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Abstract.

Considerable mathematical effort has gone into studying sequences

of points in the interval [0,1) which are evenly distributed, in the

sense that certain intervals contain roughly the correct percentages of

the firstn points. This paper explores the related notion in which

a sequence 1s evenly distributed if its first n points split a given

circle into intervals which are roughly equal in length, regardless of

their relative positions. The sequence x = (log, (2k-1) mod 1) was

introduced in this context by DeBruijn and Erdbs. We will see that the

gap structure of this sequence 1s uniquely optimal 1n a certain sense,

and optimal under a wide class of measures.
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3 Consider sequences of points on the circumference of a circle of

radius 1/2n , or equivalently in the unit interval [0,1) . Such a

sequence 1s called uniformly distributed if the percentage of the first

n points which lie in any fixed interval approaches the length of that

| interval as n tends to infinity; this concept has been studied
extensively [4]. We can arrive at a different notion of even distribution

| by considering instead the lengths of the gaps between elements of the

sequence. For each n , the first n points of any sequence divide the

circle into n intervals, and we shall study those sequences which make

these intervals roughly equal 1n length, regardless of the order in which

| they occur around the circle. Putting this another way, we will study
| strategies for successively breaking a unit stick into smaller and

smaller fragments, while attempting to arrange that the n stick

fragments present at time n are as nearly equal 1n length as

| possible, for all n.

| More formally, let us define an n-state to be a multiset containing
n nonnegative real numbers which sum to one; the elements of the n-state

| specify the lengths of the sticks present at time n . An n-state S is

a legal predecessor of an (n+l) -state T if there exists a number x

| in S such that S-(x) CT. It follows that the multiset T - (S-(x])

| must consist of exactly two numbers whose sum 1s x ; that is, T arises
| from S by breaking a stick of length x into two nonnegative fragments.
| A stickbreaking strategy 1s then an infinite sequence of states

Spins , Where 5S, 1s an n-state and a legal predecessor of S41 for
each n . Every sequence of points on the circle defines a unique
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stickbreaking strategy, and every strategy can be generated by at least

one sequence.

We now turn to the study of stickbreaking strategies, in an attempt

’ to find those strategies (8) in which the elements of Sy are nearly

equal for each n . There are many different precise notions lurking

behind this fuzzy concept; for example, we might try to

minimize lim sup {n + max (8, )} , Or
n

maximize lim inf {n.min(s )] , Or
n

max (S )

minimize Lin sup min(s)5,

DeBruijn and Erd8s considered these three measures in [1], and proved that

‘ the best possible values for any stickbreaking strategy were 1/1n 2

1/In 4 , and 2 respectively, where " In" denotes " log, ". They also

discovered a particular strategy which simultaneously achieves the optimum

in all three measures. This strategy 1s the one defined by the sequence

: — - 1" 1] "n 1"

(Xe >1 with x = (1g(2k-1) mod 1) ; where "lg " denotes log,
and mod 1 denotes the fractional part; we will call this the log

stickbreaking strategy. The n-states of the log strategy have the

form

[ n+l n+2 2n

for each n ; the strategy works, in some sense, because

n+l 2n+2 ont+l on+lg — | = ==) = tu ante



| Note, by the way, that the sequence & esq which defines the log

strategy 1s not uniformly distributed, since for example the ratio

| (number of k's such that 1 <k <n and 0 < x, < 1/2)

| does not approach a limit as n = ® . Thus, the sequences which are

| excellently distributed 1n our new stickbreaking sense need not be evenly

distributed at all in the classical sense of uniform distribution.

| The graph in Figure 1 depicts the log stickbreaking strategy in action.

| A vertical line has been drawn from the top of the figure down to the point
<x, k> for 1 <k< 64 . A horizontal cut through the resulting picture

| at height n reflects the state of the log -strategy at time n . Knuth [3]

has used this type of graph to display the intriguing distribution structure

of the sequence Vek so where Yi = (Eis) mod 1)
We now want to build a more general framework in which to explore the

| optimality of log stickbreaking. Our first task is to find a partial
order on n-states which captures the notion of a state's elements being

"more nearly equal". Suppose that S and T are n-states containing

| Sq 2 85 and ty t, respectively, and suppose that S - {sq 55} = T- {t5%,] .
| It must then be the case that sq t S5 = tt t, . If, in addition, we have

| Sy 2 tq 28,» 1t follows that either 81 2 ty > t, > S, or s; >t, > ty >s,
In either situation, we would intuitively say that the elements of T are

: more nearly equal than those of S . In particular, we can go from S to

T by robbing (s1-%) units from the rich s; and giving them to the

poor  s, We will then say that T results from S by a Robin Hood act.

