SU326 P30-57

A GENERALIZED CONJUGATE GRADIENT ALGOR ITHM
FOR SOLVING A CLASS OF QUADRATIC PROGRAMMING PROBLEMS

by

Dianne Prost O'Leary

STAN-CS-77-638
DECEMBER 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Su326 P30-57

A GENERALIZED CONJUGATE GRADIENT ALGORITHM
FOR SOLVING A CLASS OF

QUADRATIC PROGRAMMING PROBLEMS

by

Dianne Prost O'Leary*

* Department of Mathematics, The University of Michigan, Ann Arbor,

Michigan 48109

This work was supported in part by the Fannie and John Hertz Foundation,
the National Science Foundation under Grant MCS-76-06595, the Energy and
Research and Development Administration Contract EY-76-S-03-0326 PA #30,
and the National Science Foundation Grant MCS75-13497,

ABSTRACT

In this paper we apply matrix splitting techniques and a
conjugate gradient algorithm to the problem of minimizing
a convex quadratic form subject to upper and lower bounds
on the variables. This method exploits sparsity structure
in the matrix of the quadratic form. Choices of the splitting
operator are discussed and convergence results are established.
We present the results of numerical experiments showing
the effectiveness of the algorithm on free boundary problems
for elliptic partial differential equations, and we give

comparisons with other algorithms.

0. Introduction

The techniques developed in [4] will here be applied
to a constrained optimization problem:

min 1/2 xTAx - be
X

c<x<d

where A 1is a symmetric n X n positive definite matrix.
This quadratic programming problem often arises in a form
such that the matrix A is large and has a nonrandom
sparsity pattern. The applications considered here arise
from the finite difference discretization of free boundary
problems for elliptic partial differential equations.
Problems of this form include models of water flow through
a porous dam [2], the Jjournal bearing [7], and torsion
applied to a bar [3].

We describe in Section 1 a conjugate gradient algorithm
due to Polyak [18] which is suitable for this problem and
develop a modification which can exploit sparsity structure
in the matrix A . In Section 2, we give alternatives
for the scaling operator for the conjugate gradient
iteration. First some matrix theory is developed for eigen-
values of submatrices, and then these results are used to
establish bounds on the rates of convergence of the methods

proposed. In Section 3 numerical experiments are presented

-1~

which explore the effectiveness of the conjugate gradient
method with matrix splittings and compare it with other
algorithms. In Section 4 we summarize our results.

We will use the following notational conventions.
Capital letters will denote matrices, and small letters
denote vectors or scalars. Components of vectors will be
indexed by small letters as subscripts, while subvectors
will have capital indices. Superscripts will denote

iteration numbers.

1. Conjugate Gradient Algorithms for Quadratic Programming

The quadratic programming problem

(1) min 1/2 xTax - x'b
X

c <x<d

with A an n X n symmetric and positive definite matrix
and b, ¢, and d given n-vectors, often arises in the context
of discretization of elliptic partial differential equations.
A" solution to this problem always exists, and it 1is
necessarily unique.

"An equivalent formulation of the quadratic programming
problem can be established through the Kuhn-Tucker optimality

conditions [See 13, Chapter 7]. For an arbitrary x ,

let y be defined by
(2) Y=Ax-bo

Then x solves (1) if and only if for j =1,2,...,n ,

1
o

Yj if c. < x. < d,

An important special case of the quadratic programming

problem is the linear complementarity problem, in which

C =0 and d =« . The optimality conditions then

reduce to

xTy =0 (complementarity condition)

x>0, y>0 (nonnegativity condition)

The algorithm upon which we will build is an iterative

method due to Polyak [18]. The Polyak algorithm maintains

feasibility of the vector iterates x(k) (i e.,

c < x(k)_f d) while iterating toward the proper sign
conditions on y . Given an initial feasible x(o) ’
the Polyak algorithm performs a series of nested iterations.
" In the outer iteration we choose a subset I of the
indices {1,2,...,n} for which the variables x, are

at their upper or lower bounds and the optimality conditions

are satisfied; specifically,

-3-

' = [i. = Jli. i =
(3) 1 = {i: x; = ci and yi>0}J{1. x1i d; and y; < 0}

The vector of x variables whose indices belong to this
set will be denoted x; and all other x wvariables will
be denoted by Xy - Corresponding to this choice of the
index set I , we partition and rearrange the y and b
vectors into Y1 and Yy o« and by and bJ respectively,
and the matrix A 1s rearranged symmetrically. With this

notation, (2) 1is equivalent to

T .
Brr Bgr X Py Y1
Byr Bsg Xy b Yy

“The values of variables X1 will be kept fixed during
the inner iteration, which will try to force all variables

yy to be zero by solving

(4) AzgXy = by ~ BAyr¥r-

AJJ is positive definite and symmetric because it is a
principal submatrix of A , so the conjugate gradient
method [14] can be applied to this linear system. We could
solve this system exactly if we did not have upper and
lower bounds on the variables, but because we want to

keep these bounds satisfied, we modify the conjugate gradient

iteration. If any step in the iteration would cause some

variable Xg with s € J to attain or to violate one
of its bounds, the step is shortened if necessary to the
point where X attainsthebound, s 1is added to the
set I (the index set of the unchanging variables),
and the inner iteration is restarted with a new partitioning
of the matrices and vectors. Once we complete the conjugate
gradient iteration, we know that Yy = 0 and

< x,. <

cy < x5 < dJ ’ since the inner iteration solved (4)

without violating any constraint on x We then begin

J
a new outer iteration, choosing,as in (3), an index set
I corresponding to the current values of the variables x
If the new index set is the same as the one for the pre-
ceding cycle, then the optimality conditions are satisfied,

and the algorithm halts with the solution. Otherwise a

new inner iteration begins.

