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Abstract.

Considerable mathematical effort has gone into studying sequences
of points in the interval [0,1) which are evenly distributed, in the
sense that certain intervals contain roughly the correct percentages of
the first n points. This paper explores the related notion in which
a sequence 1is evenly distributed if its first n points split a given
circle into intervals which are roughly equal in length, regardless of
their relative positions. The sequence X, = (loge(Ek-l) mod 1) was
introduced in this context by DeBruijn and Erd8s. We will see that the
gap structure of this sequence is uniquely optimal in a certain sense,

and optimal under a wide class of measures.
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Consider sequences of points on the circumference of a circle of
radius 1/2n , or equivalently in the unit interval [0,1) . Such a
sequence is called uniformly distributed if the percentage of the first
n points which lie in any fixed interval approaches the length of that
interval as n tends to infinity; this concept has been studied
extensively [4]. We can arrive at a different notion of even distribution
by considering instead the lengths of the gaps between elements of the
sequence. For each n , the first n points of any sequence divide the
circle into n intervals, and we shall study those sequences which make
these intervals roughly equal in length, regardless of the order in which
they occur around the circle. Putting this another way, we will study
strategies for successively breaking a unit stick into smaller and
smaller fragments, while attempting to arrange that the n stick
fragments present at time n are as nearly equal in length as
possible, for all n.

More formally, let us define an n-state to be a multiset containing
n nonnegative real numbers which sum to one; the elements of the n-state
specify the lengths of the sticks present at time n . An n-state S is

a legal predecessor of an (ntl) -state T if there exists a number x

in S such that S-(x) € T . It follows that the multiset T - (S-(x])
must consist of exactly two numbers whose sum is x ; that is, T arises
from S by breaking a stick of length x into two nonnegative fragments.

A—stickbreaking strategy is then an infinite sequence of states

<Sn)n:>l » Where Sn is an n-state and a legal predecessor of Sn+l for

each n . Every sequence of points on the circle defines a unique



stickbreaking strategy, and every strategy can be generated by at least
one sequence.

We now turn to the study of stickbreaking strategies, in an attempt
to find those strategies (Sn) in which the elements of Sn are nearly
equal for each n . There are many different precise notions lurking

behind this fuzzy concept; for example, we might try to

minimize lim sup {n -max(§ )} , or
n

maximize lim inf {n.nﬁn(Sn)} , or
n

max(Sn)
minimize llmnsup HE];(§;7

DeBruijn and ErdBs considered these three measures in [1], and proved that
the best possible values for any stickbreaking strategy were l/ln 2,
1/1n 4 , and 2 respectively, where " ln " denotes " loge ". They also
discovered a particular strategy which simultaneously achieves the optimum
in all three measures. This strategy is the one defined by the sequence
(xk>kzl with x_ = (1g(2k-1) mod 1) ; where "lg " denotes " Log, "

and mod 1 denotes the fractional part; we will call this the log

stickbreaking strategy. The n-states of the log strategy have the

form

((2) u(32). ()

for each n ; the strategy works, in some sense, because

(%) - 2(BE) - 10( 22 )+ ag(2m2)




Note, by the way, that the sequence <xk>k>l which defines the log

strate-gy is not uniformly distributed, since for example the ratio

(number of k's such that 1 <k <n and 0 < x, < 1/2)

n
does not approach a limit as n = o . Thus, the sequences which are
excellently distributed in our new stickbreaking sense need not be evenly
distributed at all in the classical sense of uniform distribution.

The graph in Figure 1 depicts the log stickbreaking strategy in action.
A vertical line has been drawn from the top of the figure down to the point
<%k for 1<k< 64 . A horizontal cut through the resulting picture
at height n reflects the state of the log -strategy at time n . Knuth [3]

has used this type of graph to display the intriqguing distribution structure

<yk>k>o where y, = (l{ﬂ'—zﬁl mod 1)

We now want to build a more general framework in which to explore the

of the sequence

optimality of log stickbreaking. Our first task is to find a partial

order on n-states which captures the notion of a state's elements being

"more nearly equal". Suppose that S and T are n-states containing

5328, and t;,t, respectively, and suppose that S - {sl,sz} = T- {tl’tg} .
It must then be the case that syt S, = t1+ t2 . If, in addition, we have

o » it follows that either s; > tl > 'b2 > s, or s _>_-(:.2 >t >s

In either situation, we would intuitively say that the elements of T are

slz'blZS

more nearly equal than those of S . 1In particular, we can go from S to
T by robbing (sl-'tl) units from the rich s, and giving them to the

poor s We will then say that T results from S by a Robin Hood act.

