocessing can be accomplished in time O(r éb(k)) for all blocks By
We are now ready to find, for each point XeV , a nearest foreign
neighbor y , i.e., dp(;c,fr) = min{d_p(;c,'i) | EeV—Vi} , when ;ceVi.

Assume that geVi and XecB Let us find, for each block Bj that is

~ o~ ~

t

.

disjoint from Vi , a point z(x,J) nearest to X among all points in B.J

Then we find a nearest foreign neighbor 5 from the points E(i,j)

and points in Bt'vi by computing and comparing their distances to x .
The running time for finding § , for each X , 1s thus O(r log g + (r+q))
In summary, the total running time of the above procedure for NFN is

b (k)

O(n + rq O(nz-a(k) (Log n)l-a(k)) . As

+ nrlog g+ nqg) , which is
before, an O((n log n)l'8) algorithm can be obtained for the case

k=3 and p=2.

This proves Theorem 1 for the NFN-problem. An interesting connection
exists between MST and NFN-problems, In fact, in Sollin's algorithm
[4, p. 179], an MST can be found essentially by solving NFN-problems
0(log n) times. Thus, we have shown that an MST can be found in
log nxO(ng-a(k)(log n)l-a(k)) —time, The log n factor can be
avoided by reducing MST to a generalized version of the GN~-problem,

2-a(k) l-a(k)) |

which can be solved in time Of(n The proof

(log n)
requires additional techniques beyond the simple application of post
office problems to small parts of V . We shall illustrate the ideas

for two dimensions in the next section, and complete the proof in

Sections 4 and 5.

3. An Illustration in Two Dimensions.

We illustrate the ideas of our MST algorithms with an informal
description for the 2-dimensional Euclidean space. Let us first consider
a special type of "nearest neighbor" problem. Let D be any point in the
plane. We divide the plane into eight regions relative to P as shown in
Figure 1. The regions are formed by four lines passing through f) and
having angles of 0° , 5%, 90° , and 135° , respectively with the x-axis.
We number the regions counterclockwise as shown in Figure 1, and use Rl(f))
to denote the set of points in the {-th region (including its boundary),

for 1<12<8.

Figure 1. Regions Rz(fa) for 1<12<8.

Lemma 3.1, If g and Zl' are two points in Rl(g) for some [, then

a,(aa') <max{d,(p;a) , d;(pa")} .

10

Proof. Consider the triangle ~P?1:1' (see Figure 1). Since

47399 < W5° < n/3 , its opposite side qq' cannot be the longest

side of the triangle. O

Let V be a set of n distinct points in the plane. For each point
veV , let N!('v) be those points of V , excluding v itself, that are

in the f-th region relative to v . That is,

Nz(;) =VnR£(:r)-{\~r} for 1<£<8.

A point u in Nl(v) is said to be a nearest neighbor to ¥ in the {-th
region if dg(V,u) = min{dg(v,ﬁ) lweNl('v)} . Note that such a nearest

neighbor does not exist if Nz(\Nr) = § , and may not be unique when it

exists. Now, consider the following computational problem:

The Eight Neighbors Problem (ENP). Given a set V of n points in the

plane, find for each VeV and 1 <_f <_8 a nearest neighbor to vV in

the f-th region if it exists.

We first show that, once the eight neighbors problem is solved for V ,
it takes very little extra effort to find an MST on V . To see this, we

form E, the set of edges defined by

E = {{:r,u} | YeV and u is a nearest neighbor to v selected by ENP} .

We assert that the set of edges E contains an MST on V . As E contains
at most 8n edges, we can then construct an MST for the sparse graph (V,E)

in O(n log log n) steps [17], a very small cost.

Theorem 3.2. The set of edges E contains an MST on V

Proof. Let T be a set of edges that form an MST on V . We will show
that, for any edge {;',;r} that is in T but not in E , we can replace
{:r,;r} by an edge in E and still maintain an MST. This would prove the
theorem since we can perform this operation on T repeatedly until all
edges in T are from E

Let {v,w} be an edge in T-E . Assume We Rz(;) . Then Nl(;) £0,
and there is a nearest neighbor u toO v in N/ZG) such that {v,u}e E
Clearly u # W and dg(w';,ﬁ) < d,z(:f',;v) . Let wdelete {:’,';‘T}
from T. Then T is separated into two disjoint subtrees with v and
;r belonging to different components. Now, u and W must be in the
same component. For if they were not, {:1,-;7} would be a shorter
connecting edge for the two subtrees than {:r,ﬁ by Lemma 3.1,
contradicting the fact that T is an MST. Therefore U is in the same
subtree as W , and adding the edge {;,;1} to T- {;,;I} results in a

spanning tree with total weight no greater than that of T . (.