More generally, an n-state S will be said to majorize an n-state T

| whenever T can be reached from S by a finite sequence of Robin Hood acts;

| thus, 1f S majorizes T , the elements of S are at least as unequal as
the elements of T .

|



~

- ! Ny

N | Nn

3 | >

3 | \

* | % i

wh

x Ng

o 3

2 £

“ : -

a Xx

LL Pn.

EY Gay

bs a

bE N

oY 9

at 2

BP | :Wii
3 Bi

x 33

Ry x

1 A EN NI BE SESE EE JR at SNL SEPT ES atAE hhaSn A NM Ha adR SERRE IY

Figure 1



Majorization 1s a partial order on n-states; interestingly, we can

get the same partial order in a different way. Let n-vectors be points

| in rR" whose components are all nonnegative and sum to one; an n-vector

1s an ordered version of an n-state. If 0 = <87s Sp» ® sn» and

| T = IY Coe ct are n-vectors, we will say that 0 >1 if, for

all k in the range 0 < k < n , we have s+ Sot cee t 8p >

CRA ® itk; in other words, o© > 7 when the partial sums of ©

| uniformly exceed those of r . Now, with each n-state S , we can

associate an n-vector © = S whose components are the elements of S

| in nonincreasing order. It turns out that S majorizes T if and only

| if 8 > T 3 a proof and still another characterization of this same
partial order can be found in [2], sections 2.18 to 2.20.

| Our first lemma shows that the relation o > 7 holds more often than
: one might expect. One can view this result as a variant of Spitzer's Lemma [8].

Lemma 1. Let 0 = <819855 00058 > and T = <bpatosecest > be n-vectors;

for each k between 0 and n-1 , let o(%) w<8p 117850ee 025987955 000s Sy >
j denote the sequence 0 circularly shifted k places, and define

ne analogously. Then, for some Xk in the range 0 < k <n , we have

5K) > ¢ (8)

Proof. We want to shift those positions where t is larger towards the

right end. In fact, it is enough to choose k to maximize the quantity

2 (t,-s.) . O
1<i<k +

We will use Lemma 1 in studying what can happen in a stickbreaking

strategy between time n and time 2n . Define an n-slice to be a

finite sequence of m-states (8) for n <m < 2n , where S is a
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legal predecessor of 8.7 for n <m < 2n . The behavior of any

stickbreaking strategy over the interval [n,2n] constitutes an n-slice,

and any n-slice can be extended in many ways to a full stickbreaking

- strategy.

We can draw an n-slice as an oriented forest containing n trees

and a total of 3n nodes. Each tree will depict the history over the

slice of one of the n sticks which existed at time n , and each node

will represent a stick. The nodes will be labelled [{,m] , where ¢

gives the stick's length, and m denotes the last time at which it

remains unbroken. For each stick that-is still unbroken at time 2n we

will write m = ¥ , and the node will have no offspring. If m # *

then n < m < 2n and the node has exactly two offspring representing

its fragments when broken. For example, each n-slice of the log

strategy defines the forest in Figure 2.

If an n-slice contains states with several sticks of the same size,

that 1s, with elements of multiplicity greater than one, it may be

possible to draw several different forests which represent that same

n-slice. A simple example is the 2-slice

{{2/3,1/3},{1/3,1/3,1/3} ,{1/3,1/3,1/6,1/6}} . Each portrayal of an

n-slice as a forest will be called an interpretation. Of course, every

legal n-slice must have at least one interpretation.