Now we will state the Polyak algorithm more

precisely.
Initialization
- Choose an x{9 such that c < x (0) <d , and
set 'k =0
- Set I = {1,2,...,n} . This definition ensures that

the first halting test in the outer iteration will work

properly.

OQuter Iteration

Let k =k T 1, x(k) = x(k-l),y(k) = Ax(k) - b,

and I, ;=1
Define I, = {i: x;k) =c., and yfk) > 0} U
. (k) _ (k)
{i: x, ' = d; and y;7 < 0}

If Ik = Ik—l' halt. The optimal solution has been
found. Otherwise, set I = Ik and begin the inner itera-
tion.

Inner Iteration
(a) Partition and rearrange the matrix system as
(k) (k) ATl
(k) X1 by Aryp Agr
x7 3] R PR S B A
X3 by Ayr “ag
with AJJ s X s , symmetric, and positive definite. We

initialize the conjugate gradient iteration to solve
equation (4). The sequence {z(q)} will be our approxima-
tions to the solution vector Xge The vectors p(q) will

be search directions, and vectors r(q) will be

residuals for equation (4). Set g = 0 and
2 (0 = ()
(0) (0) _ (k) (0)
P =r = bJ A ¥ AJJz

(b) Calculate the new iterate and residual. We
compute two sStep parameters: acg is the conjugate

gradient step in the direction p(q) , and a1 ax is the

largest step in that direction which does not violate any

bounds on the variables.

) (r(q)'p(q)) _ [r(q),r(q)]
cqg =
(p (@ /AP (@) (p (@ ,AJJp(q))
(q) (q)

C.—Z. d.-z.
a = min [min —lT—l—— ,min J J
max j=1,2,...,s p. ¥ '§=1,2,...,s pl¥

p(q) <0 J (q) > 0 J
j Py

The step taken is the smaller of these two positive
numbers.

a_= min(a a
q (cg’ “max

)
g(atl) _ , (@) aqp(q)

Jatl) | @ _ . (@

=r q JJP

The vector vy could also be updated at this stage to

correspond to the current values x{k) and z(q+l)

(c) Test for termination of the inner iteration:

1f r(q+1) = 0 , set xék) = z(q+l) and restart

the outer iteration.

. +1
I£f {j: zéq) - ¢y or dj}= ¢ , proceed
with (d)
Otherwise, set x}k) = z (q+1) and I =
{i: x;k) =cq or di} . If I= {1,2,...,n} , then

restart the outer iteration. Otherwise restart the inner

iteration.

(d) Calculate the new search direction p(q+1)

14

Ay conjugate to the old ones.

(r(q+1) T (q+l)]

(p(q) (q)) (r(q),r(q))
Ptq+1) = @ty 4 p(q)
Replace g by g+l and go to (b)

The initialization of z(o),p‘o),r(o) and g 1in

14

step (a) of the inner iteration, plus steps (b) and (d) with

aq = acg and (c) replaced by

(g+1)

!

(c') If rlatl) 0 , then halt with Xy = z
comprise the standard conjugate gradient algorithm for
solving the linear system (4) . The first iteration is
equivalent to a steepest descent step for minimizing the
quadratic form, and successive steps use as the search
direction the component of the gradient which is A

JJ
conjugate to all previous search directions.

-8-

The conjugate gradient method for solving positive
definite linear systems terminates in a finite number
of iterations. Moreover, {E[x(l)]} is a monotonically

decreasing sequence, where
E(x) = 1/2 (X—X*IA(X'X*)) ’

x* 1is the solution to the system Ax* = b , and the

L . .
x() are obtained wvia the conjugate gradient

iterates
algorithm [8]. We now show that the quadratic programming

algorithm also has finite termination.

Theorem 1 Polyak's algorithm terminates in a finite

number of iterations.

Proof: Each inner iteration terminates because

either the chosen system is solved by conjugate gradients,
or the size of the system is reduced (possibly several
times) and the reduced system is solved by conjugate
gradients. Let x& denote the solution to (4) for a
particular choice of the set I and values Xy . We
want to show that E(x) , the conjugate gradient descent

function for solving Ax* = b , 1is a descent function

within the inner iteration. Now

E(x) = 1/2 (xTAx - 2x'b + x*'b)

T T T
1/2 (xJAJJxJ + ZXJAJIXI ZXJbJ)

T _ LT *
+ 1/2 (xIAIIxI 2xIbI + x "b)

1/2 (xJ - x3,AJJ(xJ-x3))

ITA

T e S '
- 2xIbI + xX*b X3 JJxJ

+ l/2(x']I:'AIIxI
The first term, [xJ-x&,AJJ(XJ-x&))/Z , is the conjugate
gradient descent function for solving the linear system
(4) + and the rest of the expression for E (x) 1is constant
within the inner iteration, so E (x) has been shown to
be a descent function for any inner iteration between
restarts. But any restart of the conjugate gradient

—algorithm will preserve the descent property, so E (x) 1is a
descent function for the entire algorithm. Thus no linear
system can repeat once it has been solved in an inner
iteration, and since there are finitely many linear systems
(corresponding to a choice of index set and the choice of

either upper or lower bound for each variable in it),

the algorithm must terminate. 1

Diamond's algorithm [10] is a special case of Polyak's for

problems with ¢=0,d = » and A an M-matrix. In that
case, the chosen system for the inner iteration can always

be solved without violating the constraints on Xy 4 and

-10-

it can be shown that the subsets I are nested:

I CI

k+1 k

Diamond chooses to solve the linear problems in the inner
iteration by an iterative method other than conjugate
gradients.