We now proceed to solve the eight neighbors problem. We will find
a nearest neighbor to each point in the first region. The procedure can
be simply adapted to find nearest neighbors in the f-th region for other {.
As demonstrated earlier, the MST problem can be thus solved in a total of
8¢f(n)+0(n log log n) steps, if the first-region nearest neighbors can
be found in f(n) steps.

To study the first regions, it is convenient to tilt the y-axis by
45° clockwise (see Figure 2). That is, transform the coordinates (Xl,XE)

of a point v into (xi,xé) , defined by

12

n

In the new coordinates, a point u = (ui,ué) is in the first region

relative to v = (»vy) 1f and only if (uizvi)/\(uézvé).

yl
1 [, R
U 7’
7
A A
1 ” 7
4V ol
O 7’ 4
15 L7, Ly
— d
v'
1 J
—_——
ul
1
Figure 2. New coordinate system.

For simplicity we assume that all the 2n coordinates }Li, xé of

points xeV are distinct numbers. Ihis restriction shall be removed in

the general algorithm in Section 3. Let us first sort the points according to

1/2 .
their first coordinates Xi , and divide them into S = (n/Q.) consecutive

13

groups each with » gs points (Figure 3), q to be determined later. Then

for each of these s groups we sort the points in ascending order of the

coordinates xé , and divide them into s consecutive groups with = g

points each (Figure 4).

Figure 3, Division of points into s groups according to values

of xi .

Figure 4. Completing the division of V into s cells.

1L

The set V is thus divided into s2 "cells". For any VeV , the cells can
be classified into three classes by their position relative to v

class 1, cells all of whose points are in Nl(;) ;3 class 2, cells with

no points in Nl(;) ; and class 3, the remaining cells. A useful
observation is that the number of cells in class 3 is at most 2x s .

This can be understood as follows: 1f we draw a horizontal and a vertical
line through v , only those cells that are "hit" can be in class 3, and
there are at most 2 xs of them. We can now try to find a nearest

neighbor for ; in Nl('\vr) using the following strategy: We examine

each cell in turn for cells in class 3, and compute d2(\7,f'1) for all u

in the cell; for a cell in class 2, we ignore it; for a cell C in

class 1, we compute u and dg(Tr,ﬁ) defined by de(w”r,ﬁ) = min{de(x"r,i |xecy .

~

A nearest point can now be found by selecting the point u with minimum

d2(\~r,ﬁ) from the preceeding calculations. The cost is

0(2s+q + # of class 1 cells x a) = 0(2sq + sga) = O(E + 2 a) , where a

is the cost of computing dg(vi,C) for a cell C of g points. If we

have to compute dg(:r,ﬁ) for each UeC , then a O(g) , and the total
cost would be O(n) , and we have not made any progress. However, we
know from the post office problem that we can lower a to log g if we
are willing to preprocess the set C (in O(qg) time). So let us do

the following: (1) preprocess every cell C to facilitate the

 computing of d2 (:r,C)

4

(cost o(% . q2) - 0(nq)) (ii) for
each v , compute the nearest neighbor in the above manner in time

2 2
O(%+%log q) . The total cost is then 0(nq+ n?-i- Eq-log q) .

_ /3 : : —
Take g=n and we obtain an algorithm that runs in time

5/3

0(n log n) . This gives an o(ne) algorithm for finding an MST in

2-dimensions. We shall generalize the ideas to general k

15

ki, Reduction of MST to a General GN Problem.

We shall prove Theorem 1 for the MST and GN problems in this and the
next sections. Without loss of generality, we shall assume that the n

given points in V are all distinct.

In this section we reduce the finding of MST in Eg to a version
of the geographic neighbor problem. We assume that p e {1,2,#} throughout
the rest of the paper.

We make E]; a vector space by defining X+ y = (X1+Yl: XtV o . L Xk”yk)

and cxX = (cxl,cxe,. ..,cxk) , where c 1s any real number and xi » Vs

are the components of x and :; . We shall refer to any element of E;l;

~

as a point or a vector. The j—th component of a vector z will be

denoted as z; without further explanation. The inner product of two

K
vectors X and ¥y is Xy = 20 X.y. , and the norm of X 1is
i=1

~

H;C | = (;(';C)l/z . A unit vector x is a vector with n;cn =1

Notice that all these definitions are independent of p .

~ o~ ~ J ~
Vectors b,,b.;.e.sb., are linearly independent if 2 MNb. =0
e J i=1 7
implies all M, = 0 . A set of k linearly independent vectors in
i

~ o~ - . K
is called a basis (of El;). Let B = {b;,b,...,0,} be a basis of B

k ~
The convex cone of B is Conv(B) 2 }\ibi ‘)\'i >_0 for all i .
i=1

is defined as

[l

~ k }
For any Xe¢ EP , the region B of

R(B;x) = {;} | y-xe Conv(B)} .