2 .

More generally, an n-state S will be said to majorize an n-state T
whenever T can be reached from S by a finite sequence of Robin Hood acts;

thus, 1f S majorizes T , the elements of S are at least as unequal as

the elements of T

2 .
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Majorization is a partial order on n-states; interestingly, we can
get the same partial order in a different way. Let n-vectors be points
in IRn whose components are all nonnegative and sum to one; an n-vector

is an ordered version of an n-state. If 0 = <81 52, [ .,sn> and

T = <tl,t2, .o .tn> are n-vectors, we will say that o >¢ if, for

all k in the range 0 <_k <_n , we have sl+ s2+...+sk >

t +'t2+ O ik i in other words, 0 >7 when the partial sums of o

1
uniformly exceed those of 1 . Now, with each n-state S , we can
associate an n-vector 0 = S whose components are the elements of §

in nonincreasing order. It turns out that S majorizes T if and only
if éz‘f 5 @ proof and still another characterization of this same
partial order can be found in [2], sections 2.18 to 2.20.

Our first lemma shows that the relation ¢ >1 holds more often than

one might expect. One can view this result as a variant of Spitzer's Lemma [8].

Lemma 1. Let 0 = <81585) 00y S > and T = <tl,t2,...,tn> be n-vectors;

for each k between 0 and n-1 , let o(k) “<sk+1’ Sppp? oo 0252875855 0 Sy >

denote the sequence 0 circularly shifted k places, and define
k
T( ) analogously. Then, for some k in the range 0 < k < n , we have

T .

~

Proof. We want to shift those positions where t is larger towards the

right end. 1In fact, it is enough to choose k to maximize the quantity

Z (t.'s.) . G
1<i<k * 0t

We will use Lemma 1 in studying what can happen in a stickbreaking
strategy between time n and time 2n . Define an n-slice to be a

finite sequence of m-states (Sm) for n <m < 2n , where Sm is a



legal predecessor of §p,; for n < m < 2n . The behavior of any

stickbreaking strategy over the interval [n,2n] constitutes an n-slice,
and any n-slice can be extended in many ways to a full stickbreaking
strategy.

We can draw an n-slice as an oriented forest containing n trees
and a total of 3n nodes. Each tree will depict the history over the
slice of one of the n sticks which existed at time n , and each node
will represent a stick. The nodes will be labelled [{,m] , where {
gives the stick's length, and m denotes the last time at which it
remains unbroken. For each stick that-is still unbroken at time 2n we
will write m = * , and the node will have no offspring. If m # *,
then n < m < 2n and the node has exactly two offspring representing
its fragments when broken. For example, each n-slice of the log
strategy defines the forest in Figure 2.

If an n-slice contains states with several sticks of the same size,
that is, with elements of multiplicity greater than one, it may be
possible to draw several different forests which represent that same
n-slice. A simple example is the 2-slice
{{2/3,1/3},{1/3,1/3,1/3} ,{1/3,1/3,1/6,1/6}} . Each portrayal of an

n-slice as a forest will be called an interpretation. Of course, every

legal n-slice must have at least one interpretation.

Note that each of the trees in the above unique interpretation of
a slice of the log strategy contains exactly three nodes. A tree
with only a single node represents a stick which survives unbroken from
time n to time 2n ; call such sticks atoms. Call an n-slice_atomless
if it has at least one atomless interpretation. The following lemma shows

that all the best slices are atomless.
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Lemma 2. If (8 )

m’n<m<2n is any n-slice, there exists an atomless

'n-slice such that Sm majorizes T for all m . That

<Tm>n <m<Zn
is, any n-slice can be uniformly improved upon by an n-slice with an

atomless interpretation.