Note that each of the trees in the above unique interpretation of

a slice of the log strategy contains exactly three nodes. A tree

with only a single node represents a stick which survives unbroken from

time n to time 2n ; call such sticks atoms. Call an n-slice_atomless

| if it has at least one atomless interpretation. The following lemma shows

that all the best slices are atomless.
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Lemma 2. If pn <m<2n 1s any n-slice, there exists an atomless
Lo oo

n-slice Tn <m<2n such that § majorizes T for all m . That
is, any n-slice can be uniformly improved upon by an n-slice with an

atomless interpretation.

Proof. Let (5) be an n-slice, and fix a particular interpretation

of {(8,) which has at least one atom. By induction, it suffices to show

that there exists an n-slice (I, which uniformly improves upon (5) /

and an interpretation of (I) with one less atom,

Choose any atom of (8) , and let its length be a . Since the

atom is represented by a tree with a single node, there must be some

other tree in the interpretation of (8, with at least five nodes.

That tree must include a leaf node at level p where p > 2 . Thus,

( S./ must have the form shown in Figure 3, where the triangles indicate

T arbitrary trees whose roots have the lengths shown. Note that, if p = 2 ,

| the nodes labelled I and he are actually identical.

Como [n-2 other trees]

| Na) "

1-1| p-1 'p <>

: Figures
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The construction of the desired n-slice (T,) divides 1nto two cases,

| depending upon the size of a . Since Ly > 4 >... 2 b12 dor at least one

of the inequalities a > bq and a < fy must hold. Suppose first that a > 1

| In this case, we can improve upon the slice (8, by breaking a and

leaving lh-1 alone, as shown in Figure 4. Let (T,) be the n-slice

| defined by this interpretation; clearly (I) 's interpretation has one

less atom than the given interpretation of (Sp) . Now, for m < m1

| the state T is identical to 8 . For m > m,1 , we can go from §

to T,, by replacing the pair {a, £3 with te , atl =4 3 . Since

| a > {12 Ls , this replacement constitutes—-a Roblin Hood act. Hence,

| S majorizes Ty for all m , and the first case 1s complete.

| (T,) if a > bq

Como [n-2 other trees]

) (AY. atf -1{ *

*

Figured
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On the other hand, suppose that a <1; . In this case, we can

improve upon (8, by adjusting what happens early in the slice, 1nstead

of late. In particular, we can change the lengths of the initial

intervals and get a as the result of a break, as shown in Figure 5.

Once again, let I,” be defined by this interpretation, and note that

we have reduced the number of atoms by one. Now, for m >m, , we have

Ty = Sn . For m < my , We can get from Sh to In by replacing the

pair {a, 25} with {£;, at fy-14} j since fy > 4; > a, this is again

a Robin Hood act, and the proof is complete. CO

if
(Ty if a < 4

+ - —

a Ly £5 Im [n-2 other trees]

4 -{p-1 DP |
Figured
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We can now show that a rather wide class of stickbreaking slices

has a weak form of optimality. In particular, we will define an n-slice

(8,2 to be perfect 1f each break in the slice breaks the currently

largest stick exactly in half, and if the slice 1s atomless. Let

Cnn <m<en be a perfect n-slice, and let S, = <8q SyyeeesS > be
the n-vector whose components are the sizes of its sticks at time n in

nonincreasing order. Note that, since CY 1s atomless, we must have

5, > s,/2 . Hence, the (ntk) -vectors § = for O<k<n must be

given by

Ss Ss S SS
o = S S Ss 1 f1 2 %2 kk
n+¥k k+l’ "kt2’ "pn? 2°? po 2 op? To CHO a 0S

Conversely, if $4 > 5, > 00> S, are any nonnegative numbers whose

sum 1s one, and if Sh > s,/2 , there 1s a unique associated perfect

n-slice whose states are specified as above. Our next theorem shows

that all these n-slices have a certain optimality.

| . et ald

Theorem 1 L Su <m<eon be a perfect n-slice, and let
{Ty)n<m<en be an arbitrary n-slice. Then, for some k in the range

O< k<n, the state Tk will majorize Sik ; that is, at some time

the slice (I, must do at least as poorly as Cy

Proof. First, if-every interpretation of (T) contains atoms, we

can use Lemma 2 to construct a uniformly superior atomless slice.

Hence, we may assume without loss of generality that (T,» has an

atomless interpretation.

Under this interpretation, every stick represented by an element

of T, 1s broken exactly once during the course of the slice (IT) .