Let V be a set of n distinct vectors in El,; . Denote by N(B,v)
the set VN {ﬁ | EeR(B;ri) - {:r 1} , for each YeV . We shall say that W

is a geographic neighbor to v in region B if ;reN(B;v) and

dp(x},%}) < dp(ﬁ,?r) for all UeN(B;v)

16

The GGN-Problem (General Geographic Neighbor). Given a basis B and a

set V of n distinct vectors in E];’ find, for each VeV , a geographic

neighbor to Vv in region B if one exists.

Notice that this reduces to the GN-problem when B = {bl:bgﬁ - “’bk]
with b‘ij = 513 . The rest of this section is devoted to showing the
following theorem, which states that, if there is a fast algorithm to

solve the GGN-problem, then one can solve the MST-problem efficiently.

Theorem 4,1, Let k > 2 be a fixed integer. Suppose there is an
. . . k .
algorithm that solves the GGN-problem for n given poilnts 1n Ep in at
k
most f(n) steps. Then a minimum spanning tree for n points in EP

can be found in O(f(n) + n log log n) steps.

Define the_angle between two non-zero vectors X and 37 as

o(x,y) = cos -1 ~x-y~ 0 < 8(%,7) < n . For any basis B
=l

of E; , the angular diameter of B is defined by

Ang(B)
Ang(B)

~

sup{e(;c,gr) | %,ye Conv(B)} . It can be shown that
b.,b

J)| i J.e B) » although we shall not use that fact.

max[@(bi,b

Let B be a finite family of basis of E}; . We call B a frame
if U ConV(B) = E}:; . The angular diameter of a frame B is given
Bep

by Ang(B) = max{Ang(B) | Be B} . For example, let bl = (1,0) , 52 = (-1,1) ,

~ - 1 | | -
b3 = (0,-1))by = (- 5 -l) as shown in Figure 5, then B; = {bl’bQ} ,

T = 2
Bg_{bg,b5},B3={bh,bl} are bases of Ep , and B = {31,32,35}

a frame; ©(By) = o(B,) = 3a/L O(B5) = 2n/3 , and 6(B) = 3n/k

17

o'l
I3

Figure 5. Illustration of "basis" and "frame".

Intuitively, the convex cone of a basis B has a "narrow" angular
coverage if Ang(B) is small. The following result asserts that a
frame exists in which every basis is narrow, and such a frame can be

constructed.

Lemma k4.2. For any 0 <¢§ < m, one can construct in finite steps a

frame B of El; such that Ang(B) < y .

Proof. See Appendix. O

We consider the following MST algorithm. Let us construct a frame

(3+3)
- _—t -
-1, \27p

B of Eg such that Ang(s) < sin 5

Next, for each

Bef , we solve the G@-problem -- for each VeV , find a geographic
neighbor 1~1 to v in region B if it exists -- and form the set E(B) ,
the collection of all such edges {w,v} . Clearly,

| UE(B)| < n+|B| = O(n) . We now claim that u E(B) contains
Bep Befs

18

an MST on V. If this is true, then we can find an MST in an additional

O(n log log n) steps. The total time taken by the MST algorithm is then

O(f(n) + n log log n) . It remains to prove the following result.
Lemma 4.3. u E(B) contains an MST on V .
Befs
Proof. The proof is almost identical to the proof of Theorem 3.1,
except that we need to establish the next lemma. O
_(; s ;)

Lemma 4.4, Let X,¥y, 2z in El; satisfy ©(x-z, y-z) < sin 1 -2]21: 2. pr ,
then 4 (x,y) < mex{d (y, z), d (x,2)} .

b 1Y p
Proof. Use @ B, ¥ to denote angles as shown in Figure 6. By assumption,

1 '(% " i)
sin @ < é' k P , (l)

Without loss of generality, assume that a+ g > n/2 . Let w be the

projection of ;r on the segment from z to X . By the triangle
inequality satisfied by metric dP , we have
dp(z)'w-) + dP(WJY) > dP(Y)z) ’
dp(x,w) + dp(W:Y) > dp(x:Y) .
Thus,
d (z,%w) + d (%w) > d (5y) + (a_(F2z) - 2d_(w,y)) . 2
JEw 4 4 @W >) ¢ (@5 - 2 @) (2)

~ ~

But, since w 1s on the segment 2z to X , we have

~ o~

dp(x,z) = dp(z,w) + dp(x,w) . Therefore, if we can further show that

a,(1,2) - 24 (wy) > 0 6)

19

then (2) implies dp(i,;) > dp(i,&) , proving the lemma.