Proof. Let (8 ) be an n-slice, and fix a particular interpretation
of (8 ) which has at least one atom. By induction, it suffices to show
that there exists an n-slice (%n) which uniformly improves upon (Sm),
and an interpretation of (Tm) with one less atom,

Choose any atom of (Sm) , and let its length be a . Since the
atom is represented by a tree with a single node, there must be some
other tree in the interpretation of (Sm) with at least five nodes.
That tree must include a leaf node at level p where p > 2 . Thus,
( %Q must have the form shown in Figure 3, where the triangles indicate
arbitrary trees whose roots have the lengths shown. Note that, if p =2,

the nodes labelled ll andlp_l are actually identical.

[n-2 other trees]

Figure3
9



The construction of the desired n-slice (Tm> divides into two cases,

depending upon the size of a . Since tO > ll >0 02 lp—l—> Ip’ at least one
of the inequalities a > fp—l and a < 21 must hold. Suppose first that a > Zp—l'
In this case, we can improve upon the slice (Sm> by breaking a and

leaving ¢ alone, as shown in Figure k4, Let (Tm) be the n-slice

p-1

defined by this interpretation; clearly (Tm) 's interpretation has one

less atom than the given interpretation of (§ ) . Now, for m < m1

the state Tm is identical to Sm' For m > m,.1 » We can go from Sm

to T by replacing the pair 8yl with 1 , atl_ -1 . Since
., , by replacing P {ar )] e, p-tp-i

a > Ip—l—> lp , this replacement constitutes-a Robin Hood act. Hence,

sm majorizes Tm for all m , and the first case is complete.

(T if axi.

[n-2 other trees]

Figure4
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On the other hand, suppose that a < ll . In this case, we can
improve upon (Sm) by adjusting what happens early in the slice, instead
of late. In particular, we can change the lengths of the initial
intervals and get a as the result of a break, as shown in Figure 5.

Once again, let (Tm) be defined by this interpretation, and note that

we have reduced the number of atoms by one. Now, for m >m, , we have

Tm = Sm . Form(< m, , We can get from Sm to TIn by replacing the
pair {a, 5} with {f;, a+lo—£1} ; since fy > 1y > a, this is again

a Robin Hood act, and the proof is complete. 0

(T i e < a

a+10-21 N mo [n-2 other trees]

Figure5



We can now show that a rather wide class of stickbreaking slices
has a weak form of optimality. In particular, we will define an n-slice
(Sm) to be perfect if each break in the slice breaks the currently
largest stick exactly in half, and if the slice is atomless. Let
<Sm>n§_m_<_2n be a perfect n-slice, and let -S-;; = <8qs8preeesS > be
the n-vector whose components are the sizes of its sticks at time n in

nonincreasing order. Note that, since (Sm) is atomless, we must have

Sp > sl/2 . Hence, the (n+k) -vectors Sn+k for 0 <k <n must be
given by
S = s s s fl i'. _s_2. 82 ?E ..SE
n+k = k+t1’"kt2’°°?"n’ 3 2 52 3 o e T 0 !
Conversely, if sl > 52 >0 > Sn are any nonnegative numbers whose

sum is one, and if Sh > 81/2 , there is a unique associated perfect
n-slice whose states are specified as above. Our next theorem shows

that all these n-slices have a certain optimality.

‘Theorem 1. Let (S8 )

n nfm__<2n be a perfect n-slice, and let

(Tydn<m<on P€ an arbitrary n-slice. Then, for some k in the range

O0<k<n, the state Tn+ will majorize S ; that is, at some time

k n+k

the slice (Tm) must do at least as poorly as (Sm)

Proof. First, if-every interpretation of (Tm) contains atoms, we
can use Lemma 2 to construct a uniformly superior atomless slice.
Hence, we may assume without loss of generality that (Tm) has an
atomless interpretation.

Under this interpretation, every stick represented by an element

of Tn is broken exactly once during the course of the slice (Tm) .

12



Number the elements of Tn in the order in which they are broken,
-— t "

Tn = {tl,'bz,...,tn} , and let ti and ti be the lengths of the

fragments of ti , for 1 < i < n . Furthermore, choose the names

to make t:!L > t‘.:'L . Then, consider the vectors

A
1

= <tl) .b2, o . o,tn>

"

= <.t1{+l, ee o) tnj ti, 1) t’2, t;, o e t}'{, ti;>

" 1

t
A Rt

i

’t'e',...’tr'l’t;.> .