12
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Number the elements of I, in the order in which they are broken,

T, = {typtoeeast } , and let ts and t§ be the lengths of the

fragments of 17 , for1 <1 < n . Furthermore, choose the names

to make ts > tl Then, consider the vectors

‘ " ! 1" ' 1)

— ! " ' A ' ", .Ton = Fptptyty ott)

Note that the components of Tok AF€ exactly the elements of Tk ,

but not necessarily 1n sorted order.

Now, recall that the perfect slice (8) takes the form

nk = Srl? SP EB CET 0 2(
* 1 /

== {1 1 2 2 S14
en CT, 27 27 27 272° 27 2y . |

By applying Lemma 1 to the n-vectors Th and EN , we deduce that there
_ (x) _ =(k)

must exist some k intherange 0 < k <n, such-that Th > Sp :

that 1s, such that

This is almost enough information to conclude that, in fact, Totk > Stk ;

that 1s, that

13
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. S S S S
, 1 1 k k

DRT ERRRTA NAPA LPRPRPR A tre > ours oersys = J) IZ) 3 eee 3 2) }) 2
| The only partial sums that haven't been handled are those which include

a ti but not the corresponding ti . Note, however, that we do know

that

+ eo + + + 00 + 4+ eee + + I“1 ER P31 ® Skea "nT pF Eg, end

| tT + eee +f +4 + eee + +t. + eee 3 + e00 + + .k+1 n 1 i-1 1 2 Skt * Sn 7 1 ro1 ®

J We can deal with the remaining partial sums by averaging these two

| inequalities, and then using the additional-fact that ts > 2 implies
4

| ti > t;/2 . Thus, vr > S .. «

Finally, note that Ttk 1s simply a rearrangement of Tax into

a possibly non-sorted order. Thus, we must also have Tk > Stk /

since the sum of the largest j components of any vector is certainly

at least as large as the sum of the leftmost Jj components. It follows

that Tri majorizes S ix , OO

In light of Theorem 1, it might seem to be rather hopeless to find a sense

| in which any particular stickbreaking strategy 1s uniquely optimal. In

fact, Theorem 1 shows that stickbreaking 1s a rather zero-sum proposition;

a strategy does well at some times by doing correspondingly poorly at

other times. And different strategies do well at different times. To

progress further in our study of stickbreaking, we must be willing to

compare m-states and n-states where m # n ., That 1s, we must extend

the majorization partial order to deal with multisets of different

clzes.

1h



One possibility 1s to generalize majorization by using Lorenz

curves. These curves are used in economics for studying inequity 1n

distributions of income or wealth [7]. In our context, we will define

the Lorenz curve of an n-state S, to be the function s, : [0,1] - [0,1]

with 5, (r) given by the sum of the rn largest elements of 5S , If
rn 1s not an integer, we will define the value of 5 (r) by interpolating
linearly between the nearest two values of r which make rn integral.

In particular, if S, = <8q, Spy seer Sy” » then

5, (k/n) = Z S; for 0<k<n ,
1<i<k

and s_(r) for other r 1s found by piecewise linear interpolation.
(Warning: these Lorenz curves are "upside down" in comparison to the

Lorenz curves of economics.) |

The Lorenz curve of a state 1s a plecewlse linear and concave

function, which assumes the values 0 and 1 at 0 and 1 respectively.

Furthermore, the discontinuities in the derivative of the function occur

only at rational points. Conversely, any function with these properties

is the Lorenz cuve of an infinite family of states. For example, the

identity function is the Lorenz curve of the n-state {l/n,l/n, , . , , 1/n}

for each n .

Suppose that Sp and I, are two n-—-states. Recall that Sh

majorizes T, 1f and only if 5 > T r In terms of their Lorenz

curves, the latter condition states that 5 (r) > T(r) for r in
{0,1/n, 2/n, . . . . 1) . But since Lorenz curves are linear in each

region [k/n, (k+t1l)/n] , we can conclude that Sp majorizes Th if

and only 1f 5, (r) > T(r) for all r in [0,1] . This latter condition

15



1s a.matural partial order on Lorenz curves; we will say that 5 > T

when S, (r) > T (r) for all r . We can now extend majorization to

relate states of different sizes by defining an m-state Sy to majorize

an n-state T, exactly when 5. > T . Note that this more general
majorization 1s not quite a partial order on the set of all states, since

two distinct states with the same Lorenz curve would each majorize the

other.