The performance of the Polyak or the Diamond
algorithm can be greatly enhanced by improving the con-
vergence rate of the inner iterations. This can be
accomplished by using the scaled conjugate gradient algorithm
with matrix splittings described in [4]. 1In this algorithm,
we base our search direction p on M~1r rather than

on r , where ﬁ-ﬁ is an approximation to the matrix
-1
JJ
may arise if, in beginning the inner iteration, some

A One precaution must be taken, however. A problem

X, 1is at its bound for s e J . Suppose, for example,

that Xy, = ¢cg and r > 0 . (A negative value for r

would imply that s € I.) Then for the normal conjugate

gradient iteration, p(o) = r(o) A -1o) péo) >0
and the step increases Xg since the step parameter a,

is positive. Thus the bound on Xg remains satisfied.

If we apply the scaled algorithm, however, (M 1 r(o))S
may be negative and the algorithm would not be able to
take a step without violating the constraint that Xs > Cg
We avoid this problem by performing one initial steepest

descent step (p(o) = r(o)) at the beginning of each

-11-

—inner iteration and then proceeding with the scaled

algorithm.

The resulting algorithm is as follows

Initialization

- Choose an X(O) such that c < X(O) <d, and

set k =0

Set I = {1,2,...,1’1}

Outer Iteration

- Let k = k+1, xK) = x k=1 y(k) = ax®)p

- and Ik_l =1
- Define I, = {i: x;k) =c, and §f() >0} UV
{i: x}k) = d., and yék) < 0}
If Ik = Ik—l' halt. The optimal solution has

been found. Otherwise, Set I = Ik and begin the inner

iteration.

Inner Iteration

(a) Partition and rearrange the matrix system as

-12-

(k) (k) T
(k) X1 by {21r RB5r
X > ;, b~ A >
x () p (k) ’ A A
J J g1 Bgg

with AJJ s x s , symmetric, and positive definite.

We initialize the iteration to solve equation (4). Set

SCIR S

(0) _ (k) (0)
r = bJ - AJIxI - AJJz

(b) Calculate the new iterate and residual. We

calculate two step parameters: acg is the conjugate

gradient, or, equivalently for this step, the steepest

descent parameter, and aax is the largest step which

does not violate any of the bounds.

%cg ~ (rio:,rw))()
c 0 0
9 (r Aggr)
C.—Z.(O) d-"'Zg())»
a = min| min —17—71—~ , min —1—7—%——
max j=(l)121---ls rJO j=l,2,...,S rjo
0 (0)
. <0 s>
rJ rJ 0

The step taken is the smaller of these two positive numbers.

ag = min(acg,amax)
z(1) - z(0) + aor(O)
r(l) - r(0)—- aOAJJr(0)

-13-

If r(l) = 0 , set xék) = z(l) and restart

the outer iteration.

If {j:zgl) = ¢y or dj} = ¢, proceed with
(c).

Otherwise, set x}k) = z(l) and
I = {i: xﬁk) =c. or di} . IfI={1,2,...,n}, then
restart the outer iteration. Otherwise repartition

X, b, and A as in (a), set

Z(l) — xék)
(1) _ _ (ky _ _ (1)
and continue with (c).

(c) Initialize the scaled conjugate gradient
algorithm. Choose M to scale the matrix AJJ , set
g =1, and

p(l) — b_/l_lr(l)

(d) Calculate the new iterate and residual:

==1

g = £r:q;'p(q))(T “Eq;'” r(q;)

g (p'd /AP 1)) (p'd ,AJJp(q)

-14-

(q) a. -z @

C. ~ 2. .
Qax min{ min @ , min _lTaTl_
j=1,2,...,s pj j=1,2,...,8 p
(@) < (q) J
. 0 >0
Py Py
ag = min(acg,amax)
+
et _ @) | aqp(q)
+1 ;
Slatl) _ (@) _ anJJp(q)
(e) Test for termination of the inner iteration:
If r(q+l) = 0 , set xék) = z(q+1) and restart

the outer iteration.

1f {3: z§q+l)== cj or dj} = ¢ , proceed with

(£).

Otherwise, set Q? = Z(q+l) and

I = {i: xi(k) = Cior'di} . If 1 =1{1,2,...,n} then
restart the outer iteration. Otherwise restart the inner
iteration.

(£) Calculate the new search direction, Ay

orthogonal to the old ones.

() =-1_(q) -
. _ (a M r)= ((at1) g-1 (q+l))
= (r(q) ,F/I--l r(Q))

-15-

p(atD) _ g -1 (a+D) bqp(q)

Replace q by g+l and go to (d)-

Initialization of z(l) ’ r(l) and g , plus steps

(c), (d), and (f) with aq = acg and (e) replaced by

_ , (a+l)

(e') 1f r'9*1) _ 0 then halt with X

comprise the scaled conjugate gradient algorithm for
solving the linear system (4). [See 4].