Note that the components of Tk oFe exactly the elements of Tn+k ’
but not necessarily in sorted order.

Now, recall that the perfect slice (Sm) takes the form

.S—n - <Sl, 52,..., Sn>

— _ I S SO~ - 1Y
n+k—<‘k+l""’n’2’2’2’2"““’2" 2
: Vs s s s s s /

T 41 1 2 2 Y. X

Wop FNT T T E e TS .

By applying Lemma 1 to the n-vectors Th and _S-; , we deduce that there
. . _ (k) _ z(x)
must exist some k intherange O < k<n, such-that Th > Sn ;

that is, such that

D R e LR Nl VS LA A L

This is almost enough information to conclude that, in fact, Ttk an+k :

that is, that

13
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—'t ) , 1
< k+l’...’tn,ti’ti,.."tl'i’ti'{> 2 <8k+l,oco’sn, —2‘ 3 "2—‘ 3 eee _é" > 5

The only partial sums that haven't been handled are those which include
a ti but not the corresponding tg . Note, however, that we do know

that

+ e
t 4-tn4-t and

et 1 +...+—[—,:.L @ s + eee + sn+ olao&@@w&_

1 1 k+1 1

b teertt 41t
n

ki1 + eeet+ . L. > +eeet g 48 Foeeet g, +.g,,1 .

1 -1 1 2 Spr1 n” °1 T-1

We can deal with the remaining partial sums by averaging these two

inequalities, and then using the additional-fact that ti > t£ implies

]
t; > ti/2 . Thus, Tk > Sk
Finally, note that Ttk is simply a rearrangement of Tn+k into

a possibly non-sorted order. Thus, we must also have Tn+k zasn+k '
since the sum of the largest j components of any vector is certainly
at least as large as the sum of the leftmost j components. It follows

O

that Tn+ majorizes S

k n+k '’

In light of Theorem 1, it might seem to be rather hopeless to find a sense
in which any particular stickbreaking strategy is uniquely optimal. 1In
fact, Theorem 1 shows that stickbreaking is a rather zero-sum proposition;
a strategy does well at some times by doing correspondingly poorly at
other times. And different strategies do well at different times. To
progress further in our study of stickbreaking, we must be willing to
compare m-states and n-states where m# n , That is, we must extend
the majorization partial order to deal with multisets of different

cizes.

1y



One possibility is to generalize majorization by using Lorenz
curves. These curves are used in economics for studying inequity in

distributions of income or wealth [7]. In our context, we will define

the Lorenz curve of an n-state Sn to be the function ’én: [0,1] - [0,1]
with ,én(r) given by the sum of the rn largest elements of Sn , If

rn 1s not an integer, we will define the value of %n(r) by interpolating
linearly between the nearest two values of r which make rn integral.

In particular, if S—n = <815855.0+58,>» then

Sn(k/n) = P s, for 0<k<n ,
1<i

and %n(r) for other r is found by piecewise linear interpolation.
(Warning: these Lorenz curves are "upside down" in comparison to the
Lorenz curves of economies.)

The Lorenz curve of a state is a piecewise linear and concave
function, which assumes the values 0 and 1 at 0 and 1 respectively.
Furthermore, the discontinuities in the derivative of the function occur
only at rational points. Conversely, any function with these properties
is the Lorenz cuve of an infinite family of states. For example, the
identity function is the Lorenz curve of the n-state {l/n,1l/n, . . ., 1/n}
for each n .

Suppose that Sn and Tn are two n-states. Recall that Sn
majorizes T, if and only if §I_1 zi'; + In terms of their Lorenz
curves, the latter condition states that %n(r) > &n(r) for r in
fo, l/n, 2/n, . . . . 1) . But since Lorenz curves are linear in each
region [k/n, (kt1l)/n] | we can conclude that 8, majorizes T if

and only if én(r) >_§n(r) for all r in [0,1] . This latter condition

15



is a nmatural partial order on Lorenz curves; we will say that %n > &n
when én(r) Z_%n(r) for all r . We can now extend majorization to
relate states of different sizes by defining an m-state Sm to majorize
an n-state Tn exactly when ém > &n . Note that this more general
majorization is not quite a partial order on the set of all states, since
two distinct states with the same Lorenz curve would each majorize the
other.