~

To prove formula (3), we notice that for any positive ¢ , and U, v

in E?,

kl/lmaix |, -v;] > &,@V) > max [§-9] . (1)
This leads to

PR 2 @R > YR RS ©)

In particular,

&0 < P y-v

) (6)
@2 -2 ¥yl
Now, clearly by (1),
(%41)
F-%= ina [F-2<ix "t FAF-E)

Formula (3) follows from (6) and (7). O

Figure 6. Illustration for the proof of Lemma 4.4.

20

5. An Algorithm for the General Geographic Neighbor Problem.

5.1 An Outline.

As shown in the preceeding secpion, the MST-problem can be reduced
to the GGN-problem, and the GN-problem is a special case of the GGN-problem,
In this section, we shall give an asymptotically fast algorithm for the
GGN-problem, which completes the proof of Theorem 1.

Given a basis B and a set V of n points in El; , the algorithm

works in two phases.

Preprocessing Phase.

(). Partition V in O(kn log n) steps into r = [n/q] subsets
V',Vg,...,Vr, each with at most g points (g to be determined later).
The division will be such that, for any §e Eﬁ , all but a fraction
r_l/k of the subsets Vj have the property that the entire set %. is

either in region B of X or outside of region B

. b(k
(B) . Preprocess each Vj in 0(q ()) steps such that, for any
new point ie:Ek, a nearest point u in Vj can be found in 0(log q)

steps.

Finishing Phase.

(C) . For each §e\f, we find a geographic neighbor in region B as
follows. We examine the r sets Vi’Vé""’Vr in turn. For each Vj)
we perform a test which puts VJ into one of the three categories.

A category-1 Vj has all its points in region B of v , a category-2 VJ
has all its points outside of region B . The nature of a category-3 Vj

is unimportant, except that there are at most rl__k_l Vj in this

21

category; we consider the VJ that contains v itself to be of
category 3 independent of the above division. As we shall see later,

the test will be easy to carry out, in fact in O(k) time per test.

For a category-1 Vj , we find a nearest W in Vj in 0(log gq) time.

For a category-2 Vj , nothing need be done. For a category-3 Vj , we
find a nearest ;r(;é \7)€VJ. in region B , if it exists, by finding all
the EeVJ. that are in region B and computing and comparing dp(E,;r)
for all such z . Call W a candidate from VJ. . After all the Vj

have been so processed, we compare dp(;r,\';) for all the candidates W

obtained (at most r of them), and find a nearest one u to v . This

u is the geographic neighbor we seek for V . Return "non-existent" if

no candidate w exists from any V.J .
In the above description, three points need further elaboration:
‘how step (A) is accomplished, how we check a subset Vi for its category,

and how g is chosen. We shall deal with the first two points in

Section 5.2, and the last point in Section 5.3.

5.2 A Set Partition Theorem.

We shall show that step (A) of the preprocessing phase in Section 5.1
can be accomplished. The key is the following result in Yao and Yao [20].
For completeness, a proof is included.

k . ~
- For any finite set F of points in E , let hlghp(F) = ma.x{xlZ |xeF}

and lowz(F) = min{x, | xeF} , for 1 <2<k,

22

Lemma, 5.1[20L1/ Let g and k be positive integers, and F a set

of n points in Ek . Then, in O(kn log n) steps, the following can

be done.

(i) F is partitioned into r = [n/q1 sets FisFpeeesF ., each with
at most g points,

(i1) the 2kr numbers highz(Fi),]le(Fi) , 1< i< r, and
1< 1<k, are computed,

(1ii) the partition satisfies the condition that, for any ye Ek , there

1/1:1 k-1

exist at most kfr sets Fi such that H4 with

lowl(Fi) <y, < hlghz(Fi) .

Proof. We shall prove it for the case k = 3 ; the extension to general
. . Z
k is obvious. For the moment, let us assume further that n = gqm' for

some integer m . We use the following procedure to partition F

(a) Sort the points of F in ascending order according to the first
components into a sequence ;1'§2'@4“’§n . Divide the sorted

sequence into m consecutive parts of equal size. That is, let

Gl={xj|1<_j5n/m) , G2={xj|n/m+1<j52n/m},. CeaGy

(b) For each 1 < i < m , sort the points in Gi according to the 2nd
components; divide the sorted sequence of Gi into m consecutive

parts Of equal size, Gil’GiE"

. "Gim .
(c) For each 1 < i,j < m , sort the points in Gib according to their
3rd components; divide the sorted sequence of f%. into m consecutive

i rl L] dn 0
parts of equal size, Gijl’ije"‘ ’ 44m .

Y
This lemma was proved in [20] with g = nl/k ; it will be absent in a
revised version.

23

3

(d) We rename the m” sets G'i" as F]_’Fg""’Fr where r = n/g= m5 .