We could arrive at the same generalization without using Lorenz

curves. In order to compare an m-state Su and n-state I, , we could

divide each element of So into n equal pieces, and each element of

T, intom equal pieces. This would generate two (mn) -states, which

we could compare by the old methods. Since this refining process does

not change the associated Lorenz curves, this idea leads to the same

generalization of majorization that we found above.

The Lorenz curves of the log strategy have a particularly simple

form. In fact, let L, denote the state of the log strategy at time

n , and define the envelope to be the graph of the function 1lg(l+r)

on the unit interval, Then, I 1s exactly the function which piecewise
linearly interpolates the envelope at the points (0, 1/n, 2/n, AE

This gives a good graphical intuition for the behavior of the in for

example, we can now see that Lien majorizes Ly for everyk and n ,

According to our definitions, no slice of the log strategy 1s

perfect. Butwecan construct for each n a unique perfect n-slice which

begins with the state L, ; 1t 1s only necessary to note that the

biggest element of Ly, 1s less than twice as large as the smallest.

Let the perfect n-slice so defined be written (Pp, mn <m<en ’

where Pom is the state at time m . Note

oo 16



that Pl m also has a simple structure; in particular, Pl n interpolates’ ’

3 the envelope over the n intervals defined by the (n+l) points

0.1 2 2n-m-1 2n-m 2n-m+2  2n-mth m-2 4
- mm’ m? "°°? m J m p m J m ) eee) m ’ id

We finally have enough information to characterize the log stick-

breaking strategy in a non-trivial way.

Theorem 2. Log stickbreaking is the unique strategy with the property

that none of its Lorenz curves anywhere exceed the envelope. In more

detail, if an arbitrary strategy Spm remains on or below the
envelope everywhere before time 2n , it must actually equal the log ¢

~ strategy until time n .

’ | Proof, Suppose that Cin >1 does lie on or under the envelope before

time 2n ; that is, 5, (r) <1lg(l+r) for 0<r<1l and 1<m<2n.,.

Equivalently, we could assume that L, > 5_ for 1 <m<2n . Apply

| Theorem 1 to the perfect slice Pr,m’n<m<eon and the n-slice Spm <m<en .
The theorem allows us to conclude that there exists a k in the range

0<k<n such that Sk ma jorizes Pn, nk Hence, we have

| Lek 2 Stk 2 Pn, ntk °

The graph in Figure 6 illustrates the situation for k=1 and n= 2 ,

Now, consider what S 4ko1 could be like; it must arise from

combining two elements of’ S ., But from the above relation, we know .

that the smallest two elements of Sik must sum to precisely 16 25 ) .
Furthermore, since 8 ,, 4 must fit on or under the envelope, the state

17 |



lg(ltr)—

| 1/3 /
| 0 L

| 0 1/3 2/3 1

Figure 6

n+k

| Stke1 cannot afford any element larger than 15( 225) ; the only
| choice Is to combine the smallest two elements of Stk . Hence, we

nave Lp 2 Speke1 2 Fypeken

Continuing inductively, we eventually conclude that L >8 >P no
and thus 5, = L, . Pushing the same argument even further, we find that

the history continues to be forced, and that S = L for 1 <m<n . 1
m m —- = =

Next, we want to use this characterization to show that log otick-

breaking 1s actually uniquely optimal in some sense. Define an m-state
m

18



to be decent if, for every stickbreaking strategy (Ty 51 , there

exists an infinite number of indices Kk such that Ty majorizes Sm .

Intuitively, a decent state 1s not too bad, since every strategy must

do at least as poorly infinitely often. The next theorem shows that

the envelope marks the dividing line between decent and indecent states.

Theorem 3. Let 5, be the Lorenz curve of an m—state So) . If

5 (r) < 1lg(l+r) for all r in the open interval (0,1) , then the

state §, is decent. If there exists an r in (0,1) where

5 (r) > 1g(l+r) , then Sy is not decent.

Proof. The second implication 1s easier. If 5, actually exceeds
the envelope at some point, then no state of the log strategy can

possibly majorize So . Hence, So cannot be decent.