We could arrive at the same generalization without using Lorenz
curves. In order to compare an m-state Sm and n-state Tn , we could
divide each element of Sm into n equal pieces, and each element of
Tn into m equal pieces. This would generate two (mn) -states, which
we could compare by the old methods. Since this refining process does
not change the associated Lorenz curves, this idea leads to the same
generalization of majorization that we found above.

The Lorenz curves of the log strategy have a particularly simple
form. In fact, let Ln denote the state of the log strategy at time
n , and define the envelope to be the graph of the function 1g(l+r)
on the unit interval, Then, ih is exactly the function which piecewise
linearly interpolates the envelope at the points (0,]/n,2/n, N
This gives a good graphical intuition for the behavior of the in; for
example, we can now see that Lkn majorizes Ln for every k and n ,

According to our definitions, no slice of the log strategy is
perfect. Butwecan construct for each n a unique perfect n-slice which
begins with the state Ln ; 1t 1is only necessary to note that the

biggest element of Ln is less than twice as large as the smallest.

Let the perfect n-slice so defined be written <Pn,m%1<ng{2n '

where Pn n is the state at time m . Note
)

16



~

that” Pn m also has a simple structure; in particular, Pn m interpolates
2 )

the envelope over the n intervals defined by the (n+l) points

1 2 on-m-1 2n-m 2n-m+2  2n-mth m-2
OJE’E""’ ™ ’ m ) m b m )'--)T’l .

We finally have enough information to characterize the log stick-

breaking strategy in a non-trivial way.

Theorem 2. Log stickbreaking is the unique strategy with the property
that none of its Lorenz curves anywhere exceed the envelope. In more
detail, if an arbitrary strategy <Sm>m>l remains on or below the
envelope everywhere before time 2n , it— must actually equal the log ¢

strategy until time n .

Proof., Suppose that (Sm> does lie on or under the envelope before

m>1
time 2n ; that is, Sm(r) <lg(l+r) for 0<r<1l and 1<m<on.

~

Equivalently, we could assume that im > Sm for 1<m<2n ., Apply

Theorem 1 to the perfect slice (P and the n-slice

n,m)nSmSEn «Sm>n_<_m§_2n ¢

The theorem allows us to conclude that there exists a k in the range

0 <k <n such that Sn+k majorizes P Hence, we have

n,n+k °

Ln+k 2 Sn+k 2 Pn,n+k ‘

The graph in Figure 6 illustrates the situation for k=1 and n=2 .

Now, consider what Sn+ could be like; it must arise from

k-1

combining two elements of Sn+k . But from the above relation, we know

. n+k
that the smallest two elements of sn+k must sum to precisely lg(n+_}(-i) .

-

Furthermore, since S must fit on or under the envelope, the state

n+k-1

17



2/3

1/3
0
0 1/3 2/3 1
Figure 6
ntk
Sn+k-l cannot afford any element larger than lg(fﬁifi) ; the only
choice Is to combine the smallest two elements of %ﬁk . Hence, we
have Lyip.1 2 Sptk-1 2 Pn,n+]f:-~l )

el
1

Continuing inductively, we eventually conclude that in >8 >F ¢
- - )

and thus 5 = Ln . Pushing the same argument even further, we find that

the history continues to be forced, and that S = L for 1 < m < n
m m - -

Next, we want to use this characterization to show that log gstick-

breaking is actually uniquely optimal in some sense. Define an m-state

18



‘to be decent if, for every stickbreaking strategy (Tk) , there

k>1
exists an infinite number of indices Kk such that Tk majorizes Sm
Intuitively, a decent state is not too bad, since every strategy must

do at least as poorly infinitely often. The next theorem shows that

the envelope marks the dividing line between decent and indecent states.

Theorem 3. Let ém be the Lorenz curve of an m-state Sm . If
?Sm(r) < 1g(L+r) for all r in the open interval (0,1) , then the
state S 1is decent. If there exists an r in (0,1) where

él'n(r) > 1g(1+r) , then S, is not decent.

Proof. The second implication is easier. If Sm actually exceeds

the envelope at some point, then no state of the log strategy can

possibly majorize Sm . Hence, Sm cannot be decent.