Je
(e) Compute highl(Fi) , 1°w£(Fi) for 1<i<r, 1<4<3 according

to the definitions.

The above procedure takes O(n log n) steps; and each Fi contains
exactly g points. It remains to show that property (iii) in the lemma
is satisfied.

Let srtEB . We shall prove that, for each 1<1<_3 , there are
at most e F; with lowz(Fi) <y, < highz(Fi) . The proof is based

on the following properties of the partition:
lowl(Gl) < highl(Gl) _<_\10W1(G2) < highl(Gg) <.< lowl(Gm) < hlghl(Gm)
1ow2(Gil) < highz(Gil) < 1orw2(Gi2) < highz(Gie) < eee 1ow2(cim) < highg(Gim)
1ow3(Gijl) < high5(Gijl) < J.ow3 (Gije) < hlghE(Gijg)
< eer < lowg (Gijm) < hlgha(Gijm)
1<i,j<m
For £ =1, according to (5.1), there is at most one j such that
lowl(GJ.) <y < hlghl(GJ.)

2
Thus, only the M Gypo (1< t,s < m) can have lowl(Gjts) <y <
highl(Gjts) . This proves our assertion for f =1 . We now prove the
case for £ =2 . For each i, by (5.2), there is at most one j such

that low, (Gij) <y, < high2(Gij) . Thus, for each i , only the m Gijt

< . s i .
(1 < t_<m) may have lOWE(G:LJt) <y, < hlghE(GlJ't) . Therefore, at most

2k

5 .1)

(5.2)

(5.3)

m2 G,

gt can have lowz(G.

:th) <y, < hlghe(G‘jt) . A similar proof

1

works for f = 3 , making use of formula (5.3).

This proves that, when k =3, and n = gqr = qm3 for some integer m ,
Lemma 5.1 is true. We now drop the-restriction on n (still k = 3),
In this situation, r =Tn/ql . Let m = I'rl/k'l , and use the same
procedure. At most 3m2 Gijt will satisfy (iii) by the same proof.
This completes the proof for k = 3, a

We now extend the above result. Let B = {bl’be"“’bk} be a basis

of EX ; for any ;cEk, we shall define a k-tuple (1{,‘)éé,,xl'{) by

k -
X = 2y Xibi . For any finite set F of points, define for each
i=1
1<1<k,
highz(B;F) = ma.x{x;l | x e F)

lowl(B;F) = min{x; | xer} .

Theorem 5.2. Iet ¢ , n, k (qk < n) be positive integers, B a basis
of Ek, and V a set of n points in Ek . Then, in

O(kn log n + k2n + ka) steps, we can accomplish the following:
ip V is partitioned into r = ['n/q'l sets V]_,Ve,...,.Vr , each with
at most g points,

(1) the 2kr numbers high (B,V;) , low,(B,V;) , (1 <i <r, 1< < k)

are computed,

furthermore, the partition satisfies the condition:

2>

(iii) for any k-tuple of numbers (yl,ye, ...,yk) , there exist at most

kl'rl/k'lk-l Vi such that, 31,
lowl(B;Vi) <y, < hlghl(B;Vi)

Before proving this theorem, 1let us check that this partition fulfills

the requirements of step (i) in the preprocessing phase (see Section 5.1).

Lemma 5.3. A point ¥ 1is in the region B to x , i.e., yeR(Bsx),

if and only ifY}ZZXE for all 1<t <k.

k -
Proof. The lemma follows from the equation y-X = (yt - x)b, . g
=1 “ *

£

= U

-~

Lemma 5.k4. If ;ceEk » B a basis, and F a finite set of points in Ek s
then
either (i) x'z < lowz(B;F) for al1 1< ¢ <k, in which case all points
in F are in region B to X ’
or (ii) qu X;Z > highz(B;F) , 1in which case none of the points
in F are in region B to x)

or (iii) none of the above, there exists an { such that

lowl(A;F) <x) < highl(B;F)

Proof. An immediate consequence of Lemma 5.3. O

There are two consequences of Lemma 5.4 of interest to us. Firstly,
it shows that the requirements of step (A) in Section 5.1 are satisfied,
For any X , a V3 such that neither all points of VII are in R(B;X)

nor none are in R(B;;{) must satisfy the condition that

26

lowl(B,VJ.) <x) < high!(B;Vi) for some f , due to Lemma 5.4. By Theorem 5.2,
bt v l
1=

there are at most about r such V.J . This proves the claim. Secondly,

=~

Lemma 5.4 gives a simple way to detect most of the Vj that satisfy

L= R(B;x) or Vj NR(B;X) = § . Namely, compare X, with high[(B;VJ.)

and lowl(B;VJ.) for all ¢ , and determine whether case (i), (ii), or
(iii) applies in Lemma 5.4. The test only takes O(k) for each i and 7 ,
and can be conveniently used in step (C) in the procedure in Section 5.1,

We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2, Let M be the k by k matrix (bij) , (recall
-1 . .
that by = (bil"bia’ .o "bik)), and M be its inverse. We use the

following procedure to partition V .