For the first implication, let Si be an m-state whose Lorenz

curve liesstrictly under the envelope except at 0 and 1 . Our first

goal 1s to prove the existence of perfect slices all of whose states

majorize Sy Consider the states Ph, k for large n and n < k < 2n .

Each curve Py, kT) is a piecewise linear interpolate of 1lg(l+r) .
Furthermore, as n tends to infinity, the lengths of the chords involved

tend to zero, uniformly 1n k . Hence, the Py (®) converge to the
envelope 1lg(l+r) uniformly in r and k . Finally, since all Lorenz

curves are concave, we can check that any k-state I, majorizes Si

merely by checking that I, (r) > 5_(r) for r in the finite set
0, 1/m, 2/m, . . . 1) . Therefore, by choosing n sufficiently large,

we can guarantee that the states Ph, k majorize S, for all k in

the range n<k<2n .

19



-Fix an n which 1s sufficiently large by this criterion, and let

(Tks be any strategy which challenges the decency of S . By

applying Theorem 1 to the perfect n-slice Ph kn <k<on and the n-slice

(Tn <k<eon » we deduce that there exists some k in the range
n < k < 2n such that Ty majorizes Pl KC Since majorization 1sb

transitive, Ty will also majorize Sp Finally, since the above

works for all sufficiently large n , we find that the strategy

Tl >1 majorizes S =~ infinitely often; hence § is decent. CO

Unfortunately, the above theorem does-not settle the really

interesting cases! In particular, we would like to know whether or not

the states Ly, of the log strategy are decent. The author rather

suspects that they are, but that question seems difficult to resolve.

Instead, let us resort to the following definition, Call an n-state

—_ n

Sy nearly decent 1if Sy as a vector inR is an accumulation point

of the set of T, for decent T . That is, a state S, = {80859 «00ys_]

1s nearly decent when arbitrarily small perturbations of the Ss exist

which make the state decent. The usefulness of this definition lies in

the following theorem.

Theorem Lk. An n-state 5, 1s nearly decent 1f and only 1f 1ts Lorenz

| curve Sy, never exceeds the envelope.

Proof. Once again 1t 1s convenient to do the easy half first. Suppose

that S. actually exceeds the envelope at some point. Then, it must in
fact exceed the envelope at some point of the form k/n for 0 < k < n ;

that 1s, we have S(k/n) = 1lg(l + k/n)+ € for some ¢ > 0 .

20
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) -Now, 5, k/n) equals the sum of the k largest elements of Sp .

i A sufficiently small neighborhood of the n-vector s in RS will
therefore contain only n-vectors whose Kk largest components also sum

) to something strictly greater than 1g(l+ k/n) , Applying Theorem 3,

we conclude that no state in this neighborhood can be decent, thus SN

1s not even nearly decent.

Conversely, suppose that S, lies everywhere on or under the
envelope. Note that it can actually touch the envelope only at a finite

number of points of the form k/n . Let

v = {k|0 < k <n and S_ (k/n) = 1g(1+ k/n)} , To prove that 5, is
nearly decent, we want to find a family of decent n-states whose n-vectors

converge to S, inR' . We will construct these n-states by constructing
their Lorenz curves; and we will do the latter by distorting S_ a little

in the neighborhood of the points k/n for k in V. But what is

"a little"?

First, note that for each k in V we must have

that is, the stick corresponding to the interval [k/n, (k+1)/n] must be

strictly smaller than the one corresponding to [(k-1)/n, k/n] . This

follows since 5, actually touches the curving and concave envelope at

k/n . Let the slack in this inequality be denoted by 1 and let

1 .

For € in the range 0 <e <p , define the function T . at the points
: k/n by

21



. | s, (k/n) -¢ if keV

| I, (&/n)
s_(k/n) if 0<k<n and k¢vVv ,

| and extend I, to the unit interval by linear interpolation. The

| tricky point now is to show that T, is concave. It suffices to

| check that the slope does not increase at each corner between linear

| segments. Consider the corner k/n ; if k is not in V , the change

| from s, to To. only makes things better. If k 1s 1n V , the

| change to I, can at most affect the difference between the lengths
of the sticks corresponding to [k/n, (k+1)/n}l and [(k-1)/n, k/n]

by 2e . Since 2¢ <A , the change from 5 to I, does not

; destroy concavity.