Since E (x) is a descent function for both the
original conjugate gradient algorithm and the scaled
version [4], the convergence proof given above for Polyak's
algorithm applies to the modified version, too.

One further refinement is possible in the computation.
We do not need to solve the linear systems in the inner
iteration to a high level of accuracy, since the sole purpose
of this step is to determine the next index set I we wish
to consider. We need only guarantee that no system will
repeat. Thus we can work with a large error tolerance

(a+l)) <

and test whether ||r €

(q+l) _

Xk in step (e) , rather then
whether r This tolerance is refined before
termination in the solution of the final linear system.
This device reduced the number of operations in the com-

putation by a factor close to two in numerical experiments.

-16-

Thus far we have developed a finite algorithm to
solve the quadratic programming problem with upper and
lower bounds. The algorithm never changes the matrix
A and in fact only needs to use A to form products
with arbitrary vectors. Thus the algorithm is suitable

for sparse matrices A

2. The Choice of the Scaling Matrix M

A remaining issue 1is the choice of the matrix
M. We need a scaling matrix M such that the computation
of ﬁ'—lr can be performed easily and so that the convergence
of the conjugate gradient algorithm is accelerated signifi-

cantly. The convergence rate for the conjugate gradient

method applied to the linear system is bounded as follows:

(5) E(x(k)) < (1-¢~1) E(x(k—l))

where «x 1s the ratio of the largest and smallest eigenvalues
of the matrix ﬁ_l/zAJfﬁ-l/z and E is the descent function
for equation (4). [8]

We consider in this section two classes of scaling
matrices. The first class is determined by the knowledge
of good scaling matrices for the full operator A , and
the second class is formed by applying alternate iterative

methods to the quadratic programming problem.

-17-

2.1 Methods Based on a Scaling of the Matrix A

Suppose that M is a positive definite scaling matrix
for A and that P is the permutation matrix corresponding
to the current partitioning and rearrangement of the linear

system:

T
A A
papT = (II JI

\ 251 2Ayg

There are three simple methods which could be used to

obtain a matrix M whichscales Az

Method 1:
Partition and rearrange the matrix M in a

manner corresponding to the current rearrangement of A

T
M M
oupT = [I 9T
Myr Mig
and use M;; as the scaling matrix M
Method 2:

Partition and rearrange the matrix W = M_1

in a manner corresponding to the current rearrangement

of A :
T
Weu W
T
sl = 1T "o
Wir Wig

and use W5§ as the scaling matrix M

-18-

Method 3:
If a Cholesky factorization of M is available,

_ T
partition and rearrange the factors LL as

T T

L. L L. 1
e = (prpT) erTeT) = | CIT F1o I; ;1
Lyt Lgg Ly L3is

and use LJJLgJ as M .

In actual computation, the matrices and vectors
are never physically rearranged. A vector of logical
variables can indicate membership in I or J and
can be used to ignore the appropriate matrix or vector
elements.

In special cases a single factorization of M = LL
where L is lower triangular, suffices for Method 1.

Consider a tridiagonal matrix of the form

t/n X n

-19-

where

Mi= . N i . . ? al+a2+o..+at=n

Then M has the form

2

=2

2 M, . .
1 1 1

.,
™
X
o)

M Bl+82+.oc+6u = 8

where. Mi has the same form as the matrix Mi , but
different dimension. So the factors of each block ﬁi
are the leading principal submatrices of the factors

L and I¥ of the largest matrix P. in M

Although Method 2 seems to be the most complicated,

it can easily be implemented without forming M1
. ~ o-1lT -1 _
Since Wy, = (MJJ MJIMIIMJI) , we can form y2 = Wit

by solving the system

-20-

Thus it suffices to have a subroutine to set up the right
hand side, solve a linear system with the original matrix
M, and pick the appropriate elements from the solution
vector y . The disadvantage of this technique is that it
is much slower than the others if the set I has many
elements, since we must work with a full size matrix
system each time.

We now wish to show that whenever M is obtained from
a matrix M by one of the three methods above, then the
convergence bound for the conjugate gradient method applied
to a linear system involving the matrix AJJ using the
scaling matrix M is at least as good as that for the conju-

gate gradient method applied to a linear system involving the

full matrix A with scaling M . To do this, we compare
the eigenvalues of MI-IAJJ with those of M 'A and thus
get a bound on x in expression (5). For any positive

definite scaling matrix M we have the following results:

Lemma 1 Let the scaling matrix M be obtained using
Method 1 or Method 2 above. Then it is positive definite.

Suppose the dimension of M is n-1 , and let

-21-

> ... > X >0 Dberootsof det(A-AM) =0 and

1 - "2 — "n
X, 2%, > . . . >X ;>0 be roots of det(A;;=AM)= 0
Then >‘l >)‘l 2Ry 245> —>->‘n—l—>-)‘n—lz>‘n
Proof: M is positive definite since it is a principal
submatrix of a positive definite matrix. For the proof of

the interlacing of the eigenvalues, see Wilkinson [20, p.340]1 1

Lemma 2 Let the scaling matrix M be obtained using

Method 3 above. Then the results of Lemma 1 hold for it.