(1) Compute Mt in o(k3) steps (see e.g. [1]).

(2) Compute, for each XeV , the k-tuple (xi,xé,...,xl'{) by
(xi,xé,...,xl'{) = (xl,:vcz,...,Jck)-M"l . This takes O(ken) steps.
(3) Consider the set F = {(xi,xé,...,xl'{) |;ceV} . We now use the
procedure in Lemma 5.1 to divide F into r parts Fl’Fg’ . ..,Fr .
Let Vi be the subset of V obtained from Fi by replacing

every (x]'_, ’ ** Xk) by the corresponding X .
Q) Set highl(B;Vi) - highl(Fi) , and lowx(B;Vi) o—lowl(Fi).
2 k3 .
The procedure clearly takes O(kn log n + k™n +) steps. The quantities
highl(B;Vi) and low!(B;Vi) are correctly computed by their definitions.

Items (i) and (ii) in Theorem 5.2 are obviously true, and (iii) is true

because of the properties of high!(Fi) , lowz(Fi) stated in Lemma 5.1. O

27

5.3 Finishing the Proof.

We now analyze the running time of the algorithm for fixed k and
choose g . The Preprocessing Phase takes time O(n log n + r.qb(k))
In the Finishing Phase, the running time is dominated by the search
for candidates w , which is of order
n[(# of category-1 Vj)..mq + (# of category-3 Vj)-q] . The last

1-k-1

expression is bounded by n(r log g + r q) . The total running
-1
time of the algorithm is thus O(n log n + roqb(k) + nr log q + nqu-k)
+
Remembering that b(k) = o1 and 1 = 0(n/q) , we optimize the

) a(k)

expression by choosing g& (n log n This gives a time

O(n2-a(k) (log n) l—a(k)) . The improved time bound for the special case

k=3, p= 2 can be similarly obtained.

28

6. Discussions.

We have shown that, for fixed k and pe ﬂ42,m} , there are
k
P)

including the minimum spanning tree problem. We shall now argue that,

o(ng) -time algorithms for a number of geometric problems in E

when pe {2,=} , o(knz) algorithms exist for all k and n . As
are typical for results under fixed k assumptions, the algorithms

given in the paper have o(r?) time bounds when k is allowed to grow

slowly with n . In fact, a close examination shows that, if
k < % log log n, the algorithms still run in time o(ne) . For
k > % log log n , it can be shown [19] that the computation of the

distances between all points can be done in o(kne) time when pe {2,®} .
Since all problems considered in this paper have 0(n2) —algorithms
once all the distances are known, the previous statement provides
algorithms that run in time o(kne).

The efficiency of our algorithms is dependent on the solution to
the post office probleni/ (or its farthest-point analogue). For example,
suppose the nearest-point query could be answered in 0(log n) time after

an O(nB)—time preprocessing, B >2 , A simple adaptation of the

-1

-1
algorithm would give an O(ng.13 (log n)l-B)

-time solution to the

2-3_1

NFN-problem, which in turn implies an O((n log n)) -time solution

to the MST-problem (see the remark at the end of Section 2). If

l1<p <2, the following modification would also give an
2-g7! 1671
o(n (log n)) -algorithm for the NFN-problem (and hence an
2-3_1
) —algorithm for finding MST). We first divide V

e

O((n log n)

into r # n/(n log n blocks BBy ... as before. Each block

*

Y Mike Shamos claimed (private communication) a solution to the post office
problem for general k that requires less preprocessing time than the
Dobkin-Lipton solution.

29

is preprocessed, and for each ; , a nearest point in every block not
containing x 1is found. Now, for every point §<5Bi , we need to find
for it a nearest "foreign" neighbor in Bi . Instead of using brute

force (computing the distance from each iesBi to every other point

in Bi) as was done previously, we divide B, into r subblocks,
preprocess each subblock, and find for X "a nearest point in every
subblock in Bi . To compute a nearest foreign neighbor to X in the
subblock containing X , we shall again break the subblocks. This process
continues until the size of the subblocks are less than n§ , where

o = 1-5-1 , at which point we compute all distances between points in

the same subblcok. During the above process, we have located, for each X ,

a set of points containing a nearest foreign neighbor W to x . It is then

simple to locate such a u . This is a brief outline of an

2-p ! 171
O(n (log n)) -algorithm for NFN-problems, 1 <pB <2 .