Thus, for 0 < ee <p , the function I, . 1s a valid Lorenz curve

| for an associated n-state Tn, ¢ . Note that the stick lengths of Ty, «
| each differ by at most ¢ from the corresponding stick lengths of Sn .

{ Hence, as & goes to zero, To. converges to S, in Rr . Since

: each LY. lies strictly below the envelope on (0,1) , we deduce from

| Theorem 3 that each Tn, e is decent; therefore, Sp) 1s nearly decent, OO
Corollary. The log stickbreaking strategy is the unique strategy all

of whose states are nearly decent.

| Proof’. This follows immediately from Theorems 2 and 4 OO
| This Corollary 1s the promised demonstration that log stickbreaking

is uniquely optimal in some sense. To wrap things up, we will use this

general optimality to show that log stickbreaking is also optimal in a
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fairly wide class of real-valued measures; 1n particular, this class

will include the three measures studied by Erd8s and DeBruijn.

A real-valued functional y on the set of all states will be called

a monotone measure 1f it has the following two properties:

(1) If an m-state § majorizes an n-state T , then v(8,) > v(T) ,

(ii) For each fixed n , v(8,) = v({sys85..058. 1) 1s jointly

continuous in the Ss

Our earlier discussion of majorization shows that property (1) 1s

equivalent to the following pair of conditions together:

(17) Performing a Robin Hood act never increases the value of y .

i} (11) Two states with the same Lorenz curve must have the same value

of v .

This latter pair of conditions 1s often easier to verify,

If the author's suspicions are correct and the states L, of the

log strategy are actually decent as well as nearly decent, then the

continuity requirement, property (11), could be dropped.

Many intuitively reasonable yardsticks of stickbreaking performance

can be phrased as monotone measures. Here 1s a list of examples which

begins with the three covered by DeBruijn and Erd8s; let S be an

n-state with Sh = <8, Ss eeesS > .

. Nt

(1) v(s ) =n . min(S, ) ! 5, (0) a

(2) v(8,) = -n ¢ min (Sn) = -5, (1) :

max (S_) S! (0)
(3) v(s ) = in min(S_) a

n 5, (1)
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| p-1 p Loa op
(4) ws) = (@ 7) Ts; = [ (8(r)) ar

1<i<n 0)

for fixed p > 1 , especially p = 2.

| (5) v(s,) - Ss, (r) for fixed r in (0,1) .

| 1 ~ 1
: (6) v(8.) = [ Ss (r)ydr = = )D (2n-2i+1)s, .

n ’9 n en 1<i<n i

(7) Generalizing 5 and 6, we can have

| 1,

| vig) = [ 8(n)dF(x) -
0

| for any nondecreasing F: [0,1] - R .

Given any particular monotone measure, we can rate the performance

of a stickbreaking strategy Cpls by lim sup v(S ) , where small] 1 n n

| values of this lim sup are desirable. Our final result is

that log stickbreaking has the optimal lim sup in any monotone

( measure.

| Theorem »). If v is any monotone measure and CIN is any
stickbreaking strategy, then

lim sup v(s,) > lim sup v(L,) = sup v(Iy) |
n k k

Proof. Fix an arbitrary k > 1 ; we want to show that

Lin sup v(8) > v(L)

| Since Ly 1s nearly decent, there exists a sequence of decent k-states
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(Tg, plp>1 such that Tp converges to IL in . By property (ii),

the real numbers (Ty) must converge to v(Ly) :

Now, each k-state Ty D 1s decent; hence there exists an infinite2

| number of indices n such that S majorizes Ty Dp Therefore,4

lin sup v(S)) > v(Ty.)
for every p . Letting p go to infinity, we deduce

lim sup v(8) > v(Ly) for each k , and
n

thus

lim sup v(8,) > sup v(Iy) ‘

Finally, the above argument with Sn = Ly shows that

lim sup (IL) > sup v(I,) ,
n k

| hence these two quantities must in fact be equal. Alternatively, we

| could have deduced their equality at once by recalling that Lin

majorizes L, for every k and n . O
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