Proof: The main diagonal elements of the factor Lyg
.are a subset of the main diagonalelementsof L , which

are all non-zero since LLT is positive definite. Thus

LJJLJJT is positive definite, too. To prove that the

eigenvalues interlace, note that

T

det (A-XM) = det (A-ALLT) = det(z 1anL"T-)1)

By the Courant-Fischer characterization of eigenvalues,

A = min max{xTL_lAL_Tx: Xp = 1, Px = 0}
o+l p %
oxn
o T T _ _ _ 0
= min max{ y Ay: nlyg =1, Py = 0},0 =0,1,...,n-1
Pan Y

where P 1s any matrix of the indicated dimension.

-22-

Suppose that AJJ

is obtained from A by deleting the k-th

row and column. Then
—. o O | -T_ . _ _
Xggl = gun n}n{ax{xJLJJAJJLJJxJ. m, 1 =1, Pxy = 0}
oxn=1 ~°J
= min max{y A -y: ||LT v-ll = 1, Py, = 0}
P v J*JJ4aJ-° JJ*J ’ Jd
oxn-1 °J
. T T _ T _
= min max{y Ay: vk =0,(Ly)k =0, ||[L'y]| =1,Ppy=0}
POXn Y
= min max{y Ay: ||LTy|| =1, py =0, e£y=0,egLTy= 03
Pcr><n Y
where ek 1s the k-th unit vector. Therefore, k0+1 §_A0+1
Similarly,
. T.-1,.-T
Mgy = Max min{x"L AL “x: ||X|]] = 1, Px =0}
n-a-1xn
. T T = =
= max min{y Ay: ||L°y|| = 1, Py = 0},0=0,1,...,n-1
Pn—a—lxn
_ B . T —1 -T_ . - =
Ag = rgax m;n{xJL,JJ.AJJLJJxJ. x5l = 1,Px =0}
n-a-lxn-1 ~J
= max min{yTAy: ||LTy|| = 1, Py = 0,e§y=0,e£L§=0}
Pn--cr--lxn

Therefore, A_ > A

. g+l and the result follows.

-23- .

Rt i

Lemma 3 If M is obtained by either Method 1, Method 2,
or Method 3, then if Al and An are respectively the
largest and smallest roots of det (A-AM) = 0, and Xl and

AS are respectively the largest and smallest roots of

det(AJJ-AM) = 0 , where the matrices M and AJJ have

dimension s , then Al > Al and Aniks

Proof: This result follows from induction using the results

of Lemmas 1 and 2. |}
Lemma 3 gives us the following result:

Theorem 2 The convergence bound for the conjugate gradient
algorithm applied to the subproblems is at least as good
as that of the conjugate gradient method applied to
the original matrix.
Thus, 1f we have a matrix M for which linear systems

M d=r can be solved easily, and M scales A well in the
sense that the roots of det(A-AM) do not have a wide
range, then we have a good scaling operator for the sub-
problems in the scaled conjugate gradient algorithm for
quadratic programming.

- The simplest scaling matrix M is the diagonal

portion of A (=02,3=1,2,...,n,2#3).

Moe = 2an ™3
It has been shown by Forsythe and Straus [12] that if A

is two-cyclic, then among all diagonal matrices, this choice

-24-

minimizes k in (5) and thus maximizes the estimated
convergence rate. Even for a general matrix A , 1t is
often advantageous to scale the problem in this way.

From the form of the matrix M in Method 3 , we
can see that the matrices M for Methods 1 and 3 differ
by at most a rank n-s matrix, where s is the dimension
of M, and the eigenvalues of the matrix obtained by
" Method 1 are greater than or equal to the eigenvalues of

the matrix obtained by Method 3

2.2 Methods Based on Iterative Algorithms

It has been shown before [For example, 1] that
suitable iterative techniques for solving linear or
nonlinear systems can be accelerated by application of the
conjugate gradient algorithm. We can extend this idea

to our problem. Define M -1, @ by z (1)

- z where

z 1is the vector obtained by applying a double sweep of
modified symmetric successive over-relaxation (SSOR)

to the linear system (4) using z(i) as the ini£ial

guess. The SSOR iteration is modified so that no variable

violates the constraints. More precisely, let

.We apply the SSOR iteration to the system

Ryg%z = £;

c. < z<d

J J
Forj=l'2’--o,S, let
-1 S
f (i) J ~ (i)
. —— n £, - . - . .
37 %y w85 = L Paen™ 250 @)/
. f
cj if zg < c.J
z. =4d. if - S 4.
%5 B j

iz§ otherwise

and for j = s,s-1,...,1, let

b - J - S _
z., = 2z, +wlf . Z .2 .o
. b
. f : C.
cJ i zJ < 3
z. = a. 1if zp > d.
J J J J

Z. otherwise

where ® 1s a parameter such that 0 < w < 2 . Then the
result of one iteration of modified SSOR is z . The
nonsymmetric version of this iteration (using forward
sweeps only) has been discussed by Cottle and Goheen [5].

for problems with A an M-matrix.

-26-

For the modified SSOR iteration, the scaling
operator ﬁ'-l has no simple form. The matrix is neither
symmetric nor positive definite, and it changes from
iteration to iteration in the conjugate gradient algorithm.
Thus, none of the conjugate gradient convergence theory
applies. No,netheless, it has performed well in experiments
on elliptic partial differential equations.