However, it seems unlikely that a nearest-point query can be answered
in 0(log n) time with an O(nﬁ)—preprocessing, B<2, when k >3 .

We conclude this paper with the following open problems.
(1) Improve the bounds obtained in this paper.

(2) Analyze the performance of new or existing fast heuristic algorithms
- for MST-problems. For example, can one show that the AMST algorithm
in [2] always constructs a spanning tree with length at most 5% over

the true MST?

(3) Prove bounds on average running time of MST algorithms for some

natural distributions.

(4) Extend results in this paper to Lp -metric for general p .

30

(1]

[2]

(3]

(4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[1L]

[15]

References

A. V. gho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 197k.
J. L. Bentley and J. H. Friedman, "Fast algorithms for constructing

minimal spanning trees in coordinate spaces, " Stanford Computer
Science Department Report STAN-CS-75-529, January 1976.

J. L. Bentley and M. I. Shamos, "Divide-and-conquer in multi-
dimensional space," Proc. 8th Annual ACM Symp. on Theory of Computing
(1976), 220-230.

C. Berge and A. Ghouila-Houri, Programming, Games, and Transportation

Networks, John Wiley, New York, 1965.

R. C. Buck, "Partition of space," Amer. Math. Monthly 50 (19%3),
5h1-5hk,

D. Cheriton and R. E. Tarjan, "Finding minimum spanning trees,"
SIAM J. on Computing 5 (1976), 724-Th2.

E. W. Dijkstra, "A note on two problems in connexion with graphs,"
Numerische Mathematik 1 (1959),269-271.

D. Dobkin and R. J. Lipton, "Multidimensional search problems,"
SIAM J. on Computing 5 (1976), 181-186.

R. 0. Dude and P. E. Hart, Pattern Classification and Science

Analysis, John Wiley, New York, 1973.

J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading,
Mass., 1961.

A. Kerschenbaum and R. Van Slyke, "Computing minimum spanning trees

efficiently," Proc. 25th Ann. Conf. of the ACM, 1972, 518-527.

D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973.

J. B. Kruskal, Jr., "On the shortest spanning subtree of a graph and
the travelling salesman problem," Proc. Amer. Math. Soc., 7 (1956),

48-50.

R. C. Prim, "Shortest connection networks and some generalizations,"
Bell System Tech. J. 36 (1957),1389-1L01.

M. I. Shamos, "Geometric complexity," Proc. 7th Annual Symp. on

Theory of Computing (1975), 224-233.

31

[16] M. I. Shamos and D. J. Hoey, "Closest-point problems,"_Proc. 16th
Annual Symp. on Foundations of Computer Science (1975), 151-162.

[17]1 A. C. Yao, "an O(|E| log log |V|) algorithm for finding minimum
spanning trees," Information Processing Letters 4 (1975), 21-23.

[18] A. C. Yao, "On computing the distance matrix of n points in k
dimensions," 1in preparation.

[19] A. C. Yao, unpublished.

[20] A. C. Yao and F. F. Yao, "On computing the rank function for a set
of vectors," Computer Science Department Report UIUCDCS-R-75-699,
University of Illinois, February, 1975.

[21] C. T. Zahn, "Graph-theoretical method for detecting and describing
gestalt clusters," IEEE Trans. Computers, C-20 (1971), 68-86.

32

Appendix. The Existence and Construction of "Narrow" Frames —— Proof

of Lemma 4.2.

We shall prove Lemma 4.2 in this appendix.

Lemma L4.2. For any 0< ¢ < m, one can construct in finite steps a

k
frame B of Ep such that Ang(B) <y .

As the discussion is independent of p , we shall use Ek instead

of Ek
P

We begin with the concept of a "simplex" familiar in Topology

(see, e.g. [10]). Let po,bl,...,pj be Jt¥0<_ j < k) points in B,

where the vectors 5i-50 , 1 <1< 3, are linearly independent. We

J
shall call the set 2 AP; | Ay > 0 for all i, and T A, =1
i=01 1 1 —_ 5 1

a (geometric) j-simplex in Ek s denoted by <5O’i;l""’5,j> . Informally,

~

it is the convex hull formed by vertices f)n,i)w...,f),. on the minimal

v/ = d
linear subspace containing ‘them (see Figure A). The diameter of a simplex
§ is diam(s) = sup{H;c -] | X,y € S) ;

Py

~

Po

Figure A. A 2-simplex in E2

33

The following two lemmas give the connection between simplices and
bases. Let § be a k-tuple (El’ Epreees sk) , where g € {-1,1} for

~ , k
all i. Denote by H(t) the hyperplane {x | 2 e;x; = 1) in E .