For the first implication, let Sm be an m-state whose Lorenz
curve liesstrictly under the envelope except at 0 and 1 . Our first
goal is to prove the existence of perfect slices all of whose states
majorize Sp - Consider the states Pn,k for large n and n < k < 2n

~

Each curve Pn,k(r) is a piecewise linear interpolate of 1g(l+r) .,
Furthermore, as n tends to infinity, the lengths of the chords involved
tend to zero, uniformly in k . Hence, the %’n,k(r) converge to the
envelope 1g(1+r) uniformly in r and k . Finally, since all Lorenz
curves are concave, we can check that any k-state Tk majorizes Sm
merely by checking that ﬁk(r) > ém(r) for r in the finite set

{0, 1/m, 2/m, . . ., 1) . Therefore, by choosing n sufficiently large,
we can guarantee that the states Pn,k majorize Sm for all k in

the range n <k <2n .

19



-Fix an n which is sufficiently large by this criterion, and let

(T be any strategy which challenges the decency of Sm . By

k>kzl
applying Theorem 1 to the perfect n-slice <Pn'k>n<kg2n and the n-slice

<Tk>n<k<2n » we deduce that there exists some k in the range

n < k < 2n such that Tk majorizes Pn K - Since majorization is
2

transitive, Tk will also majorize Sm . Finally, since the above

works for all sufficiently large n , we find that the strategy

<Tk>k>l majorizes Sh infinitely often; hence § is decent. g

Unfortunately, the above theorem does-not settle the really
interesting cases! In particular, we would like to know whether or not
the states Ln of the log strategy are decent. The author rather
suspects that they are, but that question seems difficult to resolve.
Instead, let us resort to the following definition, Call an n-state

. = . noo, . .
Sh nearly decent 1if Sn as a vector in R is an accumulation point

of the set of Tn for decent Tn . That is, a state Sn = {Sl’SE” P sn}
is nearly decent when arbitrarily small perturbations of the 83 exist
which make the state decent. The usefulness of this definition lies in

the following theorem.

Theorem 4, An n-state Sn is nearly decent if and only if its Lorenz

~

curve Sn never exceeds the envelope.

Proof. Once again it is convenient to do the easy half first. Suppose
that én actually exceeds the envelope at some point. Then, it must in
fact exceed the envelope at some point of the form k/n for 0 < k < n ;

that is, we have é(k/n) = 1g(l + k/n)+ € for some ¢ > 0

20



-Now, én( k/n) equals the sum of the k largest elements of § .

A sufficiently small neighborhood of the n-vector E; in Fp will
therefore contain only n-vectors whose k largest components also sum
to something strictly greater than 1g(l1 + k/n) , Applying Theorem 3,
we conclude that no state in this neighborhood can be decent, thus Sn
is not even nearly decent.

Conversely, suppose that én lies everywhere on or under the
envelope. Note that it can actually touch the envelope only at a finite
number of points of the form k/n . Let
v = {k|0 <k <n and én(k/n)= 1g(1 + k/n)} , To prove that s, is
nearly decent, we want to find a family of decent n-states whose n-vectors
converge to §; in BR' . We will construct these n-states by constructing
their Lorenz curves; and we will do the latter by distorting én a little
in the neighborhood of the points k/n for k in V. But what is
"a little"?

First, note that for each k in V we must have
s (k1 s [k s~ (k . k—l),
Sn(n)_sn(ﬁ)<sn(n)_sn(n ’
that is, the stick corresponding to the interval [k/n, (k+lbhﬂ must be
strictly smaller than the one corresponding to [(k-1)/n, k/n] . This
follows since é actually touches the curving and concave envelope at

n

k/n . Let the slack in this inequality be denoted by and let

1 .
p = = min .
2 keV Ak

~

For ¢ in the range 0 <e <p , define the function T, c at the points
- 2

k/n Dby

21



. _ Sn(k/n) -¢ if keV

T, (/) -

5, (k/n) if 0<k<n and k§V ,

and extend %n e to the unit interval by linear interpolation. The
)

tricky point now is to show that T is concave. It suffices to

check that the slope does not increase at each corner between linear

segments. Consider the corner k/n ; if k is not in V , the change

~ ~

frem s, to T o only makes things better. If k is in V , the
)

change to %n . can at most affect the difference between the lengths
)

of the sticks corresponding to [k/n, (k+1)/n}l and [(k-1)/n, k/n]

by 2¢ . Since 2¢ < A , the change from 5, to Tn,g does not

destroy concavity.
Thus, for 0 < ¢ <p , the function &ln ; is a valid Lorenz curve
- ]

for an associated n-state Ty . Note that the stick lengths of T, "
s € )

each differ by at most ¢ from the corresponding stick lengths of Sn .