As mentioned in Sectionl, for the special case inwhich
C =0,d==and A is an M-matrix, the linear systems
can always be solved without violating the constraints

on x3 In this case, we can simply set

__f - _ Db
j —zj and zj zj

N

without degrading the convergence of the iteration,

reducing the matrix M to

M 1= uo(Z-w)(I-uuLT)_]'(I—wL)-lD“l

where AJJ = D(I-L—LT), L is strictly lower triangular,
and D is diagonal. As long as Az is normalized so that
its diagonal elements are equal, this matrix is symmetric
and positive definite, and the conjugate gradient con-

vergence theory applies.

-27-

3. Alternate Algorithms and Numerical Results

Standard algorithms for the general quadratic programm-
ing problem involve complementary pivoting and inversion or
factorization of submatrices of A [9,11,13,15,17]. These
algorithms may not be practical for large, sparse, structured
matrices. For example, free boundary problems in elliptic
partial differential equations often give rise to irreducible
Minkowski matrices (M-matrices), and At may be totally
full even though A is highly sparse. Successful algorithms
for this special application of quadratic programming have
often involved some modification of the SOR algorithm.

Cea and Glowinski [3] propose a block form of the
modified SOR iteration discussed in Section 2.2.
Cryer [7] obtained good results with the specialization
of this algorithm to the linear complementarity problem.
Cottle, Golub, and Sacher [6] propose a SOR algorithm
for the complementarity problem which uses Sacher's
algorithm [19] for subproblems involving linear com-
plementarity problems with tridiagonal matrices.

Cottle and Goheen [5] extend this algorithm to

the quadratic programming problem and survey several
alternate methods.

We now present-a summary of the results of numerical

experiments on three groups of problems. We compare the

-28-

performance of the algorithm proposed in this paper
with that of Cottle and Goheen's SOR algorithm
discussed in Section 2.2, since in experiments reported

in [5], it ranked among the most effective algorithms.

Example 1 The first problem is the linear complementarity
problemwiththe matrix A corresponding to the Laplacian

. 5-point finite difference operator:

The conjugate gradient algorithm was run with scaling
matrices equal to the tridiagonal portion of A , a
partial LLT factorization, and the SSOR operator.

(These algorithms are denoted in the tables and figures

by CG + T, CG + LLT , and CG + SSOR respectively), The
LLT factorization was chosen to be one for which L has
the same sparsity patternas the lower triangular portion of
A . The algorithm is due to Meijerink and van der Vorst
and is defined in [16]. The scaling was performed using
Methods 2 and 3 for the tridiagonal and LLT matrices,

but there was no significant difference between the

-29-

performance of the two methods. The SSOR scaling was

also performed in each of the two ways discussed in Section 2.2,
and, as expected, there was no difference in performance

for this example problem. Table 1 shows the results of
numerical experiments with randomly generated vectors

b . We present the average number of inner iterations

over five examples for the various algorithms and for

m = 16 and m = 23 (n = 256 and 529 variables respectively).

For the algorithms with parameter w , results shown

are the average over o = 1.1, 1.3, 1.5, 1.7, and 1.9

(0)

In all cases, the initial guess x was 0 , and

£ = 10_3 for all but the last iterations, with a

final criteria of € = lO_6

The conjugate gradient algorithms required 5-7
outer iterations for n = 256 and 6-8 for n = 529,
independent of scaling. The average number of active
variables per outer iteration was s = 196 for n = 256
and s = 435 for n = 529.

There 1is, of course, a varying amount of work per
iteration depending on which scaling is used. The
tridiagonal scaling from Method 3, for example, requires
approximately 3s operations (multiplications and
additions) while SSOR requires the equivalent of two

matrix-vector multiplications involving the matrix AJJ

(s xs) . The SOR algorithm requires a matrix-vector

~30-

TABLE 1 Number of Iterations

fdr Example 1

CG with CG with CG with SOR
Tridiagonal Partial SSOR .
Scaling LLT Scaling Scaling Algorithm
Method 3 Method 3 (CG+SSOR)
(CG+T) (cG +LLT)
n=256 67 35 38 94
n=529 67 60 58 > 212
TABLE 2 Average Number of Variables Not at
Their Bounds During the Conjugate
Gradient Iteration for Example 2
s s/n
n c =5 cC =9 Cc =13 cC =5 ¢€=9 C =13
256 185 138 109 .72 .54 .43
529 399 277 234 .75 .52 .44
900 662 473 393 .74 .53 .44

-31-

multiplication by the entire matrix A (nxn) at every
—-iteration, regardless of how many variables are at their
bounds.

It can be shown that x for the matrix A and for the

1

matrix M “A with tridiagonal scaling is o(m?) . Using

the optimal value of w , SOR is expected to converge

in O(m2

) iterations when applied to a linear system
involving the matrix A . The number of
iterations for the quadratic programming algorithm is
predicted well by the linear theory.