~ ~ S . . k
Lemma 7.1, Let s = (pO’Pl"“’pk l) be a (k-1) -simplex in E ,
where EieH(?:) for every i . Then the set B(s) = {50,51,...,51{}
is a basis. Furthermore, the angle ¢ = Ang(B(s)) satisfies

. 2
cos cp > 1 - % k(diam(s))

k-1
Proof. Suppose 2 }\ p 0 . We shall show that }‘i = 0 for all i
1.—.

k-1 o k-1
If Z A; = 0 , then E)\.(p.—po) = 2 Lp 0 . This implies
=0 i=1*+"" 0

L]

i

- k-1
)‘i = 0 for all i , by the definition of simplex. If .Z As = A;é 0,

k-1

then v = ()\i/A)ii = 0 . But it is easy to check that veH(%) ,
N

™

i
a contradiction.
We have thus shown that B(s) is a basis. To prove the rest of the
lemma, let X and gr be any two non-zero vectors in Conv(B(s)) , we
shall prove that cos 9(;{,;) > 1 - -;—' k(dia:m(s))2 . Without loss of

generality, we can assume that ;(,gre s . Then

(aiam(s))® > G-5) - &5) . |ZIFIFE-2) £) || 7 || cos o)

v

‘.

v

It follows that

cos 6(%,y) > 1 - M}ﬁ (A1)
2=l vl

As can be easily verified, x,;reH('é) , which implies

3L

~ 2
|2 = 2. 2 1 (\ 1
”xll| ? xj_ 2 k % eixi = -1-{- o
Therefore, ||;c||> __-]-'- and similarly H 5 H >_,_-—];- . Formula (Al) then
Je Jk

implies

cos 6(x¥) > 1 - g (dia:m(s))2 .
This proves Lemma T.l. d

We shall use B(s) to denote the basis corresponding to simplex s

Lemma 7.2. Let s € H(:) be a simplex, < a finite collection of
simplices, and s = U s' . Then Conv(B(s)) = U Conv(B(s'))
s' € s' €
Proof. It is easy to see that Conv(B(s)) o U Conv(B(s')) . To prove
s' €4

the converse, let s = <§O’51"”’5k 1) , where each f)i z H(E) . If a point

k-1
ue Conv(B(s)) , then U = 2 A;P; , where A; > 0 . We shall prove
i=0

that ue Conv(B(s')) for some s' es . It is trivial if uw = 0

ues = U s' , and hence ues'

Z\)‘i s' edf Z A
1 1

Otherwise, the point

_ for some s' ey . This implies ueConv(B(s')) . O

The above lemmas suggest that we may try to construct a frame with
narrow bases, by first constructing a family of simplices all with small

diameters. We use the following scheme:

35

Let Ei denote the unit vector in Ek , whose i-th component is 1
and all others are 0
For each of the o k-tuples & = (81’82""’€k) , vhere ¢, = 1,

do the following.
(a) Let s = (Elgl’ €2E2’ e e Ekgk> . (Clearly s C H(%) .)

(b) Construct a finite family of simplices all contained in H(E) such that

s= 1y 8' and diam(s') < (2(1- cosw)/k)l/z for all s'ey .
s' €

(c) Form B(s') for all s' ey

The collection /8 of all the B(s') constructed this way is clearly
a frame because of Lemma 7.2. Using Lemma 7.1, it is easy to verify that
Ang(B(s')) < ¢ for all s' . Thus, such a construction would give a
frame satisfying the conditions in Lemma 4.2. It remains to show that
step (b) above can be carried out.

A procedure in Topology ([10, p. 209, Theorem 5-20]), known as

barycentric subdivision, guarantees that step (b) can be accomplished

in a finite number of steps. For completeness, we shall give a brief
description below.

. There is a basic procedure, called first barycentric subdivision (FBS),

which, for a given Jj-simplex s , constructs in finite steps a family

of simplices such that s = U s' and max (diam(s')) < —~L_ (diam(s))
- s' e/ s' edf = gl

If we apply this procedure iteratively, at each iteration we apply FBS to
every simplex present, then all the simplices will have a diameter less
than any prescribed positive number after enough number of iterations,

This then constitutes a procedure for step (b).

36

Finally, we describe the FBS procedure. For a proof that it
produces simplices with the desired properties, see [lo]. Let
S = (DD D Y , the point z(s)= = %)5 is called the
= (PO)Pl:--o:Pj ’ p j+li-—0 i

centroid of simplex s . For any t distinct integers 0 < il?iz""’i

t

<3

let 51 i . = E(<5i)Pi ,-oo,i;i)) . For each 0 = (io,il,.o.,ij) € ¥
t

1ter oty 1t
where ¥ is the set of all permutations of (0,1,2,...,3) , let s' (o)
denote the simplex (506,501,...,505) with g, = ioil...it . The FBS
of s is defined by

s = {s'(0) |oex} .

37