. n .
Hence, as & goes to zero, T‘51 ¢ converges to Sn in BR™ . Since
Bl

each Tn . lies strictly below the envelope on (0,1) , we deduce from
)

Theorem 3% that each Tn . is decent; therefore, Sn is nearly decent, O
J

-

Corollary. The log stickbreaking strategy is the unique strategy all

of whose states are nearly decent.

Proof'. This follows immediately from Theorems 2 and 4 O

This Corollary is the promised demonstration that log stickbreaking
is uniquely optimal in some sense. To wrap things up, we will use this

general optimality to show that 1log stickbreaking is also optimal in a
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fairly wide class of real-valued measures; in particular, this class
will include the three measures studied by Erd8s and DeBruijn.

A real-valued functional vy on the set of all states will be called

a monotone measure if it has the following two properties:

(i) If an m-state § majorizes an n-state T , then v(Sm):>v(Tn),

(ii) For each fixed n , V(Sn) = v({Slxsg,-o-;Sn}) is jointly

continuous in the S5 -

Our earlier discussion of majorization shows that property (i) is

equivalent to the following pair of conditions together:

(') Performing a Robin Hood act never increases the value of y .
(lH) Two states with the same Lorenz curve must have the same value
of v

This latter pair of conditions is often easier to verify,

If the author's suspicions are correct and the states Ln of the
log strategy are actually decent as well as nearly decent, then the
continuity requirement, property (ii), could be dropped.

Many intuitively reasonable yardsticks of stickbreaking performance
can be phrased as monotone measures. Here is a list of examples which
begins with the three covered by DeBruijn and Erd¥s; let Sn be an

n-state with 5;

<Sl’ 52, oo ) Sn> .

(1) v(8,) =n . min(s)) ér'l(o)

(2) V(Sn) = -n ] min (Sn) =-%r'l(l).
max(s)  §,(0)

A T
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l -
(4) ws) = @hH T & - [ )P a
1<i<n 0

for fixed p > 1 , especially p = 2.

~

(5) v(Sn) = Sn(r) for fixed r in (0,1)
1. 1
(6) v(s,) = s (r)ydr = 5=+ T (2n-2i+1)s, .
. 'rO 7 M 1<i<n 1
(7) Generalizing 5 and 6, we can have
l -~
v(sy) = jo 8 (r)dF (x)

for any nondecreasing F: [0,1] - R .

Given any particular monotone measure, we can rate the performance

of a stickbreaking strategy <Sn>n>l by lim sup v(S ), where small
1 n n

values of this lim sup are desirable. Our final result is
that log stickbreaking has the optimal 1lim sup in any monotone

measure.
Theorem 5. If v is any monotone measure and <Sn>n>l is any
stickbreaking strategy, then

lim sup \)(Sn) > 1lim sup v(Lk) = sup \)(Lk)
n k k

Proof. Fix an arbitrary k > 1 ; we want to show that

lim sup v(8 ) > \a(lk)
n

Since Lk is nearly decent, there exists a sequence of decent k-states
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<Tk, Ib>P>1 such that Tk,p converges to q in B" . By property (ii),

the real numbers y(T ) must converge to v(Lk).
k,p
Now, each k-state Ty P is decent; hence there exists an infinite
2]

number of indices n such that Sn majorizes T . Therefore,

k,p
lim su S > T
] p v(5,) > w( k,p)
for every p . Letting p go to infinity, we deduce
lim sup v(Sn) > v(Lk) for each k , and
n

thus

lim sup \)(Sn) > sup \)(Lk) .
n k

Finally, the above argument with Sn = Ln shows that

1imnsup v(L) > sup v(L)

hence these two quantities must in fact be equal. Alternatively, we
could have deduced their equality at once by recalling that Lkn

majorizes L ~for every k and n . )
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