Figure 1 shows the wvariation in average number of
iterations for different values of the parameter p in
the SOR algorithm and for conjugate gradients with

_SSOR scaling. The conjugate gradient algorithm can be

seen to be much less sensitive to the choice of w

Example 2 This is a model for studying the effects of
torsion applied to a rectangular bar. Cea and Glowinski [3]

present the model for a crossection of the bar as follows

min 1/2 fj|Vu|2dxdy - C [u dx dy
u § 9]
u=0 on T

Iu(le) I _i D(XrYr r)

where C is a positive constant related to the magnitude

of the torsion, D(x,y,T') is the distance between the

-32-

300 T

Iterations
. 200 -
AY
- M. SOR n = 256
\
\
N\
\
100 T AN
AN
\ /]
N /
> /
CG+SSOR n = 529 Mo g 4
N /
N 7/
\\ g L d
CG+SSOR n = 256 Sm—- _--"
o L
1.1 1.3 1.5 1.7 1.9
w
Figure 1. Algorithm Performance on Example |

with Varying w .

33

point (x,y) and T , the boundary of the region & ,

and u 1s the stress function. After discretization,

this is a quadratic programming problem. The distances
form the upper and lower bounds, the matrix A is taken

to be the Laplacian 5-point operator, and b has every
component equal to C . Figures 2-4 show the results of
experiments with m = 16, 23, and 30 (n = 256, 529, and

900 respectively) and C = 5, 9, and 13. The initial guess
and the convergence tolerance were as in Example 1.
Increasing values of C correspond to more variables

at their bounds in the final solution (approximately

30% for C =5, 60% for C = 9, and 80% for C = 13).

The constraints for this problem are much tighter than those
for Example 1, and the second SSOR scaling for conjugate
gradients is not effective here.

Figures 5-7 show the variation in convergence for various
values of w for the SOR algorithm and the conjugate
gradient algorithm with SSOR scaling. Results are
similar to those of Example 1, but in this problem, where
so many variables are at their bounds in the optimal
solution, it 1is even more important to take advantage of
the reduction in work achieved by partitioning the system
instead of working with the entire set of variables at
each iteration. The average number of active variables
is given in Table 2 , and the number of outer iterations varied

from 4 to 8 for n = 256, and from 5 to 11 for n = 900.

-34-

SOR
200 i
T CG+T
Iterations 4
T
CG + LL
100 =
—w= = === (G + SSOR
.0 T + $ T t + $ i
256 529 900
n

Figure 2. Algorithm Performance on Example 2, C = 5.

CG+T
Iterations

200 -1

100 + Y /soa

- ”’
-
0 4 + ——t + N ' - 4
’ *
256 529 900
n

Figure 3., Algorithm Performance on Example 2, C = 9,

-36-

Iterations

200

100

SOR

=== == =TT T T CG+SSOR

-
- -
-

-

4

! et —+ 1
529 900
n

Figure 4, Algorithm Performance on Example 2, C = 13.

I

300 T

Iterations

200 -

100 =

\ ' SOR n = 900

CG+SSOR n = 900

CG+SSOR n = 529 ~~

1.1 1.3 1.5 1.7 1.9

W

Figure 5. Algorithm Performance on Example 2

with Varying w , C = 5.

-38-

300

Iterations

200 =T

100 ==

SOR n = 529

SOR n = 900

N
N
N\
\
N
N
~
CG+SSOR n =
\\ ,
\\ \.,/l
CG+SSOR n = 529
1.1 1.3 1.5 1.7 1.9
w
Figure 6. Algorithm Performance on Example 2

with Varying w , C = 9.

39

Iterations

100 -+

/
s SOR n = 529

- 1.1 1.3 1.5 1.7 1.9

h @

Figure 7. Algorithm Performance on Example 2
with Varying w, C = 13.

-40-

The typical pattern for examples using conjugate
gradients with SSOR scaling is that many restarts take
place at the beginning until a reasonable set I is identified.
Throughout this period then, the algorithm is equivalent
to SSOR used alone with some variables kept fixed.
Once I has stablized, few restarts occur, so the fast
convergence of the conjugate gradient algorithm can be exploited
with great effectiveness.. One of the advantages of this algorithm is that
the transition from SSOR toconjugategradientswith SSOR scaling is

is made autanatically.

Example 3

The matrix A of Examples 1 and 2 is a 2-cyclic matrix,
and theory tells us the optimal w for the SOR iteration
for a linear system. The matrix in this example is not

2-cyclic. It is the discrete Laplacian g-point operator

T T /’N -4

-4]1-

400

Iterations

300

200

100

Figure 8.

SOR
CG+SSOR ‘\\~_a//
1.3 1.5 1.7

w

"Algorithm Performance on Example 3

with Varying w , n = 529.

Lz~

All other features of this example were the same as in
Example 1. Figure 8 shows the results of applying the
conjugate gradient algorithm with SSOR scaling and

the SOR algorithm to a matrix of dimension n = 529

with five random vectors b . Results are similar

to Example 1, with SOR showing sensitivity to w while
the number of iterations for conjugate gradients with SSOR
scaling is relatively constant. The number of variables
not at their bounds in the final solution varied from

513 to 463 for the five problems, and the number of outer

iterations was 7 for all of the conjugate gradient runs.

4, Discussion and Conclusions

We have presented a conjugate gradient algorithm
with matrix splittings which is suitable for certain quadratic
- programming problems. The performance of the method on
special classes of problems might be enhanced by preprocessing

or by modifications to the inner iteration.

-43-

For applications with A an M—-matrix , the pre-
processing scheme of Cottle and Goheen [5] could be
used before beginning our algorithm in order to identify
some of the variables which will be at their bounds in
the optimal solution. These variables could then be
held fixed throughout the conjugate gradient iteration.
Other algorithms could be substituted for the
conjugate gradient iteration, as long as there is a
descent function for the inner iteration which guarantees
that no subproblem will repeat. The conjugate gradient
algorithm is quite versatile, however, and has rapid
convergence when used with a suitable scaling matrix.
Such scalings may be chosen to be portions of the matrix
A (for example, the diagonal or band part of the matrix)
or an operator arising from application of an iterative method
" forsolving linear systems. Operators for related physical
problems may also be used effectively. For example,
a fast direct method for solving Laplace's equation
over a regular region might be used as a scaling for a
problem with a matrix corresponding to Laplace's equation
over a region which does not permit separation of variables.
The conjugate gradient algorithm with matrix
splittings has been demonstrated to have finite termination
and to be effective for free boundary problems for elliptic
partial differential equations. The method, however, requires

only that the matrix A be positive definite and thus

44-

has broader applications. Test results suggest that
the algorithm is effective whether or not the constraints

are tight.

Acknowledgements

Part of this work was completed while I was a doctoral student
of Dr. Gene H. Golub at Stanford University. I am deeply grateful
to him for his inspiration, guidance, and continual encouragement.
This research was beqgun at his suggestion, and he has given valuable
advice improving the work and its presentation. Special thanks go
to Mr. Lee Zukowski who prepared the figures and to Mr. Franklin

Luk for his careful reading of the manuscript.

-45-

REFERENCES

{1] 0. Axelsson, "On preconditioning and convergence acceleration
in sparse matrix problems", Report CERN 74-10, CERN European
Organization for Nuclear Research (Geneva, 1974).

[2] C. Baiocchi, V. Comincioli, E. Magenes, and G.A. Pozzi,
"Free boundary problems in the theory of fluid flow through
porous media", Ann. Mat. Pura. Appl. 97 (1973) 1-82."'

[3] J. Cea and R. Glowinski, "Sur des methodes d'optimisation par
relaxation", R.A.I.R.O R-3 (1953) 5-32.

[4] Paul Concus, Gene H. Golub, and Dianne P. O'Leary, "A generalized
conjugate gradient method for the numerical solution of elliptic
partial differential equations", in: James R. Bunch and Donald J.
Rose, ed., Sparse matrix computations (Academic Press, New York,
1976) pp. 309-332.

[5] Richard W. Cottle and Mark S. Goheen, "A special class of iarge
quadratic programs", Report SOL 76-7, Stanford University Systems
Optimization Laboratory (Stanford, California, 1976).

[6] Richard W. Cottle, Gene H. Golub, and Richard Sacher, "On the
. solution of large, structured linear complementarity problems III",
Report 74-7, Stanford University Operations Research Department
(Stanford, California, 1974).

[7] C.W. Cryer, "The method of Christopherson for solving free
boundary problems for infinite journal bearings by means of finite
differences", Math. Comp. 25 (1971) 435-443.

[8] J.W. Daniel, "The conjugate gradient method for linear and
nonlinear operator equations", SIAM J. Numer. Anal. 4 (1967) 10-26.

[9] G.B. Dantzig and R.W. Cottle, "Complementary pivot theory of
mathematical programming", in: G.B. Dantzig and A.F. Veinott,
Jr., ed., Mathematics of the decision sciences, part 1 (American
Mathematical Society, Providence, R.I., 1968) pp. 115-136.

[10] Martin A. Diamond, "The solution of a quadratic programming problem

using fast methods to solve systems of linear equations", Int. J.
Systems Sci. 5 (1974) 131-:!36.

- 46 -

[11]

[12]
[13]

[(14]

[15]

[16]
[17]
(18]
[19]

[20]

R. Fletcher and M.P. Jackson, "Minimization of a quadratic
function of many variables subject only to lower and upper
bounds", J. Inst. Maths. Applics. 14(1974) 159-174.

G.E. Forsythe and E.G. Straus, "On best conditioned matrices",
Proc. Amer. Math. Soc. (1955) 340-345.

G. Hadley, Nonlinear and dynamic programming (Addison-Wesley
Publishing Co., Reading.Mass., 1964).

Magnus R. Hestenes and Eduard Stiefel, "Methods of conjugate gradients
for solving linear systems", J. Res. Nat. Bur. Standards 49(1952)
409-436.

C.E. Lemke, "Bimatrix equilibrium points and mathematical
programming”, Management Sci. 11 (1965) 681-689.

J.A. Meijerink and H.A. van der Vorst, "An iterative solution
method for linear systems of which the coefficient matrix is a
symmetric M-matrix", Math. Comp. 31 (1977) 148-162.

W. Murray, "An algorithm for finding a local minimum of an indefinite
quadratic program", Report NAC 1, National Physical Laboratory
(Teddington, England, 1971).

B.T. Polyak, "The conjugate gradient method in extremal problems",
U.S.S.R. Computational Mathematics and Mathematical Physics 9
(1969) 94-112.

Richard S. Sacher, 'On the solution of large, structured linear
complementarity problems II", Report 73-5, Stanford University
Operations Research Department (Stanford, California, 1974).

J.H. Wilkinson, The algebraic eigenvalue problem f(Clarendon Press),
Oxford, 1965).

- 47 -

